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Abstract

In this paper we explore the relationship between several value-like solution concepts for coo-

perative games with incomplete information and utility transfers in the form of sidepayments.

In our model, state-contingent contracts are required to be incentive compatible, and thus utility

might not be not fully transferable (as it would be in the complete information case). When we

restrict our attention to games with orthogonal coalitions (i.e., which do not involve strategic

externalities), our first main result states that Myerson’s [Cooperative games with incomplete

information. Int. J. Game Theory. (1984), 13, 69-96] generalization of the Shapley NTU value

and Salamanca’s [A generalization of the Harsanyi NTU value to games with incomplete infor-

mation. (2016), HAL 01579898] extension of the Harsanyi NTU value are interim utility equiv-

alent. I f we allow for arbitrary informational and strategic externalities, our second main result

establishes that the ex-ante evaluation of Myerson’s solution equals Kalai and Kalai’s [Coop-

eration in strategic games revisited. Q. J. Econ. (2013) 128, 917-966] cooperative-competitive

value in two-player games with verifiable types.

Keywords: Cooperative games, incomplete information, sidepayments.

JEL Classification: C71, C78, D82.

1. Introduction

In this paper we explore the relationship between the following value-like solution concepts

for cooperative games with incomplete information: Myerson’s (1984b) generalization of Sha-

pley’s (1969) NTU value, Salamanca’s (2016) extension of Harsanyi’s (1963) NTU value, and

A. Kalai and E. Kalai’s (2013) cooperative-competitive solution. We consider a model in which

utility transfers in the form of sidepayments are allowed. Transferable utility is a common

assumption in cooperative game theory. It states that utilities are quasi-linear in money and

that unrestricted monetary transfers can be performed (see Aumann, 1960). Our model, how-

ever, may exhibit restricted monetary transfers. The reason is that allowable state-contingent

✩This paper makes up part of my PhD dissertation at Toulouse School of Economics (Université Toulouse 1

Capitole, France). I wish to thank Françoise Forges, Frédéric Koessler, Peter Sudhölter and, David Wettstein for
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contracts are required to be incentive compatible and, thus, not all state-contingent plans of

sidepayments might be feasible.

We separate the analysis of our model into two parts according to the number of players and the

amount of externalities involved in the game situation. In the first part, we start by considering

general n-person Bayesian cooperative games in which there are no strategic externalities (i.e,

the actions available to any particular coalition do not have an impact on the utilities of the

players in the complementary coalition). In such a situation, coalitions are then said to be

orthogonal. However, we allow a player’s utility to depend on the other players’ information;

that is, we permit arbitrary informational externalities. In this specialized model, when one

considers the particular case of complete information, it is widely known that both Harsanyi’s

(1963) NTU value and Shapley’s (1969) NTU value coincide. Moreover, their common formula

is given by Shapley’s (1953) transferable utility (TU) value. The first part of this paper aims to

provide an analogous result in a more general environment with incomplete information.

Myerson (1984a,b) developed an approach in which incentive constraints are used to define the

virtual utility of players. Virtual utilities generalize the weighted-utility scales of the Harsanyi-

Shapley method of fictitious transfers.1 This approach was used in Myerson (1984b) to extend

the Shapley NTU value to games with incomplete information. It has also recently been used

in Salamanca (2016) to generalize the Harsanyi NTU value. Both solution concepts reflect not

only the signaling costs associated with incentive compatibility, but also the fact that individuals

negotiate at the interim stage (i.e., after each player has received his private information). Our

first main result (Theorem 1) establishes that these two cooperative solutions are interim utility

equivalent in our model with sidepayments and orthogonal coalitions. Remarkably, this result is

not the consequence of the fact that utility transfers may serve as a linear activity that can be used

for signaling purposes (i.e., for helping to satisfy incentive compatibility).2 Indeed, in our model

a transfer scheme will typically affect the interim utilities, which makes it impossible to transfer

utility across types without affecting the incentive constraints.3 Instead, Theorem 1 follows

from the fact that coalitional agreements can be made equitable by means of an appropriate

transfer scheme.

As a direct corollary of Theorem 1, we obtain a generalization of the Shapley TU value to

games with incomplete information. However, its formula cannot be described by a simple

closed form expression. The reason is that, due to the incentive constraints, the set of (interim

incentive) efficient utility allocations is not generally described by a hyperplane as it would be

in a game with complete information.

The second part of this paper is devoted to the analysis of our model when arbitrary informa-

tional and strategic externalities are allowed. However, we simplify the coalitional analysis

by focusing only on two-player games. At the more general level, Myerson’s (1984b) coope-

1See Myerson (1992) for a detailed explanation of the fictitious transfers method.
2see d’Aspremont and Gérard-Varet (1979, 1982).
3In particular, one cannot generally construct, corresponding to a first best interim utility allocation, a transfer

scheme satisfying incentive compatibility (see, e.g., example 1 in Myerson, 2007). Similar difficulties were also

encountered by Forges, Mertens and Vohra (2002) in their analysis of the incentive-compatible interim (coarse)

core of an exchange economy with differential information and quasi-linear utilities.
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rative solution allows for both kinds of externalities. Thus, it can be applied to this particular

class of games. Indeed, his cooperative solution extends Nash’s (1953) bargaining solution with

variable threats. More recently, A. Kalai and E. Kalai (2013) proposed a value for two-person

Bayesian games (in strategic form) with transferable utility. Their semi-cooperative solution,

called the cooperative-competitive (or “coco”) value, is based on a decomposition of the game

into cooperative and competitive component games. The coco value conceptually differs from

Myerson’s solution in that the former ignores potential incentive compatibility issues. Also, it is

defined only at the ex-ante stage. Kalai and Kalai (2013), however, conjectured the existence of

a close relationship between these two solution concepts in the case where private information

is verifiable ex-post.4 Our second main result (Theorem 2) provides a positive answer to this

open problem. We show that under de Clippel and Minelli’s (2004) verifiable types assumption,

Myerson’s solution and the coco value are ex-ante utility equivalent; that is, if the players eval-

uate their welfare as if they were uninformed, both values prescribe the same utility allocation.

Verifiable types mean that when agreements are implemented, each individual can costlessly

verify the true information state. This assumption implies that incentive constraints are not re-

quired and, thus, any contract can be enforced once it is agreed upon. According to Theorem

2, Myerson’s solution can thus be viewed as a formal generalization of the coco value to games

in which attention should be restricted to outcomes that are incentive compatible. This result

helps us to understand why extending the coco value to cooperative games in which first best

outcomes cannot be made incentive compatible requires an appropriate interim framework, as

in Myerson’s (1984a,b) approach. In this sense, Theorem 2 might be considered as evidence in

favor of the conceptual significance of Myerson’s (1984b) theory.

At this point, it is reasonable to ask why it is important to study the relations that can be es-

tablished between the different cooperative solutions analyzed here. On the one hand, it allows

us to determine under which circumstances distinct theories of cooperation can be unified in a

common framework. Indeed, this is the main direct contribution of Theorems 1 and 2. At the

same time, the proofs of these two theorems serve as a device to better understand the differ-

ences and similarities between these solution concepts. On the other hand, comparing various

solution concepts helps us to clarify the nature of their hypotheses, exhibiting their logic and

revealing what they do and do not depend on.

The paper is organized as follows. Section 2 is devoted to formally specifying the model of

a Bayesian cooperative game with sidepayments. In Section 3 we introduce the concept of

incentive efficiency and its relation to the virtual utility approach. Sections 4 and 5 contain the

main body of results: Section 4 analyzes n-player games with orthogonal coalitions, and finally,

Section 5 focuses on two-player Bayesian games in strategic form.

