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Abstract

I derive two valid forecasting models of the equity premium in monthly

frequency, based on little more than no-arbitrage: A “predictability timing”

version of partial least squares, given that predictability is theoretically time-

varying; and a least squares model with realized market premiums in monthly

frequency as the regressor, since realized returns are theoretically correlated

to risk and to the price of risk. This evidence is consistent with the instability

inherent to monthly equity premium forecasts based on standard partial least

squares and disaggregated book-to-markets as regressors, and with the fact

that taking one extra lag of book-to-markets in predictive return regressions

improves the estimates.

JEL Code: G11, G12, G14.

Keywords: Predictability, out-of-sample, equity premium, disaggregated book-to-markets.

mailto:tsouza@sam.sdu.dk


1 Introduction

Partial least squares (PLS) based on disaggregated book-to-market (BM) ratios (Kelly and

Pruitt, 2013) cannot generate a valid forecasting model of the monthly equity premium

according to the hurdle proposed by Welch and Goyal (2008), such as positive out-of-sample

(OOS) performance since the Oil Shock (de Oliveira Souza, 2020b). The contribution of

the present paper is to discuss why this happens in terms of standard asset pricing theory

and especially to document two valid models, instead.

Model 1 simply predicts the monthly market premium, M Pt , from its (one-month) lag,

Et [M Pt+1] = α+ β M Pt , (1)

where α and β are estimated by ordinary least squares. This supports the explanation

that PLS return forecasts based on BMs with one extra lag are more accurate because

the market premium is unconditionally positively autocorrelated for a one-month lag

(de Oliveira Souza, 2020b).

Model 2 implements a “predictability timing” version of the original PLS procedure: The

recursive prediction of the (future) market premium in time t is the historical mean, M P t ,

if the absolute forecasting error realized in time t for the historical mean, |M P t−1 −M Pt |,

is smaller than the one for the PLS model, |dM P pls,t−1 − M Pt |. Otherwise, I use the PLS

prediction, dM P pls,t ,

|M P t−1 −M Pt | < |dM P pls,t−1 −M Pt | =⇒ Et [M Pt+1] = M P t , (2)

|M P t−1 −M Pt | ≥ |dM P pls,t−1 −M Pt | =⇒ Et [M Pt+1] = dM P pls,t . (3)

The paper proceeds as follows: Section 2 presents the data and the OOS performance

measures that I use to evaluate the models. Sections 3 and 4, respectively, for models 1

and 2, present the theoretical and empirical frameworks in detail, the in-sample and OOS
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evidence, in addition to the economic performance of simple investment strategies based

on the models. Section 5 concludes.

2 Data and forecasting performance

BM data is for the 6 portfolios double sorted by market equity (ME) and BM in Kenneth

French library. The steps in de Oliveira Souza (2020b) explain how to obtain annual book

equity (BE) from June each year and market equity each month. The BMs are in logs.

The market premium is the monthly return on the Center for Research in Security

Prices (CRSP) index portfolio minus the risk-free rate from Kenneth French library, which I

transform to continuous compounding. The period is June 1926 to December 2019.

2.1 OOS evaluation

Most of the evidence that I present involves running all regressions recursively on training

samples that exclude the return that is ultimately forecast for a large number of split dates.

I follow Welch and Goyal (2008) and Kelly and Pruitt (2013), for example, and also report

the results graphically by split date.

The only quantitative test: Inference about predictability is based on the forecast en-

compassing test for nested models of Clark and McCracken (2001), ENC-NEW. I report the

test statistics – along with their respective critical values – over a wide range of split dates

to analyze how robust the conclusions are. The null hypothesis in the test is that the extra

regressors in the larger models (relative to the sample mean) have no predictive content. A

rejection validates the regressors.
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OOS R2: The ENC-NEW test is not exactly based on the mean squared error (MSE) of the

forecasts. For this qualitative assessment, I report the OOS R2, given by

OOS R2 = 1−
∑

t (yt − byt)
2

∑

t

�

yt − y t

�2 , (4)

where the model’s prediction is byt , the historical mean is y t , and the realization is yt . In

finite samples, the OOS R2 is negative under the null hypothesis of no predictability, not

zero (Clark and West, 2006). Hence, a negative OOS R2 is not the same as no predictability:

The OOS R2 is a measure of forecasting accuracy, but not a predictability test.

