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Abstract: The synthetic control method (SCM) allows estimation of the causal effect of an

intervention in settings where panel data on just a few treated units and control units are

available. We show that the existing SCM as well as its extensions can be easily modified to

estimate how much of the “total” effect goes through observed causal channels. The additional

assumptions needed are arguably very mild in many settings. Furthermore, in an illustrative

empirical application we estimate the effects of adopting the euro on labor productivity in several

countries and show that a reduction in the Economic Complexity Index helped to mitigate the

negative short run effects of adopting the new currency in some countries and boosted the positive

effects in others.
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1 Introduction

The Synthetic Control Method (SCM) introduced by Abadie and Gardeazabal (2003),

and further developed in Abadie et al. (2010, 2015) is becoming very popular in program

evaluation. SCM is attractive, as it allows estimating the causal effect of an intervention

even when data on only one treated and a few control units are available. This is possible

by using information on the pre-intervention period to construct a “synthetic control”,

which mimics what would have happened to the treated unit in the post-intervention

period in the absence of the intervention. Gobillon and Magnac (2016) compare SCM

to other interactive fixed-effects models and find that it performs very well as soon as in

post-intervention periods the counterfactual outcome of the treated unit lies in the convex

hull of the outcomes of the control units. In a recent paper, Xu (2017) further exploits the

connection between SCM and interactive fixed-effect models and proposes a new method

that combines both approaches. Doudchenko and Imbens (2016) propose a modification

of SCM where the weights are not constrained to be positive and do not necessarily add

up to 1. Ben-Michael et al. (2018) extend it to relax weights constraints and to correct

for possible covariate imbalance, demonstrating that the synthetic control method can

be seen as an inverse propensity score weighting estimator. Finally, Athey et al. (2017)

propose a new method that includes synthetic control and other panel data methods as a

special case.

Although all those methods are very well suited for estimating the “total” effect of

an intervention, they are mostly uninformative about the causal mechanisms that gen-

erated this effect. Often an intervention may first have an impact on an intermediate

outcome (hereafter referred to also as the “mediator”), which induces an impact on the

final outcome. In the presence of a mediator, the total effect can generally be decomposed

into a direct effect of the intervention and an indirect effect generated through it. Policy

conclusions that ignore the presence of such intermediate outcomes might be misleading.

Indeed, if the direct and indirect effects are both large and similar in magnitude but with

opposite signs, one might wrongly conclude that the policy had no impact, by just look-
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ing at the total effect. Moreover, it is often important to quantify the direct and indirect

effects to better target the intervention. Consider the huge decrease in tobacco consump-

tion after the introduction of California’s anti-tobacco law, Proposition 99, estimated in

Abadie et al. (2010). Proposition 99 not only increased the tobacco price but also intro-

duced several anti-tobacco informational campaigns. It would be extremely relevant for

a policy maker to know how much of the decrease in tobacco consumption triggered by

Proposition 99 is due to the increase in prices and how much of it is due to investments

in informational campaigns.

The analysis of direct and indirect effects of an intervention may give additional infor-

mation on macroeconomic mechanisms as well. Consider the impact of euro adoption on

labor productivity. It may be highly relevant to determine whether an increase/decrease

in labor productivity is due to a variation in the level of specialization of exporting firms

and in the type of goods exported or to other factors. As we will show in our empirical

application, estimating only the total effect could be highly misleading in this framework.

Mediation analysis is a standard approach to deal with these kind of issues. The

main challenge in mediation analysis is that the identification of the direct and indirect

effects requires knowledge about the potential outcome an individual would get if the

potential mediator was set to the value it would have taken under the opposite treatment

status than the one observed. This is never observed for any individual. A large part of

the literature focuses on identification and estimation of direct and indirect effects under

sequential conditional independence (see Pearl 2001; Robins 2003; Imai et al. 2010; Imai

and Yamamoto 2013; Vansteelandt and VanderWeele 2012; Huber 2013; Vansteelandt

and VanderWeele 2012; Huber et al. 2016, 2017). The idea behind this approach is that

once we control for observed characteristics and the conditionally independent treatment

the potential outcomes are independent of the potential mediators. To the best of our

knowledge, none of the existing methods are specifically designed for panel data and

cannot directly be applied in settings with one or a few treated and a few control units.1

This motivates the introduction of our mediation analysis synthetic control (MASC)
1One exception is Deuchert et al. (2018), however, who consider a framework with a randomized

intervention with non-perfect compliance.
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method, a generalization of the SCM that allows decomposing the total effect of an inter-

vention into its direct and indirect components. As we will discuss below, in contrast to

the standard framework, where the additional assumptions required to identify the direct

and indirect effects are usually much stronger, MASC requires virtually the same assump-

tions on unobserved confounders as a standard SCM. The only additional assumption is

that we are able to find control units with mediator values similar to those of the treated

unit. Moreover, the plausibility of the assumptions required for MASC can be judged in

a similar manner by checking the overlap in pre-treament outcomes in a standard SCM.

MASC can be easily implemented by using existing SCM algorithms and any of the

new extensions. Indeed, as we will discuss in more detail below, to identify the direct

and indirect effects MASC re-weights control unit post-intervention outcomes by choosing

weights that minimize the distance between treated and synthetic unit in pre-intervention

observable characteristics (including pre-intervention values of the outcome and the me-

diator) as well as in post-intervention values of the mediator. Intuitively, this allows us

to mimic what would have happened to the treated unit in absence of the intervention if

the mediator value were set to the potential mediator under treatment. As we mentioned

above this is the main challenge of mediation analysis. Following Abadie et al. (2010),

we illustrate MASC with a simple dynamic factor model with interactive fixed effects and

show that both the direct and the indirect effects estimators are unbiased as the number

of pre-intervention periods goes to infinity.

The rest of the paper is organized as follows: Section 2 introduces MASC; Section 3

proposes possible inference procedures; Section 4 includes an empirical application to the

introduction of the euro; and Section 5 concludes. All the technical proofs are relegated

to the online appendix.

2 The Mediation Analysis Synthetic Control Method

Assume that we are interested in the effect of an intervention, D, implemented at time T ,

on an outcome, Y . Suppose that part of the effect of D on Y goes through an observed
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intermediate outcome (mediator), M . The total effect of the intervention on the final

outcome can be decomposed into an indirect effect, which goes throughM , and a residual

effect, commonly known as the “direct effect”, which could also go through other, possibly

unobserved, causal pathways. Although often crucial for policy conclusions, identification

of the direct and the indirect effects may be challenging. To see this, let Dit be a binary

indicator that is equal to one if unit i is exposed to the intervention at time t. We will

refer to units that are exposed to the intervention as “treated” and to those that are not

exposed as “control”. Using the potential outcome framework (see, e.g., Rubin 1974), for

each unit, i, we can define the potential mediator at time t as follows:

Mit(d) for d ∈ {0, 1}.

Mit(d) is the value that the mediator of unit i would take, at time t, if Dit is set to d.

Assuming that there are no anticipation effects on the mediator in the pre-intervention

period and that the standard stable unit treatment value assumption (SUTVA) holds, the

observed and the potential mediators are related through the following observation rule:

Mit = Mit(0)(1−Dit) +Mit(1)Dit.

Note that Mit is always equal to Mit(0) for both treated and control units in the pre-

intervention period, t < T , and that we can observe only one of the two potential mediators

for each unit in the post-intervention period, t ≥ T .

Similarly, for each unit i at time t, we define the potential outcomes as

Yit(d,Mit(d
′)) ≡ Y d,d′

it for d, d′ ∈ {0, 1}.

Y d,d′

it is the value that the outcome of unit i would take at time t if we set Dit = d

and Mit = Mit(d
′). The potential outcome is a function of both the treatment and

the potential mediator. Under SUTVA, and assuming no anticipation effects in the pre-

intervention period, the observed and the potential outcomes are related by the following
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observation rule:

Yit = Y 0,0
it (1−Dit) + Y 1,1

it Dit.

Differently from the standard setting, we have for each unit four instead of two potential

outcomes. As usual, only one between Y 0,0
it and Y 1,1

it can be observed for each unit in each

period, while Y 0,1
it and Y 1,0

it are never observed for any unit in any period. Assuming no

anticipation effects, Yit = Y 0,0
it in the pre-intervention period for all units.

Following the synthetic control literature, we will define our parameters of interest with

respect to a single treated unit. This is in contrast with the standard mediation analysis

literature, where the total, the direct, and the indirect effects are defined as averages,

either with respect to the whole sample (Pearl 2001; Robins 2003; Imai et al. 2010; Imai

and Yamamoto 2013; Vansteelandt and VanderWeele 2012; Huber 2013) or with respect to

the treated units(Vansteelandt and VanderWeele 2012; Huber et al. 2017). Nonetheless,

if more than one unit is exposed to the intervention (see (Gobillon and Magnac, 2016;

Adhikari, 2015)) our method can be easily used to decompose the average treatment effect

on the treated.

