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Abstract

This paper documents empirically that increases in the book-to-market

spread predict larger market premiums in sample and larger size, value, and

investment premiums (also) out of sample. In addition, increases in the in-

vestment (or profitability) spread exclusively predict larger investment (or

profitability) premiums. This predictability generates “factor timing” strategies

that deliver substantial economic gains out of sample. I argue theoretically

that the book-to-market spread is a price of risk proxy, while the investment

and profitability spreads are factor risk proxies. The evidence confirms stan-

dard theoretical predictions in the macro-finance literature and contradicts the

hypothesis of constant factor risks.
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1 Introduction

Factor premiums, such as the ones in Fama and French (2015), are only forecastable if

there is predictable variation over time (i) in the price of risk or (ii) in the factor risks.

On the one hand, several macro-finance theories claim that risk premiums for the entire

economy vary over time due to changes in the price of risk.1 Under this hypothesis, there

should be evidence of (common) predictability of the factor premiums related to variation

in the price of risk. On the other hand, the factors in Fama and French (2015) are often

assumed to have constant risks. For example, Fama and French (1997) argue that one of

the reasons for not using industry portfolios for risk adjustment purposes is precisely their

time-varying risks. Under this hypothesis, there should be no evidence of (independent)

predictability of the factor premiums due to changes in factor risks. The present paper

empirically investigates these two types of predictability, thereby testing the two hypotheses

associated with them.

In summary, the paper provides in-sample and out-of-sample evidence of predictable

time variation in both the (common) price of risk and in the (idiosyncratic) factor risks.

This confirms the macro-finance hypothesis and supports risk-based explanations of the

factor premiums in general but contradicts the constant factor risk hypothesis. In doing so,

the paper also delivers the main ingredients of a “factor timing” strategy.2 For example, a

strategy that applies the trading rule of Daniel and Moskowitz (2016) to the findings that I

report generates significant economic gains out of sample.

Regarding (i) in the first paragraph, increases in the cross-sectional book-to-market

(BM) spreads significantly forecast increases in one-month ahead premiums in sample for

every factor portfolio in Fama and French (2015) except profitability.3 The market premium

1Examples of these models include Rietz (1988), Epstein and Zin (1989), Constantinides and Duffie
(1996), Campbell and Cochrane (1999), Hansen and Sargent (2001), Bansal and Yaron (2004), Barro (2006),
Piazzesi et al. (2007), Brunnermeier (2009), Bansal et al. (2012), Shiller (2014), Garleanu and Panageas
(2015), and de Oliveira Souza (2019b).

2These strategies are a type of “managed portfolio”, described in Cochrane (2005), in which the wealth
allocated to portfolio factors, such as the ones in Fama and French (2015), changes over time according to a
given signal that forecasts the factor premiums.

3The evidence in Section 3.2 is consistent with the hypothesis that, from a portfolio perspective, the
profitability factor becomes safer as the BM spread increases, which could explain the lack of predictability.
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is only predictable in the full sample starting in 1926; not in the shorter sample in which the

remaining factor premiums are available (from 1963). However, the BM spread recursively

forecasts the other three factor premiums out of sample as well.

I explain in Section 2.1.1 that size-related variables, such as the BM spread, are theoreti-

cally related to the price of risk, based on the framework in de Oliveira Souza (2019a). This

happens under the hypothesis that the book value of equity (BE) is a proxy for expected cash

flows (Berk, 1995). Under this hypothesis, a firm’s BM tends to be directly proportional to

its risk premium: By definition, the premium is the difference between market value (which

is the BM denominator) and expected cash flow (which is related to the BM numerator

under this hypothesis). When the price of risk is zero, all cash flows are discounted at the

same rate, regardless of their risks. In this case, the BM of all firms are similar (there is very

little dispersion in BM). However, the spread in BM widens as the price of risk increases.

When this happens, the cash flows of risky and safe firms are discounted differently. Thus,

their BMs also become different. This relates the BM spread to the price of risk.4

Regarding (ii) in the first paragraph, increases in the investment and profitability spreads

exclusively forecast (marginally) increases in the investment and profitability premiums,

respectively. The changes in all these spreads are relatively orthogonal, suggesting that

the risks of the factors, and not only the price of risk, also fluctuate over time. Indeed,

including both the BM and the investment spreads in the predictive regression boosts the

forecastability of the investment premium in sample and out of sample.

I explain that the investment and profitability spreads (and, in fact, also the BM spread)

are theoretically related to the risk of their respective factors in Section 2.2. The intuition,

based on the framework in de Oliveira Souza (2019a), is the following: Assume that the

CAPM of Sharpe (1964) and Lintner (1965) holds and that we create a long/short “beta-

factor” portfolio based on market betas. The risk of this factor is the difference between

the betas of the long and short portfolios. But this difference (which is the factor risk) is

4In fact, the BM spread can also be related to expected returns using the ideas in Cohen et al. (2003) or
Polk et al. (2006), for example. In addition, the assumption that BE is a proxy for cash flows finds support
especially in de Oliveira Souza (2019c,e), Ball et al. (2018), and Gerakos and Linnainmaa (2017).
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exactly a “beta spread”. Hence, if investment and profitability are also risk proxies (like

market betas), a similar channel links each spread to its respective factor risk.

Finally, I use this predictability to create factor timing strategies based on the dynamic

trading rule of Daniel and Moskowitz (2016), for example. Unsurprisingly, the biggest

gains in this case arise from timing the investment premium (Fig. 7, Section 6). In par-

ticular, the out-of-sample Sharpe ratio of the strategy is always positive, regardless of the

breakpoint from which the performance is calculated. The contrast to the Sharpe ratio

of the unconditional investment premium, which is often negative since 2003, becomes

extreme towards the end of the sample.

Timing the value premium also generates out-of-sample gains, regardless of the date

used to compare the strategy with the unconditional premium (Fig. 6, Section 6). The

difference in performance is not as impressive as it is for the investment premium because

there is no independent factor risk proxy for the value portfolio: The BM spread is the only

return forecaster of the value premium. Nevertheless, the timing strategy often delivers

significant economic gains. For example, the unconditional cumulative value premium is

negative starting from any year since 2004; but the value timing strategy delivers positive

(even if small) Sharpe ratios starting from almost any of those years.

