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1 Introduction

In heterogeneous treatment effect models with binary treatment, an instrument is conven-

tionally required to satisfy two assumptions. Firstly, it must be independent of the joint

distribution of potential treatment states and potential outcomes, which excludes direct

effects on the latter and implies that the instrument is (as good as) randomly assigned.

Secondly, the treatment state has to vary with the instrument in a weakly monotonic man-

ner. For instance, an instrument based on the random assignment to some treatment state

should weakly increase the actual treatment take-up of all individuals in the population

(i.e., globally). This rules out the existence of defiers, who behave counter-intuitively to

the instrument by participating in the treatment if not being assigned to treatment and

by not participating in the treatment under treatment assignment.

Under these assumptions, Imbens and Angrist (1994) and Angrist, Imbens, and Rubin

(1996) show that the local average treatment effect (LATE) on the subpopulation of com-

pliers (i.e., subjects who with respect to treatment status react to the instrument in the

intended way) is identified by the well known Wald ratio, which corresponds to the proba-

bility limit of 2SLS estimation. Imbens and Rubin (1997) demonstrate how to identify the

potential outcome distributions (including the means) of the compliers under treatment

and under non-treatment. Additionally, Imbens and Rubin (1997) show that by imposing

data specific constraints in the form of monotonicity and independence, an estimator of

the LATE that is more efficient than 2SLS can be obtained.

The first novel contribution of this paper is to show that LATEs are identified (and

under particular assumptions
√
n-consistently estimated) conditionally on introducing a

new assumption that can be characterized as strictly weaker than global monotonicity. We

will refer to this condition as local monotonicity (LM). Crudely speaking, and in contrast

to global monotonicity, LM allows for the existence of both compliers and defiers, but

1



requires that they do not co-exist at any given point on the support of the potential

outcomes for any given treatment state. That is, monotonicity is assumed to hold only

locally in subregions of the marginal potential outcomes distributions, rather than over the

entire support/region. More specifically, if we assume existence of a binary instrument, LM

excludes the possibility that a subject is a defier if the difference in specific joint densities is

positive, because this is a sufficient condition for the existence of compliers; see, e.g., Balke

and Pearl (1997) and Heckman and Vytlacil (2005). By ruling out defiers in such regions,

the potential outcomes of the compliers are locally identified. Conversely, in regions in

which the differences in those joint densities are negative, defiers necessarily exist and LM

rules out compliers. We show that LM is sufficient for the identification of the marginal

potential outcome distributions of the compliers and the defiers in both treatment states.

Because defiers are no longer assumed away under LM we are not limited to only

identifying (i) the LATE on the compliers, but can now also identify (ii) the LATE on

the defiers as well as (iii) the LATE on the joint population of compliers and defiers.

Furthermore, it becomes feasible to estimate the proportion of defiers (and any other

subpopulation) in the sample which directly facilitates inference about the relevance of

LM and of (ii) and (iii). It will also be shown that (i) and (iii) coincide with the standard

LATE under monotonicity and equal the Wald ratio if defiers do not exist. If the proportion

of defiers is larger than zero, (i), (ii), and (iii) generally differ, and the standard LATE

approach is inconsistent unless the LATEs on compliers and defiers are homogeneous;

see Angrist, Imbens, and Rubin (1996). However, even in the case of treatment effect

homogeneity across subjects, the standard approach may not be desirable due to a weak

instrument type problem that arises when the proportions of compliers and defiers are

netting each other out in the first stage. Netting out does not occur in the methods

suggested in this paper, implying that efficiency gains can be realized as demonstrated in

the empirical application as well as in simulations presented in the online appendix.
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Apart from the present work, other studies have considered deviations from

monotonicity and their implications for the identification of LATEs. Small and Tan

(2007) weaken (individual-level) monotonicity to stochastic monotonicity, requiring that

the share of compliers weakly dominates the share of defiers. Small and Tan (2007) show

that in this setting, albeit biased, 2SLS retains some desirable limiting properties, such

as providing the correct sign of the LATE, yet they do not propose any method to fully

identify the LATE. Klein (2010) develops methods to assess the sensitivity of the LATE

to random departures from monotonicity and provide guidance on how to approximate

the bias under various assumptions. In contrast, our framework admits full identification

of the LATE under such non-random violations, given that LM is satisfied.

de Chaisemartin and D’Haultfoeuille (2012) characterize monotonicity by a latent

index model, see Vytlacil (2002), in which the conventional rank invariance in the

unobserved terms is relaxed to rank similarity, see Chernozhukov and Hansen (2005).

