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Consistency, anonymity, and the core on the domain of convex

games∗

Toru Hokari† Yukihiko Funaki‡ Peter Sudhölter§

Abstract

We show that neither Peleg’s nor Tadenuma’s well-known axiomatizations of the core by
non-emptiness, individual rationality, super-additivity, and max consistency or complement
consistency, respectively, hold when only convex rather than balanced TU games are con-
sidered, even if anonymity is required in addition. Moreover, we show that the core and its
relative interior are only two solutions that satisfy Peleg’s axioms together with anonymity
and converse max consistency on the domain of convex games.
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1 Introduction

The core (Gillies, 1959) is one of the most important solutions for cooperative games. It is im-

portant mainly because it satisfies many desirable properties. In particular, it satisfies two kinds

of reduced game properties, namely, “max consistency” (Peleg, 1986; Davis and Maschler, 1965)

and “complement consistency” (Tadenuma, 1992; Moulin, 1985).1 There are two well-known
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project ECO2015-66803-P (MINECO/FEDER).
†Faculty of Economics, Keio University. E-mail: hokari@econ.keio.ac.jp
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1For these two consistency axioms we use the terminology introduced by Thomson (1996) and call them max

consistency and complement consistency because each name suggests how the underlying “reduced games” are
defined in each case.



axiomatic characterizations of the core on the domain of balanced TU games based on each of

these two axioms: (i) The core is the unique solution that satisfies non-emptiness, individual

rationality, super-additivity, and max consistency (Peleg, 1986); (ii) it is the unique solution that

satisfies non-emptiness, individual rationality and complement consistency (Tadenuma, 1992).2

In this note, we investigate what happens when the domain is restricted to the class of convex

TU games. Although the core satisfies Peleg’s four axioms on this domain, it is not the only

one.3 It so happens that except for the core itself, all existing examples of such solutions violate

anonymity. So, one may conjecture that an axiomatic characterization of the core might be

obtained by adding anonymity to Peleg’s four axioms. In this note, we disprove this conjecture.

Moreover, we show that there exist only two solutions, the core and its relative interior, that

satisfy Peleg’s four axioms together with anonymity and converse max consistency. We also

consider a similar problem for complement consistency. In particular, we show that the core is

not the only solution on the domain of convex games that satisfies Tadenuma’s three axioms

and anonymity.

2 Definitions and results

Let U be an arbitrary universe of at least three players, which is assumed to contain, for the

easiness of displaying examples and proofs, the elements 1, 2, and 3. We use ⊂ for strict set

inclusion, and ⊆ for weak set inclusion. A transferable utility (TU) game (or a game, for

short) is a pair (N, v), where N is a nonempty and finite subset of U and v is a function from

2N to R with v(∅) = 0. A game (N, v) is convex (Shapley, 1971) if for all S, T ∈ 2N , we have

v(S) + v(T ) ≤ v(S ∩T ) + v(S ∪T ). Let ΓU and ΓUvex denote the sets of all games and all convex

games, respectively. For all x ∈ RN and all S ∈ 2N , we write x(S) :=
∑

i∈S xi.

Given (N, v) ∈ ΓU , the core of (N, v), denoted C(N, v), is the set of vectors x ∈ RN such

that x(N) = v(N) and for all S ⊂ N , x(S) ≥ v(S). A game has a nonempty core if and only

if it is balanced in the sense of Bondareva (1963) and Shapley (1967). It is well-known that

2Voorneveld and van den Nouweland (1998) provide an axiomatization of the core which is closely related to
Peleg’s result.

3Although this fact is widely known, we do not know any published or unpublished paper that mentions it.
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every convex game is balanced (Shapley, 1971).

Given Γ ⊆ ΓU , a solution on Γ is a mapping that assigns to all (N, v) ∈ Γ a set of vectors

x ∈ RN with x(N) ≤ v(N). The core, as a mapping, may be regarded as a solution on any set

of games. We use σ as a generic notation for solutions. Given two solutions σ and σ′ on Γ, we

say that σ is a subsolution of σ′, and write σ ⊆ σ′, if for all (N, v) ∈ Γ, σ(N, v) ⊆ σ′(N, v).