We assume that we observe J units ordered such that units 1 through n are treated,

while units n + 1 through J are controls. Without loss of generality, we will present our

results for the first treated unit, unit 1, only. Since we have four potential outcomes

instead of two, we can now define more parameters than in the standard synthetic control

framework each measuring the effect implied by a different thought experiment. Indeed,

each potential outcome represents a different state of the world, and one can in principle

define effects by calculating the difference between a pair of potential outcomes. Intu-

itively, Y 0,0
1t and Y 1,1

1t measure the value that the outcome of the first treated unit would

take with and without intervention. On the other hand, Y 0,1
1t and Y 1,0

1t measure the values

that the outcome of the treated unit would take if the value of the mediator was pushed to

the value it would take under the opposite treatment status. Intuitively, given that policy

makers typically cannot choose which value the mediator takes, Y 0,1
1t is arguably a more
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interesting counterfactual than and Y 1,0
1t . Indeed, to reproduce Y 0,1

1t policy makers would

need to pushM toM(0) in the absence of the intervention by, for example, implementing

alternative policies that target the mediator directly. In contrast to reproduce Y 1,0
1t they

would need to implement the intervention and at the same time push M to M(0), neu-

tralizing the effect on the mediator. This would require implementing the intervention

simultaneously with additional policies that have the opposite effect on the mediator.

The effects of interest with regard to unit 1 are the total effect, α1t, which compares

the outcomes the treated unit would get with and without the intervention; the direct

effect, θ1t(M1t(1)), which compares the treated potential outcome with the intervention

and the outcome without intervention but where the mediator is set to the value it would

have taken with the intervention; and the indirect effect, δ1t(0), which measures the effect

of pushing the mediator to its level under the intervention but without implementing the

intervention. All parameters are assumed to be zero in the pre-intervention period and

are in the post-intervention period defined as

α1t = Y 1,1
1t − Y

0,0
1t ,

θ1t(M1t(1)) = Y 1,1
1t − Y

0,1
1t ,

δ1t(0) = Y 0,1
1t − Y

0,0
1t , t ≥ T.
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It is easy to see that the total effect, α1t, can be decomposed into2:

α1t = Y 1,1
1t − Y

0,0
1t ,

= Y 1,1
1t − Y

0,1
1t + Y 0,1

1t − Y
0,0
1t ,

= θ1t(M1t(1)) + δ(0).

The decomposition above shows that if α1t is identified, identifying θ1t(M1t(1)) automat-

ically implies identification of δit(0) = α1t − θ1t(M1t(1)).

The idea behind SCM is to use a linear combination of the control units to build a

“synthetic control” that mimics what would have happened to the treated unit in the post

intervention period in the absence of the intervention. In other words, SCM creates a

synthetic value of Y 0,0
1t in the post-intervention period. This is done by re-weighting the

post-treatment outcomes of control units by using weights that are chosen so that they

minimize the distance between the pre-intervention observable characteristics (including

pre-intervention outcomes) of the treated and synthetic units. The main assumption is

that Y 0,0
1t lies in the convex hull of the non-treated post-intervention outcomes. Thus, it

can be written as a linear combination of the latter.

MASC generalizes this idea to create “synthetic” values of Y 0,1
1t in the post intervention

period. For Y 0,1
1t , we propose to re-weight the control unit post-intervention outcomes by

choosing weights that minimize the distance between treated and control pre-intervention

observable characteristics as well as post-intervention values of the mediator. The intuition

is that choosing the weights that minimize the distance between treated and synthetic

with respect to post-treatment values of the mediator as well will mimic what would have
2In the mediation literature the following alternative decomposition is often also considered:

α1t = Y 1,1
1t − Y

0,0
1t ,

= Y 1,1
1t − Y

1,0
1t + Y 1,0

1t − Y
0,0
1t ,

= δ1t(1) + θ1t(M1t(0)),

where δ1t(1) = Y 1,1
1t − Y

1,0
1t and θ1t(M1t(0)) = Y 1,0

1t − Y
0,0
1t . We decide not to focus on this decomposition

for two reasons. First, as we argue above, a policy maker would need to be able to neutralize the effect
of the treatment on the mediator to reproduce Y 1,0

1t . Second, identification of Y 1,0
1t requires additional

assumptions and the ability to observe more than one treated unit.
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happened to the treated unit in the absence of the intervention but fixing the mediator

value to the its value with the intervention, M1t(1).

In both MASC and SCM, the main identification assumption is that the unobserved

confounders are either time invariant or, if time varying, they change in the same way for

all units. To further illustrate our approach, in the spirit of Abadie et al. (2010), we will

introduce a factor model in which we assume that potential mediators of unit i are given

by

Mit(0) = γt + βtZi + ϑt%i + νit,

Mit(1) = γt + βtZi + ϑt%i + ψtDit + νit,

where γt is an unknown common factor with constant factor loadings across units. Zi

is a (p × 1) vector of observed covariates, βt is a (1 × p) vector of unknown parameters,

ϑt is a (1 × v) vector of unobserved common factors, %i is a (v × 1) vector of unknown

factor loadings, ψit is an unknown parameter describing the impact of the treatment on

the mediator, and νit are unobserved transitory shocks.

Similarly, we assume that the four potential outcomes are given by

Y 0,0
it = ζt + ηtXi + λtµi + ϕt(0)Mit(0) + εit,

Y 0,1
it = ζt + ηtXi + λtµi + ϕt(0)Mit(1) + εit,

Y 1,0
it = ζt + ηtXi + λtµi + ϕt(1)Mit(0) + ρt(Mit(0))Dit + εit,

Y 1,1
it = ζt + ηtXi + λtµi + ϕt(1)Mit(1) + ρt(Mit(1))Dit + εit,

where ζt is an unknown common factor with constant factor loadings across units; Xi is an

(r×1) vector of observed covariates that includes all the variables included in Zi but might

also include other observable variables, which affects the treatment and the outcome but

not the mediator; ηt is a (1 × r) vector of unknown parameters; λt is a (1 × F ) vector

of unobserved common factors; µi is an (F × 1) vector of unknown factor loadings; εit
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are unobserved transitory shocks; and ϕit(d) and ρit(Mit(d)) capture the impact, on the

potential outcomes, of the potential mediator and the treatment, respectively. In this

model the total, direct, and indirect effects of unit 1 are then given by

α1t = ϕt(1)Mit(1)− ϕt(0)Mit(0) + ρt(Mit(1)),

θ1t(M1t(1)) = ρt(M1t(1)) + (ϕt(1)− ϕt(0))M1t(1),

δ1t(0) = ϕt(0)(M1t(1)−M1t(0)).

As mentioned above, for the total effect we can just use the standard SCM. In partic-

ular, we assume that there exists a (1× (J − n)) vector of weights L∗ = (l∗n+1, ..., l
∗
J) that

are positive, adding up to 1, and such that in the post-intervention period

Y 0,0
1t =

J∑
i=n+1

l∗i Yit.

As in Abadie et al. (2015) we assume that ∀ t = 1, ..., T − 1, L∗ also satisfies

J∑
j=n+1

l∗jYjt = Y1t,

J∑
j=n+1

l∗jMjt = M1t,

J∑
j=n+1

l∗jXj = X1.

This justifies the choice of weights that minimize the distance between the observable

characteristics of the treated unit and the control units in the pre-treatment period.

More formally, let Ωα
1 = (X1, Y11, . . . , Y1,T−1,M11, . . . ,M1,T−1) be a ((2(T − 1) + r) × 1)

vector, ωα0i = (Xi, Yi1, . . . , Yi,T−1,Mi1, . . . ,Mi,T−1) be a (1 × (2(T − 1) + r)) vector, and
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Ωα
0 = (ωα0,n+1, . . . , ω

α
0J)′. Then

L∗ = min
ln+1,...,lJ

||Ωα
1 − LΩα

0 ||

s.t. ln+1 ≤ 0, ..., lJ ≤ 0,
J∑

i=n+1

li = 1,

where ||Ωα
1 − LΩα

0 || =
√

(Ωα
1 − LΩα

0 )′ (Ωα
1 − LΩα

0 ). It is also possible to give more weight

to specific observable characteristics by using the alternative distance ||Ωα
1 − LΩα

0 ||V =√
(Ωα

1 − LΩα
0 )′ V (Ωα

1 − LΩα
0 ) (see Abadie et al. 2010, for a data driven procedure to choose

V ).