Unobservable variables affecting the treatment outcomes may be a function of the

instrument, hence admitting the existence of defiers. However, the distribution of these

unobservable variables conditional on the potential outcomes must be unaffected by

the instrument. In this situation the Wald ratio will identify a treatment effect on a

specific mixture of subpopulations. de Chaisemartin (2016) suggests a new assumption

which he terms compliers-defiers (CD). CD requires that if defiers are present, then there

exists a subpopulation of compliers that has the same size and the same LATE as the

defiers. Under CD, de Chaisemartin (2016) shows that the Wald ratio identifies the

LATE on the remaining subpopulation of compliers, the so-called complier-survivors or

“comvivors”. de Chaisemartin (2016) discusses several conditions that imply CD. One

sufficient condition enforcing CD is that compliers always outnumber defiers conditional

on having the same treatment effect. A second sufficient condition is that the LATEs on

defiers and compliers have the same sign and that the ratio of the LATEs is not “too”
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large. Importantly, CD and LM are not nested conditions and unlike CD, LM admits the

identification of LATEs on the entire population of compliers and defiers.

In this paper, we will also reconsider a local stochastic monotonicity (LSM) assumption,

which is weaker than LM and has been discussed in de Chaisemartin (2012). Differently

from LM, LSM admits the existence of both compliers and defiers conditional on any

potential outcome value, but requires that in regions where one of the two types outnumbers

the other conditional on one potential outcome, this type would also outnumber the other

conditional on both potential outcomes. Under LSM the parameters derived in this paper

identify LATEs on subpopulations of compliers and defiers. Further, we show that CD and

LSM are not nested. If both assumptions are satisfied, identification results based on LSM

yield the LATE on a potentially larger complier subpopulation than those based on CD.

As the second main contribution of this paper, we propose estimators of the LATE that

can be characterized asymptotically and are potentially efficient relative to 2SLS, similarly

to the results of Imbens and Rubin (1997). Furthermore, the proposed estimators are

simple and easily computed in two steps: In the first step, the support of the outcome

variable is divided into two disjoint regions on a given treatment state; one where we

assume no defiers and one with no compliers. If these regions are unknown and need to

be estimated (as it is typically the case in empirical applications), this requires estimating

differences in univariate densities, for which kernel methods are very well suited and readily

available. Secondly, the LATEs of interest can be estimated based on the sample analogs

of the two regions. We propose several estimation approaches in the main text and the

online appendix, which all show encouraging finite sample behavior in simulation studies

(see the online appendix). Interestingly, our estimators can be more efficient than 2SLS

even when the latter consistently estimates a treatment effect. One such example is when

global monotonicity holds, but that the aforementioned differences in densities are close to
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zero and possibly violated over a range of outcome values in the empirical distributions.

This observation is in line with the findings of Imbens and Rubin (1997). We therefore

argue that the estimators proposed in this paper might be preferred over 2SLS not only

because they are more robust to deviations from global monotonicity, but also because

their standard errors (and mean squared errors) can be smaller under the standard LATE

assumptions.

The third and final contribution of the paper is an empirical application, where the

proposed methods are used to estimate the returns to education for males born in 1940-

49 (in the 1980 U.S. census data) by means of the quarter of birth as an instrument for

education as in Angrist and Krueger (1991). Arguably, among children/students entering

school in the same year, those who are born in an earlier quarter can drop out after fewer

years of completed education at the age when compulsory schooling ends than those born

in a later quarter (in particular after the end of the academic year). This suggests that

education is monotonically increasing in the quarter of birth. However, the postponement

of school entry due to redshirting or unobserved school policies as discussed in Aliprantis

(2012), Barua and Lang (2009), and Klein (2010) may reverse the relation between edu-

cation and quarter of birth for some individuals and thus violate monotonicity. Relaxing

global monotonicity, we find statistically significant proportions of both compliers and de-

fiers and positive returns to education of similar size in both subpopulations.

The remainder of this paper is organized as follows. Section 2 discusses identification.

It presents the main assumptions and identification results, and illuminates and explains

differences and links among global monotonicity, local monotonicity, local stochastic

monotonicity, and the compliers-defiers assumption. Section 3 proposes estimators of the

parameters of interest based on kernel density methods, while two further estimation

approaches are discussed in the online appendix. Section 4 presents an empirical
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application, revisiting the challenging task of estimating returns to education using the

quarter of birth instrument. Section 5 concludes. A simulation study, technical proofs,

and additional material are provided in the online appendix.