Next, we define max consistency (Peleg, 1986) and complement consistency (Tadenuma,

1992). Each of these axioms requires that the original choice in a game is “confirmed” by any

subset of players in the corresponding “reduced game” obtained when the remaining players

leave the game with their payoffs.

Given (N, v) ∈ ΓU , N ′ ∈ 2N \ {N, ∅}, and x ∈ RN , the max reduced game of (N, v)

relative to x and N ′ (Davis and Maschler, 1965), denoted by
(
N ′, vN ′,x

)
, is defined by setting

for all S ∈ 2N
′
,

vN ′,x(S) :=


maxT⊆N\N ′

[
v
(
S ∪ T

)
− x(T )

]
if S 6∈ {N ′, ∅},

v(N)− x(N \N ′) if S = N ′,

0 if S = ∅.

Max consistency: A solution σ on Γ satisfies max consistency if, for all (N, v) ∈ Γ, all x ∈ σ(v),

and all N ′ ∈ 2N \ {N, ∅}, we have (N ′, vN ′,x) ∈ Γ and xN ′ ∈ σ(N ′, vN ′,x).

Given (N, v) ∈ ΓU , N ′ ∈ 2N \ {N, ∅}, and x ∈ RN , the complement reduced game of

(N, v) relative to x and N ′, denoted by (N, vN
′,x), is defined by setting for all S ∈ 2N

′
,

vN
′,x(S) :=

 v
(
S ∪ (N \N ′)

)
− x(N \N ′) if S 6= ∅,

0 if S = ∅.

Complement consistency: A solution σ satisfies complement consistency if, for all (N, v) ∈ Γ,

all x ∈ σ(N, v), and all N ′ ∈ 2N \ {N, ∅}, we have (N ′, vN
′,x) ∈ Γ and xN ′ ∈ σ(N ′, vN

′,x).

It should be noted that the max reduced games are more suitable for the core and core-

like solutions in the sense that the core satisfies two further consistency properties for max

reduced games, namely Peleg’s “converse max consistency” (defined below) and an axiom called
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“reconfirmation property” that may be used to characterize the core on ΓU and many other do-

mains (Hwang and Sudhölter, 2001). When replacing the max reduced game by the complement

reduced game these properties are no longer satisfied by the core.

The following axioms apply to games with a fixed set of players. A solution σ on a set Γ of

games satisfies

• non-emptiness if, for all (N, v) ∈ Γ, σ(N, v) 6= ∅;

• individual rationality if, for all (N, v) ∈ Γ, all x ∈ σ(N, v), and all i ∈ N , we have

xi ≥ v({i});

• super-additivity if, for all (N, v), (N,w) ∈ Γ with (N, v + w) ∈ Γ, we have σ(N, v) +

σ(N,w) ⊆ σ(N, v + w).

As mentioned above, on the domain of balanced games, (i) the core is the unique solution

satisfying non-emptiness, individual rationality, super-additivity, and max consistency (Peleg,

1986); and (ii) the core is the unique solution satisfying non-emptiness, individual rationality and

complement consistency (Tadenuma, 1992). On the domain of convex games, the core satisfies

max consistency (Maschler, Peleg, and Shapley, 1972), as well as non-emptiness, individual

rationality, and super-additivity. Given a total order � of U , define the following single-valued

solution σ� (slightly abusing the notation by identifying the unique element of σ�(N, v) with