2. Bayesian Cooperative Games

A Bayesian cooperative game (or cooperative game with incomplete information) is a tuple

Γ = {N, (DS )S⊆N , (Ti, ui)i∈N , p}, where N = {1, 2, ..., n} denotes the set of players and for any

4This open problem was also pointed out by Forges and Serrano (2013).
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(nonempty) coalition S ⊆ N,5 DS is the set of feasible decisions for S . For any player i ∈ N,

Ti denotes the (finite) set of possible types of player i, p is the prior probability distribution

over TN =
∏

i∈N Ti, and ui : DN × TN → R is the utility function of player i. The sets of

feasible decisions are finite and superadditive, namely for any two disjoint coalitions S and R,

DR × DS ⊆ DR∪S . These definitions allow for both informational and strategic externalities,

since the payoffs of the members of a coalition S may depend on the types and decisions of the

players in N \ S .

We assume that types are stochastically independent and p(ti) > 0 for all ti ∈ Ti and all i ∈ N.6

We use the notations t−i = (t j) j∈N\i ∈ T−i =
∏

j∈N\i T j and tS = (ti)i∈S ∈ TS =
∏

i∈S Ti. For

simplicity, we drop the subscript N in the case of the grand coalition, so we define D = DN and

T = TN .

A mechanism for coalition S ⊆ N is a pair of functions (µS , xS ) defined by7

µS : TS → ∆(DS )

tS 7→ µS ( · | tS )

xS : TS → R
S

tS 7→ (xi
S (tS ))i∈S .

The component µS is a type-contingent lottery on the set of feasible decisions for S , while xS is

a vector of type-contingent monetary transfers. Monetary transfers must satisfy the following

budget feasibility condition:8

∑

i∈S

xi
S (tS ) ≤ 0, ∀tS ∈ TS . (2.1)

When S , N, the mechanism (µS , xS ) stands as a threat to be carried out only if N \ S refuses

to cooperate with S . We let the set of budget-feasible mechanisms satisfying (2.1) be denoted

FS .

The (interim) expected utility of player i ∈ N of type ti under the mechanism (µN , xN) when he

pretends to be of type τi (while all other players are truthful) is

Ui(µN , xN , τi | ti) =
∑

t−i∈T−i

p(t−i)















xi
N(τi, t−i) +

∑

d∈D

µN(d | τi, t−i)ui(d, (ti, t−i))















.

Monetary transfers are added linearly to the expected utilities. As is standard, we denote

Ui(µN , xN | ti) = Ui(µN , xN, ti | ti).

5For any two sets A and B, A ⊆ B denotes weak inclusion (i.e., possibly A = B), and A ⊂ B denotes strict

inclusion.
6The assumption of independent types is only needed to simplify our results, and it does not entail any loss of

generality. Indeed, the solution concepts studied in this paper satisfy the probability-invariance axiom described by

Myerson (1984a), and so for any game with dependent types, conditional probabilities and utilities can be jointly

modified in such a way that the new game has independent types and both games impute probability and utility

functions that are decision-theoretically equivalent.
7For any finite set A, ∆(A) denotes the set of probability distributions over A.
8Other forms of budget feasibility can be defined. For instance, Prescott and Townsend (1984) and Myerson

(2007) consider average budget feasibility; i.e.,
∑

tS ∈TS
p(tS )

∑

i∈S xi
S

(tS ) ≤ 0.
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A mechanism (µN , xN) is incentive compatible if and only if

Ui(µN , xN | ti) ≥ Ui(µN , xN , τi | ti), ∀i ∈ N, ∀ti, τi ∈ Ti.

By the revelation principle, any Nash equilibrium of any non-cooperative game that the pla-

yers could design in order to exchange information and make decisions can be equivalently

represented by an incentive compatible-mechanism. Hence, there is no loss of generality in

restricting our attention to such incentive compatible mechanisms. We also notice that incen-

tive constraints only depend on the conditional expected monetary transfers. Therefore, we can

restrict ourselves without loss of generality to deterministic money transfers. A budget-feasible

and incentive-compatible mechanism for the grand coalition is said to be feasible for N. We

denote by F ∗
N

the set of feasible mechanisms for N.

3. Incentive Efficiency and Virtual Utility

A mechanism is (interim) incentive-efficient for the grand coalition if and only if it is feasi-

ble and no other feasible mechanism yields strictly higher expected utilities to all types of all

players. Incentive-efficient mechanisms can be characterized using the concept of virtual utility.

Given vectors λ ∈
∏

i∈N R
Ti

+ and α ∈
∏

i∈N R
Ti×Ti

+ , the virtual utility of player i from decision

d ∈ D in state t ∈ T is defined as follows:

vi(d, t, λ, α) =
1

p(ti)

































λi(ti) +
∑

τi∈Ti

αi(τi | ti)

















ui(d, t) −
∑

τi∈Ti

αi(ti | τi)ui(d, (τi, t−i))

















.

The vectors λ and α are called the virtual utility scales. The virtual utility of player i is a

distorted utility scale, which exaggerates the difference between his actual utility and that of the

other types that would be tempted to imitate him. The following characterization results from

duality theory of linear programming (a detailed reasoning is given in Myerson, 2007).

Proposition 1 (Incentive-efficiency). A feasible mechanism (µN , xN) ∈ F ∗
N

is incentive- effi-

cient if and only if there exist λ ∈
∏

i∈N R
Ti

+ and α ∈
∏

i∈N R
Ti×Ti

+ , such that

αi(τi | ti)
[

Ui(µN , xN | ti) − Ui(µN , xN , τi | ti)
]

= 0, ∀i ∈ N, ∀ti ∈ Ti, ∀τi ∈ Ti, (3.1)

λi(ti) +
∑

τi∈Ti

αi(τi | ti) −
∑

τi∈Ti

αi(ti | τi) = p(ti), ∀i ∈ N, ∀ti ∈ Ti, (3.2)

∑

d∈D

µN(d | t)
∑

i∈N

vi(d, t, λ, α) = max
d∈D

∑

i∈N

vi(d, t, λ, α), ∀t ∈ T, (3.3)

∑

i∈N

xi
N(t) = 0, ∀t ∈ T. (exact budget feasibility) (3.4)

Equation (3.1) is the usual complementary slackness condition. Equations in (3.2) are called

hydraulic equations by Myerson (2007): Consider a network in which, at each node, a type

ti is located. If we interpret p(ti) as the flow into the network at ti, λi(ti) as the flow out of the
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network at ti, and αi(τi | ti) as the flow from τi to ti, then (3.4) states that these flows are balanced

at each node. Finally, (3.3)-(3.4) imply that any incentive-efficient mechanism determines an

allocation that is ex-post efficient in terms of the virtual utility scales. Hence, one could say

that incentive compatibility compels the players to behave according to their virtual utilities.

Myerson (1984b) refers to this idea as the virtual utility hypothesis.9

4. Values for Bayesian Cooperative Games with Orthogonal Coalitions

As in most of the literature in cooperative game theory, in this section we shall assume that

coalitions are orthogonal, namely when coalition S ⊆ N chooses an action that is feasible for

it, the payoffs to the members of S do not depend on the actions of the complementary coalition

N \ S . Formally,

ui((dS , dN\S ), t) = ui((dS , d
′
N\S ), t).

for every S , i ∈ S , dS ∈ DS , dN\S , d
′
N\S
∈ DN\S , and t ∈ T . Then we can let ui(dS , t) denote the

utility of player i ∈ S if dS ∈ DS is carried out. That is, ui(dS , t) ≔ ui((dS , dN\S ), t) for some

dN\S ∈ DN\S (recall that DS × DN\S ⊆ D). This assumption excludes strategic externalities.

However, the payoffs of the members of a coalition S might still depend on the types of the

players in N \ S . Hence, informational externalities are allowed.