Cumulative ∆SSE: Another, more flexible, qualitative performance measure is the cu-

mulative sum of squared forecasting errors of the historical mean minus the one from

each model, ∆SSE. I report realized values at each date, as in Welch and Goyal (2008).

Intuitively, increases in ∆SSE between two dates imply that the model in question predicts

better than the historical mean for that time interval. Hence, unlike the OOS R2, it is possible

to freely adjust starting and ending dates, and to check the performance of the models in

different periods.

3 Model 1: OLS forecast based on realized premiums

This section starts by presenting a general framework for analyzing time-varying risk

premiums (de Oliveira Souza, 2020a; Munk, 2013). The main theoretical restriction is the

absence of arbitrage, so that a stochastic discount factor (SDF) exists.

Let Pi = (Pi,t) be the price of asset i = 1, ..., I , following the process

dPi,t = Pi,t

�

µi,t d t +σ>i,t dz t

�

, (5)
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where z = (z t) is a standard Brownian motion of dimension d, representing different

shocks; σi,t is a vector of sensitivities to these exogenous shocks; and > is the transposition

sign (boldfaces denote vectors).

Definition 1 In a continuous-time setting in which the fundamental uncertainty is represented

by z = (z t) with dimension d and a locally risk-free asset with return r f
t is traded at all times,

the price of risk is a process λ = (λt) with dimension d, satisfying

µi,t − r f
t = σ

>
i,tλt (6)

for all assets i = 1, ..., I . Alternatively, in a continuous-time setting in which the funda-

mental uncertainty is represented by a one-dimensional Brownian motion, z = (zt), the

one-dimensional (quantity of) risk is a time-varying scalar given by

σmv
i,t =

σ>i λt

‖λt‖
, (7)

where ‖.‖ is the Euclidean norm and ‖λt‖ is the instantaneous Sharpe ratio of the mean-

variance frontier (MVF).

Indeed, this also defines the SDF (as formally proven by Munk, 2013, pp. 109-112):

Proposition 1 Under technical conditions and in a continuous-time setting in which the

fundamental uncertainty is represented by z = (z t) with dimension d, a process ζ = (ζt) is a

SDF if and only if

dζt = −ζt

�

r f
t d t +λ>t dz t

�

, ζ0 = 1. (8)

Equivalently, if the fundamental uncertainty is represented by a one-dimensional Brownian

motion, z = (zt), we obtain

dζt = −ζt

�

r f
t d t + ‖λt‖dzt

�

, ζ0 = 1. (9)
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Intuitively, the (d-dimensional) price of risk in Eq. (6), λt , is the compensation in terms

of excess expected return per unit of risk stemming from each of d economic shocks. The

d-dimensional volatility parameter in the same equation, σi,t , determines how sensitive

the price of each individual asset is to such shocks. However, σi,t only determines the

composition of the shocks to which the asset is exposed; not its “quantity” of risk. In

contrast, the one-dimensional risk, σmv
i,t in Eq. (7), gives this information by aggregating

the risks stemming from all shocks, conditioned on their prevailing risk prices, into a single

value. Hence, σmv
i,t is the (quantity of) risk of the asset in a more intuitive sense.

Lemma 1 Under the assumption that the conditional risk of the market portfolio is indepen-

dent of the price of risk, realized market returns are positively correlated with the conditional

market risk and with the price of risk.