On the other hand, the trading rule of Daniel and Moskowitz (2016) does not generate

large gains for the size premium. Indeed, de Oliveira Souza (2019d,c) shows that the

size premium only exists for the portfolios created in high price of risk states. Hence, the

optimal strategy to time the size premium is to invest exclusively in high price of risk states.

Section 6.1 shows that this other type of trading rule is another way to create a strategy

from the predictability that I document. This works especially for the size premium.
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1.1 Related literature and contribution

Essentially, the present paper contains a general test of standard macro-finance models, a

specific test of the hypothesis that the factors in Fama and French (2015) have constant

risks, and the main ingredient of factor timing strategies in the form of factor premium

predictability. The paper relates to these three literatures.

Within the (empirical) macro-finance literature, the present paper relates especially to

papers that document common variation in expected returns, going back to Fama and French

(1989) at least. More broadly, it also relates to papers on equity premium predictability in

general. Cochrane (2011, 2017) surveys this entire literature in detail. The paper fills a

gap in this literature by providing detailed evidence of common variation in the expected

returns of individual stocks compared to the existing evidence of variation across asset

classes.

Within the (empirical) literature on the risks of the factors in Fama and French (1996,

2015), the closest related papers are de Oliveira Souza (2019d,c), Gerakos and Linnainmaa

(2017), and Ball et al. (2018). The paper fills a gap in this literature by providing evidence

of time variation in the risk of the investment and, to some extent, the profitability factors. It

adds to similar evidence about the size and value factors in de Oliveira Souza (2019c,d), for

example. This is important because risk adjustments based on portfolios with time-varying

risks, such as industry portfolios, are problematic according to Fama and French (1997).

Finally, a few related papers within the literature on factor premium predictability are

de Oliveira Souza (2019d,c), Haddad et al. (2018), Cohen et al. (2003), Cooper et al.

(2001), and Pontiff and Schall (1998). The main contribution of the present paper to this

literature is documenting predictability based on a strict theoretical framework that defines

risks and price of risk and explains economically how each forecasting variable relates to

the premiums being predicted. This is what makes the theoretical analysis that I perform

in the paper possible, which is not straightforward in more data-driven methods, such as in

Haddad et al. (2018), for example.
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2 Theory

Let ζ = (ζt) be the unique stochastic discount factor (SDF) that follows the continuous-time

stochastic process

dζt = −ζt

�

r f
t d t +λ>t dz t

�

, (1)

where z = (z t) is a standard Brownian motion and λ = (λt) is a given market price of risk

process, both with dimension d (boldfaces denote vectors), r f
t is the short-term risk-free

rate, and > is the transposition sign.

Let Pi = (Pi,t) be the price of asset i, such that

dPi,t = Pi,t

�

µi,t d t +σ>i,t dz t

�

, (2)

where µi,t is the instantaneous expected rate of return on asset i (which pays no dividends

for simplicity), with equilibrium risk premium given by

µi,t − r f
t = σ

>
i,tλt . (3)

As Munk (2013) explains, a conditional pricing factor is a stochastic process x = (x t)

of dimension K = 5 (for the factor model in Fama and French (2015) in particular), with

dynamics of the form5

dx t = µx t d t +Σ>x t dz t , (4)

in which the conditional variance-covariance matrix, Σx tΣ
>
x t , is always non-singular (capital

letters denote matrices). And, in the presence of a short-term risk-free asset, the risk

premium of any asset is

µi,t − r f
t =

�

β i x
t

�>
ηt , (5)

5Pages 402-405 in Munk (2013) contain the details of the derivation.
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where η = (ηt) is the conditional risk premium associated with the factor, and the

conditional factor-beta is

β i x
t =

�

Σx tΣ
>
x t

�−1
Σx tσi,t . (6)

Taken together, Eq. (3), Eq. (5), and Eq. (6) link the market price of risk and factor risk

to the factor risk premium:

λt = Σ
>
x t

�

Σx tΣ
>
x t

�−1
ηt . (7)
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2.1 Time-varying market price of risk and factor premiums

The theoretical framework above explicitly connects multifactor asset pricing models, such

as Fama and French (1996, 2015) or Hou et al. (2015), and the several classes of macro-

finance models discussed in Cochrane (2017), for example. Indeed the macro-finance

models discussed are all equivalent within this framework, as Cochrane (2017) explains.

Their main result is to generate large and, ideally, time-varying Sharpe ratios for the mean-

variance frontier (MVF). These Sharpe ratios are given by the norm of the market price of

risk, ‖λt‖.

According to Eq. (4), the risk of the factor depends on Σx t . The individual components

of factor x t , which are the market, size, value, profitability, and investment factors for Fama

and French (2015), do not have constant risks in general if their variance, given by Σx t , is

time-varying. Empirically, this means that tests that look for comovement in risk premiums

as evidence that the premiums arise because of risk, as in Fama and French (1989), are

not completely conclusive in case there is no such evidence. However, Eq. (7) still shows

that the factor premiums should increase with the market price of risk if all else is kept

constant. Hence, proxies for the MVF Sharpe ratio, ‖λt‖, are good candidates to forecast

the factor premiums in Fama and French (2015). The question, which I address next based

on the framework in de Oliveira Souza (2019a), is how to obtain these proxies.

2.1.1 Two market price of risk proxies

Without loss of generality, let the risk-free rate be zero, r f
t = 0, and z = (z t) be one-

dimensional in Eq. (1); then the conditional MVF Sharpe ratio becomes simply ‖λt‖ = λt .

Asset i is expected to pay a unique final uncertain cash flow at time t+1 given by Et[Di,t+1].

The dynamics in Eq. (2) implies that the price of this asset at time t is

Pi,t = Et[Di,t+1]e
−σi,tλt . (8)
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Within the theoretical framework in Berk (1995) and de Oliveira Souza (2019c), the

firm’s book equity (BE) is a proxy for its expected cash flows. In a simplified way, this can

be represented as, for example,

BEi,t ≈ at Et[Di,t+1], (9)

where at is a constant, which is possibly time-varying because the relation between BE and

future cash flows can change over time. One reason for these changes could be steady state

shifts (Lettau and Van Nieuwerburgh, 2008), for example. Eq. (8) and Eq. (9) imply that

the BM characteristic of firm i is given by

BMi,t ≡
BEi,t

Pi,t
≈ at e

σi,tλt . (10)

Hence, if everything else remains constant in Eq. (10), BM ratios increase with the

conditional MVF Sharpe ratio, λt . In particular, aggregate BM ratios or their cross-sectional

averages or medians, for example, can be used as proxies for the price of risk. This explains

why Pontiff and Schall (1998) is able to forecast the equity premium based on the Dow

Jones’ BM.