When information is complete, the orthogonal coalitions hypothesis makes it possible to de-

scribe an NTU game as a collection of feasible utility sets. This characteristic function form

suppresses any explicit mention of the decisions generating the utilities. Although, it is implic-

itly assumed that an utility allocation uS is feasible for S if the players in S together have a

joint strategy that enables them to allocate uS .10 If utilities are linear in money and players can

make unrestricted sidepayments of money, we obtain a TU game.11 It is well known that both

the Shapley NTU value and the Harsanyi NTU value of a TU game coincide and their common

formula is given by the Shapley TU value.12 Even though utility may not be fully transferable in

our model because of the presence of the incentives constraints, we provide an analogous result

in the class of Bayesian cooperative games.

4.1. The M-Solution

We consider the fictitious game in which the players make interpersonal utility comparisons

in terms of some fixed virtual scales (λ, α). For any coalition S , we let WS (µS , xS , t, λ, α) be

the sum of virtual utilities that the members of S would expect in state t when they select the

9Myerson (1991, ch. 10) provides a detailed discussion about the meaning and conceptual significance of the

virtual utility hypothesis.
10This may include a correlated strategy or a joint decision, discarding utility or even transferring utility.
11Indeed, let V = (V(S ))S⊆N be an NTU game. For each S ⊆ N, let P(S ) ≔ {u ∈ RS |

∑

i∈S ui ≤ 0} denote the

set of (unrestricted) sidepayments for the members of S . Then the game W = (V(S ) + P(S ))S⊆N is a TU game for

which the worth of coalition S is w(S ) = maxv∈V(S )

∑

i∈S vi and W(S ) = {w ∈ RS |
∑

i∈S wi ≤ w(S )}.
12See Myerson (1991, pp. 470) for a detailed explanation of why the Shapley NTU value coincides with the

Shapley TU value in TU games. On the other hand, Proposition 4.10 in Hart (1985) establishes the equivalence

between the Harsanyi NTU value and the Shapley TU value in TU games.
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mechanism (µS , xS ) as a threat; that is13

WS (µS , xS , t, λ, α) =
∑

i∈S

[

vi(µS , t, λ, α) + xi
S (tS )
]

, (4.1)

where vi(µS , t, λ, α) is the linear extension of vi( ·, t, λ, α) over µS . For any vector of threats

η = (µS , xS )S⊆N , we define W(η, t, λ, α) = (WS (µS , xS , t, λ, α))S⊆N as the characteristic function

game when virtual utility is fully transferable in state t. Let φ be the Shapley TU value operator;

for i ∈ N, φi(N,W(η, t, λ, α)) will thus denote the Shapley TU value of player i in the virtual

game when the vector of threats η is selected.

The interim allocation ω ∈
∏

i∈N R
Ti is warranted by λ, α, and η if and only if

















λi(ti) +
∑

τi∈Ti

αi(τi | ti)

















ωi(ti) −
∑

τi∈Ti

αi(ti | τi)ωi(τi) =

∑

t−i∈T−i

p(t)φi(N,W(η, t, λ, α)), ∀i ∈ N, ∀ti ∈ Ti. (4.2)

In other words, ω corresponds to the real utility allocation that would give every type of each

player his expected Shapley TU value in the virtual game.

We say that η = (µS , xS )S⊆N is a vector of rational threats (w.r.t. λ and α) if, for each S ⊆ N,

the mechanism (µS , xS ) is an optimal solution to

max
(νS ,yS )∈FS

∑

t∈T

p(t)WS (νS , yS , t, λ, α). (4.3)

It follows straightforwardly that a mechanism (µS , xS ) is an optimal solution to (4.3) if and only

if, for every tS ∈ TS ,
∑

i∈S

vi(µS , tS , λ, α) = max
dS ∈DS

∑

i∈S

vi(dS , tS , λ, α) and
∑

i∈S

xi
S (tS ) = 0,

where

vi(dS , tS , λ, α) ≔
∑

tN\S ∈TN\S

p(tN\S )vi(dS , t, λ, α),

and vi(µS , tS , λ, α) is the linear extension of vi( ·, tS , λ, α) over µS (recall that µS is measurable

w.r.t. TS ).

Definition 1 (M-Solution, Myerson, 1984b). A feasible mechanism for the grand coalition

(µ̄N , x̄N) ∈ F ∗
N

is an M-solution if there exist vectors λ > 0, α ≥ 0, and η = (µS , xS )S⊆N with

(µN , xN) = (µ̄N , x̄N) such that:

13In the virtual game, sidepayments are meant to be done in terms of the virtual scales (λ, α). Hence,

an appropriate definition for WS should be WS (µS , xS , t, λ, α) =
∑

i∈S

(

vi(µS , t, λ, α) + βi(ti, λ, α)xi
S

(tS )
)

, where

βi(ti, λ, α) ≔
[

λi(ti) +
∑

τi∈Ti
αi(τi | ti) −

∑

τi∈Ti
αi(ti | τi)

]

/p(ti). However, the scales (λ, α) are selected endoge-

nously in such a way that the mechanism (µN , xN) satisfies (3.2). Then we can set βi(ti, λ, α) = 1 for all i ∈ N and

all ti ∈ Ti.
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(i) (µN , xN) satisfies (3.1)-(3.4) for λ and α.

(ii) η is a vector of rational threats w.r.t. λ and α.

(iii) U(µN , xN) = (Ui(µN , xN | ti))ti∈Ti, i∈N is warranted by λ, α and η.

The vector U(µN , xN) of warranted claims is called an M-value. We denote byVM( Γ) the set of

M-values of Γ.14

4.2. The S-Solution

A first component in the definition of the S-solution is the construction of a vector of threats

called an egalitarian solution. An egalitarian solution requires threats to satisfy a condition of

average balanced contributions (principle of equal gains) and differs from the S-solution in that

the latter endogenously determines the virtual scales (λ, α) by additionally imposing a utilitarian

criterion.

Given a vector of virtual scales (λ, α), a vector of threats η = (µS , xS )S⊆N is an egalitarian

solution (w.r.t. λ and α) if and only if, for all S ⊆ N, the mechanism (µS , xS ) is an optimal

solution to

max
(νS ,yS )∈FS

∑

t∈T

p(t)WS (νS , yS , t, λ, α)

s.t.
∑

t−i∈T−i

p(t−i)
∑

j∈S \i

[

vi(νS , t, λ, α) + yi
S (tS ) − vi(µS \ j, t, λ, α) − xi

S \ j(tS \ j)
]

=
∑

t−i∈T−i

p(t−i)
∑

j∈S \i

[

v j(νS , t, λ, α) + y
j

S
(tS ) − v j(µS \i, t, λ, α) − x

j

S \i
(tS \i)
]

, (4.4)

∀ti ∈ Ti, ∀i ∈ S .

We notice that an egalitarian solution is defined recursively: Given a vector of threats

(µS \ j, xS \ j) j∈S previously computed solving (4.4), (µS , xS ) is determined solving (4.4). When

S = {i}, for some i ∈ N, problem (4.4) reduces to (4.4). The possibility to make unrestricted

sidepayments in terms of the virtual utility scales guarantees that this construction is always

possible.15

In problem (4.4), the objective function is the same as in (4.3). In an egalitarian solution,

however, optimal threats are required to be “equitable”. Here, equitable means that the expected

average virtual contribution of the different players in S to player i of type ti (in coalition S )

equals the expected average virtual contribution of player i to the different players in S as

assessed by type ti (see Section 4 in Salamanca (2016) for a justification of this equity criterion).