Proof: Let σmv
mp,t be the one-dimensional conditional risk of the market portfolio. The realized

excess return on the market in discrete time, based on Eqs. (6) and (7), is then

M Pt ≡ µmp,t−1 − r f
t−1 + εt = σ

mv
mp,t−1‖λt−1‖+ εt , (10)
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where εt is an error term. If the risk of the market portfolio is independent of the price of risk,

the correlations between the realized equity premium and the (lagged) market risk or price of

risk become, respectively,

ρ
�

M Pt ,σ
mv
mp,t−1

�

=
cov

�

σmv
mp,t−1‖λt−1‖+ εt , σ

mv
mp,t−1

�

r

var (M Pt) var
�

σmv
mp,t−1

�

=
E [‖λt−1‖]

r

var
�

σmv
mp,t−1

�

p

var (M Pt)
> 0, (11)

ρ (M Pt ,‖λt−1‖) =
cov

�

σmv
mp,t−1‖λt−1‖+ εt , ‖λt−1‖

�

p

var (M Pt) var (‖λt−1‖)

=
E
�

σmv
mp,t−1

�

p

var (‖λt−1‖)
p

var (M Pt)
> 0, (12)

given that the market portfolio is risky and the price of risk is theoretically positive. �

3.1 Empirical evidence in sample

Without further assumptions, Lemma 1 implies that realized market returns are also

correlated with future market returns for as long as market risk and (or) the price of risk

are persistent (positively autocorrelated). Indeed, several theoretically micro-founded asset

pricing theories generate low frequency changes in both variables. Notably, these changes

happen at the business-cycle frequency in consumption-based models (as in Cochrane,

2017). Indeed, Table 1 suggests that the variables are persistent at the monthly frequency.

Table 1 estimates regressions similar to Eq. (1) for h = 1 or h = 2 months ahead,

M Pt+h = α+ β M P ′t + εt+h, (13)
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Table 1: Autoregressive forecasts of the monthly market premium (MP, in %) one or
two periods ahead from June 1926 to December 2019.

(1) (2) (3) (4) (5)
M Pt+1 M P low

t+1 M Phigh
t+1 M Pt+1 M Pt+2

M Pt 0.10 0.06 0.18 -0.01
(1.94) (0.69) (1.77) (-0.24)

M P+t 0.18∗

(2.17)

Constant 0.46∗∗ 0.34 0.14 0.11 0.51∗∗

(2.83) (0.93) (0.33) (0.49) (2.97)

R2 0.010 0.002 0.016 0.011 0.000
t-ols(β) 3.41 0.86 3.32 3.60 -0.36
Months 1121 433 688 1121 1120

I forecast the monthly equity premium h = 1 or h = 2 months ahead, with equations of
the form

M Pt+h = α+ β M P ′t + εt+h

where M P ′t is the realized market premium in all but model (4), which sets negative
realizations of the market premium to zero. In (2)/(3) the estimates are conditional on
negative/positive market premiums (as a regressor). Coefficients with Newey and West
(1987) standard errors with 1 lag, except models (2) and (3) that use automatic lags (Newey
and West, 1994)), t statistics in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. The
lower panel shows the uncorrected t statistics, t-ols(β), the number of months, and the R2.
Summary: Realized excess returns – especially when positive – are positively correlated
with one period ahead excess returns at the monthly frequency.

where M P ′t is simply the market premium in every model, except in (4):1 The marginally

significant slope in (1) confirms that present and future market premiums are (marginally)

positively correlated in the short run. In model (2) (model (3)), I estimate Eq. (13)

exclusively when M P ′t is negative (positive): Negative realized market premiums are

largely uncorrelated with future premiums, in (2); while positive values are more correlated,

although insignificant, in (3).2 Indeed, this is expected because risk and price of risk –

which realized returns proxy for in this equation, according to Lemma 1 – are theoretically

1All models use Newey and West (1987) standard errors with 1 lag, but models (2) and
(3) use automatic lags (Newey and West, 1994).

2It is difficult to control for autocorrelation in (2) and (3), because both series have
missing values. Indeed, the uncorrected t-statistic is highly significant for model (3).
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non-negative. Confirming the theory, model (4) sets negative realized premiums to zero

and improves the forecasts.

Finally, (5) is equivalent to (1) for h = 2: The present equity premium and the premium

two months ahead are uncorrelated. This supports the explanation that BMs with one extra

lag are better return predictors at the monthly frequency because the extra lag removes the

positive autocorrelation in returns that affects the estimation (de Oliveira Souza, 2020b).