2 Assumptions and identification

2.1 Notation

Suppose that we are interested in the causal effect of a binary treatment D ∈ {1, 0} (e.g.,

graduating from high school) on an outcome Y (e.g., earnings) evaluated at some point

in time after the treatment. Under endogeneity, D and Y are confounded by unobserved

factors. Treatment may nevertheless be identified if an instrument, denoted by Z, is

available, which is correlated with the treatment but does not have a direct effect on

the outcome (i.e., any impact other than through the treatment variable D). In this

section, we consider the case of a binary instrument (Z ∈ {0, 1}), such as a randomized

treatment assignment, whereas the online appendix discusses the case of a bounded non-

binary instrument. Denote by D(z) the potential treatment state that would occur when

we set instrument Z = z, and denote by Y (d) the potential outcome for treatment D = d

(see, e.g., Rubin 1974, for a discussion of the potential outcome notation). Note that in the

sample, only one potential outcome is observed for each subject because Y = D · Y (1) +

(1−D) · Y (0).

Table 1: Subject types

T D(1) D(0) Subject type
a 1 1 Always taker
c 1 0 Complier
d 0 1 Defier
n 0 0 Never taker
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As discussed in Angrist, Imbens, and Rubin (1996) and summarized in Table 1, the

population can be categorized into four types, denoted by T ∈ {a, c, d, n}, depending

on how the treatment state changes with the instrument. The compliers respond to the

instrument in the intended way by taking the treatment when Z = 1 and abstaining from

it when Z = 0. For the remaining three types, D(z) 6= z for either Z = 1 or Z = 0, or both:

The always takers are always treated irrespective of the instrument state, the never takers

are never treated, and the defiers only take up the treatment when Z = 0. Clearly, it is not

possible to directly observe the subject type in the sample because D(1) or D(0) remains

unknown, as the observed treatment status, D, is decided by D = Z ·D(1)+(1−Z) ·D(0).

This implies that any subject with a particular combination of treatment and instrument

status can belong to two of the types listed in the first column of Table 1. For instance,

if the combination Z = 1, D = 1 → D(1) = 1 is observed for a given subject, this is

consistent with the subject belonging to either T = a (the subject being an always taker)

or T = c (the subject being a complier) as can be seen from the first two rows of Table

1. Although the subject types are not directly observable, we will show how the potential

outcome distributions of the compliers and the defiers can be identified under conditions

that are weaker than the common LATE assumptions of Imbens and Angrist (1994) and

Angrist, Imbens, and Rubin (1996).

In order to formally characterize the identification problem, we introduce a notation

that borrows from Kitagawa (2009) and write the observed joint densities of outcome and

treatment status conditional on the instrument as

p1(y) = f(y,D = 1|Z = 1), p0(y) = f(y,D = 0|Z = 1),

q1(y) = f(y,D = 1|Z = 0), q0(y) = f(y,D = 0|Z = 0).

Here, pd(y) and qd(y) represent the joint densities of Y = y and D = d given Z = 1 and
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Z = 0, respectively. Furthermore, Y denotes the support of Y , and f(y(d)) denotes the

marginal density of the potential outcome for d ∈ {0, 1}. We define f(y(d), T = t) as

the joint density of potential outcome and type for d ∈ {0, 1}, t ∈ {a, c, d, n}, and y ∈

Y . Importantly, if we exploit that any of the observed joint densities, pd(y) and qd(y),

depend on the potential outcomes of two different types of subjects, we can rewrite the

joint densities as

p1(y) = f(y(1), T = c|Z = 1) + f(y(1), T = a|Z = 1), (1)

q1(y) = f(y(1), T = d|Z = 0) + f(y(1), T = a|Z = 0), (2)

p0(y) = f(y(0), T = d|Z = 1) + f(y(0), T = n|Z = 1), (3)

q0(y) = f(y(0), T = c|Z = 0) + f(y(0), T = n|Z = 0). (4)

2.2 Assumptions and identification results

The first assumption we impose effectuates the independence between Z and the joint

distribution of potential outcomes and treatment status, see Imbens and Angrist (1994).

Assumption 1 (joint independence): Let there exist a random variable Z such that

Z⊥(D(1), D(0), Y (1), Y (0)), where ⊥ denotes independence.

Assumption 1 is a commonly used condition in the literature on LATEs, which ensures

the existence and randomness of the instrument and implies that the instrument cannot

have a direct effect on the potential outcomes. The randomness of the instrument signifies

that the instrument is unrelated to any factors potentially affecting the treatment states

and/or potential outcomes. Noticably, it follows that not only the potential outcomes, but

also the subject types, which are defined by the potential treatment states, are independent

of the instrument. Therefore, as also discussed by Kitagawa (2009), equations (1) through
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(4) simplify to

p1(y) = f(y(1), T = c) + f(y(1), T = a), (5)

q1(y) = f(y(1), T = d) + f(y(1), T = a), (6)

p0(y) = f(y(0), T = d) + f(y(0), T = n), (7)

q0(y) = f(y(0), T = c) + f(y(0), T = n), (8)