14Definition 1 involves strictly positive utility weights λ. This complicates matters for obtaining existence results

of the M-solution. Myerson (1984b) solves this dilemma by slightly enlarging the solution set to include utility

allocations that are reasonable as emerging from limit points.
15In the absence of sidepayments, the optimization problem in (4.4) may not be feasible. The difficulty is due to

a lack of comprehensiveness in the set of attainable virtual utility allocations (see Section 7 in Salamanca, 2016).
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Definition 2 (S-Solution, Salamanca, 2016). A feasible mechanism for the grand coalition

(µ̄N , x̄N) ∈ F ∗
N

is an S-solution if there exist vectors λ > 0, α ≥ 0, and η = (µS , xS )S⊆N with

(µN , xN) = (µ̄N , x̄N), such that:

(i) (µN , xN) satisfies (3.1)-(3.4) for λ and α.

(ii) η is an egalitarian solution w.r.t. λ and α.

The vector of interim utilities U(µN , xN) is called an S-value. We denote by VS ( Γ) the set of

S-values of Γ.

4.3. Reconciling the Differences

When we compare the previous solutions, both satisfy the utilitarian conditions (3.1)-(3.4). In

addition, for any egalitarian solution η = (µS , xS )S⊆N , U(µN , xN) is warranted by λ, α, and η.16

Hence, the M-solution and the S-solution differ only in the way they determine the threats of

intermediate coalitions. However, we will show that this difference disappears in the present

model with sidepayments. Formally, we are going to prove the following:

Theorem 1. Let Γ be a Bayesian cooperative game with orthogonal coalitions and sidepay-

ments. Then,VM( Γ) = VS ( Γ).

In order to establish this result, we shall construct a particular class of threat mechanisms that

will help us to establish a certain connection between the rational threats and the egalitarian

solution. This relationship is stated in Lemma 1. The final conclusion of Theorem 1 follows

from the double inclusion established in Propositions 2 and 3.

Fix the virtual scales (λ, α) and let S ⊆ N be a coalition. Given a vector of threats (µR, xR)R⊂S ,

we define

ri
S (tS , λ, α) ≔

∑

R⊂S
i∈R

(−1)|S \R|+1
[

vi(µR, tS , λ, α) + xi
R(tR)
]

, ∀tS ∈ TS . (4.5)

The quantity ri
S
(tS , λ, α) can be thought of as the cumulated “virtual dividends” that player i ∈ S

expects in state tS from his participation in all coalitions R ⊂ S to which he belongs.

Given the vector rS (λ, α) = (ri
S
(tS , λ, α))i∈S , tS ∈TS

, consider a threat mechanism (µ̄S , x̄S ) for coali-

tion S defined by17

∑

i∈S

vi(µ̄S , tS , λ, α) =
∑

i∈S

v∗i (tS , λ, α), ∀tS ∈ TS , (4.6a)

x̄i
S (tS ) = v∗i (tS , λ, α) − vi(µ̄S , tS , λ, α), ∀i ∈ S , ∀tS ∈ TS , (4.6b)

where v∗(λ, α) = (v∗
i
(tS , λ, α))i∈S , tS ∈TS

is the solution to

v∗i (tS , λ, α) − ri
S (tS , λ, α) = v∗j(tS , λ, α) − r

j

S
(tS , λ, α), ∀i, j ∈ S , ∀tS ∈ TS , (4.7a)

16See Remark 3 in Salamanca (2016).
17It is worth noting that (µ̄S , x̄S ) is not uniquely determined by (4.6a)-(4.6b). Indeed, there may be several

random joint decisions µS satisfying (4.6a). Yet, once µS is determined, there exists a unique x̄S satisfying (4.6b)

and (4.7a)-(4.7b).
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∑

i∈S

v∗i (tS , λ, α) = max
dS ∈DS

∑

i∈S

vi(dS , tS , λ, α), ∀tS ∈ TS . (4.7b)

The system of linear equations in (4.7a)-(4.7b) is always solvable, and its solution is unique;

hence v∗i (λ, α) is well defined.18 Notice also that for each tS ∈ TS , the transfers x̄S are exactly

balanced
∑

i∈S

x̄i
S (tS ) =

∑

i∈S

v∗i (tS , λ, α) −
∑

i∈S

vi(µ̄S , tS , λ, α) = 0.

Lemma 1. Let (λ, α) and (µR, xR)R⊂S be fixed. For a given coalition S ⊆ N, let (µ̄S , x̄S ) be

defined by (4.6a)-(4.6b) and (4.7a)-(4.7b). Then (µ̄S , x̄S ) is an optimal solution to (4.3). If, in

addition, for every R ⊂ S , (µR, xR) is feasible in (4.4) w.r.t (µR\ j, xR\ j) j∈S , then (µ̄S , x̄S ) is also an

optimal solution to (4.4) w.r.t. (µS \ j, xS \ j) j∈S .

Proof. The fact that (µ̄S , x̄S ) is an optimal solution to (4.3) is straightforward. Let (µS , xS ) be an optimal

solutions of (4.4) w.r.t. (µS \ j, xS \ j) j∈S . We notice that

∑

tS ∈TS

p(tS )















∑

i∈S

(

vi(µ̄S , tS , λ, α) + x̄i
S (tS )
)















=
∑

tS ∈TS

p(tS ) max
dS ∈DS

∑

i∈S

vi(dS , tS , λ, α)

≥
∑

tS ∈TS

p(tS )















∑

i∈S

vi(µS , tS , λ, α) + xi
S (tS )















.

Then it suffices to show that (µ̄S , x̄S ) is feasible in (4.4) (w.r.t. (µS \ j, xS \ j) j∈S ). By construction, for any

tS ∈ TS , (µ̄S , x̄S ) satisfies

vi(µ̄S , tS , λ, α) + x̄i
S (tS ) − ri

S (tS , λ, α) = v j(µ̄S , tS , λ, α) + x̄
j

S
(tS ) − r

j

S
(tS , λ, α), ∀i, j ∈ S . (4.8)

Let ti ∈ Ti be a fixed type of a player i ∈ S . Multiplying both sides of (4.8) by p(tS \i), summing over all

tS \i ∈ TS \i and all j ∈ S \ i, and rearranging terms yields
∑

t−i∈T−i

p(t−i)
∑

j∈S \i

[vi(µ̄S , t, λ, α) + x̄i
S (tS ) − vi(µS \ j, t, λ, α) − xi

S \ j(tS \ j)]

−
∑

t−i∈T−i

p(t−i)
∑

j∈S \i

[v j(µ̄S , t, λ, α) + x̄
j

S
(tS ) − v j(µS \i, t, λ, α) − x

j

S \i
(tS \i)]

=
∑

R⊂S
i∈R
|R|≥2

(−1)|S \R|



















∑

t−i∈T−i

p(t−i)
∑

j∈R\i

[v j(µR, t, λ, α) + x
j

R
(tR) − v j(µR\i, t, λ, α) − x

j

R\i
(tR\i)]

−
∑

t−i∈T−i

p(t−i)
∑

j∈R\i

[vi(µR, t, λ, α) + xi
R(tR) − vi(µR\ j, t, λ, α) − xi

R\ j(tR\ j)]



















. (4.9)

If, for every R ⊂ S , (µR, xR) is feasible in (4.4) w.r.t. (µR\ j, xR\ j) j∈S , then the right-hand side (and

therefore also the left-hand side) of (4.9) is zero. This concludes the proof.

18Consider the homogeneous system. For each tS ∈ TS , the system has exactly |S | linearly independent equa-

tions, namely v1(tS ) − v j(tS ) = 0 for each j ∈ S \ 1 and
∑

i∈S vi(tS ) = 0. The unique solution is vi(tS ) = 0 for all

i ∈ S . Hence, the non-homogeneous system is solvable and its solutions is unique.
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The following inclusion readily follows from Lemma 1.