3.2 Empirical evidence out of sample
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Figure 1: Out-of-sample statistics by sample split date for recursive OLS forecasts of
monthly market premiums based on their lagged realizations from June
1926 to December 2019.

The graphs show (left) ENC-NEW test statistics of Clark and McCracken (2001), with gray
kinked lines for the critical values at 1, 5, and 10 percent (from light to dark); (center)
OOS R2 by sample split date; and (right) the cumulative sum of squared forecasting errors
of the historical mean minus the one from each model, ∆SSE. There are more extreme
values outside the bounds in each graph (unreported for scaling reasons). The top model,
M Pall , uses all realizations of the market premium as a regressor; the bottom model, M P≥0,
sets negative realizations to zero and use the result as a regressor instead.
Summary: Both models have significant (and relatively similar) ENC-NEW statistics. But
model M Pall has larger OOS R2 (positive for almost any date before 2010), while ∆SSE
increases more or less monotonically since 1940: It largely overcomes the hurdle of Welch
and Goyal (2008), even after 2000 (until 2010).
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Fig. 1 confirms Lemma 1 and the performance of models (1) and (4) out of sample. The

standard autoregressive model, M Pall in Fig. 1 (column (1) in Table 1), largely overcomes

the hurdle of Welch and Goyal (2008) even after 2000 (until 2010): For almost any split

date between 1940 and 2010, the monthly forecasts deliver positive OOS R2, the ENC-NEW

statistic is significant at the 1 percent level, and∆SSE increases more or less monotonically,

exactly as required. The only drawback is a large spike in predictability around 1975

(clear in the∆SSE graph), which is associated with subsequent under-performance. Hence,

the OOS R2 is negative for this split date. In addition, the model with negative premium

realizations set to zero, M P≥0 in Fig. 1 (column (4) in Table 1), has slightly less significant

ENC-NEW statistics for the same date interval. Hence, both are valid forecasting models.

However, there are relatively large differences in terms of qualitative measures: The OOS

R2 is negative for several split dates, and the upward drift in ∆SSE is almost non-existent.

3.3 Economic performance out of sample

The evidence above is also economically significant. In this section, I partition the sample

into months following positive, M Phigh, or negative, M P low, market premium realizations,

and evaluate the premiums in these two groups separately. Table 2 reports descriptive

statistics for this analysis in the full sample or for samples that start in 1980 (80+), 2000

(00+), or 2010 (10+).

The main results in Table 2 are in columns (1) and (5), for the full sample. The monthly

equity premium is small and insignificant after negative market premium realizations, 0.1%

(0.32 t statistic) with 0.05 Sharpe ratio, in (1). The premium is more than seven times

larger and strongly significant after positive realizations, 0.78% (4.32) with an impressive

0.57 Sharpe ratio, in (5). Skewness is similar, but kurtosis is higher in the high premium

periods, in (5). Finally, returns are positive about 60% of the time in the full sample (689

out of 1122 months correspond to M Phigh). The annualized Sharpe ratio is the monthly

Sharpe ratio multiplied by
p

12.
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The evidence in more recent periods – (2) to (4) for M P low, and (6) to (8) for M Phigh –

largely mirror the one for the full sample. The only difference appears very recently, since

2010, with the important caveat that these are relatively small samples: 30 months in (4),

and 78 months in (8). In this period, the two groups of premiums have essentially the same

mean, but the M Phigh Sharpe ratio of 1.15 in (8) is twice the one of M P low in (4), 0.57. In

fact, there are also large differences in skewness and kurtosis in this smaller sample.

Table 2: Market premium following positive or negative market premium realiza-
tions in July 1926 – December 2019 (and subperiods).