Another price of risk proxy is the BM spread. Eq. (10) implies that riskier firms, r, with

σr,t > σs,t , tend to have higher BM than safer firms, s. This implies that the spread also

tends to increase with the price of risk:

BMr,t − BMs,t ≈ at (e
σr,t − eσs,t ) eλt . (11)

I consider logs of both the median BM and the BM spread as price of risk proxies due to

the exponential forms in Eq. (10) and Eq. (11). But the empirical results are similar with

these variables in levels.
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2.2 Time-varying factor risks and factor premiums

The second type of predictability mentioned in the introduction arises from changes in

factor risks. Indeed, Eq. (7) shows that even if the market price of risk, λt , stays constant,

the factor risk premiums, ηt , can change as a consequence of changes in risks given by the

covariance structure in Σx t . This section provides a theoretical link between characteristic

spreads and the risk of the factors based on that characteristic, in line with the framework

in de Oliveira Souza (2019a). It explains why these spreads can be used as factor risk

proxies.

Let a given characteristic of stock i, θi,t , be a good proxy for its risk, σi,t , for any given

reason. Traditionally, such characteristics could be leverage or estimated market betas, for

example. Without loss of generality, this can be expressed as

θi,t ≈ bt σi,t , (12)

where bt > 0 is a positive constant that is possibly time-varying. Let us create a long-short

factor portfolio based on sorts on this characteristic: We buy stocks with large characteristics,

θh,t on average, and sell the ones with low characteristics, θl,t on average. The characteristic

of this portfolio is (a spread) given by

θsp,t = θh,t − θl,t , (13)

implying, from Eq. (12), that its risk is approximately

σsp,t ≈ σh,t −σl,t , (14)

which finally shows that the risk of the long-short portfolio is proportional to the spread in

the characteristic used to create the portfolio.

In particular, this shows that the investment spread is related to the risk of the investment

portfolio under the assumption that investment is a risk proxy. The same is true for
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profitability.6 I consider both spreads as factor risk proxies. I also consider their medians as

possible alternatives to compare the results.

3 Data description and variables

All the return and breakpoint data (used to construct the factor risk and price of risk proxies)

are from Kenneth French’s data library, and every series ends in August 2018.

I collect realized monthly returns on the SMB, HML, RMW, and CMA portfolios of

Fama and French (2015) starting in July 1963. These are the size, value, profitability,

and investment premiums. The series with excess returns on the market portfolio (MP) is

available from July 1926 instead.

I also collect the median, 30th, and 70th cross-sectional percentiles for the BM, prof-

itability, and investment characteristics among all NYSE stocks. The values come from their

respective breakpoint files in the data library. They are valid from the end of June 1963

(June 1926 for the BM) and change yearly.

6The size characteristic is different because the series is not stationary (even in real terms, due to economic
growth). Thus, the size spread cannot be used efficiently as a proxy for the risk of the size factor.
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3.1 Factor risk and market price of risk proxies

As explained in Section 2.1 and Section 2.2, I investigate six return forecasters: The

cross-sectional median or spreads in BM, profitability (OP), and investment (Inv). In a

given period, the spread is the difference between the 70th and 30th NYSE cross-sectional

percentiles for each respective characteristic,

θsp,t ≡ θ0.7,t − θ0.3,t , θ = {BM , OP, Inv} , (15)

which is in logs for the BM spread, log
�

BM0.7,t − BM0.3,t

�

.

Fig. 1 plots the six proxies in time series with their respective histograms. The figure

shows that the sample related to BM starts earlier and all variables are in annual frequency.

All the series seem to have trends in the sample period, especially the profitability spread.

Indeed, the tests of Phillips and Perron (1988) in Table 1 also indicate that the hypotheses

of unit roots in most series cannot be rejected. However, these variables are stationary

by construction because they are essentially ratios that cannot increase forever. So the

apparent trends should disappear in large samples instead of being a feature of the data.

Table 1 also confirms that both variables related to BM are the least normally distributed

over time among the regressors, as suggested by the histograms in Fig. 1. Finally, the

similarity between the value spread and the average BM series in Fig. 1 is consistent with

the theoretical prediction that both are price of risk proxies. This is much less apparent for

investment and profitability.

3.2 The covariance structure of the premiums

At first, the results in Table 2 provide very little support for the hypothesis that the factor

premiums of Fama and French (2015) move together – for example, as the premiums

investigated in Fama and French (1989) do. In fact, the main table in Table 2 seems to

suggest the opposite: Most premiums are negatively correlated with one another and

especially with the market premium.
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Figure 1: Time series and histogram for each regressor between June 1926 (1963) and 2018. The
graphs on the left-hand side correspond to the cross-sectional median values of the BM, investment
(Inv), and profitability (OP) among the NYSE stocks. The graphs on the right-hand side are the
corresponding cross-sectional spreads given by the difference in the breakpoints between the
70th and 30th percentiles of these characteristics within the same universe of stocks.

Table 1: Descriptive statistics of the regressors in June 1926 (1963)–2018. The first columns show the
mean, µ, standard deviation, σ, skewness, γ1, and kurtosis, α4, for each regressor. The regressors
are the cross-sectional median BM, BM1/2, profitability, OP1/2, or investment, Inv1/2, and their
respective cross-sectional spreads, as in iSP for regressor i, are the differences between the 70th

and 30th percentiles each period. For the BM, I use the log of both quantities. The last four
columns show the Phillips-Perron unit root test results: The number of lags, the test statistic Zt ,
its p-value, and the number of observations.