Proposition 2.VM( Γ) ⊇ VS ( Γ).

Proof. Let (µN , xN) be an S-solution supported by η = (µS , xS )S⊆N , λ and α. For each S ⊆ N, Lemma 1

implies that (µS , xS ) attains the optimal value of (4.3). Hence, η is a vector of rational threats.19

We shall now prove the reverse inclusion. The basic idea will be to show that, given an

M-solution with corresponding rational threats η = (µS , xS )S⊆N , one can construct a transfer

scheme (x̃S )S⊆N as in (4.6a)-(4.6b), such that the vector of threats (µS , x̃S )S⊆N is an egalitarian

solution. This is possible thanks to Lemma 1.

Proposition 3.VM( Γ) ⊆ VS ( Γ).

Proof. Let (µN , xN) be an M-solution supported by η = (µS , xS )S⊆N , λ, and α. Recursively define for

each S ⊂ N

x̃ i
S (tS ) ≔ ṽ ∗i (tS , λ, α) − vi(µS , tS , λ, α), ∀i ∈ S , ∀tS ∈ TS

where ṽ ∗(λ, α) = (ṽ ∗
i

(tS , λ, α))i∈S , tS ∈TS
is the solution to (4.7a)-(4.7b) with r̃S (λ, α) computed using

(µR, x̃R)R⊂S (already defined in the recursion). Define x̃N = xN and η̃ = (µS , x̃S )S⊆N . Obviously, (µN , x̃N)

is a feasible mechanism satisfying (3.1)-(3.4) w.r.t. λ and α, and U(µN , x̃N) = U(µN , xN). Hence, we

only need to show that η̃ is an egalitarian solution w.r.t. λ and α. Notice that, for each S ⊂ N, (µS , x̃S )

satisfies (4.6a)-(4.6b) and (4.7a)-(4.7b) with (µR, x̃R)R⊂S . Then Lemma 1 (applied inductively) implies

that, for each S ⊂ N, (µS , x̃S ) is an optimal solution of (4.4) w.r.t. (µS \ j, x̃S \ j) j∈S . It remains to show that

(µN , x̃N) is an optimal solution of (4.4) w.r.t. (µN\ j, x̃N\ j) j∈N . To do this, we first notice that, since x̃S

is exactly balanced for all subcoalitions, then WS (µS , xS , t, λ, α) = WS (µS , x̃S , t, λ, α) for every S ⊆ N.

Therefore, U(µN , x̃N) is warranted by λ, α, and η̃.20 Remark 3 in Salamanca (2016) then implies that

(µN , x̃N) is feasible in (4.4) w.r.t. (µS \ j, x̃S \ j) j∈S . But,

∑

i∈N

(

vi(µN , t, λ, α) + x̃i
N(t)
)

= max
d∈D

∑

i∈N

vi(d, t, λ, α), ∀t ∈ T.

Therefore, as required, (µN , x̃N) solves (4.4) w.r.t. (µN\ j, x̃N\ j) j∈N . We conclude that η̃ is an egalitarian

solution w.r.t. λ and α.

Theorem 1 states that, in our model with sidepayments, the M-solution and the S-solution are

interim utility equivalent. Moreover, as can be deduced from the proof of Propositions 2 and

3, any M-solution is an S-solution and vice-versa.21 Henceforth, a cooperative solution will

simply be called an MS-solution.

Notice that if Γ is a game with complete information (i.e., Ti is a singleton for every i ∈ N), there

are no incentive constraints (or equivalently α = 0), and consequently (3.2) implies that λi = 1

for every i ∈ N. Hence, all efficient mechanisms are supported by the same utility weights

λi = 1, which means that the Pareto efficient frontier is thus characterized by an hyperplane.

19Indeed, we must have that
∑

i∈S x i
S

(tS ) = 0 for every tS ∈ TS , since
∑

tS ∈TS
p(tS )

∑

i∈S x i
S

(tS ) = 0 and
∑

i∈S x i
S

(tS ) ≤ 0 for all tS ∈ TS .
20In particular, (µN , x̃N) is also an M-solution supported by η̃, λ and α.
21Notice, however, that Definitions 1 and 2 are not equivalent: An optimal solution to (4.3) is not necessarily

also an optimal solution to (4.4), unless an appropriate transfers scheme is used (see proof of Proposition 3).
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From Definition 1, it then follows that an MS-value coincides with the Shapley TU value. An

MS-value is thus a valid generalization of the Shapley TU value to Bayesian cooperative games

with sidepayments.

Corollary 1. Let Γ be a Bayesian cooperative game with orthogonal coalitions, sidepayments

and complete information. Denote as (N,w) the characteristic function game associated with Γ,

i.e., w(S ) = max
{∑

i∈S Ui(µS ) | µS ∈ ∆(DS )
}

for every S ⊆ N. If (µN , xN) is an MS-solution of

Γ, then U(µN , xN) equals the Shapley TU value of (N,w). Conversely, let φi(N,w) denote the

Shapley TU value of player i in (N,w). Then there exists an MS-solution of Γ, (µN , xN), such

that Ui(µN , xN) = φi(N,w) for every i ∈ N.

Proof. Because α = 0 and λi = 1 for every i ∈ N, the rational threats criterion (see (ii ) in

Definition 1) implies that the transferable virtual utility game coincides with the characteristic

function game (N,w). Hence, the warranted claims (see (iii ) in Definition 1) specializes to

Ui(µN , xN) = φi(N,w).

Under incomplete information, however, the hydraulic equations in (3.2) only imply that

∑

ti∈Ti

λi(ti) =
∑

ti∈Ti

p(ti) = 1, ∀i ∈ N,

and therefore λi(ti) > 0 for some ti for each player i ∈ N, but we still have
∑

i∈N (|Ti| − 1)

degrees of freedom for choosing λ. With incomplete information, the restricted nature of the

utility transfers implies that the interim incentive-efficient frontier is not generally a hyperplane.

This indeterminacy makes utility transfers less useful for games with incomplete information

than they are for games with complete information. In particular, it makes impossible to get a

general and simple closed form expression for the MS-value as in the case of the Shapley value

for TU games with complete information.

Example 1. Consider the following Bayesian cooperative game introduced by Salamanca

(2017). Let r be a parameter with 0 < r < 1/2. The set of players is N = {1, 2, 3}. Only player 1

has private information about one of two possible states in T = {H, L}, with prior probabilities

p(H) = 1 − p(L) = 4/5. Feasible decisions for each coalition are: D{i} = {di} (i = 1, 2, 3),

D{i, j} = {[di, d j], di j} (i , j) and DN =
[

D{1,2} × D{3}
]

∪
[

D{1,3} × D{2}
]

∪
[

D{2,3} × D{1}
]

. For each

value of r, utility functions are given by

(u1, u2, u3) [d1, d2, d3] [d12, d3] [d13, d2] [d23, d1]

H (0, 0, 0) (50, 50, 0) (100r, 0, 100(1 − r)) (0, 100r, 100(1 − r))

L (0, 0, 0) (40, 40, 0) (40r, 0, 40(2 − r)) (0, 40r, 40(2 − r))

Decision [d1, d2, d3] denotes the noncooperative outcome which leaves every player with his

reservation utility (normalized to zero), whereas [di j, dk] denotes the cooperative outcome in

which players i and j form a coalition (leaving player k alone) and they share the proceeds from

cooperation as specified above.