(1) (2) (3) (4) (5) (6) (7) (8)
M P low

80+ 00+ 10+ M Phigh
80+ 00+ 10+

µy 0.10 0.19 0.01 0.80 0.78∗∗∗ 0.73∗∗∗ 0.68∗ 0.89∗∗

(0.32) (0.45) (0.02) (0.90) (4.32) (3.47) (2.28) (2.92)

SR y 0.05 0.12 0.01 0.57 0.57 0.70 0.65 1.15
γ1 -0.46 -1.14 -0.74 -0.18 -0.51 -0.49 -0.89 -1.13
α4 5.71 6.26 4.30 2.47 15.97 3.70 4.48 5.50
Months 433 175 80 30 689 293 148 78

Columns (1) to (4) report statistics for the months that follow negative market premiums;
months in (5) to (8) follow positive premiums. I repeat the evaluation of (1)/(5) in
subsamples after 1980, 2000, and 2010 (shown as 80+ , 00+ , and 10+). µy is the annualized
mean return, standard OLS t statistics in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
SR y is the monthly Sharpe ratio multiplied by

p
12, γ1 is skewness, α4 is the kurtosis.

Summary: Returns and Sharpe ratios are substantially larger in months that follow positive
market premium realizations, being close to zero otherwise.

4 Model 2: PLS predictability timing

One of the main theoretical reasons why PLS forecasts fail to provide the unconditional evi-

dence required by Welch and Goyal (2008) is the fact that predictability theoretically concen-

trates in bad times within a standard risk-based asset pricing framework (de Oliveira Souza,

2020c).3 Hence, the performance of every forecasting model must be particularly positive

3Cujean and Hasler (2017) reach the same conclusion, but require individuals to make
systematic mistakes to remain valid.
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in bad times, but not otherwise: The irregular PLS performance out of sample – which fails

the stability tests in Welch and Goyal (2008) – does not necessarily disqualify the model.

The intuition in de Oliveira Souza (2020c) is essentially that within any risk-based

asset pricing framework, realized returns have two components: Predictable risk premiums

and unpredictable shocks, as in Eq. (10). In bad times, the price of risk, ‖λt‖, increases.

Hence, the predictable fraction of returns – and predictability – increases. In addition,

the predictions are based on proxy variables for risk or for the price of risk. For price of

risk proxies in particular, de Oliveira Souza (2020c) further proves that a second similar

effect reinforces the one just described: The fraction of the proxy determined by the latent

price of risk also increases relative to the one determined by noise (“measurement error”)

when the price of risk increases: Changes in the proxy become more informative about

changes in the price of risk when the variation in the price of risk is larger if we keep

measurement error constant. In summary, the theory in de Oliveira Souza (2020c) suggests

that “predictability timing” should improve the performance of the forecasts. The present

section implements the specific predictability timing procedure described by Eqs. (2) and

(3) in the introduction, and confirms this theoretical prediction.

The underlying PLS prediction: The standard PLS procedure, described in detail by

Kelly and Pruitt (2013) and complemented by de Oliveira Souza (2020b), is the following

for the market premium:

(i) Run a time-series regression of the adjusted BMs of each asset i, bm′i,t , on the (future)

excess return on the market,

bm′i,t = bΦi,0 + bΦi M Pt+h + ei,t . (14)

(ii) Run a cross-sectional regression, for each period, t, of all adjusted BMs (at once) on

the loadings estimated in the first stage, bΦi, in Eq. (14),

bm′i,t = bct + bFt
bΦi +ωi,t , (15)
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which results in an estimate for the latent factor, Ft , for each period.

(iii) Run a standard predictive regression of returns on the factor estimated in the second

stage, bFt ,

M Pt+h = β0 + β bFt + ut+h. (16)

The fitted dM P t+h from Eq. (16) is the underlying PLS forecast used in Eq. (3), which

I estimate recursively.

4.1 BM frequency and preliminary PLS results

In order to run the regressions above, Kelly and Pruitt (2013) pre adjust the series of BMs

of each firm i by dividing the BMs by their respective time-series standard deviation, σbml ,i,

and possibly include one extra lag (de Oliveira Souza, 2020b),

bm′m,i,t ≡
bmm,i,t−1

σbml ,i
, (17)

where σbml ,i is the standard deviation of the BM series already with the extra lag. In the

recursive estimation, σbml ,i becomes time-varying (due to being calculated over the sample

that is inside the information set when the forecast is created). These are the BMs that I

use for the baseline PLS model.