µ σ γ1 α4 PP(lags) Zt p Obs

BM1/2 -0.19 0.43 0.75 3.99 6 -2.46 0.13 1111
BMSP -0.56 0.54 1.43 5.83 6 -2.62 0.09 1111
OP1/2 26.10 2.25 0.30 2.19 6 -2.52 0.11 667
OPSP 13.88 1.90 -0.26 2.60 6 -1.83 0.37 667
Inv1/2 7.34 2.86 0.02 2.87 6 -2.97 0.04 667
InvSP 11.58 2.38 0.68 3.46 6 -2.37 0.15 667

However, the profitability premium is the only premium that does not seem to increase

with the other premiums, as I will show later. One hypothesis for this lack of comovement
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is that the profitability factor becomes a hedge for the other factors as the market price of

risk increases. This can happen if the returns on the RMW portfolio covary more negatively

with the other factor returns when the BM spread increases, for example. Table 2 provides

some evidence that supports this explanation.

Table 2a and Table 2c correspond to the months in which the (lagged) BM spread is

above its average (high market price of risk months) considering the period starting in July

of 1963. Table 2b and Table 2d correspond to the other months (with low market price of

risk). Comparing the last rows in Table 2a and Table 2b shows that the correlation between

the returns on the RMW and the HML or CMA portfolios indeed decreases in high price of

risk states, although it increases for the market and size portfolios. Table 2c and Table 2d

provide more evidence in terms of covariances. The tables show that the variance of the

profitability premium is substantially lower when the BM spread is high. Indeed, the risk

of the RMW portfolio measured by the total of the last rows in each table, goes from 1.2

to −2.1 in low and high price of risk states, respectively. This suggests that the risk of the

RMW portfolio in fact decreases, from a (mean-variance efficient) portfolio perspective, in

high price of risk states. This could explain why increases in the BM spread fail to predict

increases in the profitability premium.
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Table 2: Correlation and covariance matrices of the monthly factor returns in June 1963–2018. The
main (centered) table shows the correlations among the market, size, value, investment, and
profitability premiums, respectively the (excess) returns on the market (MP), SMB, HML, CMA,
and RMW portfolios. Subtables (a) and (b), respectively, show the same information for the
months in which the BM spread is above or below its average for this period, while (c) and
(d) show the corresponding covariance matrices (in percentage points). The tables show the
coefficients with significance levels ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

MP SMB HML CMA RMW

MP 1.00
SMB 0.27∗∗∗ 1.00
HML -0.26∗∗∗ -0.07 1.00
CMA -0.38∗∗∗ -0.10∗∗ 0.70∗∗∗ 1.00
RMW -0.23∗∗∗ -0.35∗∗∗ 0.06 -0.04 1.00

(a) High BM spread correlations

MP SMB HML CMA RMW

MP 1.00
SMB 0.21∗ 1.00
HML -0.27∗∗ 0.23∗∗ 1.00
CMA -0.38∗∗∗ 0.09 0.78∗∗∗ 1.00
RMW 0.14 -0.22∗ -0.55∗∗∗ -0.63∗∗∗ 1.00

(b) Low BM spread correlations

MP SMB HML CMA RMW

MP 1.00
SMB 0.29∗∗∗ 1.00
HML -0.26∗∗∗ -0.16∗∗∗ 1.00
CMA -0.39∗∗∗ -0.15∗∗∗ 0.68∗∗∗ 1.00
RMW -0.31∗∗∗ -0.37∗∗∗ 0.19∗∗∗ 0.06 1.00

(c) High BM spread covariances

MP SMB HML CMA RMW

MP 39.5 2.9 -4.1 -3.4 1.1
SMB 2.9 8.4 2.1 0.5 -1.0
HML -4.1 2.1 9.9 4.5 -2.8
CMA -3.4 0.5 4.5 3.4 -1.9
RMW 1.1 -1.0 -2.8 -1.9 2.6

(d) Low BM spread covariances

MP SMB HML CMA RMW

MP 20.2 3.7 -3.0 -3.3 -3.0
SMB 3.7 9.3 -1.3 -0.9 -2.6
HML -3.0 -1.3 7.3 3.7 1.2
CMA -3.3 -0.9 3.7 4.1 0.3
RMW -3.0 -2.6 1.2 0.3 5.3

4 In-sample predictability

As explained earlier, Eq. (7) suggests that the factor premiums in Fama and French (2015)

should increase with both the price of risk and the factor risks. This section tests these

hypotheses based on proxies for these variables. In summary, I run monthly predictive

regressions of the form

Ri,t+1 = αi + βi ft + εi,t+1, (16)

where Ri is either the market, size, value, profitability, or investment premiums of Fama and

French (2015); αi and βi are constants; and εi,t is an error term. I investigate the forecasting
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power of six variables, ft: The cross-sectional median or spread in BM, investment, or

profitability. The spreads are given in Eq. (15).

Table 3a contains the results based on the (BM-related) price of risk proxies. It shows

that especially the BM spread forecasts – with the same significantly positive sign – all

factor premiums in Fama and French (2015) except the profitability premium. The results

based on the median BM are less strong but qualitatively the same.

For the profitability premium, the slope coefficients, βi, are insignificant based on both

variables but the point estimates are negative. This suggests that, if anything, the risk of

the profitability factor decreases with the market price of risk. Indeed, as de Oliveira Souza

(2019c) shows, the link between risk and characteristic can vary systematically with the

state of the economy. In terms of Eq. (12), it could be that bt decreases as the price of risk

increases (for reasons that I do not address in this paper).

Finally, the market premium is significantly forecastable in the full sample starting in

1926, but not in the sample starting in 1963 (Table 4). This result is in line with the lack of

statistical forecastability of the equity premium in recent years, especially after 1975 as

documented by Welch and Goyal (2008), for example. In fact, one of the variables that

they show to have no forecasting power after 1975 is exactly the Dow Jones BM of Pontiff

and Schall (1998), similar to the BM-related price of risk proxies that I consider.

The other two panels in Table 3 confirm, with marginally significant coefficients, that the

cross-sectional spread in each characteristic forecasts the returns on the factor that is created

from that characteristic. This confirms the factor risk proxy hypothesis in Section 2.2: A

large investment (profitability) spread forecasts a large investment (profitability) premium

in Table 3b (Table 3c). All other coefficients in both panels are insignificant.7

In summary, the evidence in Table 3a and the evidence in Table 3b and Table 3c,

respectively, supports the macro-finance hypothesis and contradicts the constant factor risk

hypothesis mentioned in the introduction.