Let us first consider the game in which sidepayments are not allowed; that is, we set xi
S
(tS ) = 0

for all i ∈ S , tS ∈ TS and S ⊆ N. A mechanism for a coalition S is thus only composed by a
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state-dependent lottery µS : TS → ∆(DS ).22 In such a situation, irrespective of the state, player

3 can only offer players 1 and 2 a payoff that is strictly lower than what they both can get by

acting together in coalition {1, 2} (lack of transferability). Hence, a reasonable outcome for this

game should reward player 3 strictly less than players 1 and 2. On the other hand, because the

incentives of player 1 are fully aligned in both states, incentive constraints are not essential (i.e.,

we can set α = 0). This implies that player 1 has no information rents, and therefore, players 1

and 2 must be treated symmetrically. In addition, as r goes to zero, player 3’s ability to transfer

payoffs decreases; thus his reward should also reduce.

For any given r, the unique M-value of this game is the interim allocation23

(

UH
1 ,U

L
1 ,U2,U3

)

=
(

100
3
, 80

3
, 32, 32

)

. (4.10a)

We notice that, regardless of the value of r, the M-value treats all players symmetrically, as if

utility were fully transferable.

On the other hand, as shown by Salamanca (2017) the unique S-value of this game is24

(

UH
1 ,U

L
1 ,U2,U3

)

=
(

50 − 100
3

r
(

88−88r
96−88r

)

, 40 − 80
3

r
(

88−44r
96−88r

)

, 48 − 88
3

r, 176
3

r
)

. (4.10b)

The arguments presented above are better reflected by this allocation. In particular, as r de-

creases to 0, the S-value converges to (50, 40, 48, 0).

Let us now turn to the situation in which players are allowed to transfer payoffs using state-

contingent sidepayments. In this case, because incentive constraints are not essential, utility

is fully transferable.25 Therefore, in any two-person coalition with player 3, the members can

agree on an arbitrary distribution of the proceeds. In particular, if coalition {1, 3} or {2, 3} forms,

its members can get half of the gains each, something that is not possible in the absence of

sidepayments. There is no puzzle in the present case; the three players are symmetric, and thus

the allocation (4.10a) is a reasonable outcome. In fact, (4.10a) is the unique MS-value of the

game with sidepayments.

5. Values for Two-person Bayesian Games

In this section, we shall study in detail both the M-solution and the S-solution in two-player

games (n = 2). In order to explore all the particularities of this case, we first consider games

22When sidepayments are not allowed, the hydraulic equations in (3.2) are removed. Moreover, condition (3.4)

is automatically satisfied.
23This value is supported by the vectors λ = (4/5, 1/5, 1, 1) and α = (0, 0).
24This value allocation is supported by the vectors λ = (4/5, 1/5, 1, 1) and α = (0, 0). An important remark

about the computation of the S-value in this example is in place. As already mentioned in footnote 15, in the

absence of sidepayments an egalitarian solution may fail to exist. To deal with this issue in the present example,

Salamanca (2017) considers a class of mechanisms that enlarge the set of attainable (virtual) utility allocations by

allowing players to discard utility (free disposal assumption). These mechanisms, however, do not have an impact

on the incentives structure of the game or on the M-value allocation.
25Since α = 0, condition (3.2) then implies that λi(ti) = p(ti) for all ti ∈ Ti of every player i ∈ N. Real and

virtual utilities coincide; hence, the interim Pareto frontier is a hyperplane.
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with orthogonal coalitions in which sidepayments are not allowed (as in Example 1). We then

extend the analysis to allow for both strategic and informational externalities. In this latter

situation, we investigate an additional semi-cooperative solution introduced by Kalai and Kalai

(2013) under the further assumptions of sidepayments and ex-post verifiable information.

In the previous section we showed that in our model with orthogonal coalitions and sidepay-

ments, the M-solution and the S-solution are interim utility equivalent. The same conclusion

also holds in the absence of sidepayments, provided that n = 2. Indeed, when there are only two

players, all intermediate coalitions correspond to singletons { i } (i ∈ {1, 2}). For any of those

coalitions, the optimization problem in (4.3) is the same as in (4.4), irrespective of whether

sidepayments are allowed or not. Therefore, it follows immediately that Definitions 1 and 2

are equivalent.26 This reasoning is summarized in the following proposition (which already

appeared in Salamanca, 2016).

Proposition 4. Let Γ be a two-player Bayesian cooperative game with orthogonal coalitions

(with or without sidepayments). Then, the M-solution and the S-solution for Γ coincide.

Thus, we may continue to call a M(or S)-solution simply a MS-solution.

Let Γ be a two-person cooperative game with orthogonal coalitions. Suppose that, for every

i ∈ {1, 2}, Di = {di}, and ui(d
∗, t) = 0 for all t ∈ T , where d∗ ≔ [d1, d2](= D1×D2 ⊆ DN) is called

the disagreement decision. To make this game interesting, we further assume that there exists

at least one joint decision in DN that is beneficial for both individuals. Such a game is called

a two-person bargaining problem with incomplete information. Clearly, the issue of coalitional

threats does not arise in this model. For this kind of problems, Myerson (1984a) defined a

neutral bargaining solution, which generalizes Nash’s (1950) bargaining solution with fixed

threats. The next result follows from the characterization theorem 5 in Myerson (1984a).27

Proposition 5. Let Γ be a two-person bargaining problem with incomplete information. Then

the MS-solution and the neutral solution for Γ coincide.

In the subsequent analysis we allow for strategic externalities; that is, we let the utility of every

player depend on the choices of the other individual. We will represent the underlying game

situation by a non-cooperative Bayesian game in strategic form, Γ = {N, (Ti,Di, ui)i∈N , p}, where

N = {1, 2}. All components of Γ have the same interpretation as in the model of Section 4, but

the decision set D is now defined to be D = D1 × D2. For this specific model, we extend the

MS-solution. We follow the method developed by Nash (1953) in the proposal to modify his

bargaining solution (Nash, 1950) by making the threat point endogenous. The generalization

presented here is not new. Indeed, Myerson (1984b) offers a more general approach to the case

n ≥ 2 without sidepayments.

Let (λ, α) be some fixed virtual scales and consider the virtual game in which players make

interpersonal utility comparison in the scales (λ, α). As in the previous section, before entering

into negotiations within the grand coalition, each player i commits to a threat strategy (mecha-

26Recall from Section 4 that the M-solution and the S-solution differ only in the way they determine the threats

for intermediate coalitions.
27See also Myerson (1991, sec. 10).
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nism) µi : Ti → ∆(Di) to be used in case the players fail to reach a cooperative agreement.28

Then vi((µi, µ j), t, λ, α) is the disagreement virtual payoff to player i ∈ {1, 2} in state t ∈ T . The

total transferable virtual utility in state t available to both players if they cooperate is

w12(t, λ, α) ≔ max
d∈D

(v1(d, t, λ, α) + v2(d, t, λ, α)) .

Therefore, the Shapley TU value (or equivalently, the Nash bargaining solution) of player i in

the virtual game conditional on state t is

φi(W((µ1, µ2), t, λ, α)) =
1

2
w12(t, λ, α) +

1

2

[

vi((µi, µ j), t, λ, α) − v j((µi, µ j), t, λ, α)
]

. (5.1)

After rearranging terms on the right-hand side, this equation simply states that the total virtual

surplus “w12 − vi − v j” is equally divided among the two players.

