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Constrained welfare egalitarianism in surplus-sharing
problems∗
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Abstract

We introduce the constrained egalitarian surplus-sharing rule fCE , which dis-
tributes an amount of a divisible resource so that the poorer agents’ resulting payoffs
become equal but not larger than any remaining agent’s status quo payoff. We show
that fCE is characterized by Pareto optimality, nonnegativity, path independence,
and less first, a new property requiring that an agent does not gain if her status
quo payoff exceeds that of another agent by the surplus. We provide two additional
characterizations weakening less first and employing consistency, a classical invari-
ance property with respect to changes of population. We investigate the effects of
egalitarian principles in the setting of transferable utility (TU) games. A single-
valued solution for TU games is said to support constrained welfare egalitarianism
if it distributes any increment of the worth of the grand coalition according to fCE .
We show that the set of Pareto optimal single-valued solutions that support fCE

is characterized by means of aggregate monotonicity and bounded pairwise fairness,
resembling less first.
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JEL Classification: C71

1 Introduction

The notion of equity has a significant position in surplus-sharing problems, where a
quantity of a divisible resource (e.g., money) is divided among a set of agents that believe
in egalitarianism as a social value. In this setting, authors have mainly paid attention to
resource egalitarianism instead of welfare egalitarianism. The first principle is reached
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by distributing the available total resource equally among the agents, whereas the latter
prioritizes to equalize the welfare of the agents after the allocation process.1 Nevertheless,
if the amount of resource that has to be distributed is small, it may happen that a rich
agent has to transfer some of her money to poorer agents in order to reach welfare
egalitarianism. To make our approach to egalitarianism compatible with individual self-
interest, we introduce the constrained egalitarian surplus-sharing rule, fCE . Imagine a
situation where there is a resource to be divided among a set of agents that are ranked
with respect to (w.r.t.) a reference point, representing some objective and measurable
feature (sometimes called status quo or welfare). First, agents with the lowest ranking
receive everything until they become equal to the second lowest ranked agents, and so
forth until the resource is exhausted. Distributing according to fCE can be seen as a way
of obtaining end-state fairness.2 Many real-life allocation methods promote this positive
discrimination towards agents with less status quo. For instance, in the distribution of
grants or subsidies by public institutions, families with lower incomes often receive larger
scholarships and, subsequent to a natural catastrophe, it is often decided that the more
individuals suffer, the more financial support they get.

We first show that fCE can be characterized by four properties: Pareto optimality,
meaning that the resource must be exhausted, nonnegativity, imposing awards to be
nonnegative, path independence (Moulin, 1987), requiring that the assigned payoffs re-
main unchanged when applying the rule consecutively to any partition of the resource,
and less first, a new property capturing how differently non-identical agents (w.r.t. the
status quo) should be treated. This property requires that if the relative welfare dif-
ference at the status quo between two agents exceeds the total amount to be divided,
then the agent with higher welfare does not gain. By weakening less first into weak less
first or restricted less first, that both focus on agents with a significant level of welfare,
and employing consistency, a classical invariance property requiring that the share of
the surplus of any agent remains unchanged if some other agents take their shares and
leave, we provide two additional characterizations.

In the second part of the paper, we investigate allocation rules in the setting of transfer-
able utility (TU) games that support constrained egalitarianism in the sense that they
distribute any increment of the worth of the grand coalition according to fCE . Indeed,
we show that a Pareto optimal single-valued solution supports fCE if and only if it satis-
fies aggregate monotonicity (Megiddo, 1974), a property requiring that no player suffers
if only the grand coalition becomes richer, and bounded pairwise fairness, requiring that

1Moreno-Ternero and Roemer (2012) provide a concise exposition of these two conceptions of dis-
tributive justice.

2See Ju and Moreno-Ternero (2018) for a discussion of different levels of fairness for the allocation of
goods.
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an increasing worth of the grand coalition is distributed according to less first. Finally,
we concentrate on single-valued solutions that combine coalitional rationality with the
Lorenz criterion to promote equality. More precisely, we show that on the domain of
balanced games (Bondareva, 1963; Shapley, 1967) any egalitarian solution satisfying ag-
gregate monotonicity supports fCE . As a consequence, we obtain that the egalitarian
solution of Dutta and Ray (1989) and the lexmax solution of Arin et al. (2003) sup-
port fCE on the domains of convex games3 (Shapley, 1971) and games with large cores4

(Sharkey, 1982), respectively.

The remainder of the paper is organized as follows. Section 2 contains some general
preliminaries. In Section 3 we introduce fCE and study the relations with the equal
sharing rule and the non-constrained egalitarian rule, representing resource and welfare
egalitarianism, respectively. Section 4 presents the axiomatic analysis of fCE , including
the logical independence of the properties. Section 5 is devoted to characterize, on some
specific domains of TU games, the set of single-valued Pareto optimal solutions that
support fCE .

2 Preliminaries

Let U be a set (the universe of potential agents) and N be the set of coalitions in U

(a coalition is a nonempty finite subset of U). Given S, T ∈ N , we use S ⊂ T to
indicate strict inclusion, that is, S ⊆ T and S 6= T . By |S| we denote the cardinality
of the coalition S ∈ N . Given N ∈ N , let RN stand for the set of all real functions
on N . An element x ∈ RN , x = (xi)i∈N , is a payoff vector for N . For all S ⊆ N ,
x(S) =

∑
i∈S xi, with the convention x(∅) = 0. For each x ∈ RN and T ⊆ N , xT

denotes the restriction of x to T : xT = (xi)i∈T ∈ RT . Given N ∈ N , for all x, y ∈ RN ,
x ≥ y if xi ≥ yi for all i ∈ N . For all α ∈ R, α+ = max{0, α}. For any two vectors
y, x ∈ RN with y(N) = x(N), we say that y weakly Lorenz dominates x, denoted by
y �L x, if min{y(S) | S ⊆ N, |S| = k} ≥ min{x(S) | S ⊆ N, |S| = k}, for all
k = 1, 2, . . . , n−1. We say that y Lorenz dominates x, denoted by y �L x, if at least one
of the above inequalities is strict. Given x ∈ RN , let P(x) = (N1, N2, . . . , Nk) denote
the ordered partition of N that is determined by N1 = {i ∈ N | xi ≤ xj ∀j ∈ N} and
Nm = {i ∈ N \

⋃m−1
j=1 Nj | xi ≤ xj ∀j ∈ N \

⋃m−1
j=1 Nj} for all m = 2, . . . , k.

3Outside the class of convex games, the existence of the egalitarian solution of Dutta and Ray (1989)
is not guaranteed.