σ�(N, v)), which assigns to each game (N, v) the “marginal contribution vector” with respect

to �: for all (N, v) ∈ ΓU , and all i ∈ N ,

σ�i (N, v) := v
({
j ∈ N

∣∣ j � i})− v ({j ∈ N ∣∣ j ≺ i}) .
On the domain of convex games, this solution satisfies max consistency (Orshan, 1994; Núñez

and Rafels, 1998; Hokari, 2005). Moreover, it satisfies non-emptiness, super-additivity, and

individual rationality. This means that on the domain of convex games, the core is not the only

solution that satisfies Peleg’s four axioms. Clearly, the above solution violates “anonymity”. A

solution σ on Γ ⊆ ΓU satisfies anonymity if the following holds for all (N, v), (N ′, w) ∈ Γ: If

there exists a bijection π : N → N ′ such that for all S ⊆ N , w
({
π(i)

∣∣ i ∈ S}) = v(S), then for
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all x ∈ σ(N, v), we have π(x) ∈ σ(N ′, w), where π(x) = y ∈ RN ′ is defined by yj = xπ−1(j) for

all j ∈ N ′.

As far as we know, other than the core itself, no anonymous solution on the domain of convex

games that satisfies Peleg’s three axioms can been found in the literature. Here, we provide an

example of such a solution.

For all (N, v) ∈ ΓUvex, let

S(v) :=
{
S ∈ 2N |∀x ∈ C(N, v), x(S) = v(S)

}
,

and

rint C(N, v) :=
{
x ∈ C(N, v)

∣∣∀S ∈ 2N \ S(v), x(S) > v(S)
}
.

Note that rint C(N, v) is the relative interior of C(N, v). Since the relative interior of a

nonempty convex set is nonempty, rint C(N, v) is nonempty. Note that rint C trivially satisfies

individual rationality and anonymity. On the domain of balanced games, rint C satisfies max

consistency (Orshan and Sudhölter, 2010). Together with the fact that the core satisfies the

property on the domain of convex games, max consistency of rint C on the domain of balanced

games implies max consistency of rint C on the domain of convex games. We show that it also

satisfies super-additivity.

Lemma 1. On ΓUvex, rint C satisfies super-additivity.

Proof. Let (N, v), (N,w) ∈ Γvex, x ∈ rint C(N, v), y ∈ rint C(N,w), and z ∈ rint C(N, v + w).

Note that on the domain of convex games, the core is additive (Shapley, 1971; Dragan, Potters,

and Tijs, 1989).4 Thus, x+y ∈ C(N, v+w) and there exist x′ ∈ C(N, v) and y′ ∈ C(N,w) such

that z = x′ + y′. Let S ∈ 2N \ S(v + w). Then, z(S) = x′(S) + y′(S) > v(S) + w(S). Thus,

x′(S) > v(S) or y′(S) > w(S). This implies that S ∈ 2N \ S(v) or S ∈ 2N \ S(w), hence

x(S) > v(S) or y(S) > w(S), so that x(S) + y(S) > v(S) + w(S). �

Thus, we have the following result:

4The definition of additivity is obtained by replacing ⊆ with = in the definition of super-additivity.
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Proposition 1. On the domain of convex games, the core is not the only solution that satisfies

non-emptiness, individual rationality, super-additivity, max consistency, and anonymity.

We now recall the Peleg’s (1986) converse consistency axiom. A solution σ on Γ ⊆ ΓU satisfies

converse max consistency if the following condition holds for all (N, v) ∈ Γ with |N | ≥ 3

and all x ∈ RN with x(N) = v(N): If, for all N ′ ∈ 2N with |N ′| = 2, we have (N ′, vN ′,x) ∈ Γ

and xN ′ ∈ σ(N ′, vN ′,x), then x ∈ σ(N, v).

The following theorem shows that the core and rint C are the unique solutions that satisfy

this axiom and the five axioms that appear in Proposition 1.

Theorem 1. On the domain of convex games, a solution satisfies non-emptiness, individual

rationality, anonymity, super-additivity, max consistency, and converse max consistency if and

only if it coincides with the core, C, or with its relative interior, rint C.

As we have already seen, the core, C, satisfies the axioms of Theorem 1, and the relative

interior of the core, rint C, satisfies the first five of the axioms. The following lemma shows that

rint C satisfies converse max consistency as well.