While Assumption 1 alone does not admit identifying any treatment effects, Imbens

and Angrist (1994) and Angrist, Imbens, and Rubin (1996) show that the local average

treatment effect on the compliers given by E(Y (1) − Y (0)|T = c) can be obtained by

ruling out the defiers. In order to better understand our new identification results, we

will provide a short illustrative derivation of the Wald ratio (WR) estimator under the

assumption known as (global) monotonicity, where defiers do not exist. In short, this

assumption writes:

Global monotonicity: Order Z such that Pr(D = 1|Z = 1) ≥ Pr(D = 1|Z = 0). Then,

Pr(D(1) ≥ D(0)) = 1 holds for all subjects in the population.

Global monotonicity in addition to Assumption 1 implies that defiers cannot exist in

the population and (5) through (8) simplify readily to

p1(y) = f(y(1), T = c) + f(y(1), T = a), (9)

q1(y) = f(y(1), T = a), (10)

p0(y) = f(y(0), T = n), (11)

q0(y) = f(y(0), T = c) + f(y(0), T = n). (12)
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The identification of the joint densities under treatment and non-treatment for the com-

pliers can be verifyed by first subtracting (10) from (9) and (11) from (12):

f(y(1), T = c) = p1(y)− q1(y), (13)

f(y(0), T = c) = q0(y)− p0(y). (14)

Then secondly, by integrating out y in both (13) and (14), the share of compliers in the

population is given as:

Pr(T = c) =

∫
y∈Y

(p1(y)− q1(y)) dy = E(D|Z = 1)− E(D|Z = 0), (15)

Pr(T = c) =

∫
y∈Y

(q0(y)− p0(y)) dy = E(1−D|Z = 0)− E(1−D|Z = 1). (16)

By further noticing that
∫
y∈Y y · pd(y)dy = E(y,D = d|Z = 1) and

∫
y∈Y y · qd(y)dy =

E(y,D = d|Z = 0), we can write

E(Y (1)|T = c) =

∫
y∈Y

y · f(y(1)|T = c)dy

=

∫
y∈Y

y · f(y(1), T = c)

Pr(T = c)
dy

=

∫
y∈Y

y · (p1(y)− q1(y))

E(D|Z = 1)− E(D|Z = 0)
dy

=
E (y,D = 1|Z = 1)− E (y,D = 1|Z = 0)

E(D|Z = 1)− E(D|Z = 0)
, (17)

where the second equality follows from basic probability theory and the third from the

imposed assumptions. Similarly,

E(Y (0)|T = c) =
E (y,D = 0|Z = 1)− E (y,D = 0|Z = 0)

E(D|Z = 1)− E(D|Z = 0)
. (18)

Since E (Y |Z = z) = E (Y,D = 0|Z = z) + E (Y,D = 1|Z = z), the result of Imbens and
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Angrist (1994) showing that the LATE corresponds to the WR, follows imidiately from

subtracting (18) from (17), that is

E(Y (1)− Y (0)|T = c) =
E(Y |Z = 1)− E(Y |Z = 0)

E(D|Z = 0)− E(D|Z = 1)
= WR.

The derivation illustrates that the WR assigns weights p1(y)−q1(y)
E(D|Z=1)−E(D|Z=0)

and

q0(y)−p0(y)
E(D|Z=1)−E(D|Z=0)

to treated and non-treated observations, respectively. Furthermore, (13)

and (14) provide necessary (albeit not sufficient) conditions for the satisfaction of global

monotonicity and for Assumption 1.1 Furthermore, as f(y(1), T = c) and f(y(0), T = c)

cannot be negative for any y ∈ Y , it follows directly from equations (13) and (14) that

p1(y)− q1(y) ≥ 0, q0(y)− p0(y) ≥ 0. (19)

Imbens and Rubin (1997) propose an estimator that imposes (19) in an attempt to improve

efficiency, while Kitagawa (2015), Huber and Mellace (2015), and Mourifie and Wan (2016)

provide formal tests of these constraints. Figure 1 presents a graphical illustration of the

identification under global monotonicity.2 In Figure 1, Equation (19) is satisfied for all

y ∈ Y implying that all the weights in the expression for the WR are non-negative.