4The lexmax solution is defined for balanced games but, as we will see, in the whole domain of
balanced games it does not support fCE .
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3 The constrained egalitarian rule

A surplus-sharing problem is a triple (N, x, t) where N ∈ N is the set of agents, x ∈
RN is the status quo or reference point, and t ≥ 0 the surplus in terms of money.5

A surplus-sharing rule distributes the amount t among the members of N that are
differentiated by x ∈ RN which, depending on the situation, can denote the vector of
individual opportunity costs or endowments of the agents or other objective references.
Formally, it is a function f that assigns to each surplus-sharing problem (N, x, t) a vector
f(N, x, t) ∈ RN satisfying

∑
i∈N fi(N, x, t) ≤ t (feasibility).6

Let F denote the set of all surplus-sharing rules with a finite set of agents in N . We say
that f ∈ F is Pareto optimal (PO) if, for any suplus-sharing problem (N, x, t), y(N) = t

where y = f(N, x, t). Moreover, f ∈ F satisfies nonnegativity (NN) if f(N, x, t) ≥ 0 ∈
RN for any surplus-sharing problem (N, x, t). NN implies that no agent transfers part
of her status quo to others.

In the literature (see, for instance, Moulin, 1987; Young, 1988; Chun, 1989; Pfingsten,
1991; Pfingsten, 1998), several surplus-sharing rules have been established and char-
acterized but none of them cares about diminishing inequalities of the arising ex-post
allocations, that is, after the allocation process.

A well-known form of egalitarianism is resource egalitarianism. The equal sharing rule,
defined by setting

fEQi (N, x, t) = t

|N |
(1)

for all surplus-sharing problems (N, x, t) and all i ∈ N , distributes the available resource
equally among the agents ignoring the initial status quo. Clearly, fEQ weakly Lorenz
dominates every other Pareto optimal rule f ∈ F , i.e., fEQ(N, x, t) �L f(N, x, t) for any
surplus-sharing problem (N, x, t). However, it is easy to find instances (see Example 1)
of surplus-sharing problems and Pareto optimal rules f ∈ F where x + fEQ(N, x, t) is
Lorenz dominated by x+ f(N, x, t).

Another form of egalitarianism is welfare egalitarianism. The non-constrained egalitarian
rule defined by setting

fEi (N, x, t) = x(N) + t

|N |
− xi (2)

for all surplus-sharing problems (N, x, t) and all i ∈ N , equalizes the welfare of the agents
ex-post. Note that x+ fE(N, x, t) �L x+ f(N, x, t) for any Pareto optimal rule f ∈ F

5Usually, in the definition of a surplus-sharing problem the condition x ∈ RN
+ is imposed. Here, we

consider a more general class of problems in which no restriction on x is required.
6Other models incorporate additional requirements in defining a surplus-sharing rule (see, for instance,

Moulin, 1987).

4



and any surplus-sharing problem (N, x, t). However, fE may require transfers between
agents, i.e., it does not satisfy NN. Hence, for small t some agents may lose when fE is
applied so that they prefer not to collaborate.

To reconcile welfare egalitarianism with individual self-interest, we introduce the con-
strained egalitarian surplus-sharing rule, denoted by fCE , and show that the ex-post
allocation x+fCE(N, x, t) weakly Lorenz dominates the final outcome x+f(N, x, t), for
any Pareto optimal nonnegative surplus-sharing rule f ∈ F and for any surplus-sharing
problem (N, x, t).

Definition 1. The constrained egalitarian surplus-sharing rule is defined by

fCEi (N, x, t) = (λ− xi)+ for all N ∈ N , x ∈ RN , t ∈ R+, and i ∈ N, (3)

where λ ∈ R is determined by
∑
k∈N (λ− xk)+ = t.

Thus, fCE treats equals (w.r.t. the status quo) equally, and makes unequal agents equal
as far as this is possible. That is, it distributes the surplus to the poorer agents so that
their payoffs become equal but not larger than the remaining agents’ status quo payoffs.
Note that fCE imposes egalitarianism constrained to each agent preserving her initial
status quo. From the fact that fE(N, x, t) = fCE(N, x, t) whenever fE(N, x, t) ≥ 0, it
follows that

fE(N, x, t) = fCE(N, x, t+ t′)− fEQ(N, x, t′), (4)

for any t′ ≥ 0 such that fE(N, x, t+ t′) ≥ 0.

The following remark concerning fCE explains how to calculate λ for any x ∈ RN and
t > 0, and it will be useful in our proofs.

Remark 1. Let N ∈ N , x ∈ RN , t > 0, and λ be such that fCEi (N, x, t) = (λ − xi)+

for all i ∈ N . Choose i1, . . . , in, where n = |N |, such that {i1, . . . , in} = N and xi1 ≤
· · · ≤ xin . For k ∈ {1, . . . , n} define αk(t) = αk = x({i1, . . . , ik})− kxik + t and observe
that α1 = t > 0 and, for k < n, αk − αk+1 = k(xik+1 − xik), hence α1 ≥ · · · ≥ αn. Now,
with k0 = max{k ∈ {1, . . . , n} | αk > 0}, we get

λ = αk0

k0
+ xik0

= x({i1, . . . , ik0}) + t

k0
.

Hence, λ = xik + fCEik (N, x, t) < xik′ = xik′ + fCEik′ (N, x, t), for all k = 1, . . . , k0 and all
k′ = k0 + 1, . . . , n.

Let us provide an example to illustrate the aforementioned surplus-sharing rules.
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Example 1. Consider the surplus-sharing problem defined by the set of agents N =
{1, 2, 3, 4}, the status quo x = (1, 3, 8, 0), and t = 8. It is not difficult to check that

fEQ(N, x, 8) = (2, 2, 2, 2) and fE(N, x, 8) = (4, 2,−3, 5) .

To calculate fCE , according to Remark 1, i1 = 4 and ij = j − 1 for j = 2, 3, 4, and

α1 = xi1 − 1xi1 + 8 = 8,
α2 = xi1 + xi2 − 2xi2 + 8 = 7,
α3 = xi1 + xi2 + xi3 − 3xi3 + 8 = 3,
α4 = xi1 + xi2 + xi3 + xi4 − 4xi4 + 8 = −12.

(5)

Thus, k0 = max{k ∈ {1, 2, 3, 4} | αk > 0} = 3, λ = α3
3 + xi3 = 4, and

fCE1 (N, (1, 3, 8, 0), 8) = (4− 1)+ = 3,
fCE2 (N, (1, 3, 8, 0), 8) = (4− 3)+ = 1,
fCE3 (N, (1, 3, 8, 0), 8) = (4− 8)+ = 0,
fCE4 (N, (1, 3, 8, 0), 8) = (4− 0)+ = 4.