Lemma 2. On ΓUvex, rint C satisfies converse max consistency.

In the proof of this lemma, we use the following remark that follows from the definitions of

a convex game and the core.

Remark 1. Let (N, v) ∈ ΓUvex, x ∈ C(N, v), and S, T ∈ 2N . If x(S) = v(S) and x(T ) = v(T ),

then x(S ∩ T ) = v(S ∩ T ) and x(S ∪ T ) = v(S ∪ T ).

Proof of Lemma 2. Let (N, v) ∈ ΓUvex with |N | ≥ 3, and x ∈ RN be such that for all N ′ ∈ 2N

with |N ′| = 2, we have (N ′, vN ′,x) ∈ ΓUvex and xN ′ ∈ rint C(N ′, vN ′,x).

Since rint C is a subsolution of the core and the core satisfies converse max consistency ,

x ∈ C(N, v). Suppose, on the contrary, that there exists S ∈ 2N \ S(v) such that x(S) = v(S).

Let i ∈ S. Note that for all j ∈ N \ S,

v{i,j},x({i}) = max
T⊆N\{i,j}

[v({i} ∪ T )− x(T )] ≥ v(S)− x(S \ {i}) = xi.
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Since (xi, xj) ∈ rint C({i, j}, v{i,j},x) and rint C satisfies individual rationality , xi = v{i,j},x({i}).

This implies xj = v{i,j},x({j}). Thus, there exists Tij ⊂ N such that j ∈ Tij , i 6∈ Tij , and

x(Tij) = v(Tij). Let Ti :=
⋃
j∈N\S Tij . Then, by Remark 1, x(Ti) = v(Ti).

Note that N \ S =
⋂
i∈S Ti. Again by Remark 1, x(N \ S) = v(N \ S). This implies

v(S) + v(N \ S) = x(S) + x(N \ S) = x(N) = v(N).

Thus, for all y ∈ C(N, v), we have y(S) = v(S), which contradicts our assumption that

S ∈ 2N \ S(v). �

We postpone the uniqueness part of the proof and first show that the axioms in Theorem 1

imply “translation covariance” and “Pareto optimality”. Recall that a solution σ on a set Γ of

games satisfies

• translation covariance if, for all (N, v), (N,w) ∈ Γ such that there exists b ∈ RN with

w(S) = v(S) + b(S) for all S ∈ 2N , we have σ(N,w) = σ(N, v) + b;

• Pareto optimality if, for all (N, v) ∈ Γ and all x ∈ σ(N, v), x(N) = v(N).

Lemma 3. If σ on ΓUvex satisfies non-emptiness, individual rationality, and super-additivity,

then it satisfies translation covariance.

Proof. Let b ∈ RN and v, w ∈ VNvex be such that for all S ∈ 2N , w(S) = v(S) + b(S). Let

x ∈ σ(N, v). It remains to show that x + b ∈ σ(N,w). Now, the additive game (N, b) is

convex and, by individual rationality and non-emptiness, σ(N, b) = {b}. By super-additivity,

x+ b ∈ σ(N, v + b). �

The following remark can be proved by literally copying Peleg’s (1986) proof of the corre-

sponding statement for balanced games.

Remark 2. If σ on ΓUvex satisfies satisfies individual rationality and max consistency, then it

satisfies Pareto optimality.

Proof of Theorem 1: It has been already shown that the core and rint C satisfy the desired

properties.
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To show the uniqueness part, let σ be a solution that satisfies the properties. By Lemma 3

and Remark 2, σ satisfies translation covariance and Pareto optimality. Also, by non-emptiness,

individual rationality, and max consistency, σ is a nonempty subsolution of the core. Let (N, v) ∈

ΓUvex.