7In fact, the median profitability also seems to forecast the size premium in Table 3c. But apart from the
lack of theoretical support, the result is also not robust out of sample, as I show later.
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Table 3: Predictive regressions for the market, size, value, profitability, and investment premiums
in June 1926 (1963)–2018. The estimated equations are of the form

Ri,t+1 = αi + βi ft + εi,t+1.

The respective premium, R = {M P, SMB, HM L, RMW, C MA}, appears in the top row of each
panel. They are the market, size, value, profitability, and investment premiums, in this order. The
regressor, ft , appears in the first column. The regressor is either the cross-sectional median or
spread in (a) BM, (b) profitability, or (c) investment. The tables show the number of months in
each sample, the R2, and coefficients with t statistics in parentheses, ∗ p < 0.05, ∗∗ p < 0.01,
∗∗∗ p < 0.001.

(a) BM-related price of risk proxies

MP SMB HML RMW CMA

Median BM 0.009∗ 0.008∗ 0.008∗ -0.002 0.004
(2.46) (2.22) (2.45) (-0.88) (1.94)

Spread 0.006∗ 0.010∗∗ 0.01∗∗ -0.0007 0.007∗∗

(2.07) (2.64) (3.29) (-0.27) (2.96)

Intercept 0.008∗∗∗ 0.01∗∗∗ 0.006∗∗ 0.01∗∗ 0.006∗∗∗ 0.01∗∗∗ 0.002 0.002 0.004∗∗∗ 0.009∗∗∗

(4.81) (4.40) (3.11) (3.25) (3.82) (4.15) (1.35) (0.83) (3.81) (4.03)

Months 1107 1107 662 662 662 662 662 662 662 662
R-squared 0.005 0.004 0.007 0.010 0.009 0.016 0.001 0.000 0.006 0.013

(b) Investment-related factor risk proxies

MP SMB HML RMW CMA

Median Inv -0.0007 0.0003 -0.00005 -0.0002 0.0003
(-1.24) (0.81) (-0.12) (-0.51) (0.94)

Spread -0.0002 -0.0004 -0.0001 0.0005 0.0006
(-0.29) (-0.73) (-0.22) (1.43) (1.86)

Intercept 0.01∗ 0.008 0.0001 0.007 0.004 0.004 0.004 -0.003 0.0009 -0.004
(2.31) (0.92) (0.04) (1.15) (1.19) (0.82) (1.58) (-0.79) (0.41) (-1.10)

Months 663 663 662 662 662 662 662 662 662 662
R-squared 0.002 0.000 0.001 0.001 0.000 0.000 0.000 0.003 0.001 0.005

(c) Profitability-related factor risk proxies

MP SMB HML RMW CMA

Median OP -0.0004 0.001 -0.0002 0.0004 0.0003
(-0.46) (1.94) (-0.45) (1.14) (0.94)

Spread 0.0006 -0.0003 -0.0006 0.0008 0.00008
(0.65) (-0.44) (-0.97) (1.87) (0.19)

Intercept 0.01 -0.003 -0.02 0.006 0.009 0.01 -0.009 -0.009 -0.006 0.002
(0.73) (-0.22) (-1.74) (0.73) (0.70) (1.37) (-0.88) (-1.44) (-0.63) (0.29)

Months 663 663 662 662 662 662 662 662 662 662
R-squared 0.000 0.001 0.006 0.000 0.000 0.001 0.002 0.005 0.001 0.000
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Table 4: Predictive regressions for the market premium with BM-related price of risk proxies in June
1963–2018. The estimated equations are of the form

Rmp,t+1 = α+ β ft + εt+1,

where the regressor, ft (in the first column), is either the cross-sectional median or spread in BM.
The table shows the number of months in each sample, the R2, and coefficients with t statistics in
parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

MP MP

Median BM 0.002
(0.41)

BM spread 0.001
(0.24)

Intercept 0.006∗ 0.006
(2.39) (1.34)

Months 664 664
R-squared 0.000 0.000

Indeed, Table 5 confirms that both the factor risk and the price of risk contribute to

forecasting the investment premium with highly significant coefficients associated with

both the investment and the BM spreads. The two variables carry different information

about the investment premium. The BM spread, however, does not forecast the profitability

premium even in a multivariate sense. Table 5 shows the results of predictive regressions

for the profitability and investment premiums, similar to the ones in Eq. (16),

Ri,t+1 = αi +β
>
i f t + εi,t+1, (17)

but where the two-dimensional regressors, f t =
�

BMSP ,θsp

�>
, with θ = {Inv, OP} are

the BM spread (the price of risk proxy) together with the spread in the characteristic used

to create the respective factor (the factor risk proxy).
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Table 5: Predictive regressions for the profitability and investment factor premiums in June 1963–
2018 based on the BM spread and the spread in the characteristic used to form the factor.
The estimated equations are of the form

Ri,t+1 = αi +β
>
i f t + εi,t+1,

where the two-dimensional regressors, f t , are the BM spread and the spread in the characteristic
used to create the factor, both appearing in the first column. The table shows the number of
months in each sample, the R2, and coefficients with t statistics in parentheses, ∗ p < 0.05,
∗∗ p < 0.01, ∗∗∗ p < 0.001.

RMW CMA

BM 0.0006 0.01∗∗∗

(0.21) (3.95)

Profitability 0.0009
(1.86)

Investment 0.001∗∗

(3.20)

Intercept -0.009 -0.002
(-1.41) (-0.40)

Months 662 662
R-squared 0.005 0.028

5 Out-of-sample predictability

There are well-documented reasons to prefer either in-sample (Inoue and Kilian, 2005;

Cochrane, 2008; Campbell and Thompson, 2008) or out-of-sample (OOS) evidence (Welch

and Goyal, 2008). In particular, the in-sample results in the previous section could be

more efficient to test the two hypotheses laid out in the introduction. However, the fitness

of the recursive out-of-sample implementation of the model can be important for actual

investment purposes. This section analyzes this performance.

In order to evaluate the OOS forecasting performance of the model I calculate a predic-

tive R2, as in Welch and Goyal (2008), for example. The OOS R2,

R2 = 1−
MSF Em

MSF Eh
, (18)

increases with the ratio between the mean squared forecasting error of the model, MSF Em,

calculated from the vector of rolling (expanding) OOS errors from the model and the
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one associated with the historical average, MSF Eh, calculated from the vector of rolling

(expanding) OOS errors from the historical mean up until that point in time. The R2 can

take any value below 1, and negative values mean that the model’s forecast is less accurate

than simply using the historical mean return.