However, as de Oliveira Souza (2020b) notices, book equity (BE) is fixed from June

to June. Hence, BM innovations in all other months are returns on the respective BM/ME

portfolios. The pervasive correlation between past and future returns at the monthly

frequency that I document in Section 3 implies that past returns have a strong effect on the

forecasts. The extra BM lag in Eq. (17) helps to alleviate this effect.

An alternative that completely avoids confounding returns and BMs is to only update

the BMs when BE is also updated. This only happens in June. Hence, the adjusted BM is
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the BM from the latest June (kept constant for a year), without extra lags, divided by its

standard deviation,

bm′Jun,i,t ≡
bmJun,i,t

σbmJun,i
, (18)

where σbmJun,i is the standard deviation of the BM series with the June values (but σbmJun,i

is calculated each month in the recursive implementation and varies with the sample).

Table 3 compares the performance of the standard PLS forecasts (without predictability

timing) based on how often the monthly BMs are updated. Table 3 suggests that monthly

BMs updated yearly generate slightly better performance: The factor slope in Eq. (16)

is marginally significant (0.06 level), the OOS R2 is positive and the ENC-NEW test is

significant for December 1989 as the split date. In contrast, the results are insignificant at

the usual level for the PLS forecasts based on BMs updated monthly.

Table 3: Summary of PLS predictions in July 1926 – December 2019.

IS R2(%) p(NW ) OOS R2(%) p(ENC)

BMm 0.28 0.14 -0.10 <0.10
BMJun 0.43 0.06 0.36 <0.05

BMm (BMJun) corresponds to PLS forecasts based on BMs in monthly (yearly) frequency.
In yearly frequency, the BMs are from the latest June. The table reports the IS R2; p-value
of ÒFt in the last-stage PLS regression with Newey and West (1987) standard errors with
1 lag, p(NW ); OOS R2; and p-value of the ENC-NEW test (Clark and McCracken, 2001),
p(ENC). The OOS split date is December 1989.
Summary: The PLS forecasts are significant and slightly more accurate, with positive OOS
R2, when only June BMs are used in the estimation.

4.2 Empirical evidence out of sample

First, the left-hand column in Fig. 2 shows the ENC-NEW test statistics of Clark and

McCracken (2001) for the standard PLS forecasts (without predictability timing), with gray

kinked lines for the critical values at 1, 5, and 10 percent (from light to dark). These graphs

confirm that standard PLS forecasts based on BMs updated only in June, BMy(June) in
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the top row, generate significant OOS performance for a wide range of split dates. The

evidence is marginal when BMs are updated monthly, BMm.

The other two columns in Fig. 2 compare the performance of the standard PLS model

((light) orange) with its respective predictability timing (dark blue) in terms of OOS R2 and

cumulative ∆SSE. The PLS regressors are the BMs of the 6 BM/ME portfolios, updated

only in June (Eq. (18), top graphs) or each month (Eq. (17), bottom graphs). These two

columns in Fig. 2 confirm that predictability timing (in blue) substantially improves the

PLS forecasts regardless of how often BMs are updated. But the performance based on BMs

updated in June are particularly positive for almost any split date. In fact, the OOS R2 for

the predictability timing forecasts in both cases is positive since the Oil Shock. The positive

drifts in both ∆SSE graphs are also much clearer for the predictability timing forecasts.

This finally overcomes the hurdle proposed by Welch and Goyal (2008) to validate both

models.

4.3 Economic performance out of sample

I consider three investment scenarios based on predictability timing PLS forecasts:4 (i)

The market premium forecast is above average, M Phigh; (ii) below average, M P low; or

(iii) exactly average, M Pneut ral . Naturally, scenarios (i) and (ii), reported in Table 4a, only

happen if the PLS prediction is being used (which means that the PLS delivered small

prediction error relative to the historical mean in the preceding month) and scenario (iii), in

Table 4b, only happens when the PLS forecast is ignored (for being previously inaccurate).