Claim 1: rint C(N, v) ⊆ σ(N, v). If (N, v) is a one-person game then non-emptiness and

Pareto optimality finish the proof. By converse max consistency of rint C, we may assume that

(N, v) is a 2-person game. If (N, v) is inessential (additive), then the proof is finished because

the core is a singleton. For coalitions N and S with ∅ 6= S ⊆ N , let uSN denote the unanimity

game of S with player set N . Hence, by translation covariance and anonymity, we may assume

that v is a positive multiple of the form αuNN for some α > 0 of the unanimity game of N on

N = {1, 2}, i.e., v({i}) = 0 for i = 1, 2 and v(N) = α. Again, by anonymity, it suffices to show

that (α− t, t) ∈ σ(N, v) for all t ∈ (0, α/2]. Let M : = {1, 2, 3}.

Claim A: If α > 0 and (α − t, t) ∈ σ(N,αuNN ), then (α − t, 0, t) ∈ σ(M,αu
{1,3}
M ). Indeed, the

reduced game relative to {1, 3} coincides, up to renaming players 2 and 3, with αuNN , and as

0 ≤ t ≤ α, the reduced games relative to {1, 2} and {2, 3} are the corresponding additive games

so that anonymity and converse max consistency shows Claim A.

Claim B: For any α > 0, (α, α, α) ∈ σ
(
M, 3αuMM

)
and (α, α) ∈ σ(N, 2αuNN ). Indeed the

2nd statement follows from the 1st statement by max consistency. In order to show the 1st

statement, note that by non-emptiness there exists x ∈ σ(M,αuMM ) and, by Pareto optimality,

x(M) = α. By anonymity, y = (x3, x1, x2) and z = (x2, x3, x1) are also members of σ(M,αuMM )

so that, by super-additivity, x+ y + z = (α, α, α) ∈ σ
(
M, 3αuMM

)
.

Claim C: If α > 0 and (α − t, t) ∈ σ(N,αuNN ), then (α − t, t, t) ∈ σ
(
M, (α+ t)uMM

)
. Indeed,

the reduced game relative to {1, 2} coincides with αuNN , the reduced game relative to {1, 3}

coincides, up to renaming players 2 and 3, with αuNN , and the reduced game relative to {2, 3}

coincides with 2tu
{2,3}
{2,3} so that Claim C follows from converse max consistency, anonymity, and

Claim B.

Now the proof of Claim 1 is finished as soon as we show that, for any k ∈ N and any t > 0,

(β, t) ∈ σ(N, (β + t)uNN ), if kt < β ≤ (k + 1)t. (1)
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We proceed by induction on k.

For t < β ≤ 2t, (t, t, t) ∈ σ(M, 3tuMM ) and (β − t, 0, β − t) ∈ σ(M, 2(β − t)u{1,3}M ) by Claims

A and B. By super-additivity, (β, t, β) ∈ σ(M,w) where w = 3tuMM + 2(β − t)u{1,3}M . Now, as

β ≥ 2(β − t), the reduced game relative to N coincides with (β + t)uNN so that the base case

k = 1 follows.

If k > 1, then, by the inductive hypothesis, for any t > 0, (kt, t) ∈ σ(N, (k + 1)tuNN ), hence,

(kt, t, t) ∈ σ(M, (k+2)tuMM ) by Claim C and, for each β with kt < β ≤ (k+1)t, (β−kt, 0, β−kt) ∈

σ(M, 2(β−kt)u{1,3}M ) by Claim B. Therefore, by super-additivity, we receive (β, t, β− (k−1)t) ∈

σ(M,w) where w = (k+ 2)tuMM + 2(β− kt)u{1,3}M . As 2(β− kt) ≤ β− (k− 1)t, the reduced game

relative to N is (β + t)uNN so that the inductive step is finished by max consistency.