1This feature has also been discussed by Balke and Pearl (1997) and Heckman and Vytlacil (2005).
2The illustration is similar to Figure 1 in Kitagawa (2015).
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Figure 1: Graphical illustration of identification under global monotonicity
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Under a violation of (19) and,therefore, also a violation of global monotonicity when

Assumption 1 is maintained, basing the LATE estimation on the WR appears unattractive

both in terms of consistency and efficiency. First, Angrist, Imbens, and Rubin (1996) show

that the WR does not generally yield a treatment effect because the WR in this case is

equivalent to

WR =
E(Y (1)− Y (0)|T = c) · Pr(T = c)− E(Y (1)− Y (0)|T = d) · Pr(T = d)

Pr(T = c)− Pr(T = d)
. (20)

Therefore, the LATE on the compliers is identified only if it is equal to the LATE on

the defiers. Second, even in this special case, the WR assigns negative weights to treated

(non-treated) observations whenever p1(y) < q1(y) (q0(y) < p0(y)). It is easy to see from

(15) and (16) that negative weights decrease the terms E(D|Z = 1) − E(D|Z = 0) and

E(1−D|Z = 0)−E(1−D|Z = 1), which reduces the efficiency of LATE estimation, even

in large samples.
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We will now proceed by replacing the assumption of global monotonicy by Assumption

2, which we will denote local monotonicity (LM). Importantly, LM is weaker than global

monotonicity and admits a violation of (19).

Assumption 2 (local monotonicity, LM): For all subjects in the population, either

Pr (D(1) ≥ D(0)|Y (d) = y(d)) = 1, or Pr (D(0) ≥ D(1)|Y (d) = y(d)) = 1 ∀ y(d) ∈ Y ,

where d ∈ {0, 1}.

Assumption 2 (LM) is novel in the sense that it allows the presence of both compliers

and defiers in the population. LM, however, restricts their co-existence on a local scale.

More precisely, LM requires the potential outcome distributions of compliers and defiers

under each treatment state to be non-overlapping. Consequently, under LM, compliers

and defiers inhabit disjoint regions of the support of Y (1) and Y (0), respectively.3,4 More

formally, note that under Assumption 1, Equations (5) through (8) imply

p1(y)− q1(y) = f(y(1), T = c)− f(y(1), T = d),

q0(y)− p0(y) = f(y(0), T = c)− f(y(0), T = d), (21)

while adding Assumption 2 implies

p1(y) > q1(y) ⇒ f(y(1), T = c) > f(y(1), T = d)⇒ f(y(1), T = d) = 0 (no defiers),

p1(y) < q1(y) ⇒ f(y(1), T = c) < f(y(1), T = d)⇒ f(y(1), T = c) = 0 (no compliers),

q0(y) > p0(y) ⇒ f(y(0), T = c) > f(y(0), T = d)⇒ f(y(0), T = d) = 0 (no defiers),

q0(y) < p0(y) ⇒ f(y(0), T = c) < f(y(0), T = d)⇒ f(y(0), T = c) = 0 (no compliers).

3We thank Joshua Angrist and Toru Kitagawa for a fruitful discussion regarding the interpretation of
LM.

4The online appendix presents two examples of structural models in which Assumptions 1 and 2 hold,
while global monotonicity does not.
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This signifies that in regions of Y where (19) is satisfied, implying f(y(d), T = c) >

f(y(d), T = d), defiers are ruled out by Assumption 2. Similarly, a violation of (19),

implying f(y(d), T = d) > f(y(d), T = c), rules out compliers. Summarizing these

observation, we can conveniently write

f(y(1), T = c) = (p1(y)− q1(y))I(p1(y) > q1(y)) = p1(y)−min(p1(y), q1(y)), (22)

f(y(0), T = c) = (q0(y)− p0(y))I((q0(y) > p0(y))) = q0(y)−min(p0(y), q0(y)), (23)

f(y(1), T = d) = (q1(y)− p1(y))I(p1(y) < q1(y)) = q1(y)−min(p1(y), q1(y)), (24)

f(y(0), T = d) = (p0(y)− q0(y))I((q0(y) < p0(y))) = p0(y)−min(p0(y), q0(y)). (25)

Hence, the densities of potential outcomes under both treatment and non-treatment are

identified for compliers as well as defiers. Also their shares in the population are identified,

i.e.,

Pr(T = c) =

∫
y∈Y

(p1(y)−min(p1(y), q1(y))dy = Pr(D = 1|Z = 1)− λ1, (26)

Pr(T = c) =

∫
y∈Y

(q0(y)−min(p0(y), q0(y))dy = Pr(D = 0|Z = 0)− λ0, (27)

Pr(T = d) =

∫
y∈Y

(q1(y)−min(p1(y), q1(y))dy = Pr(D = 1|Z = 0)− λ1, (28)

Pr(T = d) =

∫
y∈Y

(p0(y)−min(p0(y), q0(y))dy = Pr(D = 0|Z = 1)− λ0, (29)

where λi =
∫
Y min(pi(y), qi(y))dy for i = 0, 1. These results admits identification of not

only the LATE on the compliers, but also of the LATE on the defiers and on the joint

population of compliers and defiers. These identification results are summarized accurately

in the following Proposition 1:
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Proposition 1 (identification of the LATEs): Let the conditions under Assumptions

1 and 2 hold. Then:

1. The LATE on compliers is given as

E(Y (1)− Y (0)|T = c) =

∫
Y y · (p1(y)−min(p1(y), q1(y)))dy

Pr(D = 1|Z = 1)− λ1
(30)

−
∫
Y y · (q0(y)−min(p0(y), q0(y)))dy

Pr(D = 0|Z = 0)− λ0
.