Let Ŷ 0,0
1t =

∑J
i=n+1 l

∗
i Yit, Abadie et al. (2010) show that, if L∗ exists, for t ≥ T

E(Ŷ 0,0
1t ) = Y 0,0

1t + o(T )

Consequently, estimating the total effect as α̂1t = Y1t − Ŷ 0,0
1t is justified by the fact that

lim
T→∞

E(α̂1t) = α1t ∀ t ≥ T (2.1)

The estimation of Y 0,1
1t in MASC requires additional constraints but no extra assump-

tions on the unobservable in the potential outcomes equations. Our goal is to construct

a “synthetic” unit, which is identical to the treated unit, not affected by the intervention,

and, at the same time, has the same value of the mediator as the treated unit. Similar to

standard SCM, we want to find a (1× (J −n)) vector weights W ∗
t = (w∗n+1,t, ..., w

∗
Jt) that

are positive, adding up to 1, and such that in the post-intervention period

Y 0,1
1t =

J∑
i=n+1

w∗itYit.

Notice that, in our simple factor model, Y 0,1
1t depends on the value that M takes at time t

only. 3 Also notice that the weights need to be calculated in each post-intervention period
3It is easy to let Y 0,1

1t depend on all the values that the mediator takes be-
tween T and t. This is done by replacing Ω

θt′ (1)
1 and ω

θt′ (1)
0i defined below
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in this model. Let t′ ≥ T be the time at which we want to estimate the direct effect.

Similar to Abadie et al. (2010) we assume that W ∗
t′ exists and satisfies ∀ t = 1, ..., T − 1:

J∑
j=n+1

w∗jt′Yjt = Y1t,

J∑
j=n+1

w∗jt′Xj = X1,

and ∀ t = 1, ..., T − 1, t′,
J∑

j=n+1

w∗jt′Mjt = M1t.

The vector of weights, W ∗
t′ , is then estimated in a similar way as L∗. The only dif-

ference is that we now need to include the post-treatment mediator in the distance.

More formally, if we let Ω
θt′ (1)
1 = (X1, Y11, . . . , Y1,T−1,M11, . . . ,M1,T−1,M1,t′), ω

θt′ (1)
0i =

(Xi, Yi1, . . . , Yi,T−1,Mi1, . . . ,Mi,T−1,Mi,t′), and Ω
θt′ (1)
0 = (ω

θt′ (1)
n+1 , . . . , ω

θt′ (1)
J )′, then

W ∗
t′ = min

wn+1,t′ ,...,wJt′
||Ωθt′ (1)

1 −Wt′Ω
θt′ (1)
0 ||V

s.t. wn+1,t′ ≤ 0, ..., wJt′ ≤ 0,
J∑

i=n+1

wit′ = 1,

where ||Ωθt′ (1)
1 − Wt′Ω

θt′ (1)
0 ||V =

√(
Ω
θt′ (1)
1 −Wt′Ω

θt′ (1)
0

)′
V
(

Ω
θt′ (1)
1 −Wt′Ω

θt′ (1)
0

)
. Notice

that we only have one mediator in the post-intervention period and several pre-intervention

variables. Thus, we suggest to choose V such that equal weights are given to pre- and

post- intervention information.

Let Ŷ 0,1
1t′ =

∑J
i=n+1w

∗
it′Yit′ , as we show in the appendix, if W ∗

t′ exists, under standard

regularity conditions:

E(Ŷ 0,1
1t′ ) = Y 0,1

1t′ + o(T ).

This allows us to estimate the direct effect as θ1t′(M1t(1)) and the indirect effect as δit′(0)

with Ω
θt′ (1)
1 = (X1, Y11, . . . , Y1,T−1,M11, . . . ,M1,T−1,M1,T , . . . ,M1,t′) and ω

θt′ (1)
0i =

(Xi, Yi1, . . . , Yi1,T−1,Mi1, . . . ,Mi,T−1,Mi,T , . . . ,Mi,t′), respectively.
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since

θ̂1t′(M1t′(1)) = Y1t′ − Ŷ 0,1
1t′ , δ̂1t′(0) = α̂1t′ − θ̂1t′(M1t′(1)),

respectively, as it implies

lim
T→∞

E(θ̂1t′(M1t(1)1t) = θ1t′(M1t(1)1t) ∀ t ≥ T,

lim
T→∞

E(δ̂it′(0)) = δit′(0) ∀ t ≥ T

Intuitively, W ∗
t′ only exists if, in addition to the assumptions needed for a standard SCM,

there is also overlap in the post-intervention values of the mediation. Similarly to the

standard SCM, the plausibility of the existence of W ∗
t′ can be graphically assessed by

looking at the overlap in the pre-intervention period between the observed outcome, Y1t,

and the synthetic outcome Ŷ 0,1
1t .

3 Inference

Inference can be carried over in a similar manner as for the standard synthetic control

method. For example, one can run similar placebo tests as the one suggested in Abadie

et al. (2015), estimating the effects (in our case also the direct and indirect effects) of

the intervention either before its implementation or for units not exposed to it. Abadie

et al. (2015) criticize the former type of placebo tests (often called in-time placebos),

arguing that there may be other shocks in the past affecting treated and control units

differently. They suggest to base inference on the ratio between post- and pre- intervention

root mean square prediction error (RMSPE). For unit i and synthetic outcome Ŷ d,d′ the

pre-intervention RMSPE can be defined as

RMSPEŶ d,d′ ,pre
i =

∑T−1
t=1 (Yi,t − Ŷ d,d′

i,t )2

T − 1
.
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The post RMSPE is defined similarly

RMSPEŶ d,d′ ,post
i =

∑t′

t=T (Yi,t′ − Ŷ d,d′

i,t′ )2

t′ − T − 1
.

The test statistic can then be defined as

TestY
d,d′

i =
RMSPEŶ d,d′ ,post

i

RMSPEŶ d,d′ ,pre
i

.

Under the null hypothesis of a zero effect of the intervention the distribution of

TestiY
d,d′ can be calculated using the non-treated units, as, for example, in Firpo and

Possebom (2018) and Chernozhukov et al. (2018).

Another possibility is to follow the approach outlined in Chernozhukov et al. (2018)

which can be easily adapted to our framework. Firpo and Possebom (2018) generalize

this method and show that it performs better than other classical inference methods.

Ferman and Pinto (2017) reconsider the ratio of post- and pre-RMSPE and show that

it performs better and is less sensitive to violations of the assumptions than the post-

intervention RMSPE on its own. The authors propose a different test statistic which is

robust serial correlation in the temporary shocks. A similar procedure has been proposed

by Chernozhukov et al. (2018).

Yet another inference procedure is described in Gobillon and Magnac (2016). This

procedure is based on different steps. First of all, the outcome of the treated unit is

reduced by the treatment effect. In our framework, the mediator of treated unit should

be reduced as well. this is easily done using standard SCM to estimate of the potential

mediator in the absence of the intervention. Then, 10,000 samples without replacement of

treated units are drawn from all units. For each of the 10,000 samples the selected units

should be used as treated units and the rest of the group as control, to apply MASC.

Finally, the estimated values are used to estimate the distribution of the treatment effects.

In our framework, this method would consist in the following steps:

1. Substitute Yit with Y ′it = Yit− α̂t for i = 1, ..., n and t ≥ T , where αt is given by the

13



average among the total effects estimated.

2. Substitute Mit with M ′
it = Mit − E(Mit − M̂it(0)) for i = 1, ..., n and t ≥ T .

3. Iterate 10’000 times:

• Select n units.

• Apply MASC.

• Calculate the average total, direct, and indirect effects.

4. Use the calculated effects to determine the distribution of the real effects and do

inference.

We refer to Gobillon and Magnac (2016) for more details.

Note that this inference procedure, just as in Abadie et al. (2015), is based on the

strong assumption that the disturbances across units are exchangeable. Indeed, the ba-

sic ideas behind these methods is that the error terms of the placebos can be used to

approximate the error term of the treated unit.

In this framework there is a second source of uncertainty. Unfortunately, the choice

of the control units (donor pool) can dramatically affect the results. To solve this issue

Abadie et al. (2015) suggest to make a sensitivity test excluding each of the units in the

donor pool one by one (if the donor pool is particularly big, one can select a sample with

replacement from the donor pool). If the estimated effects do not change much, the results

are not sensitive to the chosen donor pool and can be considered to be robust.

4 Decomposing the Impact of Adopting the Euro on

Productivity: A Backstage Story

In this section we use MASC to estimate the causal effect of adoption of the euro on

labor productivity in several European countries and investigate the role of the Economic

Complexity Index as a possible causal mechanism. Several studies on the impact of
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euro adoption focus on trade outcomes. Rose (2000) finds a huge effect of being in

a monetary union on trade in ex-ante analysis. This study has been widely criticized

because its results, obtained from small and low-income countries, were extrapolated to

big and high-income countries. Subsequent studies, based on ex-post analysis, found lower,

although still positive and significant, impacts (Micco et al. 2003; Flam and Nordström

2006; Mancini-Griffoli and Pauwels 2006; De Nardis and Vicarelli 2003; Bun and Klaassen

2007; Berger and Nitsch 2008; Chintrakarn 2008; Saia 2017) with the exception of Silva and

Tenreyro (2010), who found a positive although non-significant effect (see also Baldwin

and Taglioni 2007 and Baldwin et al. 2008 for two literature reviews on gravity models).