Suppose now that players expect to reach a cooperative agreement (µN , xN) giving every type of

each player his conditionally expected Shapley TU value from the virtual game. Then the final

interim utility allocation, U(µN , xN) = (Ui(µN , xN | ti))ti∈Ti, i∈N , must be warranted by λ, α, and

(µi, µ j); that is,29

















λi(ti) +
∑

τi∈Ti

αi(τi | ti)

















Ui(µN , xN | ti) −
∑

τi∈Ti

αi(ti | τi)Ui(µN , xN | τi) =

∑

t j∈T j

p(t)φi(W((µ1, µ2), t, λ, α)), ∀ti ∈ Ti, i = 1, 2. (5.2)

It must be the case that players should evaluate their threats only in terms of their impact on

the payoffs granted by the final agreement (µN , xN). By Lemma 1 in Myerson (1983), the final

warranted payoffs (weakly) increase as the right-hand side of (5.2) increases. Then each player i

should want to choose his threat strategy µi so as to maximize his expected Shapley TU value in

the virtual game. From equation (5.1) we have that player i’s virtual Shapley TU value increases

as the disagreement virtual payoff to player j decreases. Therefore, for a given threat strategy

µ j, an optimal threat strategy for player i should solve

max
µi∈Fi

∑

t∈T

p(t)
(

vi((µi, µ j), t, λ, α) − v j((µi, µ j), t, λ, α)
)

.

That is, optimal threats form an equilibrium of a two-person Bayesian zero-sum game in which

the players’ utility functions are given by

wi((µi, µ j), t, λ, α) ≔ vi((µi, µ j), t, λ, α) − v j((µi, µ j), t, λ, α). (5.3)

We let Γad(λ, α) denote this zero-sum game. The superscript “ad” stands for “advantage”, since

the utility scale wi(·, λ, α) is a measure of the payoff advantage of player i in the virtual game.30

28The use of transfers inside a single person coalition is unnecessary for the coalition member.
29Myerson (1984a, sec. 9) provides a rationale for equation (5.2).
30Myerson (1991, sec. 8) refers to Γad(λ, α) as the difference game. We keep the designation “advantage” in

order to be consistent with Kalai and Kalai’s (2013) terminology.
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Definition 3 (MS-Solution). Let Γ be a two-player non-cooperative Bayesian game with side-

payments. A feasible mechanism for the grand coalition (µN , xN) is an MS-solution of Γ if there

exist vectors λ > 0, α ≥ 0, and threat strategies (µ1, µ2) such that:

(i ) (µN , xN) satisfies (3.1)-(3.4) for λ and α.

(ii ) (µ1, µ2) is a profile of minmax strategies of Γad(λ, α).

(iii ) The vector U(µN , xN) of interim utilities satisfies (5.2) w.r.t. λ, α, and (µ1, µ2).

The vector U(µN , xN) is called an MS-value. In the case that sidepayments are not allowed, so

that x i
N

(t) = 0 for all i ∈ {1, 2} and t ∈ T , conditions (3.2) and (3.4) are removed from (i ).

It is worth noticing that Definition 3 generalizes Nash’s (1953) bargaining solution with variable

threats (cf. Myerson, 1991, sec. 8).

Recently, A. Kalai and E. Kalai (2013) proposed a semi-cooperative solution for the class of

two-player non-cooperative Bayesian games with sidepayments. Their solution, called the

cooperative-competitive (or “coco”) value, is based on a decomposition of the game Γ into

cooperative and competitive components. Let Γad be the Bayesian zero-sum game defined as Γ,

except that player i’s utility function is now ui − u j. In a similar fashion, we define the game

Γeq, which differs from Γ in that both players share the same utility function given by ui + u j.

The superscript “eq” stands for “equal” payoffs. Clearly, ui =
1
2
(ui + u j) +

1
2
(ui − u j). Thus,

the game Γeq describes the cooperative component of Γ in which the interests of both players

are aligned. On the other hand, the game Γad reflects each player’s competitive advantage in Γ.

Incentives to reveal private information are opposed in both component games. While in Γeq the

obvious incentive is to truthfully disclose any private information, in Γad each player would like

to prevent any information disclosure that increases the opponent’s payoff advantage.

The team optimum of Γeq is defined by

Opt(Γeq) =
∑

t∈T

p(t) max
d∈D

∑

i∈N

ui(d, t).

In words, the team optimum is the maximum expected utility that each player can get in Γeq

when they all share their information truthfully.

The game Γad is a zero-sum game in which each player is trying to maximize the difference of

his payoff and that of his opponent. This game has a unique minmax (ex-ante) expected value

denoted Vali(Γ
ad).

Definition 4 (Coco Value, Kalai and Kalai, 2013). Let Γ be a two-player non-cooperative

Bayesian game with sidepayments. The coco value of player i in Γ, denoted κi(Γ), is defined as

κi(Γ) =
1

2

(

Opt(Γeq) + Vali(Γ
ad)
)

.

The MS-solution differs significantly from the coco value. On the one hand, the coco value

assumes that the incentives when playing each of the component games are independent of

each other, and thus it ignores possible incentive compatibility issues. As a consequence, the
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coco value is ex-post (first best) efficient. In contrast, the MS-solution takes into account the

tension that may exist between ex-post efficiency and incentive compatibility (see Myerson and

Satterthwaite, 1983). On the other hand, the coco value is defined only at the ex-ante stage

(i.e., before any player learns his private information). Consequently, the interim evaluation of

the coco value cannot be well determined without specifying an implementation protocol at the

interim stage. Finally, in the MS-solution players bargain over mechanisms and not directly

over payoffs as in the coco value. Notwithstanding the above, there is a close relationship

between these two solution concepts provided that incentive constraints are not essential for the

implementation of the final agreement.

The simplest bargaining situation in which incentive constraints are not essential is when all

private information becomes publicly verifiable at the implementation stage. In principle, there-

fore, any budget-feasible mechanism in FN can be enforced once it is agreed upon. We summa-

rize this situation in the following assumption introduced by de Clippel and Minelli (2004):

Definition 5 (Verifiable Types). A Bayesian cooperative game Γ satisfies the verifiable types

assumption if, when agreements are implemented, each individual can costlessly verify the true

information state.31

The verifiable types assumption is satisfied in games where private information relates to signals

about states that eventually become public; for instance, differential forecasts about weather

conditions, as in Kalai and Kalai’s (2013) vendors example. This assumption is particularly

strong in the sense that it rules out some game situations, such as auctions or trading problems

where payoffs depend on valuations that are not observable ex-post. Kalai and Kalai’s (2013)

noncooperative interim implementation of the coco value heavily relies on this observability

assumption, which severely limits its practical applicability.

Let (µN , xN) be an MS-solution supported by the virtual scales (λ, α) and the minmax strategies

(µ1, µ2). Mathematically, the verifiable types assumption is equivalent to setting α = 0, since

incentive constraints can be dispensed. Under such circumstances, equation (3.1) is straightfor-

wardly satisfied. Condition (3.2) becomes λi(ti) = p(ti) for all ti ∈ Ti and i ∈ N. Hence, virtual

utilities and real utilities coincide. Conditions (3.3) and (3.4) become:

∑

i∈N

vi(µN , t, λ, α) = w12(t, λ, α) = max
d∈D

∑

i∈N

ui(d, t) and
∑

i∈N

xi
N(t) = 0, ∀t ∈ T.

On the other hand, the zero-sum game Γad(λ, α) coincides with the competitive component game

Γad. It then follows that

∑

t j∈T j

p(t j)
(

ui((µi, µ j), t) − u j((µi, µ j), t)
)

= Vali(Γ
ad), ∀i ∈ N.

31In our model, the entire game structure, Γ, is commonly known to all players, so that each player knows how

much each player would have received in every information state given any combination of strategies. Therefore,

the states of nature are completely determined by the information states. As a consequence, in the present context,

the verifiable types assumption is equivalent to Kalai and Kalai’s (2013) (unrestricted) revealed-payoff assumption.
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Therefore, the warrant equations (5.2) simplify to

Ui(µN , xN | ti) =
1

2

∑

t j∈T j

p(t j) max
d∈D

∑

k∈N

uk(d, t) +
1

2
Vali(Γ

ad), ∀ti ∈ Ti, ∀i ∈ N. (5.4)

Taking expectations on both sides of (5.4) w.r.t. the different types of player i we obtain:

∑

ti∈Ti

p(ti)Ui(µN , xN | ti) = κi(Γ), i ∈ N.