2. The LATE on defiers is given as

E(Y (1)− Y (0)|T = d) =

∫
Y y · (q1(y)−min(p1(y), q1(y)))dy

Pr(D = 1|Z = 0)− λ1
(31)

−
∫
Y y · (p0(y)−min(p0(y), q0(y)))dy

Pr(D = 0|Z = 1)− λ0
.

3. The joint LATE on compliers and defiers is given as

E(Y (1)− Y (0)|T = c, d) =

∫
Y y · (max(p1(y), q1(y))−min(p1(y), q1(y)))dy

Pr(D = 1|Z = 1) + Pr(D = 1|Z = 0)− 2 · λ1
(32)

−
∫
Y y · (max(p0(y), q0(y))−min(p0(y), q0(y)))dy

Pr(D = 0|Z = 0) + Pr(D = 0|Z = 1)− 2 · λ0
.

4. If Pr(T = d) = 0 and Pr(T = c) > 0, then (32) is equivalent to E(Y (1)− Y (0)|T =

c) = E(Y |Z=1)−E(Y |Z=0)
E(D|Z=1)−E(D|Z=0)

, whereas E(Y (1)− Y (0)|T = d) is not identified.

5. If Pr(T = c) = 0 and Pr(T = d) > 0, then (32) is equivalent to E(Y (1)− Y (0)|T =

d) = E(Y |Z=0)−E(Y |Z=1)
E(D|Z=0)−E(D|Z=1)

, whereas E(Y (1)− Y (0)|T = c) is not identified.

Proof of Proposition 1: Results 1, 2, and 3 of Proposition 1 follow from using (22)

through (25) and (26) through (29) in E(Y (d)|T = t) =
∫
Y f(y(d),T=t)dy

Pr(T=t)
and taking the
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differences in mean potential outcomes under treatment and non-treatment. Result 4

follows from the fact that Pr(T = d) = 0 (global monotonicity) implies p1(y) ≥ q1(y) and

q0(y) ≥ p0(y) for all y ∈ Y (see (28) and (29)), such that (32) simplifies to the WR. Finally,

Result 5 follows from the fact that Pr(T = c) = 0 implies p1(y) ≤ q1(y) and q0(y) ≤ p0(y)

for all y ∈ Y (see (22) and (23)), such that (32) simplifies accordingly. �

Note that, different from the WR, the weights of the parameters defined in Proposition

1 cannot be negative. For example, consider Result 1, where the weights are given by

p1(y)−min(p1(y),q1(y))∫
Y p1(y)−min(p1(y),q1(y))dy

, and q0(y)−min(p0(y),q0(y))∫
Y q0(y)−min(p0(y),q0(y))dy

, and are thus non-negative. This is a

potential advantage not only when the WR fails to identify the LATE on the compliers,

but also in at least two additional scenarios that we will briefly discuss. In the first scenario,

assume that Assumptions 1 and 2 hold, that global monotonicity fails but that the LATEs

on the compliers and the defiers are equal. If in this case Pr(T = c) > Pr(T = d),

then 2SLS consistently estimates the WR given by (20). The estimator, however, may

suffer from severe weak instrument issues in finite samples particularly when the shares of

compliers and defiers are not too different and are netting out (making the denominator of

(20) very small). In the limiting case, when Pr(T = c) = Pr(T = d), the WR does not exist

and the consistency of 2SLS therefore no longer applies. In contrast, the LATEs given by

Proposition 1 remains well defined even in the limiting case when Pr(T = c) = Pr(T = d)

facilitating the construction of more powerful estimators. In the second scenario, assume

that global monotonicity is satisfied. In finite samples it may occur that the estimators of

pd(y) and qd(y) will be close to or will actually be violating the constraints given by (19).

In this scenario, the estimators based on the sample analog of the LATEs in Proposition 1

provide substantial efficiency gains compared to 2SLS, as also noted by Imbens and Rubin

(1997). A simulation study described in the online appendix provide supportive evidence

in favor of this statement.