Other studies focus on the impact of euro adoption on GDP. Pesaran et al. (2007) and

Žúdel and Melioris (2016) find positive effects for, respectively, the UK and Sweden (in

the hypothetical scenario of euro adoption by these two countries) and Slovakia. Puzzello

and Gomis-Porqueras (2018), who apply the SCM to multiple European countries, find

heterogeneous effects instead. According to their results, euro adoption had a negative

effect for Belgium, France, Germany, and Italy, while Ireland benefited from the common

currency. No significant impact is found for the Netherlands. Differently from previous

studies, Gabrielczak and Serwach (2017) use the SCM to estimate the impact of adopting

the euro on the economic complexity of Slovenia exports showing that it increased after

euro adoption.

Our first contribution is to estimate the causal effect of euro adoption on labor produc-

tivity. To the best of our knowledge, ours is the first study focusing on labor productivity.

As the introduction of a common currency can to a certain extent be considered as a

liberalization policy, since it facilitates trade by reducing costs and uncertainties due to

volatility in the exchange rates, our analysis contributes to the broader literature on the

impact of liberalization on labor productivity. Second, by using MASC we are able to

investigate an important causal channel, namely the economic complexity index. This

gives us a better understanding of how countries reacted to the introduction of the euro.

In particular, we show that to deal with the more competitive environment induced by

the common currency the economy in most of the countries experienced an increase in
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the degree of specialization that translated into an increase in labor productivity.

4.1 The introduction of the euro

The first commitment among some European countries to create an economic and mon-

etary union was made in 1971. The countries involved were the European Community

members at that time, namely: France, West Germany, Italy, Belgium, Luxembourg, and

the Netherlands. Other countries joined in the following years, namely Denmark, UK, and

Ireland in 1973; Greece in 1981; and Spain and Portugal in 1986. In 1998 the euro was

introduced officially and the exchange rates of the participants were fixed. The introduc-

tion involved almost all European Community countries, with the exceptions of Denmark

and the UK, which decided not to participate (Denmark pegged its national currency to

the euro), and Greece and Sweden, which did not meet the standards required for joining

the common currency.4 The actual introduction of the euro was not completed until 2002

(see Puzzello and Gomis-Porqueras 2018 for more details on the process).

4.2 Data and MASC Implementation

We use country level panel data over the period 1986-2007. The treatment period starts

in 1998 with the official introduction of the euro. Our outcome is labor productivity

measured as output per hour worked. Data on labor productivity were taken from Penn

World Table version 9.0. To measure economic complexity (our mediator), we follow

Gabrielczak and Serwach (2017) and use the Economic Complexity Index (Hidalgo and

Hausmann 2009; Hausmann et al. 2014). The Economic Complexity Index is built and

provided by the Atlas of Economic Complexity of the Center for International Devel-

opment at Harvard University. To build the index, the complexity of each product is

defined according to the number of countries exporting it and their level of export com-

plexity (http://atlas.cid.harvard.edu/rankings/).

We implement MASC separately on five different countries adopting the euro in 1998:

Belgium, France, Ireland, Italy, and the Netherlands. We exclude Germany becauseof
4Greece joined in 2001, while Sweden decided not to participate after a referendum in 2003.
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the German reunification implies that the assumptions of our method as well as synthetic

control are likely to be violated. We furthermore exclude Luxembourg for data availability

reasons and Portugal, Spain, Greece, Austria, and Finland because the pre-intervention

overlap was poor in those countries. Details on the covariates as well as the donor pool

we used for each treated country are reported in appendix E.

To guarantee a good fit of the mediator when estimating the total effect we select the

weights to minimize both the root mean squared prediction error of the pre-treatment

outcomes and the one of the pre-treatment mediators. For the direct effect, instead, we

use a similar procedure, but we assign half of the weights to post- intervention constraints

(notice that the post- intervention constraints to identifying the direct effect at time t′

were imposed on the mediator over the period T to t′). For the calculation of the direct

effect we use a single year lag between the mediator and the outcome, but our results are

robust to the choice of different time lags. For inference we follow Firpo and Possebom

(2018) and derive the p-values from the placebo tests proposed in Abadie et al. (2015).

4.2.1 Results and Discussion

Figures 1 and 2 compare trends in the outcomes of each treated unit and their synthetic

controls constructed for calculating the total effect in the upper panel and the direct effect

in the lower one. The two figures show good pre-treatment fits for all countries. The pre-

and post-treatment fits for the mediator are fairly good for most countries (graphs are

available upon request). By graphical inspection we can already see that the total effect

is negative for Belgium and Italy, positive for France and Ireland, and close to zero for

the Netherlands. The indirect effects have a positive sign.
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(a) Belgium (b) France (c) Ireland

(d) Belgium (e) France (f) Ireland

Figure 1: Differences in the outcome between treated and synthetic units Y 0,0. The black line represents the treated outcome. The red line
represents the synthetic unit outcome.
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(a) Italy (b) Netherlands

(c) Italy (d) Netherlands

Figure 2: Differences in the outcome between treated and synthetic units Y 0,1. The black
line represents the treated outcome. The red line represents the synthetic unit outcome.

This is confirmed by the total, direct, and indirect effects estimates displayed in table

1 and figure 3. 5

5All results are fairly robust to leaving one country out from the donor pool with few exceptions. For
example, the results for Belgium and Ireland are sensitive to the exclusion of Norway. This is due to a
lack of overlap in the pre-intervention period. See Appendix F.
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Table 1: Effects of Euro Adoption by Country

Year Belgium France Ireland Italy Netherlands
Total Direct Indirect Total Direct Indirect Total Direct Indirect Total Direct Indirect Total Direct Indirect

1998 -0.71 -0.81 0.10 2.69*** 2.02 0.66 6.26 6.35*** -0.09*** 1.73*** 1.48*** 0.25*** 0.46 0.33*** 0.13***
P-val (0.90) (0.40) (0.30) (0.00) (0.11) (0.22) (0.20) (0.00) (0.00) (0.00) (0.00) (0.00) (0.70) (0.00) (0.00)
1999 -2.68 -3.04 0.36 2.47 1.88 0.59 5.33 5.27 0.06 0.61 0.61 -0.01 0.83 0.27 0.56
P-val (0.80) (0.90) (1.00) (0.22) (0.22) (0.56) (0.80) (0.80) (0.90) (0.70) (0.90) (1.00) (0.70) (0.90) (0.90)
2000 -7.60 -8.43* 0.82 3.83 2.88 0.95 4.12 3.67* 0.45*** -2.23*** -2.30*** 0.07 2.1* 0.61 1.50
P-val (0.20) (0.10) (0.40) (0.11) (0.22) (0.56) (0.30) (0.10) (0.00) (0.00) (0.00) (0.60) (0.10) (0.50) (0.40)
2001 -9.17 -9.70 0.52 4.47*** 3.94 0.53 5.45 4.92 0.53 -1.88 -2.20 0.32 1.34 0.07 1.28
P-val (0.70) (0.60) (0.90) (0.00) (0.22) (0.44) (0.80) (0.60) (0.20) (0.20) (0.30) (0.70) (0.80) (1.00) (0.80)
2002 -7.08 -7.60 0.51 5.32 4.60 0.72 10.76 10.35* 0.41 -4.21*** -4.63*** 0.41 1.45* -0.07 1.52
P-val (0.20) (0.20) (0.80) (0.11) (0.11) (0.56) (0.20) (0.10) (0.20) (0.00) (0.00) (0.50) (0.10) (1.00) (0.80)
2003 -10.04*** -10.78*** 0.74*** 2.03 0.91 1.12 12.43*** 11.90*** 0.53*** -7.21*** -7.79*** 0.58*** -0.11*** -2.46*** 2.35***
P-val (0.00) (0.00) (0.00) (0.56) (0.67) (0.67) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
2004 -11.98*** -12.65*** 0.67*** 1.03 -0.36 1.39 12.35 11.91 0.44 -8.88 -9.78* 0.91 -0.51 -3.11 2.61
P-val (0.00) (0.00) (0.00) (0.56) (0.56) (0.67) (0.90) (0.80) (0.40) (0.20) (0.10) (0.70) (1.00) (0.70) (0.90)
2005 -16.16 -18.09* 1.93* 2.12 1.30 0.82 9.69 8.89 0.8*** -11.19*** -12.53*** 1.34*** 1.33 -2.84 4.17***
P-val (0.50) (0.10) (0.10) (0.56) (0.56) (0.44) (0.70) (0.20) (0.00) (0.00) (0.00) (0.00) (0.50) (0.20) (0.00)
2006 -21.31 -24.01 2.70 3.01 1.86 1.15 7.54 6.40 1.13 -11.76 -13.52* 1.76 0.22 -4.33 4.54
P-val (0.80) (0.80) (0.90) (0.33) (0.56) (0.67) (0.90) (0.80) (0.40) (0.20) (0.10) (0.70) (1.00) (0.70) (0.90)
2007 -19.91*** -23.30*** 3.40*** 4.34 2.51 1.83 11.65*** 10.47*** 1.18*** -10.18*** -12.27*** 2.09*** 2.18*** -2.26*** 4.44***
P-val (0.00) (0.00) (0.00) (0.11) (0.44) (0.56) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Table 2: P-values are displayed in brackets. * Significant at 10%. ** Significant at 5%. *** Significant at 1%.
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(a) Belgium (b) France (c) Ireland