(6)

Hence,
fCE(N, x, 8) = (3, 1, 0, 4) .

Clearly,
fEQ(N, x, 8) �L fE(N, x, 8) and fEQ(N, x, 8) �L fCE(N, x, 8).

Observe, however, that

x+ fCE(N, x, 8) = (4, 4, 8, 4) �L (3, 5, 10, 2) = x+ fEQ(N, x, 8),

and x + fE(N, x, 8) = (5, 5, 5, 5) Lorenz dominates both distributions. Nevertheless,
under fE , agent 3 has no incentive to cooperate since fE3 (N, x, 8) = −3.

We now show that, in general, among the nonnegative Pareto optimal surplus-sharing
rules, when applied to any surplus-sharing problem, fCE yields the most egalitarian
ex-post allocation.

Lemma 1. For all N ∈ N , all x ∈ RN , and all t ∈ R+,

x+ fCE(N, x, t) �L x+ z, (7)

where z ∈ RN+ , z(N) = t, and z 6= fCE(N, x, t).

Proof. Let i1, . . . , in, k0, and λ be defined as in Remark 1, y = x + fCE(N, x, t), and
y′ = x + z. Let {j1, . . . , jk0} = {i1, . . . , ik0} such that y′j1 ≤ · · · ≤ y′jk0

. Moreover, let
jk = ik for k = {k0 + 1, . . . , n}. Then, for each k ∈ {1, . . . , n}, min{y′(S) | S ⊆ N, |S| =
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k} ≤ y′({j1, . . . , jk}). Moreover, as yij = xij for all j ∈ {k0 + 1, . . . , n}, by nonnegativity
of z we have y′ij ≥ yij so that, by y′(N) = y(N) and yj1 = · · · = yjk0

= λ we conclude
that y′({j1, . . . , jk}) 6 y({i1, . . . , ik}) for all k ∈ {1, . . . , n}. Finally, as z 6= fCE(N, x, t),
there is k ∈ {1, . . . , n} such that yik 6= y′jk so that y′({j1, . . . , jk1}) < y({i1, . . . , ik1})
where k1 is minimal in {1, . . . , n} such that yik1

6= y′jk1
. Hence, y �L y′.

Lemma 1 has the following immediate consequence.

Corollary 1. Let f ∈ F be a surplus-sharing rule that satisfy NN and PO. Then,

x+ fCE(N, x, t) �L x+ f(N, x, t), (8)

for all N ∈ N , all x ∈ RN , and all t ∈ R+.7

4 Axiomatic analysis of fCE

In this section, we provide several axiomatizations of fCE either for fixed or variable sets
of agents. Although the properties are stated for variable sets of agents (i.e., for surplus-
sharing problems (N, x, t) such that N ∈ N ), except for consistency, the remaining
properties may be formulated for a fixed society N ∈ N of agents.

4.1 Properties

Together with NN and PO, already defined in Section 3, we will use the following addi-
tional properties. A surplus-sharing rule f ∈ F satisfies

• Equal treatment of equals (ET) if for all N ∈ N , all x ∈ RN , all t ∈ R+, and all
i, j ∈ N , if xi = xj then fi(N, x, t) = fj(N, x, t);

• Resource monotonicity (RM) if for all N ∈ N , all x ∈ RN , and all t, t′ ∈ R+ with
t′ > t, f(N, x, t′) ≥ f(N, x, t);

• Path independence (PI) if for all N ∈ N , all x ∈ RN , and all t, t′ ≥ 0, f(N, x, t +
t′) = f(N, x, t) + f(N, x+ f(N, x, t), t′).

ET is a simple equity requirement which imposes that equal agents (w.r.t. the status quo)
should receive the same amount of the resource. RM is a solidarity condition requiring
that nobody is worse off when there is more to be divided. Moulin (1987) introduces
PI, which requires that, regardless of the partition of the total amount of resource to

7The difference between Lemma 1 and Corollary 1 is that, for a particular surplus-sharing problem
(N, x, t), although f 6= fCE , it could happen that f(N, x, t) = fCE(N, x, t).
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be allocated, its distribution may be dynamically obtained step-by-step by applying the
surplus-sharing rule consecutively to the given elements of the partition, and taking into
consideration the new status quo that emerges after the allocation process in the previous
step.

Remark 2. Note that PI and NN imply RM. Moreover, if f ∈ F satisfies RM and PO,
then, for all N ∈ N and all x ∈ RN , f(N, x, ·) : R+ → RN+ is a continuous mapping.

We now present three properties that require to prioritize agents with a lower status
quo. A surplus-sharing rule f ∈ F satisfies

• Less first (LF) if for all N ∈ N , all x ∈ RN , all t ∈ R+, and all i, j ∈ N , i 6= j,
fi(N, x, t) > 0 implies xi − xj < t;

• Weak less first (WLF) if for all N ∈ N , all x ∈ RN , all t ∈ R+, and all i, j ∈ N ,
i 6= j, fi(N, x, t) > 0 and xi − xj ≥ t imply fj(N, x, t) ≥ t;

• Restricted less first (RLF) if for all N ∈ N , all x ∈ RN , all t ∈ R+, and all i, j ∈ N ,
i 6= j, with xi ≥ xk for all k ∈ N , fi(N, x, t) > 0 implies xi − xj < t.

LF applies to any pair of agents, and it requires that an agent does not gain if her status
quo exceeds the status quo of another agent by the surplus, while WLF imposes that
the richest agent in the pair can only gain if the poorest agent in the pair receives at
least the total surplus. RLF imposes LF only to pairs of agents containing an agent
with the highest status quo. Similar protective properties for those agents with small
“initial starting point” have been used in different models. Instances are No Domination
(Moreno-Ternero and Roemer, 2012), in a model of resource allocation where agents are
capable to transform wealth into non-transferable outcomes, or ex-ante fairness (Timoner
and Izquierdo, 2016), in a context of rationing problems with ex-ante conditions. Observe
that LF implies WLF and RLF. Furthermore, we show that WLF and NN imply LF.

Proposition 1. If a surplus-sharing rule satisfies NN and WLF then also LF.

Proof. Let f be a surplus-sharing rule satisfying NN and WLF. If xi − xj ≥ t and
fi(N, x, t) > 0 then, by WLF, fj(N, x, t) ≥ t. By NN,

∑
k∈N fk(N, x, t) > t, which

contradicts feasibility.

Making use of Remark 2, we now show that a surplus-sharing rule satisfying LF, PO,
NN, and PI also satisfies ET.

Proposition 2. If a surplus-sharing rule satisfies PO, NN, PI, and LF then also ET.
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Proof. Let N ∈ N , x ∈ RN , t ∈ R+, and i, j ∈ N , i 6= j, such that xi = xj . Let f ∈ F
satisfy PO, NN, PI and LF.