16



Figure 2 is a graphical illustration of the identification results under the conditions of

Assumptions 1 and 2. The compliers are located in the regions of the support, Y , where

p1(y) > q1(y) and q0(y) > p0(y), and in these regions the density of the potential outcome

under treatment equals p1(y)−q1(y)
Pr(T=c)

if p1(y) > q1(y) and is zero otherwise. The share of

compliers is given as the area between the two curves, p1(y) and q1(y), on the parts of

Y where p1(y) > q1(y). Similarly, the density of the compliers’ potential outcome under

non-treatment equals q0(y)−p0(y)
Pr(T=c)

if q0(y) > p0(y) and is zero otherwise. Again, the area

between the curves, q0(y) and p0(y), on the parts of Y where q0(y) > p0(y) yields the

share of compliers. Symmetrically, the density of the defiers’ potential outcomes under

treatment and non-treatment are q1(y)−p1(y)
Pr(T=d)

if p1(y) < q1(y) and p0(y)−q0(y)
Pr(T=d)

if p0(y) > q0(y),

respectively, and is zero otherwise. The share of defiers corresponds to the area between

q1(y) and p1(y) for which p1(y) < q1(y) as well as to the region between p0(y) and q0(y)

for which q0(y) < p0(y).

Figure 2: Graphical illustration of the identification of LATEs under the conditions of
Assumptions 1 (instrument) and 2 (local monotonicity)
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As pointed out by Kitagawa (2009), Assumptions 1 and 2 are actually testable by a

measure referred to as the scale constraint. Accordingly, the share of any type of subjects

in the population must be equal across treatment states. This condition writes

∫
Y
f(y(1), T = t)dy =

∫
Y
f(y(0), T = t)dy = Pr(T = t) ∀t = {a, c, d, n}. (33)

For the compliers, for example, the scale contraint implies that Pr(D = 1|Z = 1) − λ1 =

Pr(D = 0|Z = 0) − λ0; see (26) and (27). In the online appendix we demonstrate that if

the scale constraint holds for one type of subject, this provides a necessary and sufficient

condition for (33) to hold for all types of subjects in the population. As an additional

check of the plausibility of LM, we suggest plotting the differences between pd(y) and qd(y)

in order to see whether the location of compliers and defiers on Y is consistent with prior

expectations based on theoretical or empirical grounds. For example, one might wish to

compare the distributions of observable covariates, denoted by X, across compliers and

defiers to infer on their socio-economic differences. In fact, if Assumptions 1 and 2 are

invoked in the presence of X, it is easy to show that for any x in the support of the

covariate space,

f(X = x,D = 1|Z = 1, p1 > q1) − f(X = x,D = 1|Z = 0, p1 > q1) = f(X = x, T = c,D = 1),

f(X = x,D = 1|Z = 0, p1 < q1) − f(X = x,D = 1|Z = 1, p1 < q1) = f(X = x, T = d,D = 1),

f(X = x,D = 0|Z = 0, p0 < q0) − f(X = x,D = 0|Z = 1, p0 < q0) = f(X = x, T = c,D = 0),

f(X = x,D = 0|Z = 1, p0 > q0) − f(X = x,D = 0|Z = 0, p0 > q0) = f(X = x, T = d,D = 0).
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Furthermore, by Pr(T = t|D = d) = Pr(T = t) under Assumption 1 it follows that

f(X = x|T = c,D = 1) =
f(X = x, T = c,D = 1)

Pr(T = c,D = 1)
=
f(X = x, T = c,D = 1)

Pr(T = c) Pr(D = 1)
,

f(X = x|T = d,D = 1) =
f(X = x, T = d,D = 1)

Pr(T = d,D = 1)
=
f(X = x, T = d,D = 1)

Pr(T = d) Pr(D = 1)
,

f(X = x|T = c,D = 0) =
f(X = x, T = c,D = 0)

Pr(T = c,D = 0)
=
f(X = x, T = c,D = 0)

Pr(T = c) Pr(D = 0)
,

f(X = x|T = d,D = 0) =
f(X = X,T = d,D = 0)

Pr(T = d,D = 0)
=
f(X = x, T = d,D = 0)

Pr(T = d) Pr(D = 0)
.

This permits us to contrast compliers and defiers in terms of observed characteristics and

to verify the plausibility of the Assumptions 1 and 2 within each type of subjects. In fact,

if X are covariates that cannot be affected by the treatment, implying that X itself rather

than its potential values are independent of Z, then f(X = x|T = t,D = 1) = f(X =

x|T = t,D = 0), which for testing purposes is an easy operational hypothesis measure.