The tables report the market premium mean, t statistics, annualized Sharpe ratio (monthly

value multiplied by
p

12), SR y , skewness, γ1, and kurtosis, α4.

The main results are in Table 4a: Columns (1) to (4) report statistics for the low forecast

months, and (5) to (8) for high forecasts. The full sample results, in (1) and (5), show

that predictability timing PLS forecasts are remarkably useful: The mean market premium

in high forecast months is 0.81% (3.93 t statistics) compared to – 0.41% ( – 0.91) in low

4Appendix A has summary statistics based on standard PLS forecasts, instead.
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Table 4: Investment performance of PLS predictability timing forecasts in July 1926
– December 2019 (or recently)

(a) Above, M Phigh, or below average premium forecasts, M P low

(1) (2) (3) (4) (5) (6) (7) (8)
M P low

80+ 00+ 10+ M Phigh
80+ 00+ 10+

Timingµ -0.41 0.20 0.07 1.21 0.81∗∗∗ 0.57 0.59 0.86
(-0.91) (0.36) (0.10) (1.58) (3.93) (1.59) (1.11) (0.56)

SR y -0.22 0.12 0.04 0.91 0.76 0.57 0.65 1.12
γ1 -0.84 -1.42 -0.81 -0.35 -0.43 -0.24 -0.67 0.34
α4 5.16 6.15 4.02 2.78 3.64 3.42 3.38 1.50
Months 203 117 65 36 318 95 35 3

Columns (1) to (4) are low forecast months; (5) to (8) are high. Full sample in (1) and
(5), and respective subsamples after 1980, 2000, and 2010 as 80+ , 00+ , and 10+ .

(b) All months, M Phist , or average premium forecasts, M PNeut ral .

(1) (2) (3) (4) (5) (6) (7) (8)
M Phist

80+ 00+ 10+ M Pneut ral
80+ 00+ 10+

Timingµ 0.51∗∗ 0.54∗∗ 0.43 0.86∗ 0.67∗∗ 0.68∗∗ 0.58 0.67∗

(3.22) (2.64) (1.51) (2.58) (2.90) (2.86) (1.72) (2.05)

SR y 0.33 0.42 0.35 0.86 0.41 0.62 0.53 0.86
γ1 -0.54 -1.08 -0.91 -0.55 -0.27 -0.25 -0.74 -1.28
α4 10.01 6.97 5.13 4.20 11.39 3.61 4.32 5.31
Months 1122 467 227 107 601 255 127 68

Columns (1) to (4) are all months; (5) to (8) are average forecast months. Full sample in
(1) and (5), subsamples after 1980, 2000, and 2010 as 80+ , 00+ , and 10+ .

Timingµ is the mean return, OLS t statistics in parentheses, ∗ p < 0.05, ∗∗ p < 0.01,
∗∗∗ p < 0.001, SR y is the annualized Sharpe ratio, γ1 is skewness, α4 is the kurtosis. PLS
forecasts are based on yearly BMs with no extra lags.
Summary: Full sample returns and Sharpe ratios are substantially larger in high forecast
months than in low ones (Table 4a), and they are average (between these extremes) in
average forecast months (Table 4b). High forecasts are the majority in the full sample
(318/203) but decrease over time (Table 4a). In addition, relatively inaccurate PLS forecasts
increase in proportion over time from 601/1122 in the full sample to 68/107 since 2010
(Table 4b).
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Figure 2: OOS recursive standard PLS and predictability timing PLS forecasts based
on BMs of 6 BM/ME portfolios in January 1940–December 2019.