If t = 0, then by PO and NN, fi(N, x, t) = fj(N, x, t) = 0.

If t > 0 suppose, w.l.o.g., fi(N, x, t) < fj(N, x, t). Note that by NN, fj(N, x, t) > 0.
Moreover, since NN and PI imply RM, for all 0 ≤ t′ ≤ t we have that f(N, x, t′) ≤
f(N, x, t). By continuity and RM of f (see Remark 2), t∗ = min{τ ∈ R+ | fj(N, x, τ) =
fj(N, x, t)} exists and, as fj(N, x, t∗) > fi(N, x, t∗), for each 0 < t̂ < t∗ close enough to
t∗, fj(N, x, t̂) − fi(N, x, t̂) > t∗ − t̂. As xi = xj , we obtain t∗ − t̂ < xj + fj(N, x, t̂) −
(xi + fi(N, x, t̂)). Hence, by LF and NN, fj(N, x + f(N, x, t̂), t∗ − t̂) = 0. But then, by
PI, fj(N, x, t∗) = fj(N, x, t̂) which means that fj(N, x, t) = fj(N, x, t̂), contradicting the
minimality of t∗.

Remark 3. Let us stress that PO, NN, RM, and LF together are not enough to guarantee
ET. Indeed, select i ∈ U and define f ∈ F as follows. Let N ∈ N , x ∈ RN , and t ≥ 0.
If i /∈ N or i ∈ N and xi > xj for some j ∈ N \ {i}, define f(N, x, t) = fCE(N, x, t).
If i ∈ N and xi ≤ xj for all j ∈ N , define fi(N, x, t) = t and fj(N, x, t) = 0 for all
j ∈ N \ {i}. Then, f satisfies PO, NN, RM, and LF but not ET.

Finally, we introduce consistency, a classical stability requirenment that forces the so-
lution to coincide in both the original and the reduced surplus-sharing problem that
results when some agents leave. Conditional consistency is a weakening of consistency
that applies only if what is left to share among the agents in the reduced problem is
nonnegative. A surplus-sharing rule f ∈ F satisfies

• Consistency (CO) if for all N ∈ N , all x ∈ RN , all t ∈ R+, and all ∅ 6= S ⊂ N ,
t−

∑
i∈N\S fi(N, x, t) ≥ 0 and fS(N, x, t) = f

(
S, xS , t−

∑
i∈N\S fi(N, x, t)

)
.

• Conditional consistency (CCO) if for all N ∈ N , all x ∈ RN , all t ∈ R+, and
all ∅ 6= S ⊂ N , the following condition holds: if t −

∑
i∈N\S fi(N, x, t) ≥ 0, then

fS(N, x, t) = f
(
S, xS , t−

∑
i∈N\S fi(N, x, t)

)
.

From PO and NN, we have t−
∑
i∈N\S fi(N, x, t) =

∑
i∈S fi(N, x, t) ≥ 0, for any surplus-

sharing problem (N, x, t). Thus, under PO and NN, CCO implies CO . Bilateral con-
ditional consistency (2-CCO) requires CCO for reduced surplus-sharing problems with
two agents, i.e., |S| = 2.

4.2 Characterizations with and without consistency

First, we deal with a fixed agent set N ∈ N . By definition, fCE satisfies PO and NN.
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Proposition 3. The surplus-sharing rule fCE satisfies PI and LF.

Proof. Let x ∈ RN and t ≥ 0.

To show PI, let i1, . . . , in be defined as in Remark 1, t = t1 + t2, t1, t2 > 0,

k1
0 = max{k ∈ {1, . . . , n} | x({i1, . . . , ik}) + t1 > kxik}

and
k0 = max{k ∈ {1, . . . , n} | x({i1, . . . , ik}) + t > kxik}.

That is, with

λ1 =
x({i1, . . . , ik1

0
}) + t1

k1
0

and λ = x({i1, . . . , ik0}) + t

k0
,

we have fCEi (N, x, t1) = (λ1 − xi)+ and fCEi (N, x, t) = (λ − xi)+, for all i ∈ N . Let
y = x+ fCE(N, x, t1). By Remark 1, yi1 = · · · = yi

k1
0
< yi

k1
0+1
≤ · · · ≤ yin and k1

0 ≤ k0.
As k0λ− x({i1, . . . , ik0}) = t and k1

0λ1 − x({i1, . . . , ik1
0
}) = t1, we conclude that

k0λ− y({i1, . . . , ik0}) = k0(λ− λ1)− x({ik1
0+1, . . . , ik0})

= k0λ− x({i1, . . . , ik0}) + x({i1, . . . , ik1
0
})− k1

0λ1
= t− t1 = t2

so that PI is shown.

To show LF, suppose there are i, j ∈ N , i 6= j, with xi − xj ≥ t and fCEi (N, x, t) > 0.
Since xi ≥ xj , fCEi (N, x, t) ≤ fCEj (N, x, t) and thus fCEj (N, x, t) > 0. This means
that xi + fCEi (N, x, t) = xj + fCEj (N, x, t) (see Remark 1), which implies xi − xj =
fCEj (N, x, t) − fCEi (N, x, t) ≥ t. But then fCEj (N, x, t) > t, contradicting PO. Hence,
fCEi (N, x, t) = 0.

Our first characterization result imposes PO, NN, PI, and LF.

Theorem 1. The unique surplus-sharing rule that satisfies PO, NN, PI, and LF is fCE.

Proof. fCE satisfies PO and NN and, by Proposition 3, PI and LF.

For the uniqueness part, let f be a surplus-sharing rule that satisfies the desired axioms,
hence also ET by Proposition 2. Let (N, x, t) be a surplus-sharing problem. It remains to
show that f(N, x, t) = fCE(N, x, t). We proceed by induction on m(x) = |{xi | i ∈ N}|.
If m(x) = 1, then the proof is finished by ET and PO. Our inductive hypothesis is that
f(N, x, t) = fCE(N, x, t) whenever m(x) < k for some k ∈ N, k > 1. Now, assume that
m(x) = k. Let S(x) = S = {i ∈ N | xi ≤ xj for all j ∈ N}, α(x) = α = mini∈N xi, and
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β(x) = β = mini∈N\S xi. Let |S| = s. By ET, fi(N, x, t) = fj(N, x, t) for all i ∈ S. We
distinguish two cases:

Case 1: t ≤ s(β − α). By PO and NN it remains to show that fi(N, x, t) = t/s for all
i ∈ S. Assume the contrary. As f(N, x, 0) = fCE(N, x, 0) = 0 ∈ RN by NN, continuity
(see Remark 2) of f(N, x, ·) implies that, for all i ∈ S,

t′ = max{t̃ ∈ R | 0 ≤ t̃ ≤ t, fi(N, x, t̃) = fCEi (N, x, t̃)}

exists and, by our assumption, t′ < t. Let x′ = x + f(N, x, t′). Note that S(x′) =
S, β(x′) = β, and α(x′) = α(x)+t′/s. Now, for any 0 < t′′ < (β−α(x′))/s, fj(N, x′, t′′) =
0 for all j ∈ N \ S by LF and NN so that f(N, x′, t′′) = fCE(N, x′, t′′) by ET and PO.
Therefore, by PI of f and fCE , f(N, x, t′+t′′) = f(N, x, t′)+f(N, x′, t′′) = fCE(N, x, t′)+
fCE(N, x′, t′′) = fCE(N, x, t′ + t′′), which contradicts the maximality of t′.