The return forecast in each period, t, used to calculate the MSEFm is based on the

recursively estimated coefficients from Eq. (16) and Eq. (17), α̂i,t and β̂i,t ,

Et[Ri,t+1] = α̂i,t + β̂i,t ft , (19)

Et[Ri,t+1] = α̂i,t + β̂
>
i,t f t . (20)

The coefficients estimated at time t use only the information available until time t, so

they become more accurate as the estimation sample expands. The return forecast in each

period, t, used to calculate the MSEFh is simply the recursively calculated historical mean

of the premium:

Et[Ri,t+1] =
1
t

t
∑

h=1

Ri,h. (21)

The forecasting errors in both cases are the differences between realized and expected

returns:

ei,t = Ri,t − Et−1[Ri,t]. (22)

Fig. 2 shows that the in-sample evidence regarding the BM-related price of risk proxies in

Table 3a also holds OOS for the size and especially for the value and investment premiums.

I split the full 1963-2018 sample into training and evaluation subsamples each month

between January 1975 and January 2015. The horizontal axis displays the date used

to split the sample. The graphs show that the predictions of the value and investment

premiums tend to improve over time, which is consistent with the hypothesis of model

stability, as noted by Welch and Goyal (2008). On the other hand, the OOS forecasts of

the size premium are less accurate but still usually better than the unconditional mean.
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In line with the in-sample evidence, the spread in BM provides better OOS forecasts for

every premium compared to the BM median. In addition, the variables do not forecast the

profitability nor the market premium (after 1963).
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Figure 2: Out-of-sample R2 (until August 2018) based on the BM-related price of risk proxies. The
graphs on the left-/right-hand side use the BM spread/median, ft , to recursively forecast Ri,t+1,
which is the market premium (the top graph, MP), the size premium (SMB), the value premium
(HML), the profitability premium (RMW), or the investment premium (CMA) in regressions of
the form

Ri,t+1 = αi + βi ft + εi,t+1.

The graphs display the out-of-sample R2 calculated from each point in time (the horizontal axis
in the graphs) until 2018.

Fig. 3 also confirms the in-sample results in Table 3b: The investment spread forecasts

the investment premium OOS, especially after 1999. Fig. 4, on the other hand, shows that

the marginal ability of the profitability spread to forecast the profitability (and the size)
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premium in Table 3c is not reproduced OOS.8 This adds to the evidence elsewhere in the

paper suggesting that the profitability premium is somehow different from the others.
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Figure 3: Out-of-sample R2 (until August 2018) based on investment-related factor risk proxies. The
graphs on the left-/right-hand side use the investment spread/median, ft , to recursively forecast
Ri,t+1, which is the market premium (the top graph, MP), the size premium (SMB), the value
premium (HML), the profitability premium (RMW), or the investment premium (CMA) in
regressions of the form

Ri,t+1 = αi + βi ft + εi,t+1.

The graphs display the out-of-sample R2 calculated from each point in time (the horizontal axis
in the graphs) until 2018.

Finally, Fig. 5 confirms the results above and the in-sample evidence in Table 5: The

BM and the investment spreads together forecast the investment premium remarkably well,

especially towards the end of the sample. On the other hand, the BM and the profitability

spreads together still do not forecast the profitability premium.

8In fact, the median investment also seems to forecast the investment and the market premiums towards
the end of the sample in Fig. 3, but without equivalent in-sample evidence in Table 3b. Something similar
happens with the median profitability, which seems to forecast the investment spread towards the end of
the sample in Fig. 4, with no equivalent in-sample evidence in Table 3c. However, as Welch and Goyal
(2008) explain, OOS predictability is not a substitute for in-sample predictability, so these results are not very
informative.
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Figure 4: Out-of-sample R2 (until August 2018) based on profitability-related factor risk proxies.
The graphs on the left-/right-hand side use the profitability spread/median, ft , to recursively
forecast Ri,t+1, which is the market premium (the top graph, MP), the size premium (SMB), the
value premium (HML), the profitability premium (RMW), or the investment premium (CMA) in
regressions of the form

Ri,t+1 = αi + βi ft + εi,t+1.

The graphs display the out-of-sample R2 calculated from each point in time (the horizontal axis
in the graphs) until 2018.

23



0.06

0.05

0.04

0.03

0.02

0.01

0.00

RM
W

BM and OP spreads

1974 1979 1984 1989 1994 1999 2004 2009 2014
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

CM
A

BM and Inv spreads

Figure 5: Out-of-sample R2 (until August 2018) from regressions of the profitability or investment
premiums on the BM spread in addition to either the profitability or the investment
spreads. The top graph predicts the profitability premium from the BM and profitability spreads.
The bottom graph predicts the investment premium from the BM and investment spreads. The
recursive predictive regressions have the form

Ri,t+1 = αi +β
>
i f t + εi,t+1,

where f t is a two-dimensional regressor. The graphs display the out-of-sample R2 calculated
from each point in time (the horizontal axis in the graphs) until 2018.
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6 Factor timing

Daniel and Moskowitz (2016) argue that the optimal procedure to maximize the uncondi-

tional Sharpe ratio of an investment is a dynamic strategy that scales the portfolio weights

at each point in time, so that the strategy’s conditional volatility is proportional to its condi-

tional Sharpe ratio. Without a model of conditional volatility (assuming homoscedasticity),

this implies that the portfolios are levered up or down over time in proportion to their

conditional expected returns.