(d) Italy (e) Netherlands

Figure 3: Total (red), direct (blue), and indirect effects (green) evolution over time.
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Our results show that Belgium and Italy saw a decrease in labor productivity, at least

in the short run, while France and Ireland recorded a small increase. In the Netherlands

the total effect was mostly small and non-statistically significant. In all countries a de-

crease in economic complexity helped facing the potentially detrimental short run effects

of a tougher competition induced by the common currency. This can be explained using

arguments from competition theory (see, e.g., Bayar 2002). Indeed, a common currency

removes the trade risks deriving from changes in the exchange rates and decreases trade

costs. Therefore, firms have to face a higher level of competition due to the reduced trade

costs. Moreover, countries are not able to increase their competitiveness through cur-

rency depreciation. Hence, firms have to specialize in producing products at the highest

productivity level. In addition, firms with a low productivity level might be forced out of

the market. At a macro level, a higher level of specialization by some firms and the exit

of unproductive ones would result in a lower complexity index and higher productivity

levels. Another possible explanation can be found in the theories of economies of scale.

Euro adoption made the realization of economies of scale easier, so that firms were able

to specialize on their most competitive products, while importing the needed intermedi-

ate products from abroad (Barro and Tenreyro 2007). This, in turns, allowed them to

increase their productivity level and lowered the economy complexity index. We find, in

all countries but Ireland (and the Netherlands during the first years), a decrease in the

economy complexity index and a positive indirect effect. Thus, the negative impact of

euro adoption on the complexity index mitigated the potential short term negative im-

pact of the introduction of a common currency (Belgium, Italy, and the Netherlands) or

amplified its benefit (France and Ireland). 6

The results of the direct effects estimations are more heterogeneous. Indeed, the

direct effect is positive for France and Ireland and negative for Belgium, Italy, and the

Netherlands. One possible explanation for these differences is that the economies in those

countries are characterized by different returns of scale. The data on increasing returns

displayed in Midelfart-Knarvik et al. (2000) corroborate this hypothesis. Indeed, France
6Results are available from the author upon request.
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has the highest returns, followed by the Netherlands, Belgium, and Italy. Ireland’s returns

to scale was not particularly high, however, this country experienced a strong focus on

productivity after the introduction of the euro (Petrakos et al. 2006).

In general, the fact that, for some countries, the direct and the indirect effects go

in opposite directions, shows the advantages of using a method like MASC that allows

decomposing the total effect. Indeed, looking exclusively at the total effects of adopting

the euro on labor productivity would leave a policy maker with only partial evidence. In

particular, looking at the total effect for the Netherlands for example, one might conclude

that euro adoption did not have any impact on labor productivity. Our results suggest

that the short run effect of joining the common currency would have been negative had

the Dutch economy not reacted by increasing the level of specialization.

5 Conclusions

We introduced a new methodology called mediation analysis synthetic control (MASC).

This method combines the synthetic control method (Abadie and Gardeazabal 2003;

Abadie et al. 2010, 2015) with the mediation analysis approach and allows us to identify

direct and indirect effects in frameworks with selection on unobservables and a low number

of treated units and control units. This method is very intuitive and easy to implement

(i.e., publicly available SCM algorithms can be employed). Even though introduced for

the procedure presented in Abadie et al. (2010, 2015), it can be easily extended to new

approaches, such as Athey et al. (2017); Xu (2017); Kreif et al. (2016); Ben-Michael et al.

(2018); and Doudchenko and Imbens (2016). Finally, after estimating the “total” effect

of the introduction of the euro on labor productivity in several European countries, we

showed that an increase in the degree of specialization in those economies either helped

to mitigate the potentially negative short run effects of adopting a common currency or

amplified its positive effects.
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Appendix

A Derivation of “Synthetic” Y 01
1t

To easy the notation the subscript t is dropped from the weights. Following Abadie et al.

(2010), consider a generic vector of weights W = (wn+1, ..., wJ)′ such that wj ≥ 0 for all

j = n + 1, ..., J and wn+1 + ... + wJ = 1. With these weights (and considering the factor

model introduced in the text) the synthetic value of Y 01
1t is given by

J∑
j=n+1

wjYjt = ζt + ηt

J∑
j=n+1

wjXj + λt

J∑
j=n+1

wjµj + ϕt(0)
J∑

j=n+1

wjMjt(0) +
J∑

j=n+1

wjεjt.

The difference between the real potential outcome and the synthetic one is then

Y 0,1
1t −

J∑
j=n+1

wjYjt = ηt

(
X1 −

J∑
j=n+1

wjXj

)
+ λt

(
µ1 −

J∑
j=n+1

wjµj

)

+ ϕt(0)

(
M1t(I{t ≥ T})−

J∑
j=n+1

wjMjt(0)

)

+
J∑

j=n+1

wj(ε1t − εjt). (A.1)

Let Y P
i be the ((T − 1)× 1) vector with tth element equal to Yit, εPi the ((T − 1)× 1)

vector with tth element equal to εit, ηP the ((T − 1)× r) matrix with tth row equal to ηt

and λP the ((T − 1) × F ) matrix with tth row equal to λt. Moreover, let ϕP (0) be the

((T − 1)× 1) vector with tth element equal to ϕt(0) and MP
i (0) the ((T − 1)× 1) vector

with tth element equal to Mit(0). We can now write

Y P
1 −

J∑
j=n+1

wjY
P
j = ηP

(
X1 −

J∑
j=n+1

wjXj

)
+ λP

(
µ1 −

J∑
j=n+1

wjµj

)

+ ϕP (0)

(
MP

1t(0)−
J∑

j=n+1

wjM
P
jt(0)

)
+

(
εP1 −

J∑
j=n+1

wjε
P
j

)
.
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Note that we have MP
1t(0) as t < T . It is easy to see that:

λP

(
µ1 −

J∑
j=n+1

wjµj

)
= Y P

1 −
J∑

j=n+1

wjY
P
j − ηP

(
X1 −

J∑
j=n+1

wjXj

)

− ϕP (0)

(
MP

1t(0)−
J∑

j=n+1

wjM
P
jt(0)

)

−

(
εP1 −

J∑
j=n+1

wjε
P
j

)
(A.2)

Similar to Abadie et al. (2010) assume that

Assumption 1.
∑T−1

t=1 λ
′
tλt is non-singular.

Assumption 1 is equivalent to assume no perfect-collinearity among unobserved com-

mon factors and implies that (λP
′
λP )−1 exists. We can then multiply both sides of A.2

by (λP
′
λP )−1λP

′ to get

µ1 −
J∑

j=n+1

wjµj = (λP
′
λP )−1λP

′

{
Y P
1 −

J∑
j=n+1

wjY
P
j − ηP

(
X1 −

J∑
j=n+1

wjXj

)

− ϕP (0)

(
MP

1t(0)−
J∑

j=n+1

wjM
P
jt(0)

)
−

(
εP1 −

J∑
j=n+1

wjε
P
j

)}
.

Substituting in A.1 and considering a generic post-intervention period t′ ≥ T , we have

Y 0,1
1t′ −

J∑
j=n+1

wjYjt′ = λt′(λ
P ′λP )−1λP

′

(
Y P
1 −

J∑
j=n+1

wjY
P
j

)

+
(
ηt′ − λt′(λP

′
λP )−1λP

′
ηP
)(

X1 −
J∑

j=n+1

wjXj

)

− λt′(λ
P ′λP )−1λP

′

[
ϕP (0)(MP

1 (0)−
J∑

j=n+1

wjM
P
j (0))

]

+ ϕt′(0)

(
M1t′(1)−

J∑
j=n+1

wjMjt′(0)

)

− λt′(λ
P ′λP )−1λP

′

(
εP1 −

J∑
j=n+1

wjε
P
j

)
+

J∑
j=n+1

wj(ε1t′ − εjt′).

25



If we now assume, as we did in the main text, that there exists a set of positive and

summing up to 1 weights W ∗ that satisfies, ∀ t = 1, ..., T − 1

J∑
j=n+1

w∗jYjt = Y1t,

J∑
j=n+1

w∗jXj = X1,

and ∀ t = 1, ..., T − 1, t′, also satisfies

J∑
j=n+1

w∗jMjt = M1t,

replacing in the post-intervention period, the generic weights with W ∗, we get

Y 0,1
1t′ −

J∑
j=n+1

w∗jYjt′ = −λt′(λP
′
λP )−1λP

′

(
εP1 −

J∑
j=n+1

w∗j ε
P
j

)
+

J∑
j=n+1

w∗j (ε1t′ − εjt′).