Case 2: t > s(β − α) = t′. By Case 1, f(N, x, t′) = fCE(N, x, t′). Let x′ = x +
f(N, x, t′). Then m(x′) = m(x)−1 so that, by the inductive hypothesis, f(N, x′, t−t′) =
fCE(N, x′, t − t′). Finally, by PI we receive f(N, x, t) = f(N, x, t′) + f(N, x′, t − t′) =
fCE(N, x, t′) + fCE(N, x′, t− t′) = fCE(N, x, t).

By Proposition 1, NN and WLF are equivalent to NN and LF. Thus, LF in Theorem 1
may be replaced by WLF so that we receive the following result.

Corollary 2. The unique surplus-sharing rule that satisfies PO, NN, PI, and WLF, is
fCE.

It is insightful to remark that fEQ satisfies all properties in Theorem 1 except LF, making
LF the key property for fCE . Moreover, as fE satisfies all properties in Corollary 2
except NN, this property becomes essential for distinguishing fCE from fE . Note that
neither fEQ satisfies WLF nor fE satisfies LF.

Now, we consider a variable society of agents. Our third characterization result replaces
LF in Theorem 1 by RLF and 2-CCO.

Theorem 2. The unique surplus-sharing rule that satisfies PO, NN, PI, RLF, and 2-
CCO is fCE.

Proof. fCE satisfies PO, NN, PI, and RLF. To show 2-CCO, let N ∈ N , x ∈ RN , t ≥ 0,
and ∅ 6= S ⊂ N , then t′ = t−

∑
i∈N\S fi(N, x, t) =

∑
i∈S fi(N, x, t) ≥ 0 by PO and NN.

Let y = fCE(N, x, t) and z =
(
fCE(S, xS , t′), yN\S

)
. By Corollary 1, x + y �L x + z.

As yN\S = zN\S , the definition of Lorenz domination yields xS + yS �L xS + zS =
xS + fCE(S, xS , t′). Finally, by Corollary 1, xS + fCE(S, xS , t′) �L xS + yS , so that we
obtain yS = fCE(S, xS , t′). Hence, fCE satisfies CO and, consequently, 2-CCO.
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For the uniqueness part, let N ∈ N , x ∈ RN , t ≥ 0, and f be a surplus-sharing rule that
satisfies the desired properties. By Theorem 1, it suffices to show that f satisfies LF. To
this end, let N ∈ N with |N | ≥ 2, x ∈ RN , and t ≥ 0. If i, j ∈ N such that i 6= j and
fi(N, x, t) > 0, we have, with S = {i, j}, by PO and NN, t′ = t−

∑
k∈N\S fk(N, x, t) ≥ 0

so that, by 2-CCO, f(S, xS , t′) = fS(N, x, t). Hence, by RLF applied to (S, xS , t′),
xi − xj < t′ ≤ t and thus LF is shown.

As before, RLF distinguishes fEQ from fCE since fEQ also satisfies 2-CCO. On the other
hand, as fE meets 2-CCO and RLF, the property of NN is crucial again to compare fCE

with fE from a normative point of view.

4.3 Logical independence of the properties

In this subsection, we show the non-redundancy of the properties in the above charac-
terization results.

(i) Non-redundancy of the properties in Theorem 1, provided |U | ≥ 2:

- The equal sharing rule fEQ satisfies PO, NN, PI but not LF.

- Let N ∈ N , x ∈ RN , and t ≥ 0. Denote N1 = {i ∈ N | xi ≤ xj ∀j ∈ N}. Define

f≤i (N, x, t) =


t
|N1| if i ∈ N1,

0 if i ∈ N \N1.

(9)

Then, f≤ satisfies PO, NN, and LF but not PI.

- Let N ∈ N , x ∈ RN , and t ≥ 0. Define

f0 = (0, 0, . . . , 0) ∈ RN . (10)

Then, f0 satisfies NN, PI, and LF but not PO.

- Let N ∈ N , x ∈ RN , and t ≥ 0. For |N | = 1, put f∗(N, x, t) = t for all t ≥ 0.

Now consider the case |N | ≥ 2. Let α(x) denote the second smallest component
of x, i.e., α(x) = min{x(S) | S ⊆ N, |S| = 2} − mini∈N xi, and let S = S(x) =
{i ∈ N | xi ≤ α(x)}, i.e., S is the coalition of players whose payoffs belong to
the 2 smallest status quo payoffs. Define x̃ ∈ RN by x̃S = xS + fE(S, xS , 0), i.e.,
x̃i = x(S)/|S| for all i ∈ S, and x̃N\S = xN\S , i.e., x̃j = xj for all j ∈ N \ S. Now,
for each t ≥ 0, put f∗(N, x, t) = x̃− x+ fCE(N, x̃, t).

Hence, if |N | = 2, f∗(N, x, t) = fE(N, x, t).
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Moreover, PO of f∗ is guaranteed by definition and the facts that fE and fCE

satisfy this axiom.

Let t, t′ ≥ 0. As with y = x̃ + fCE(N, x̃, t) we have ỹ = y, we deduce from PI
of fCE that f∗(N, x, t + t′) = x̃ − x + fCE(N, x̃, t + t′) = x̃ − x + fCE(N, x̃, t) +
fCE(N, x̃ + fCE(N, x̃, t), t′) = f∗(N, x, t) + f∗(N, x̃ + f∗(x̃, t), t′) so that f∗ also
satisfies PI.

In order to show LF, we assume f∗i (N, x, t) > 0 and j ∈ N \ {i} with xj ≤ xi. If
x̃ = x, then xi− xj < t by LF of fCE . Hence, we may assume that x has a unique
minimizer k. If i = k, xi−xj < 0 ≤ t. If i 6= k, then x`+f∗` (N, x, t) = xi+f∗i (N, x, t)
for all ` ∈ S(x) so that xi − xk < t. Hence, f∗ satisfies LF.