I use this trading rule to create a series of factor timing strategies in this section. In

particular, I set the weights of each factor portfolio i at time t to its OOS conditional

expected return,

ωi,t = Et[Ri,t+1], (23)

where Et[Ri,t+1] is obtained recursively with information available until time t, as given by

Eq. (19) and Eq. (20). Therefore, the realized return on each of the five managed portfolios

i at time t is given by

Rmpi,t = ωi,t−1 × Ri,t . (24)

The OOS Sharpe ratio for managed portfolio i, calculated from time t until T (August

2018), SRi,tT , is given by

SRi,tT =
Rmpi,tT

stT
, (25)

Rmpi,tT =

∑T
h=t Rmpi,h

T − t
, (26)

stT =

√

√

√

∑T
h=t

�

Rmpi,h − Rmpi,tT

�2

T − t − 1
. (27)

The graphs in this section are similar to the ones in the previous section. The month

used to split the sample into training and evaluation subsamples is displayed on the

horizontal axis and the Sharpe ratios calculated from that point until the end of the sample
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are displayed on the horizontal axis. The managed portfolios appear in blue and the

unmanaged ones in orange.
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Figure 6: Out-of-sample Sharpe ratios (until August 2018) based on BM-related price of risk proxies
– in blue. The graphs on the left-/right-hand side use the BM spread/median, ft , to recursively
forecast Ri,t+1, which is the market premium (the top graph, MP), the size premium (SMB), the
value premium (HML), the profitability premium (RMW), or the investment premium (CMA) in
regressions of the form

Ri,t+1 = αi + βi ft + εi,t+1.

The graphs display the out-of-sample Sharpe ratios calculated from each point in time (the
horizontal axis in the graphs) until 2018 using portfolio weights proportional to the expected
premiums each month to lever the portfolios up or down over time,

ωi,t = Et[Ri,t+1],

which is obtained recursively with information available until time t. I report the monthly Sharpe
ratios multiplied by

p
12. Unconditional values appear in orange.

Fig. 6 shows that the factor timing strategies based on the BM-related price of risk proxies

tend to deliver larger Sharpe ratios compared to the unconditional premiums. Again, the

BM spread usually performs better than the BM median as a price of risk proxy. Compared

to the unmanaged portfolio, the (BM spread) managed value portfolio has consistently

larger Sharpe ratios regardless of the date used to split the sample. For example, this
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managed portfolio delivers positive (even if small) Sharpe ratios starting from almost every

year after 2004. The unconditional value premium calculated from any year since 2004

is negative, in contrast. The (BM spread) managed investment portfolio also performs

relatively better than its unconditional counterpart, but the difference is negligible for split

dates towards the end of the sample. Finally, there is not much evidence of gains for size

portfolios based on the trading rule in Daniel and Moskowitz (2016). Section 6.1 discusses

another trading rule for the size premium. In line with the previous results, there are no

improvements for the market and profitability premiums.

The gains from managing any of the factors based on the investment- or profitability-

related factor risk proxies alone are very modest at best.9 However, the managed investment

portfolio based jointly on the BM and investment spreads has impressive Sharpe ratios

compared to the unmanaged portfolio regardless of the split date. The difference becomes

extreme towards the end of the sample in Fig. 7. Again, in line with the previous results,

there is no evidence of improvements considering the profitability portfolio.

9Fig. 12 and Fig. 13 in Appendix A show these results.
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Figure 7: Out-of-sample Sharpe ratios (until August 2018) from regressions of the profitability or
investment premiums on the BM spread in addition to either the profitability or the in-
vestment spreads – in blue. The top graph predicts the profitability premium from the BM
and profitability spreads. The bottom graph predicts the investment premium from the BM and
investment spreads. The recursive predictive regressions have the form

Ri,t+1 = αi +β
>
i f t + εi,t+1,

where f t is a two-dimensional regressor. The graphs display the out-of-sample Sharpe ratios
calculated from each point in time (the horizontal axis in the graphs) until 2018 using portfolio
weights proportional to the expected premiums each month to lever the portfolios up or down
over time,

ωi,t = Et[Ri,t+1],

which is obtained recursively with information available until time t. I report the monthly Sharpe
ratios multiplied by

p
12. Unconditional values appear in orange.
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6.1 Alternative trading rule

It is possible that the trading rule in Daniel and Moskowitz (2016) is not the most suitable

one for the predictability that I document in the paper. A second alternative is, for example,

to invest in a given factor portfolio only after observing a “good” signal, and not investing

otherwise. For example, the strategy could be to invest in factor i only when the out-of-

sample expected returns given by Eq. (19) and Eq. (20) are above a certain threshold, κi. I

investigate this type of strategy in this section.

These strategies are equivalent to using an indicator function as the portfolio weights,

ωi,t , to calculate the return on the managed portfolios with Eq. (24),

ωi,t =







1, Et[Ri,t+1] ≥ κi

0, Et[Ri,t+1] < κi.
(28)

Unlike the previous section, here I evaluate all performances in the same 1990–2018

period; I vary the thresholds along the horizontal axis instead. I consider different threshold

intervals for different premiums (two standard deviations away from their own average

forecasts). These thresholds determine what a “good” signal is. For example, Fig. 8 shows

the results for the SMB portfolio using annual return thresholds from −6% to 6%, displayed

on the horizontal axis. The graphs on the left (“Invested”) show the results involving the

portfolios with expected returns above the threshold in question. The ones on the right

show the results for the remaining (“Avoided”) portfolios. The results are the Sharpe ratios,

mean returns, skewness, and the proportion of months with expected returns above (on the

left) or below the threshold (on the right). Intuitively, this proportion reflects how often

the strategy has an active position in the market.

In general, the results in this section confirm that it is possible to use the predictability

that I document to obtain better performances by avoiding investing in periods with

expected premiums below certain thresholds. Both the Sharpe ratios and the mean returns

tend to increase with the thresholds for all managed factors. For example, Fig. 8 shows
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Figure 8: Summary statistics for the period 1990-2018 regarding the returns on the SMB portfolio
with recursively estimated expectations above (Invested) or below (Avoided) the thresh-
olds shown on the horizontal axis. The forecasts use the BM spread, BMSP,t , to recursively
forecast the size premium, Rsmb,t+1, in regressions of the form

Rsmb,t+1 = α+ βBMSP,t + εt+1,

with information available until month t. The statistics are calculated between July 1990 and
August 2018. The graphs display the Sharpe ratios (monthly values multiplied by

p
12), mean

annualized returns (%), skewness, and the proportion of months corresponding to expected size
premiums above or below the respective threshold on the horizontal axis.

that the portfolios avoided (on the right) tend to give very low and often negative returns

for thresholds below 1% for the SMB portfolio. On the other hand, there is no clear pattern

involving the skewness of these portfolios. Fig. 8 also shows that it is possible to obtain