From here, the proof is identical to the one in Abadie et al. (2010). We can write

Y 0,1
1t′ −

J∑
j=n+1

w∗jYjt′ = R1t′ +R2t′ +R3t′

where

R1t′ = λt′(λ
P ′λP )−1λP

′
J∑

j=n+1

w∗j ε
P
j (A.3)

R2t′ = −λt′(λP
′
λP )−1λP

′
εP1 (A.4)

R3t′ =
J∑

j=n+1

w∗j (εjt′ − ε1t′) (A.5)

Following Abadie et al. (2010), we impose the following assumptions

Assumption 2. εit ⊥ εjt ∀i 6= j with i, j = 1, ..., J.

Assumption 3. εit ⊥ εit′′ ∀t 6= t′′ with t, t′′ = 1, ..., t′.
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Assumption 4. E(εit|Xi, µi,Mit(I{t ≥ T})) = E(εit) = 0 for i ∈ {1, n + 1, ..., J} and

for t = 1, ..., t′

Taking the expected value on both sides of A.4 we get

E(R2t′) = E(−λt′(λP
′
λP )−1λP

′
εP1 )

= −λt′(λP
′
λP )−1λP

′
E(εP1 )

= 0

where the second equality follows from the fact that−λt′(λP
′
λP )−1λP

′ is non-stochastic

and the third equality follows from assumption 4. Taking the expectation on both sides

of A.5

E(R3t′) = E

(
J∑

j=n+1

w∗j (εjt′ − ε1t′)

)
=

J∑
j=n+1

[
E(w∗j εjt′)− E(w∗j ε1t′)

]
=

J∑
j=n+1

[
E(w∗j )E(εjt′)− E(w∗j )E(ε1t′)

]
= 0

where the third equality follows from the fact that weights W ∗ = w∗n+1, ..., w
∗
J are deter-

mined using constraints on covariates, pre-treatment period outcomes and the mediator

which under assumptions 2, 3 and 4 are independent from the error terms at time t′ ≥ T .

The fourth equality follows from assumption 4. The remaining A.3 can be rewritten as:

R1t′ =
J∑

j=n+1

w∗j

T−1∑
s=1

λt′(
T−1∑
h=1

λ′hλh)
−1λ′sεjs (A.6)

As in Abadie et al. (2010), we further assume that

Assumption 5. Let ς(M) be the smallest eigenvalue of

1

M

T−1∑
t=T−M+1

λ′tλt,
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ς(M) ≥ ς > 0 for each positive integer M.

Assumption 6.

∃ λ s.t. |λtf | ≤ λ ∀ t=1,...,t’ and f=1,...,F .

Assumption 5 guarantees that the matrix
∑T

t=1 λ
′
tλt and, consequently, its inverse, are

symmetric and positive definite. Thus, for the Cauchy-Schwarz inequality, we have that

λt(T−1∑
h=1

λ′hλh

)−1
λ′s

2

= |〈λt, Aλ′s〉|2 ≤ ||Aλt||2||Aλs||2 (A.7)

=

λt(T−1∑
h=1

λ′hλh

)−1
λ′t

λs(T−1∑
h=1

λ′hλh

)−1
λ′s



Where A =
(∑T−1

h=1 λ
′
hλh

)−1
. Since A is a symmetric matrixB = (T−1)A is symmetric

as well. Thus, it can be decomposed asB = GOG−1. WhereG is orthogonal andG−1 = G′

and O is a diagonal matrix with the eigenvalues of B as elements. Thus,

λt

(
T−1∑
h=1

λ′hλh

)−1
λ′t =

1

T − 1
(λtBλ

′
t) =

1

T − 1
(λtGOG

′λ′t)

Defining bt = λtG we have

λt

(
T−1∑
h=1

λ′hλh

)−1
λ′t =

1

T − 1
(btOb

′
t) =

1

T − 1

(
b2t1

1

ς1
+ . . .+ b2tF

1

ςF

)

where ςi are the eigenvalues of matrix B. From assumption 5, imposing M = T − 1, we’ll

have that 1
ςi
≤ 1

ς
for i = 1, ..., F . Indeed the eigenvalues of the inverse of a matrix are given

by the inverse of the matrix eigenvalues, and B is the inverse of the matrix in assumption
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5. Consequently:

λt

(
T−1∑
h=1

λ′hλh

)−1
λ′t =

1

T − 1

F∑
f=1

b2tf
ςf
≤ 1

(T − 1)ς

F∑
f=1

b2tf

=
1

(T − 1)ς
||bt||2 =

1

(T − 1)ς
||λtG||2

As we noticed before, G is an orthogonal and thus isometric matrix, hence ||λtG|| = ||λt||.

Consequently,

λt

(
T−1∑
h=1

λ′hλh

)−1
λ′t ≤

1

(T − 1)ς
||λt||2 =

∑F
f=1 λ

2
tf

(T − 1)ς
≤
∑F

f=1 λ
2

(T − 1)ς
=

Fλ2

(T − 1)ς

where the last inequality follows from assumption 6. Applying the same idea to the second

part of A.7 we get

λt(T−1∑
h=1

λ′hλh

)−1
λ′s

2

≤

λt(T−1∑
h=1

λ′hλh

)−1
λ′t

λs(T−1∑
h=1

λ′hλh

)−1
λ′s


≤

(
Fλ2

(T − 1)ς

)2

(A.8)

Following Abadie et al. (2010) we define

εLj =
T−1∑
s=1

λT (
T−1∑
h=1

λ′hλh)
−1λ′sεjs (A.9)

for j = n+ 1, ..., J . Assume that

Assumption 7. The pth moment of |εjt| for some even p exists for j = 2, ..., J and

t = 1, ..., T − 1

Using Hölder’s Inequality and taking into account that 0 ≤ w∗j ≤ 1 for j = n+ 1, ..., J
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we have that:

J∑
j=n+1

w∗j |εLj | =
J∑

j=n+1

w∗j |εLj ∗ 1| ≤

(
J∑

j=n+1

w∗j |εLj |p
)1/p( J∑

j=n+1

w∗j |1|q
)1/q

=

(
J∑

j=n+1

w∗j |εLj |p
)1/p( J∑

j=n+1

w∗j

)1/q

=

(
J∑

j=n+1

w∗j |εLj |p
)1/p

≤

(
J∑

j=n+1

|εLj |p
)(1/p)

where the last equality follow from w∗n+1 + ... + w∗J = 1 and the last inequality follows

from the condition that w∗n+1 ≤ 1, ..., w∗J ≤ 1. Applying Hölder’s Inequality again we get

E

[
J∑

j=n+1

w∗j |εLj |

]
≤

(
E

[
J∑

j=n+1

|εLj |p
])1/p

(A.10)

Applying Rosenthal’s Inequality we have

E
[
|εLj |p

]
= E

∣∣∣∣∣∣
T−1∑
s=1

λt

(
T−1∑
h=1

λ′hλh

)−1
λ′sεjs

∣∣∣∣∣∣


≤ C (p) max

T−1∑
s=1

E

∣∣∣∣∣∣λt
(
T−1∑
h=1

λ′hλh

)−1
λ′sεjs

∣∣∣∣∣∣
p

,

T−1∑
s=1

E

∣∣∣∣∣∣λt
(
T−1∑
h=1

λ′hλh

)−1
λ′sεjs

∣∣∣∣∣∣
2p/2


where C(p) is the pth moment of −1 plus a Poisson random variable with mean 1 (see

Abadie et al. (2010)). Consider the two elements of max(.). For the first element, we

have

T−1∑
s=1

E

∣∣∣∣∣∣λt
(
T−1∑
h=1

λ′hλh

)−1
λ′sεjs

∣∣∣∣∣∣
p =

T−1∑
s=1

E


λt(T−1∑

h=1

λ′hλh

)−1
λ′s

2∗(p/2)

|εjs|p


≤

T−1∑
s=1

E

[(
Fλ2

(T − 1) ς

)2∗(p/2)

|εjs|p
]

=

(
Fλ2

ς

)p
1

(T − 1)p

T−1∑
s=1

E (|εjs|p)
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where the first equality follows from the distributivity of the power and the inequality

follows from A.8. For the second element in max (.), we have

T−1∑
s=1

E

∣∣∣∣∣∣λt
(
T−1∑
h=1

λ′hλh

)−1
λ′sεjs

∣∣∣∣∣∣
2p/2

≤

T−1∑
s=1

E

( Fλ
2

(T − 1) ς

)2

ε2js

p/2

=

(
Fλ

2

ς

)p [T−1∑
s=1

1

(T − 1)2
E
(
ε2js
)]p/2

where the first inequality follows from A.8. Putting all these results together have

E
[
|εLj |p

]
≤ C (p)