The following result is deduced:

Theorem 2. Let Γ be a two-player Bayesian non-cooperative game with sidepayments satisfy-

ing the verifiable types assumption. Then the MS-solution and the coco value of Γ are ex-ante

utility equivalent.

Notice that each player might have multiple minmax strategies in the game Γad(= Γad(λ, α)).

The multiplicity of equilibria in the competitive zero-sum component game may lead to different

interim (i.e., type-conditional) vector payoffs.32 Therefore, there might exist various MS-values,

of course, all of them guaranteeing the same ex-ante expected payoffs. This indeterminacy of

the interim payoffs makes difficult to get an appropriate definition of the “interim” coco value.

The following bilateral trading problem, adapted from Myerson (1985, 2007), analyzes how

the MS-solution relates to Myerson and Satterthwaite’s (1983) result about the impossibility to

achieve an ex-post efficient trade. In particular, it illustrates a situation in which the applicability

of the coco value is limited by its assumptions.

Example 2. There are two players N = {1, 2}. Player 1 is the seller of a single good whose

quality may be high (H) with probability p = 1/2 or low (L) with probability 1 − p = 1/2.

Player 2 is the only potential buyer. The quality can only be observed by the seller; that is,

T1 = {H, L} is the set of types of player 1. If the quality of the good is L, then the value of the

good is $1 to player 1 and $2 to player 2. If the quality is H then the value of the good is $5

to player 1 and is $6 to player 2. Players must decide whether to trade (T ) or not (NT ) and at

which price. Utilities from no-trade are normalized to be 0. The utility functions are:

L

u1, u2 T NT

T −1, 2 0, 0

NT 0, 0 0, 0

H

u1, u2 T NT

T −5, 6 0, 0

NT 0, 0 0, 0

For the game under consideration, the verifiable types assumption states that the quality of the

good becomes publicly observable at the execution of the contract. In particular, it implies that

if trade does not occur, the buyer would still observe the quality of the good. This might be

considered not reasonable in this particular game situation. For the sake of completeness, we

32See the payoffmatrices proposed in Section IV.C. of Kalai and Kalai (2013).
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shall compute the MS-solution under the verifiable types assumption (and a fortiori also the

coco value).

The cooperative component game, Γeq, has a team optimum equal to 1, whereas the competitive

component has a minmax of value 0. Therefore, the coco value of this game is κ1(Γ) = κ2(Γ) =
1
2
. It can be easily checked that the conditional minmax value is also 0 in both states. Thus, the

unique MS-value is the (ex-post efficient) interim allocation

(UH
1 ,U

L
1 ,U2) =

(

1
2
, 1

2
, 1

2

)

This allocation is implemented by the mechanism

µN((T, T ) | H) = µN((T, T ) | L) = 1, x1
N(H) = 11

2
= −x2

N(H), x1
N(L) = 3

2
= −x2

N(L).

That is, trade occurs in both states at a price that gives each player an equal gain from the trade.

This is an efficient and fair solution, yet it cannot be implemented whenever information is not

verifiable. Indeed, this mechanism is not incentive compatible: Type L will always gain by

reporting that the good is of high quality.

Let us now consider the more reasonable situation in which the quality of the good is not veri-

fiable before consumption takes place. It can be shown that all incentive-efficient mechanisms

in this example satisfy Proposition 1 for the virtual scales (see Myerson, 1985):

λH
1 =

5
8
, λL

1 =
3
8
, λ2 = 1,

α1(L | H) = 0, α1(H | L) = 1
8
.

The virtual utility game is thus described by the following payoff matrices:

L

v1, v2 T NT

T −1, 2 0, 0

NT 0, 0 0, 0

H

v1, v2 T NT

T −6, 6 0, 0

NT 0, 0 0, 0

The only difference between virtual utilities and actual utilities is for player 1’s type H, for

which the virtual value of the good is 6. The advantage game, Γad(λ, α), has a conditional

minmax value that equals 0 in both states. Hence, the unique solution to the warrant equations

in (5.2) is

(UH
1 ,U

L
1 ,U2) =

(

1
10
, 1

2
, 1

4

)

. (5.5)

The virtually equitable and incentive-efficient allocation in (5.5) is the unique MS-value of this

game. It is implemented by the mechanism

µN((T, T ) | H) = 1
10
, x1

N(H) = 6 = −x2
N(H),

µN((T, T ) | L) = 1, x1
N(L) = 3

2
= −x2

N(L).
(5.6)

According to this mechanism, if player 1 announces that the quality is L, then with probability

1 they trade at a price $3/2. Yet if player 1 reports a high quality then, with probability 1/10
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they trade at a price $6. In state H no-trade has probability 9/10, but the seller never trades at a

price lower than his virtual valuation of the good, which guarantees that he extracts the whole

surplus from trade.

At this point, it should be noted that the unresolvable tension between incentives and ex-post

efficiency in Myerson and Satterthwaite’s (1983) impossibility theorem holds only if we insist

on (interim) individually rational outcomes. In the current model, individual rationality does not

appear as an explicit constraint in the set of feasible mechanisms. However, it does appear as

an indirect restriction imposed by the definition of the MS-solution. Indeed, the MS-solutions

are individually rational (see theorem 3 in Myerson (1984b)).33 To illustrate this issue, consider

again the incentive compatible mechanism in (5.6). Notice that if the actual quality of the good

is high, and of course type H is telling the truth, there is a chance of no-trade. This efficiency

loss reduces type H’s expected utility from cooperation, which tightens individual rationality.

Therefore, the whole surplus from cooperation must be given to type H whenever trade occurs.

Some final comments. The coco value has been constructed with the aim of being a semi-

cooperative solution with a tractable definition. Its conceptual significance, however, depends

on restrictive conditions, such as ex-post verifiability of private information. Also, the fact that

it is conceived only for two-person games is an important requirement for obtaining its de-

scription by a simple closed form expression. Theorem 2 exhibits why the relaxation of these

restrictions cannot be easily done while preserving the tractable nature of the coco value.34

Firstly, keeping track of the incentive constraints requires referring to an appropriate interim

framework. In particular, bargaining directly over payoffs, as in the coco value, does not al-

low us to determine what the utility of a player would be when he reports a different type. In

contrast, incentive-compatible mechanisms include all equilibria that can be achieved by any

communication system, and so this set can be viewed as the feasible set. Moreover, interim

preferences matter when defining a suitable notion of an equitable cooperative agreement under

incomplete information. As Myerson (1983, 1984a,b) argues, identifying a cooperative solution

among the set of incentive-efficient mechanisms requires the definition of some principles for

equitable compromises, not only among the different players (as in the case of complete infor-

mation) but also among the different possible types that a player pretends to be. Secondly, even

under the verifiable types assumption, there is no a unique way of extending the coco value to

games with n > 2. Myerson’s (1984b) approach provides a reference in this direction. However,

other cooperative solutions can be constructed to achieve this goal. For instance, if we proceed

as in Harsanyi’s (1963) solution for n-person strategic games with complete information, the

S-solution can be straightforwardly generalized to allow for both strategic and informational

externalities.

33Even though we could restrict our attention to individually rational mechanisms, we cannot apply Myerson

and Satterthwaite’s (1983) result to our example, simply because they require a continuum of types.
34We see Theorem 2 as discouraging evidence against the following argument advanced by Kalai and Kalai

(2013, p. 962) regarding a possible extension of the coco value to general environment with no verifiable infor-

mation: “It seems also plausible that such a generalized coco value would have a natural and easy to interpret

closed-form expression, defined through an appropriate modification of the coco decomposition”.
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