Thus, f∗ satisfies PO, PI, and LF but not NN.

(ii) Non-redundancy of the properties in Corollary 2, provided |U | ≥ 2:

fEQ satisfies PO, NN, and PI but not WLF; f≤ satisfies PO, NN, and WLF but not PI;
fE satisfies PO, PI, and WLF but not NN; f0 satisfies NN, PI, and WLF but not PO.

(iii) Non-redundancy of the properties in Theorem 2, provided |U | ≥ 2:

fEQ satisfies PO, NN, PI, and 2-CCO but not RLF; f≤ satisfies PO, NN, RLF, and
2-CCO but not PI; fE satisfies PO, PI, RLF, and 2-CCO but not NN; f0 satisfies NN,
PI, RLF, and 2-CCO but not PO.

Let N ∈ N , x ∈ RN , and t ≥ 0. Define f̂(N, x, t) as follows: for all i ∈ N ,

f̂i(N, x, t) =


t

nγ−x(N)(γ − xi) if t < nγ − x(N),

fCEi (N, x, t) if t ≥ nγ − x(N)
(11)

where n = |N | and γ = γ(x) = maxi∈N xi.

Clearly, f̂ satisfies PO and NN. To check RLF, we assume f̂i(N, x, t) > 0 such that
xi ≥ xj for all j ∈ N \ {i} so that γ(x) = xi. Therefore, f̂i(N, x, t) = fCEi (N, x, t) and
so RLF follows from LF of fCE .

In order to prove PI, let t, t′ ≥ 0 and i ∈ N . We distinguish two cases:

Case 1: t+ t′ < nγ(x)− x(N). By definition of f̂ ,

f̂i(N, x, t+ t′) = t+ t′

nγ(x)− x(N)(γ(x)− xi) and f̂i(N, x, t) = t

nγ(x)− x(N)(γ(x)− xi).

(12)
Let y = x + f̂(N, x, t). Then, γ(y) = γ(x), y(N) = x(N) + t and nγ(y) − y(N) =
nγ(x)− x(N)− t > t′. Thus,

f̂i(N, y, t′) = t′

nγ(y)− y(N)(γ(y)− yi). (13)
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Combining equations (12) and (13), we receive

f̂i(N, x, t) + f̂i(N, y, t′) = t+ t′

nγ(x)− x(N)(γ(x)− xi) = f̂i(N, x, t+ t′).

Case 2: t + t′ ≥ nγ(x) − x(N). By definition of fCE , f̂i(N, x, t + t′) = x(N)+t+t′
n − xi.

We distinguish two subcases:

Subcase 2.1: t ≥ nγ(x) − x(N). By definition, f̂i(N, x, t) = x(N)+t
n − xi. Let y =

x+ f̂(N, x, t). Then, yi = x(N)+t
n , and since f̂ satisfies ET, we have that f̂i(N, y, t′) = t′

n .
Hence, f̂i(N, x, t+ t′) = x(N)+t+t′

n − xi = x(N)+t
n − xi + t′

n = f̂i(N, x, t) + f̂i(N, y, t′).

Subcase 2.2: t < nγ(x) − x(N). By definition, f̂i(N, x, t) = t
nγ(x)−x(N)(γ(x) − xi).

Let y = x + f̂(N, x, t). Then, γ(y) = γ(x), y(N) = x(N) + t, and nγ(y) − y(N) =
nγ(x)− x(N)− t ≤ t′. Hence,

f̂i(N, y, t′) = y(N)+t′
n − xi − f̂i(N, x, t)

= x(N)+t+t′
n − xi − f̂i(N, x, t)

= f̂i(N, x, t+ t′)− f̂i(N, x, t).

This concludes the proof of PI. Since f̂ 6= fCE , f̂ does not satisfy 2-CCO.

5 Game theoretical support of fCE

In this section, we investigate constrained welfare egalitarianism of single-valued solutions
for certain classes of transferable utility games.

A transferable utility game, for short game, is a pair (N, v) where N ∈ N and v is a
function that associates a real number v(S) with each S ⊆ N . We asume that v(∅) = 0.
For t ∈ R and any game (N, v), denote by (N, vt) the game that differs from (N, v) at
most inasmuch as vt(N) = v(N)+t. Let Γ denote the set of all games. We often consider
a domain of games that allow to increase the worth of the grand coalition. Thus, we say
that Γ′ ⊆ Γ is closed under increments if for all (N, v) ∈ Γ′ and all t > 0, (N, vt) ∈ Γ′. The
set of feasible payoff vectors of (N, v) is defined by X∗(N, v) = {x ∈ RN |x(N) ≤ v(N)},
the set of Pareto optimal payoff vectors by X(N, v) = {x ∈ RN |x(N) = v(N)}, and
the core by C(N, v) = {x ∈ X(N, v) |x(S) ≥ v(S) for all S ⊆ N}. A (single-valued)
solution on a domain Γ′ ⊆ Γ is a function σ that associates with each (N, v) ∈ Γ′ a
unique element σ(N, v) of X∗(N, v). A solution σ on Γ′ satisfies

• Pareto optimality (PO) if for all (N, v) ∈ Γ′, σ(N, v) ∈ X(N, v);

• Aggregate monotonicity (Megiddo, 1974) (AM) if for all (N, v) ∈ Γ′ and all t > 0
such that (N, vt) ∈ Γ′, σ(N, vt) ≥ σ(N, v).
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PO simply says that the worth of the grand coalition should be exhausted. AM means
that every player should be better-off when the grand coalition becomes richer. In order
to characterize the set of solutions that distribute an increment of the worth of the grand
coalition according to fCE , we introduce the following properties. A solution σ on Γ′

satisfies

• Weak continuity (WC) if for all (N, v) ∈ Γ′ and all sequences (αk)k∈N with limit
v(N) the following condition is satisfied: Let, for k ∈ N, (N, vk) be the game
defined by vk(N) = αk and vk(S) = v(S) for all S ⊂ N . If (N, vk) ∈ Γ′ for all
k ∈ N and if (σ(N, vk))k∈N converges to some x, then x = σ(N, v).

• Bounded pairwise fairness (BPF) if for all (N, v) ∈ Γ′, all t > 0 such that (N, vt) ∈
Γ′, and all i, j ∈ N , σi(N, vt)− σi(N, v) > 0 implies σi(N, v)− σj(N, v) < t.

PO and AM together imply WC. The property BPF is a priority requirement imposing
that, if the difference in payoffs between two players in the initial game (N, v) exceeds
the total additional amount t to be divided, then in the game (N, vt) the originally richer
player cannot be better off than before.