Claim 2: If σ 6= rint C, then σ = C. Hence, we assume that there exists a convex game (N ′, v′)

and x ∈ σ(N ′, v′) \ rint C(N ′, v′). By max consistency of σ and converse max consistency of

rint C we may assume that |N ′| = 2. By anonymity, we may assume that N ′ = N and x1 =

v′({1}). By translation covariance we may assume that there exists β > 0 such that v′ = βuNN ,

i.e., x = (0, β). By translation covariance, anonymity, and converse max consistency, it suffices

to show that (0, γ) ∈ σ(N, γuNN ) for all γ > 0. Now, let k ∈ N be such that k > γ/β. By applying

super-additivity k times, we receive (0, kβ) = kx = x+ · · ·+ x︸ ︷︷ ︸
k

∈ σ(N, v′ + · · ·+ v′︸ ︷︷ ︸
k

) = σ(N, kv′).

Therefore, we may assume that β > γ.

We claim that (β, β, 0) ∈ σ(M,β(u
{1,3}
M + u

{2,3}
M )). To show this claim, note that the reduced

games relative to (β, β, 0) and coalitions {1, 2}, {1, 3}, and {2, 3}, respectively, are the additive

game (N, (β, β)), the game ({1, 3}, βu{1,3}{1,3}), and the game ({2, 3}, βu{1,3}{1,3}), respectively. The

restriction of (β, β, 0) to each of these 2-person coalitions belongs to the solution of the corre-

sponding reduced game by anonymity. Hence, our claim follows from converse max consistency.

Moreover, (β − γ, 0, γ) ∈ σ(M,βu
{1,3}
M ) because rint C is a subsolution of σ by Claim 1.

Now the proof can be completed. Let y = (β − γ, 0, γ) + (β, β, 0) = (2β − γ, β, γ). By

super-additivity, y ∈ σ(M,β(2u
{1,3}
M + u

{2,3}
M )). Now, the reduced game relative to y and N is

(N, γuNN + (2β − γ, β − γ)). Hence, by max consistency and translation covariance, (0, γ) =

(2β − γ, β)− (2β − γ, β − γ) ∈ σ(N, γuNN ). �

9



We now show that each axiom in Theorem 1 is logically independent of the remaining axioms.

(i) Without non-emptiness, the empty solution becomes admissible.

(ii) Without individual rationality, the solution that selects
{
x ∈ R

∣∣ x ≤ v({i})
}

in the one-

person case and coincides with the core, otherwise, becomes admissible.

(iii) Without super-additivity, the kernel (Davis and Maschler, 1965) that in fact coincides with

Schmeidler’s (1969) nucleolus for convex games (Maschler, Peleg, and Shapley, 1972) becomes

admissible.

(iv) Without anonymity, the solution σ� defined above becomes admissible.

(v) Without max consistency, the solution that coincides with the nucleolus in the two-person

case and with the core, otherwise, becomes admissible.

(vi) Without converse max consistency, the solution that coincides with the core in the two-

person case and with rint C, otherwise, becomes admissible.

Now, let us consider complement consistency. It turns out that the core satisfies this axiom

on the domain of convex games. The proof that the complement reduced game of a convex game

relative to a core element is convex is similar to the proof of the corresponding statement where

complement reduced game is replaced by max reduced game.

Hence, on the domain of convex games, the core satisfies Tadenuma’s three axioms and

anonymity. We construct another solution that satisfies these four axioms.

Our starting point is the solution σ�, defined above, that picks for each game the marginal

contribution vector with respect to a given ordering ≺ of players. Although σ� itself does not

satisfy complement consistency, we can enlarge it so that the resulting solution satisfies the

axiom. Then we endogenize the total order � to make the resulting solution anonymous.