(
Fλ

2

ς

)p

max

 1

(T − 1)p

T−1∑
s=1

E (|εjs|p) ,

[
T−1∑
s=1

1

(T − 1)2
E
(
ε2js
)]p/2

As Abadie et al. (2010), we define σ2
js = E|εjs|2, σ2

j = (1/(T − 1)
∑T−1

s=1 σ
2
js), σ2 =

maxj=n+1,...,Jσ
2
j and σ =

√
σ2. Similarly, we define τp,jt = E|εjt|p, τp,j = 1

(T−1)
∑T−1

t=1 τp,jt,

and τp = maxj=n+1,...,Jτp,j. We can write the first element of max(.) as

1

(T − 1)p

T−1∑
s=1

E(|εjs|p) =
1

(T − 1)p−1
1

(T − 1)

T−1∑
t=1

τpjt =
1

(T − 1)p−1
τpj

Similarly, the second element can be written as

[
T−1∑
s=1

1

(T − 1)2
E(ε2js)

]p/2
=

(
1

T − 1

1

T − 1

T−1∑
s=1

σ2
js

)p/2

=

(
1

T − 1
σ2
j

)p/2
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Thus , defining $ = C(p)(Fλ
2

ς
)p, we have

E
[
|εLj |p

]
≤ $max

(
1

(T − 1)p−1
τpj,

(
1

T − 1
σ2
j

)p/2)
J∑

j=n+1

E
[
|εLj |p

]
= E

[
J∑

j=n+1

|εLj |p
]

≤ $max

(
1

(T − 1)p−1

J∑
j=n+1

τpj,

J∑
j=n+1

(
1

T − 1
σ2
j

)p/2)

= $max

(
J − n− 1

(T − 1)p−1
1

J − n− 1

J∑
j=n+1

τpj,
1

(T − 1)p/2

J∑
j=n+1

σ
2∗p/2
j

)
(
E

[
J∑

j=n+1

|εLj |p
])1/p

≤ $1/p max


(

J−n−1
(T−1)p−1

)1/p
(J − n− 1)1/p

(
J∑

j=n+1

τpj

)1/p

,

(∑J
j=n+1 σ

2∗p/2
j

)1/p
(T − 1)(p/2)∗(1/p)


= $1/p max

( J − n− 1

(T − 1)p−1

)1/p

τ 1/pp ,
1

(T − 1)1/2

(
J∑

j=n+1

σ2∗(p/2)

)1/p


where the last equality follows from 1
J−n−1

∑J
j=n+1 τpj = E(τpj) ≤ maxj(τpj) = τp. Thus,

(
E

[
J∑

j=n+1

|εLj |p
])1/p

≤ $1/pmax

(
(J − n− 1)1/p τ 1/pp

(T − 1)1−1/p
,
(J − n− 1)σ2∗(p/2)

(T − 1)1/2

)1/p

= $1/p (J − n− 1)1/pmax

(
τ 1/p

(T − 1)1−
1
p

,

√
σ2

(T − 1)1/2

)
(A.11)

this implies

E [|R1t′ |] = E

[∣∣∣∣∣
J∑

j=n+1

w∗j ε
L
j

∣∣∣∣∣
]

≤ E

[
J∑

j=n+1

w∗j |εLj |

]

≤

(
E

[
J∑

j=n+1

|εLj |p
])1/p

≤ $1/p(J − n− 1)1/pmax

(
τ 1/pp

(T − 1)1−
1
p

,
σ

(T − 1)1/2

)
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where, in the second equation, the first equality follows from A.4 and A.9, the first in-

equality follows from the triangular inequality, the second follows from A.10 and the third

from A.11. It follows that

E|R1t′ | ≤ C(p)1/p
λ2F

ς
(J − n− 1)1/p max

{
τ
1/p
p

(T − 1)1−1/p
,

σ

(T − 1)1/2

}
.

Thus, the difference between the expected value of Y 0,1
1t and its synthetic counterpart can

be bounded by something that goes to zero when the number of pre-intervention periods

goes to infinity, namely

E

(
Y 0,1
1t′ −

J∑
j=n+1

w∗jYjt′

)
= E(R1t′) = o(T ).

B Identification of δit′(1)

Finding a “synthetic” value of Y 1,0
1t is more challenging and requires more than 1 treated

unit. First, we need to estimate what value the mediator of unit 1 would have taken in the

absence of the intervention (M1t(0)). This could be done with a standard SCM, using the

mediator as an outcome. Second, we propose to treat the remaining treated as a control

in a SCM where we use also the distance between the first step estimate ofM1t(0) and the

other treated mediators, in computing the weights. If the number of treated is big enough,

we can also create a “synthetic” Y 1,0
it′ . This is done in two steps. In a first step, we estimate

M1t′(0) by M̂1t′(0) =
∑J

i=n+1 k
∗
it′Mit′ with K∗t′ = (k∗n+1,t′ , . . . , k

∗
Jt′) chosen with a standard

SCM. Note that also those weights need to be calculated for each t′. In a second step, we

need to find a vector of positive and adding up to 1 weights Q∗t′ = (q∗2t′ , ..., q
∗
nt′), such that

Y 1,0
it′ =

∑n
i=2 q

∗
it′Yit′ . Q∗t′ is estimated with a SCM but using only the other treated units.

More specifically, let Ω
δt′ (1)
1 = (X1, Y11, . . . , Y1,T−1,M11, . . . ,M1,T−1, M̂1t′(0)), ωθt′ (1)0i =
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(Xi, Y11, . . . , Yi,T−1,M11, . . . ,Mi,T−1,Mi,t′), and Ω
θt′ (1)
0 = (ω

θt′ (1)
2 , . . . , ω

θt′ (1)
n )′, then

Q∗t′ = min
qn+1,t′ ,...,qJt′

||Ωθt′ (1)
1 −Qt′Ω

θt′ (1)
0 ||V

s.t. qn+1,t′ ≤ 0, ..., qJt′ ≤ 0,
J∑

i=n+1

qit′ = 1,

where the distance and V are defined as above for Y 0,1
it′ .

Let Ŷ 1,0
1t′ =

∑n
i=2 q

∗
it′Yit′ , similar as before, we assume that Q∗t′ exists and satisfies

∀ t = 1, ..., T − 1

n∑
j=2

q∗jt′Yjt = Y1t,

n∑
j=2

q∗jt′Xj = X1,

n∑
j=2

q∗jt′Mjt = M1t,

∀ t = 1, ..., T − 1 and
n∑
j=2

q∗jt′Mjt′ = M̂1t′(0).

Under extra standard conditions and assuming that ρt′(·) is a linear function, as we show

in the appendix

E(Ŷ 1,0
1t′ ) = Y 1,0

1t′ + o(T ).

The latter assumption can admittedly be restrictive in many applications. However, it

is substantially weaker than assuming a constant ρt′ . Then, we can estimate the indirect

effect δit′(1) and the direct effect as θ1t′(M1t(0)) as

δ̂1t′(1) = Y1t′ − Ŷ 1,0
1t′ , θ̂1t′(M1t′(0)) = α̂it′ − δ̂1t′(1),

respectively. Intuitively, Q∗t′ exists under the similar assumptions as the one discussed in

the main text. However, if the number of treated is too small Ŷ 1,0
1t′ will be a very poor

approximation of Y 1,0
1t′ . In this settings it is only possible to estimate δit′(0) and θit′(1).
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C Extra assumptions on the mediator needed for Y 10
1t

To create a synthetic Y 10
1t we need to impose the standard SCM assumptions on the

mediator which are:

Assumption 8.
∑T−1

t=1 ϑ
′
tϑt is non-singular.

Assumption 9. νit ⊥ νjt ∀i 6= j with i, j ∈ {1, n+ 1, ..., J}.

Assumption 10. νit ⊥ νit′′ ∀t 6= t′′ with t, t′′ = 1, ..., t′.

Assumption 11. E(νit|{Zi, %i}i∈{1,n+1,...,J}) = E(νit) = 0 for i ∈ {1, n+ 1, ..., J} and for

t = 1, ..., t′

Assumption 12. κ(M) ≥ κ > 0 for each positive integer M, where κ(M) is the smallest

eigenvalue of
1

M

T−1∑
t=T−M+1

ϑ′tϑt. (C.1)

Assumption 13.