Definition 2. A solution σ on Γ′ is said to support constrained welfare egalitarianism
if for all (N, v) ∈ Γ′ and all t > 0, whenever (N, vt) ∈ Γ′ it holds that

σ(N, vt) = σ(N, v) + fCE(N, σ(N, v), t). (14)

A solution σ that supports constrained welfare egalitarianism exhibits a dynamic be-
haviour in the sense that, on a sequence of games with increasing worth of the grand
coalition, σ evolves dynamically assigning an allocation in each period k that is uniquely
determined by the allocation in the previous period k − 1, following the path recom-
mended by fCE .

Note that AM is implied by Equation (14) and the fact that fCE satisfies NN. In order
to show that a Pareto optimal solution satisfies AM and BPF if and only if it supports
constrained welfare egalitarianism, the following lemma that resembles Proposition 2
is useful. While in the framework of surplus-sharing problems PO, NN, RM, and LF
together do not imply ET (see Remark 3), here PO, AM, and BPF are enough to ensure
a kind of equal treatment property that only applies when the worth of the grand coalition
increases.

Lemma 2. Let Γ′ ⊆ Γ be closed under increments and σ be a solution on Γ′ that
satisfies PO, AM, and BPF. For all (N, v) ∈ Γ′, all i, j ∈ N , and all t ∈ R+, if
σi(N, v) = σj(N, v), then σi(N, vt) = σj(N, vt).
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Proof. Let σ be a solution on Γ′ satisfying PO, AM and BPF. Suppose, on the contrary,
there exist i, j ∈ N and t > 0 such that σi(N, v) = σj(N, v) but σj(N, vt) > σi(N, vt).
By PO and AM, σ meets WC. Therefore, there exists a minimal t∗ ∈ (0, t] such that
σj(N, vt

∗) = σj(N, vt). Hence,

σj(N, vt
′′) < σj(N, vt

∗) = σj(N, vt) for all t′′ ∈ [0, t∗). (15)

Note that σj(N, v) < σj(N, vt) since, otherwise, σi(N, v) = σj(N, v) = σj(N, vt) >

σi(N, vt), contradicting AM. Let t̂ ∈ (0, t∗) be such that 2·
(
vt
∗(N)− vt̂(N)

)
≤ σj(N, vt)−

σi(N, vt). By PO and AM, we obtain

2 · (vt∗(N)− vt̂(N)) ≤ σj(N, vt)− σi(N, vt)
≤ σj(N, vt

∗)− σi(N, vt
∗)

= σj(N, vt̂)− σi(N, vt̂) + σj(N, vt
∗)− σj(N, vt̂)

−(σi(N, vt
∗)− σi(N, vt̂))

≤ σj(N, vt̂)− σi(N, vt̂) +
∑
j∈N

(
σj(N, vt

∗)− σj(N, vt̂)
)

−(σi(N, vt
∗)− σi(N, vt̂))

≤ σj(N, vt̂)− σi(N, vt̂) + vt
∗(N)− vt̂(N).

Hence, vt∗(N) − vt̂(N) ≤ σj(N, vt̂) − σi(N, vt̂). Now, by AM and BPF, σj(N, vt
∗) =

σj(N, vt̂), contradicting (15).

Now, we have all the tools to prove our characterization result.

Theorem 3. Let Γ′ ⊆ Γ be closed under increments and σ on Γ′ be a Pareto optimal
solution. Then, σ on Γ′ supports constrained welfare egalitarianism if and only if it
satisfies AM and BPF.

Proof. Let σ be a Pareto optimal solution on Γ′ supporting constrained welfare egalitar-
ianism. From Equation (14) it follows AM. To check BPF, let (N, v) ∈ Γ′, t > 0, and
i, j ∈ N such that σi(N, v) − σj(N, v) ≥ t. By LF of fCE , fCEi (N, σ(N, v), t) = 0, and
thus σi(N, vt) = σi(N, v) which proves BPF.

To prove the reverse implication, let σ be a Pareto optimal solution satisfying AM
and BPF. Take (N, v) ∈ Γ′ and t > 0. Denote σ(N, v) = x and σ(N, vt) = xt. Let
P(x) = (N1, N2, . . . , Nk) be the ordered partition of N as defined in Section 2. We
proceed by induction on |P(x)|.

If k = 1, by PO, xi = v(N)
n for all i ∈ N , where |N | = n. Hence, by Lemma 2, xti = xtj

for all i, j ∈ N , and by PO, for all i ∈ N ,

xti = vt(N)
n

= v(N)
n

+ t

n
= xi + fCEi (N, x, t),
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where the last equality comes from ET of fCE . Our induction hypothesis is that xt =
x + fCE(N, x, t) whenever k < ` for some ` ∈ N, ` > 1. We now assume k = `. Take
i1 ∈ N1, with n1 = |N1| and i2 ∈ N2. We distinguish two cases:

Case 1: xi2 − xi1 ≥ t
n1
. By Lemma 2, for all i, j ∈ N1, xti = xtj , and AM together with

BPF lead to xti = xi for all i ∈ N \N1. Now, taking into account that fCE satisfies LF
and ET, we have that xt = x+ fCE(N, x, t).

Case 2: xi2 − xi1 < t
n1
. Let t′ = n1(xi2 − xi1) and σ(N, vt′) = xt

′ . Note that t− t′ > 0.
By BPF, xt′i = xi for all i ∈ N \N1. By Lemma 2 and PO, xt′i = xi+(xi2−xi1) = xi2 for
all i ∈ N1. Since |P(xt′)| = `− 1, by induction hypothesis xt = xt

′ + fCE(N, xt′ , t− t′).
Moreover, from LF and ET of fCE we receive xt′ = x + fCE(N, x, t′). Finally, from PI
of fCE we obtain

xt = xt
′ + fCE(N, xt′ , t− t′)

= x+ fCE(N, x, t′) + fCE(N, x+ fCE(N, x, t′), t− t′)
= x+ fCE(N, x, t).

Hence, σ supports constrained welfare egalitarianism on any domain Γ′ of games that is
closed under increments.

Clearly, for one person games, PO implies both AM and BPF. However, for any domain
of games Γ′ that is closed under increments, and not contained in the class of one player
games, by means of examples we show that each of the two properties in Theorem 3 is
logically independent of the remaining property.

To this end choose an arbitrary game (N∗, v∗) ∈ Γ′ with |N∗| ≥ 2. Let k ∈ N∗ and
x ∈ RN∗ given by

xk = v∗(N∗)
|N∗|

− (|N∗| − 1) and xi = v∗(N∗)
|N∗|

+ 1 for all i ∈ N∗ \ {k}.