Sharpe ratios close to 0.5 by investing in SMB portfolios with expected returns at least

a little (but not much) below zero, which happens around 60% of the time. Indeed, the

graphs on the right show that the portfolios that are avoided in this case have slightly

negative mean returns.
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The results in Fig. 9 reflect the fact that the BM spread forecasts the value premium

better. However, both the “invested” and the “avoided” Sharpe ratios and mean returns

increase less monotonically with the thresholds (from −2% to 6%) because of the slightly

positive return for a threshold just below zero as we see in the right column. Still, it is only

after a threshold above 4% that the “avoided” mean returns become positive. Indeed, it is

possible to obtain a Sharpe ratio above 1 by investing in the HML portfolio close to 20% of

the time when the expected value premium is above 4%, for example.
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Figure 9: Summary statistics for the period 1990-2018 regarding the returns on the HML portfolio
with recursively estimated expectations above (Invested) or below (Avoided) the thresh-
olds shown on the horizontal axis. The forecasts use the BM spread, BMSP,t , to recursively
forecast the value premium, Rhml,t+1, in regressions of the form

Rhml,t+1 = α+ βBMSP,t + εt+1,

with information available until month t. The statistics are calculated between July 1990 and
August 2018. The graphs display the Sharpe ratios (monthly values multiplied by

p
12), mean

annualized returns (%), skewness, and the proportion of months corresponding to expected
value premiums above or below the respective threshold on the horizontal axis.
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Finally, the results for the investment portfolio in Fig. 10 and Fig. 11 are similar to each

other and to the previous results. There are two main differences, however: The skewness

of the investment portfolio tends to become negative as the required return threshold

increases. And the Sharpe ratios and mean returns increase more monotonically with the

thresholds, which reflects the fact that the investment premium is highly predictable.
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Figure 10: Summary statistics for the period 1990-2018 regarding the returns on the CMA portfolio
with recursively estimated expectations above (Invested) or below (Avoided) the thresh-
olds shown on the horizontal axis. The forecasts use the BM spread, BMSP,t , to recursively
forecast the investment premium, Rcma,t+1, in regressions of the form

Rcma,t+1 = α+ βBMSP,t + εt+1,

with information available until month t. The statistics are calculated between July 1990 and
August 2018. The graphs display the Sharpe ratios (monthly values multiplied by

p
12), mean

annualized returns (%), skewness, and the proportion of months corresponding to expected
investment premiums above or below the respective threshold on the horizontal axis.
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Figure 11: Summary statistics for the period 1990-2018 regarding the returns on the CMA port-
folio with recursively estimated expectations above (Invested) or below (Avoided) the
thresholds shown on the horizontal axis. The forecasts use the BM spread, BMSP,t , and
the investment spread, InvSP,t , to recursively forecast the investment premium, Rcma,t+1, in
regressions of the form

Rcma,t+1 = α+ βbmBMSP,t + βiv InvSP,t + εt+1,

with information available until month t. The statistics are calculated between July 1990 and
August 2018. The graphs display the Sharpe ratios (monthly values multiplied by

p
12), mean

annualized returns (%), skewness, and the proportion of months corresponding to expected
investment premiums above or below the respective threshold on the horizontal axis.
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7 Conclusion

In this paper we learn about the existence of a common variable driving all the expected

factor premiums in Fama and French (2015), except profitability. We also learn that this

variable is theoretically linked to the market price of risk, which implies that the premiums

seem to arise as a compensation for systematic risk. This adds support to risk-based

explanations of these factor premiums in general and provides broad support for standard

macro-finance models that predict exactly this type of time variation in the price of risk.

In addition, we learn that the risk of the factors in Fama and French (2015) is not

constant over time: The time variation in the spread of the characteristic used to create

each factor relates to the time variation in the risk of the factor. Hence, the criticism against

industry-related factors for not having constant risk over time (Fama and French, 1997)

seems equally applicable to the factors in Fama and French (2015). This adds to similar

evidence in de Oliveira Souza (2019c) about the factors in Fama and French (1996).

Finally, the paper provides out-of-sample evidence confirming the in-sample results. This

is particularly important for investors who would like to implement the strategies that follow

from the discoveries in the paper. In this sense, we learn that especially the investment

factor is highly predictable both in sample and out of sample by a common market price of

risk proxy (the BM spread) in addition to the factor risk proxy (the investment spread). The

factor timing strategies that arise from this predictability generate substantial economic

gains out of sample.

34



A Factor timing from factor risk proxies only

This appendix shows the out-of-sample performance of the factor timing strategies based

on the investment- or profitability-related factor risk proxies alone.
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Figure 12: Out-of-sample Sharpe ratios (until August 2018) based on investment-related factor risk
proxies – in blue. The graphs on the left-/right-hand side use the investment spread/median,
ft , to recursively forecast Ri,t+1, which is the market premium (the top graph, MP), the
size premium (SMB), the value premium (HML), the profitability premium (RMW), or the
investment premium (CMA) in regressions of the form

Ri,t+1 = αi + βi ft + εi,t+1.

The graphs display the out-of-sample Sharpe ratios calculated from each point in time (the
horizontal axis in the graphs) until 2018 using portfolio weights proportional to the expected
premiums each month to lever the portfolios up or down over time,

ωi,t = Et[Ri,t+1],

which is obtained recursively with information available until time t. I report the monthly
Sharpe ratios multiplied by

p
12. Unconditional values appear in orange.
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Figure 13: Out-of-sample Sharpe ratios (until August 2018) based on profitability-related factor risk
proxies – in blue. The graphs on the left-/right-hand side use the profitability spread/median,
ft , to recursively forecast Ri,t+1, which is the market premium (the top graph, MP), the
size premium (SMB), the value premium (HML), the profitability premium (RMW), or the
investment premium (CMA) in regressions of the form

Ri,t+1 = αi + βi ft + εi,t+1.

The graphs display the out-of-sample Sharpe ratios calculated from each point in time (the
horizontal axis in the graphs) until 2018 using portfolio weights proportional to the expected
premiums each month to lever the portfolios up or down over time,

ωi,t = Et[Ri,t+1],

which is obtained recursively with information available until time t. I report the monthly
Sharpe ratios multiplied by

p
12. Unconditional values appear in orange.
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