The graphs show (left) ENC-NEW test statistics of Clark and McCracken (2001), with gray
kinked lines for the critical values at 1, 5, and 10 percent (from light to dark); (center)
OOS R2 by sample split date; and (right) the cumulative sum of squared forecasting errors
of the historical mean minus the one from each model, ∆SSE. There are more extreme
values outside the bounds in each graph (unreported for scaling reasons). (Light) orange
is for the standard model, blue is for predictability timing.
Summary: The standard PLS model is already significant for most split dates, but pre-
dictability timing improves the performance of the forecasts and the OOS R2 becomes
positive since the Oil Shock, for example.

forecast months. All other performance measures are also substantially better in high

forecast months: The Sharpe ratio in high (low) forecast months is 0.76 (– 0.22), skewness

is – 0.43 (– 0.84), and kurtosis is 3.64 (5.16).

In addition, the model predicts high premiums (in 318 months) around 55% more

often than low premiums (in 203): This is a model of high premiums (“bad times”) in

the full sample. But the opposite happens after 1980. The remaining columns in Table 4a

display the same statistics for the periods after 1980, 2000, or 2010 (columns 80+ , 00+ , and

10+). In all these periods, the model predicts high premiums less often than low premiums

(the limit is 3/36, after 2010). The forecasts still identify differences in terms of returns,
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Sharpe ratios, skewness, and kurtosis in all recent samples (except since 2010 for returns).

However, the differentiation between high and low premiums is stronger in the full sample.

Table 4b is equivalent to Table 4a but displays statistics for average forecast months

(by construction, months that follow realizations of inaccurate PLS forecasts), M Pneut ral ,

and for all months in the respective sample, M Phist . As ideally expected, returns and

Sharpe ratios in average forecast months are lower (higher) than the ones observed in

high (low) forecast months in the full sample: The mean return is 0.67% (2.90) and the

Sharpe ratio is 0.41, between the extremes of low and high premiums displayed in Table 4a

(but not robustly in subsamples). And a final interesting information in Table 4b is that

the proportion of inaccurate PLS forecasts increases over time: From 601/1122 in the full

sample to 68/107 since 2010: The accuracy of the PLS forecasts has deteriorated over time,

in line with the results in de Oliveira Souza (2020b).

5 Summary

In this paper, we learn that a simple “predictability timing” procedure improves the OOS

performance of the PLS forecasts of the equity premium in monthly frequency to the point

of finally generating persistently positive OOS R2, especially since the Oil Shock. This

ultimately validates the model according to the hurdle in Welch and Goyal (2008).

We also learn that simple OLS forecasts based on the realized market premium as the

only regressor produces a second valid market premium forecasting model, with large

and positive OOS R2 for almost every split date before 2010. This evidence supports the

explanation in de Oliveira Souza (2020b) for the use of BMs with one extra lag as (PLS)

regressors.
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Online Appendix

A Standard PLS performance

Table 5: Market premium after (standard) PLS forecasts above, M Phigh, or below av-
erage, M P low in July 1926 – December 2019 (or recently).

(1) (2) (3) (4) (5) (6) (7)
M P low

80+ 00+ 10+ M Phigh
80+ 00+

P LSµ 0.43 0.44 0.35 0.86∗ 0.58∗∗ 0.76∗ 0.74
(1.90) (1.69) (1.04) (2.58) (2.61) (2.33) (1.44)

SR y 0.29 0.33 0.27 0.86 0.37 0.66 0.72
γ1 -0.09 -1.36 -0.90 -0.55 -0.89 -0.02 -0.80
α4 10.77 7.64 5.03 4.20 9.45 3.25 4.22
Months 524 319 179 107 597 148 48

Columns (1) to (4) are for months following below average forecasts, and (5) to (7) for
above average forecasts. I repeat the evaluation of (1)/(5) in subsamples after 1980,
2000, and 2010 (shown as 80+ , 00+ , and 10+). P LSµ is the mean return, OLS t statistics in
parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, SR y is the annualized Sharpe ratio, γ1

is skewness, α4 is the kurtosis. PLS forecasts are based on monthly BMs with one extra lag.
Summary: Full sample returns and Sharpe ratios are slightly larger in months predicted
to have above average returns (but still lower than the ones when predictability timing
forecasts are set to the mean in Table 4b, for example). Above average forecasts are the
majority in the full sample (597/524), but decrease to zero after 2010.
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