Define σ1 as follows. First, σ1(N∗, v∗) = x. Now, for all t ∈ R such that (N∗, vt∗) ∈ Γ′,
put σ1(N∗, vt∗) = x+ t

|N∗| ·e
N , where, for any ∅ 6= S ⊆ N∗, eS ∈ RN∗ denotes the indicator

function of S defined by

eSi =
{

1, if i ∈ S,
0, if i ∈ N∗ \ S.

For all other (N, v) ∈ Γ′, σ1(N, v) = v(N)
|N | e

N . Then, σ1 is a Pareto optimal solution that
satisfies AM but violates BPF.

Moreover, for (N, v) ∈ Γ′, define

σ2(N, v) =
{
x+ te{k} , if (N, v) = (N∗, vt∗) for some t ≤ 0,
v(N)
|N | e

N , for all other (N, v) ∈ Γ′.
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Then σ2 satisfies PO. Furthermore, σ2 does not satisfy AM because for |N∗| > t > 0
σ2
i (N∗, vt∗) = v∗(N∗)+t

|N∗| < v∗(N∗)
|N∗| + 1 = σ2

i (N∗, v∗) for all i ∈ N∗ \ {k}. To show BPF, let
t > 0, (N, v), (N, vt) ∈ Γ′, and i ∈ N such that σ2

i (N, vt) > σ2
i (N, v). It remains to show

that σ2
i (N, v) − σ2

j (N, v) < t for all j ∈ N \ {i}. A careful inspection of the definition
of σ2 shows that we may restrict the attention to the case that N = N∗ and v = vt1∗ for
some t1 ≤ 0. Therefore vt = vt2∗ where t2 = t+ t1. We distinguish two cases:

Case 1: t2 ≤ 0. Then i = k and the proof is finished because σ2
k(N, v) = xk + t1 ≤ xk <

xj = σ2
j (N, v) for all j ∈ N \ {k}.

Case 2: t2 > 0. For i = k we have σ2
i (N, v) = xk+t1 < xj = σ2

j (N, v) for all j ∈ N \{i}.

If i 6= k, then σ2
i (N, vt) > σ2

i (N, v) = v∗(N∗)
|N∗| + 1 implies σ2(N, vt) = v

t2
∗ (N∗)
|N∗| e

N∗ , hence,
t2 > |N∗|. However, σ2

i (N, v)− σ2
k(N, v) = xi − xk − t1 = |N∗| − t1 < t2 − t1 = t so that

the proof is also finished in this case.

To finish this section, we analyze constrained welfare egalitarianism for some specific
domains of games.

A game (N, v) is convex if and only if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ), for every
S, T ⊆ N . The set of convex games is denoted by Γvex. A game (N, v) is balanced
if and only if it has a nonempty core (Bondareva, 1963; Shapley 1967). Let (N, v) be
an arbitrary game. An upper vector (Bennett, 1983) is a vector x ∈ RN such that
x(S) ≥ v(S) for all S ⊆ N . By UP (N, v) we denote the set of upper vectors. The
core is large (Sharkey, 1982) if for all y ∈ UP (N, v), there exists x ∈ C(N, v) such that
x ≤ y. By Γbal and Γlc we denote the set of balanced games and games with large core,
respectively. The domains of convex games, balanced games, and games with large core
are closed under increments.8 On convex games, the egalitarian solution of Dutta and
Ray (1989), denoted by L, selects the unique core element that Lorenz dominates every
other core point.9 That is, given (N, v) ∈ Γvex,

L(N, v) ∈ C(N, v) and L(N, v) �L y for all y ∈ C(N, v) \ {L(N, v)}.

Given (N, v) ∈ Γbal, the lexmax solution (Arin et al., 2003) is defined as

Lmax(N, v) = {x ∈ C(N, v) | x̂ �lex ŷ for all y ∈ C(N, v)} ,

where x̂, ŷ ∈ RN denote the vectors obtained from x ∈ RN and y ∈ RN , respectively, by
ordering its coordinates in a non-increasing way. Recall that for any two vectors x, y ∈
RN , we say that x �lex y if x = y or there exists k ∈ {1, . . . , |N |} such that xi = yi for 1 ≤
i ≤ k−1 and xk < yk. It is known that the lexmax solution is a singleton and, moreover,

8For a discussion of prosperity properties see van Gellekom et al. (1999).
9This is not the original definition, but is shown in Dutta and Ray (1989) to coincide with their

egalitarian solution for convex games.
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it is Lorenz undominated within the core. To harmonize egalitarian considerations and
particular interests, Arin et al. (2003) introduce the following definition.

Definition 3. A solution σ on a domain Γ′ ⊆ Γbal is called egalitarian if for all (N, v) ∈
Γ′, σ(N, v) ∈ C(N, v) and there is no y ∈ C(N, v) such that y �L σ(N, v).

As the following example shows, on the domain of balanced games there is no egalitarian
solutions supporting constrained welfare egalitarianism.

Example 2. Assume |U | ≥ 3. Consider the game (N, v) where N = {1, 2, 3}, v({i}) =
v({2, 3}) = 0, for all i ∈ N , and v({1, 2}) = v({1, 3}) = v({1, 2, 3}) = 1. Let σ be an
egalitarian solution on Γbal. Then, C(N, v) = {(1, 0, 0)} and

(
2
3 ,

2
3 ,

2
3

)
∈ C(N, v1), which

leads to σ(N, v) = (1, 0, 0) and σ(N, v1) =
(

2
3 ,

2
3 ,

2
3

)
. Note that σ violates AM and,

consequently, it does not support constrained welfare egalitarianism on Γbal.

Next, we prove that any egalitarian solution that satisfies AM also satisfies constrained
welfare egalitarianism.

Theorem 4. Let σ be an egalitarian solution on Γ′ ⊆ Γbal closed under increments
satisfying AM. Then, σ supports constrained welfare egalitarianism on Γ′.

Proof. Suppose there is (N, v) ∈ Γ′ and t > 0 such that σ(N, vt) 6= x∗ + fCE(N, x∗, t),
where x∗ = σ(N, v). By AM, there exists z ∈ RN+ with z(N) = t such that σ(N, vt) =
x∗ + z. By Lemma 1, x∗ + fCE(N, x∗, t) �L x∗ + z. But x∗ + fCE(N, x∗, t) ∈ C(N, vt),
which leads to a contradiction.

Since both the Dutta and Ray (1989) solution and the lexmax solution are egalitarian
solutions satisfying AM in Γvex and Γlc, respectively (see, for instance, Hokari and van
Gellekom, 2002; Arin et al., 2003), from Theorem 4 we receive the following corollary.

Corollary 3. (i) On Γvex, the egalitarian solution of Dutta and Ray (1989) supports
constrained welfare egalitarianism.

(ii) On Γlc, the lexmax solution supports constrained welfare egalitarianism.
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