Consider the following solution σ∗ on the domain of convex games: for all (N, v) ∈ ΓUvex and

all x ∈ C(N, v), x ∈ σ∗(N, v) if and only if there exists a total order � on N such that

(i) for all i, j ∈ N , if v(N)− v(N \ {i}) < v(N)− v(N \ {j}), then i ≺ j;

(ii) for all i ∈ N , if
{
j ∈ N

∣∣ j ≺ i} 6= ∅, then

xi ≤ v
({
j ∈ N

∣∣ j � i})− v ({j ∈ N ∣∣ j ≺ i}) .
10



(4, 0, 0)

(0, 0, 4)

(0, 4, 0)(3, 1, 0)

(3, 0, 1)

(1, 3, 0)

(0, 3, 1)

Figure 2.1: Let N ≡ {1, 2, 3} and (N, v) ∈ ΓU
vex be such that v({1}) = v({2}) = v({3}) = 0, v({1, 2}) = 0,

v({1, 3}) = v({2, 3}) = 1, and v(N) = 4. Then, v(N)− v({2, 3}) = v(N)− v({1, 3}) < v(N)− v({1, 2}). So, there
are two total orders on N that satisfy condition (i) in the definition of σ∗(N, v): 1 ≺ 2 ≺ 3 and 2 ≺′ 1 ≺′ 3. Thus,
σ∗(N, v) =

{
x ∈ C(N, v)

∣∣ x2 = 0 or x1 = 0
}

.

Since the marginal contribution vectors are in the core on this domain, σ∗ satisfies non-

emptiness. Note that it coincides with the core when |N | ≤ 2. Figure 1 illustrates a case in

which σ∗(N, v) does not coincides with the core, and there are two total orders that satisfy

condition (i) above. This solution trivially satisfies anonymity and individual rationality. We

show that it also satisfies complement consistency.

Lemma 4. On ΓUvex, σ∗ satisfies complement consistency.

Proof. Let (N, v) ∈ ΓUvex, x ∈ σ∗(N, v), and N ′ ∈ 2N \ {N, ∅}. By the definition of σ∗(N, v),

there exists a total order � on N such that

(i) for all i, j ∈ N , if v(N)− v(N \ {i}) < v(N)− v(N \ {j}), then i ≺ j;

(ii) for all i ∈ N , if
{
j ∈ N

∣∣ j ≺ i} 6= ∅, then

xi ≤ v
({
j ∈ N

∣∣ j ≺ i} ∪ {i})− v ({j ∈ N ∣∣ j ≺ i}) .
Since x ∈ C(N, v) and the core is complement consistent, we have (N, vN

′,x) ∈ Γvex and xN ′ ∈

C(N ′, vN
′,x). We want to show that xN ′ ∈ σ∗(N ′, vN

′,x). If |N ′| ≤ 2, then σ∗(N ′, vN
′,x) =

C(N ′, vN
′,x), and we are done.

Suppose that |N ′| ≥ 3. Note that, for all i ∈ N ′, since N ′ \ {i} 6= ∅, by the definition of

vN
′,x,

vN
′,x(N ′)− vN ′,x(N ′ \ {i}) = v(N)− v(N \ {i}).

11



Thus, if i, j ∈ N ′ are such that

vN
′,x(N ′)− vN ′,x(N ′ \ {i}) < vN

′,x(N ′)− vN ′,x(N ′ \ {j}),

then i ≺ j.

Let i ∈ N ′ and S :=
{
j ∈ N

∣∣ j ≺ i}. If S ∩N ′ 6= ∅, then, by the definition of vN
′,x and the

convexity of (N, v),

vN
′,x((S ∪ {i}) ∩N ′)− vN ′,x(S ∩N ′)

= v((S ∪ {i}) ∪ (N \N ′))− v(S ∪ (N \N ′))

≥ v(S ∪ {i})− v(S)

≥ xi.

Thus, xN ′ ∈ σ∗(N ′, vN
′,x). �

Thus, we have the following result:

Proposition 2. On the domain of convex games, the core is not the unique solution that

satisfies non-emptiness, individual rationality, complement consistency, and anonymity.

Although we have shown that two well-known axiomatizations break down if the domain is

restricted to the class of convex games, we should mention that there is another axiomatization

of the core on the domain of all TU games provided by Peleg (1986), which remains valid even

on the domain of convex games. It says that on this domain, the core is the unique solution that

satisfies max consistency, converse max consistency, and the additional axiom of “unanimity”,

which requires that the solution coincides with the core in the two-person case.
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