∃ ϑ s.t. |ϑtv| ≤ ϑ ∀ t=1,...,t’ and v=1,...,V . (C.2)

Assumption 14. ∃ a pth moment of |νjt| for some even p and for j = n + 1, ..., J and

t = 1, ..., t′

D Derivation of “Synthetic” Y 10
1t

As for Y 01
1t we drop the subscript t from the weight and we write

n∑
j=2

qjYjt = ζt + ηt

n∑
j=2

qjXj + λt

n∑
j=2

qjµj + ϕt (I{t ≥ T})
n∑
j=2

qjMjt (I{t ≥ T})

+
n∑
j=2

qjρt (Mjt (I{t ≥ T})) I{t ≥ T}+
n∑
j=2

qjεjt.
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Thus,

Y 1,0
1t −

n∑
j=2

qjYjt = ηt

(
X1 −

n∑
j=2

qjXj

)
+ λt

(
µ1 −

n∑
j=2

qjµj

)

+ ϕt (I{t ≥ T})

(
M1t(0)−

n∑
j=2

qjMjt(I{t ≥ T})

)

+

(
ρt (M1t (0))−

n∑
j=2

qjρt (Mjt (I{t ≥ T}))

)
I{t ≥ T}

+
n∑
j=2

qj (ε1t − εjt)

Using the same notation as before in the pre-intervention period we have

Y P
1 −

n∑
j=2

qjY
P
j = ηP

(
X1 −

n∑
j=2

qjXj

)
+ λP

(
µ1 −

n∑
j=2

qjµj

)

+ ϕP (0)

(
MP

1 (0)−
n∑
j=2

qjM
P
j (0)

)
+

(
εP1 −

n∑
j=2

qjε
P
j

)

Thus

λP

(
µ1 −

n∑
j=2

qjµj

)
= Y P

1 −
n∑
j=2

qjY
P
j − ηP

(
X1 −

n∑
j=2

qjXj

)

− ϕP (0)

(
MP

1 (0)−
n∑
j=2

qjM
P
j (0)

)
−

(
εP1 −

n∑
j=2

qjε
P
j

)

Multiplying both sides by (λP
′
λP )−1λP

′ we get

µ1 −
n∑
j=2

qjµj =
(
λP
′
λP
)−1

λP
′

{(
Y P
1 −

n∑
j=2

qjY
P
j

)
− ηP

(
X1 −

n∑
j=2

qjXj

)

− ϕP (0)

(
MP

1 (0)−
n∑
j=2

qjM
P
j (0)

)
−

(
εP1 −

n∑
j=2

qjε
P
j

)}
.

36



Substituting in D.1 and considering a generic post-intervention period t’, we have

Y 1,0
1t′ −

n∑
j=2

qjYjt′ =
(
λP
′
λP
)−1

λP
′

(
Y P
1 −

n∑
j=2

qjY
P
j

)

+

(
ηt′ −

(
λP
′
λP
)−1

λP
′
ηP
)(

X1 −
n∑
j=2

qjXj

)

−
(
λP
′
λP
)−1

λP
′
ϕP (0)

(
MP

1 (0)−
n∑
j=2

qjM
P
j (0)

)

+ ϕt′(1)

(
M1t′(0)−

n∑
j=2

qjMjt′(1)

)

+

(
ρt′ (M1t′ (0))−

n∑
j=2

qjρt′ (Mjt (1))

)

−
(
λP
′
λP
)−1

λP
′

(
εP1 −

n∑
j=2

qjε
P
j

)
+

n∑
j=2

qj (ε1t′ − εjt′)

Assume, as we did in the main text, that there exists weights q∗2, ..., q∗n that satisfy ∀t =

1, ..., T − 1

n∑
j=2

q∗jYjt = Y1t,

n∑
j=2

q∗jXj = X1,

n∑
j=2

q∗jMjt = M1t,

and it also satisfies
n∑
j=2

q∗jMjt′ = M̂1t′(0).

Substituting the generic weights with q∗2, ..., q∗n in the post-intervention period t′, we get

Y 1,0
1t′ −

n∑
j=2

q∗jYjt′ =

(
ρt′ (M1t′ (0))−

n∑
j=2

q∗jρt′ (Mjt′ (1))

)

−
(
λP
′
λP
)−1

λP
′

(
εP1 −

n∑
j=2

q∗j ε
P
j

)
+

n∑
j=2

q∗j (ε1t′ − εjt′)
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Note that, as by assumption
∑n

j=2 q
∗
jMt′ = M̂1t′(0) and M̂1t′(0) is estimated using a

standard SCM

E

(
ϕt′ (1)

(
M1t′(0)−

n∑
j=2

q∗jMjt′(1)

))
= o(T ).

As we mention in the main text, for identification we have to impose an extra assump-

tion, namely

Assumption 15. ρt′(.) is a linear function

Under assumption 15 we have

E

[(
ρt′ (M1t′ (0))−

n∑
j=2

q∗jρt′ (Mjt′ (1))

)]
= E

[(
ρt′ (M1t′ (0))− ρt′

(
n∑
j=2

q∗jMjt′ (1)

))]
,

= E
[(
ρt′ (M1t′ (0))− ρt′

(
M̂1t′(0)

))]
,

= ρt′ (M1t′ (0))− ρt′
(
E(M̂1t′(0))

)
= o(T ).

Thus,

Y 1,0
1t′ −

n∑
j=2

q∗jYjt′ = −
(
λP
′
λP
)−1

λP
′

(
εP1 −

n∑
j=2

q∗j ε
P
j

)
+

n∑
j=2

q∗j (ε1t′ − εjt′) .

This, with an analogous as the one above therefore omitted proof, can be shown to

imply

E(Y 1,0
1t′ −

n∑
j=2

q∗jYjt′) = o(T ).

E Constraints and Donor Pool

For each treated country, we use different covariates and donor pools, trying to balance

between three different goals: obtaining satisfying pre-(post-)intervention fits for the out-

come and (or) the mediator, obtaining robust results and obtaining a synthetic unit with

covariates similar enough to those of the treated unit. In addition, data availability is an
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issue in some countries.

The variable we used came from different sources. We use data on capital stock in

constant international dollars and on investments as a percentage of GDP, coming from

the International Monetary Fund database. Data on the percentage of population older

than 25 with secondary education and those with tertiary education, on the percentage of

internet users, on the amount of trade (the sum of exports and imports of good and ser-

vices) as a share of GDP, on natural resources rents (calculated as the difference between

commodity price and its average cost of production) as a share of GDP, on the number of

patents applications per millions of residents (as a measure of technological development)

come from the World Bank. Data on total factor productivity at constant national prices

come from Penn World Table version 9.0. Data on employment share by country come

from the ILO database.

The donor pools are selected from a restricted group of countries. Indeed, following

Puzzello and Gomis-Porqueras (2018), we exclude all countries which during pre- and/or

post-treatment periods were affected by one or more conflicts with more than 1000 deaths

for at least two years, and/or those which experienced defaults or rescheduling of domestic

or foreign debt for at least three consecutive years and/or were autocracies. To determine

which countries were affected by conflicts we use data from the Uppsala Conflict Data

Program (https://ucdp.uu.se/). Information on defaults and rescheduling of debts are

taken from Reinhart and Rogoff (2009). Autocracies are defined as all countries with

a value smaller than zero of the polity index developped in the Polity IV Project of

the Center for Systemic Peace (http://www.systemicpeace.org/polityproject.html). We

further exclude Trinidad and Tobago, and Uruguay for data availability and Denmark

because they peg their currency to the euro.

The variables we used as controls as well as the donor pool used for each treated

country are presented in table 3.
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Table 3: Donor Pool and Control Variables

country Constrained Variables Donor Pool
France Average outcome and average mediator over time frames: Australia, Sweden, Canada, Switzerland, United Kingdom,

1986-1989, 1990-1993, 1994-1997 Israel, Malasya, New Zealand, Japan, USA
Belgium Average outcome and average mediator over time frames: Australia, Sweden, Canada, Switzerland, United Kingdom, Norway,

1986-1989, 1990-1993, 1994-1997 Israel, Malasya, New Zealand, Japan, USA
Ireland All values of outcome and all values of mediator Australia, Sweden, Canada, United Kingdom, Norway, USA

over time frames: 1986-1997 Japan, Switzerland, Israel, Malasya, New Zealand
Italy Average outcome and average mediator over time frames: Australia, Sweden, Canada, Japan,

1986-1989, 1990-1993, 1994-1997 Israel, Malasya, New Zealand, USA,
Average capital stock over time frames: Norway, Switzerland, United Kingdom

1986-1990, 1991-1997
Average schooling over years: 1990, 1995

Average Internet users over time frame: 1992-1997
Netherlands Average outcome and average mediator over time frames: Australia, Sweden, Canada, Japan,

1986-1989, 1990-1993, 1994-1997 Israel, Malasya, New Zealand, USA,
Average capital stock over time frames: Switzerland, United Kingdom

1986-1990, 1991-1997
Average schooling over years: 1990, 1995

Average rents of natural resources over time frames:
1986-1990, 1991-1997

Average trade over time frames: 1986-1990, 1991-1997
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F Leave-one-out Robustness Checks
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(a) Belgium (b) France (c) Ireland

(d) Italy (e) Netherlands

Figure 4: Leave-one-out robustness checks for the total effect.
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(a) Belgium (b) France (c) Ireland

(d) Italy (e) Netherlands

Figure 5: Leave-one-out robustness checks for the direct effect.
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(a) Belgium (b) France (c) Ireland

(d) Italy (e) Netherlands

Figure 6: Leave-one-out robustness checks for the indirect effect.
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