2.3 Alternatives to local monotonicity

Our discussion has shown that if Assumption 1 holds, the identification of LATE does

not necessarily rely on global monotonicity. The LATEs introduced by Proposition 1

are equivalent to the WR if global monotonicity holds, but can also be identified under

the weaker Assumption 2, which as shown is partially testable by the scale constraint.

Moreover, if Assumption 2 does not hold, neither does global monotonicity, and in this

case there appears to be no gains in assuming global monotonicity rather than local

monotonicity. However, albeit more general, also LM may appear restrictive in some

applications, in particular when outcomes have limited support. For binary outcomes,

for example, the conditions of Assumption 2 imply that the potential outcomes of all

compliers given a particular treatment state are either zero or unity, while all defier

outcomes take on the exact opposite value. For this purpose it appears instructive to
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compare the identification under LM to an alternative relaxation of monotonicity offered

in de Chaisemartin (2016), the so-called compliers-defiers (CD) assumption, which admits

identification of the LATE on a subset of compliers:

Compliers-defiers (CD): There exists a subpopulation of compliers cd, such that

Pr(T = cd) = Pr(T = d) and E(Y (1)− Y (0)|T = cd) = E(Y (1)− Y (0)|T = d).

The CD assumption states that if defiers are present, a subset of compliers of the same

relative size with identical LATE exists. In this case the WR identifies the LATE on the

remaining subset of compliers, which are subjects that do not necessarily resemble subjects

that are defiers. These compliers are the so-called compliers-survivors or “comvivors”,

denoted by cs. By splitting the compliers into compliers-defiers and compliers-survivors in

(20) we obtain

WR =
E(Y (1)− Y (0)|T = cs) · Pr(T = cs)

Pr(T = cs) + Pr(T = cd)− Pr(T = d)
+

E(Y (1)− Y (0)|T = cd) · Pr(T = cd)

Pr(T = cs) + Pr(T = cd)− Pr(T = d)

− E(Y (1)− Y (0)|T = d) · Pr(T = d)

Pr(T = cs) + Pr(T = cd)− Pr(T = d)

=
E(Y (1)− Y (0)|T = cs) · Pr(T = cs)

Pr(T = cs)

= E(Y (1)− Y (0)|T = cs). (34)

We briefly discuss what CD and LM imply under violations of constraints (19) in

order to see that the two assumptions indeed are not nested. To this end, assume that

Pr(T = c) > Pr(T = d) and separate the support of the outcome into the following level

sets, depending on whether (19) is violated or not conditional on the treatment:

Cq1 = {y ∈ Y : p1 (y) > q1 (y)} , Cp0 = {y ∈ Y : q0 (y) > p0 (y)}

Cp1 = {y ∈ Y : q1 (y) > p1 (y)} , Cq0 = {y ∈ Y : p0 (y) > q0 (y)} . (35)
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Furthermore, let c+ and d+ denote the compliers and the defiers, respectively, located in

either Cq1 or Cp0 ( i.e., in areas satisfying the constraints), and let c− and d− denote those

located in either Cp1 or Cq0 , where (19) is violated. It is easy to show that (20) now

corresponds to

WR =
E(Y (1)− Y (0)|T = c+) · Pr(T = c+)− E(Y (1)− Y (0)|T = d+) · Pr(T = d+)

(Pr(T = c+)− Pr(T = d+))− (Pr(T = d−)− Pr(T = c−))

+
E(Y (1)− Y (0)|T = c−) · Pr(T = c−)− E(Y (1)− Y (0)|T = d−) · Pr(T = d−)

(Pr(T = c+)− Pr(T = d+))− (Pr(T = d−)− Pr(T = c−))
.(36)

Note that as defiers outnumber compliers in the violation areas, then Pr(T = d−)−Pr(T =

c−) > 0. If CD holds, the share of comvivors corresponds to the denominator in (36) and

Pr(cs) = (Pr(T = c+) − Pr(T = d+)) − (Pr(T = d−) − Pr(T = c−)). Furthermore, by

inspection of (34) and (36) it becomes evident that under CD, a weighted average of LATEs

on subsets of c+ and c−, whose joint shares equal Pr(T = d+) + Pr(T = d−) (i.e., those

sets of c+ and c− not pertaining to cs), corresponds to a weighted average of LATEs on

d+ and d−. The weights depend on the relative shares of the various (subsets of) subject

types. One can therefore construct cases in which CD holds if (19) is violated. However,

the plausibility of CD arguably decreases in the range of the support of Cp1 and Cq0 and in

the share of d−. In contrast to CD, LM assumes Pr(d+) = Pr(c−) = 0. As this is neither

necessary nor sufficient for CD, this shows that the two assumptions are not nested.

Even in the case where the conditions of Assumption 2 fail to hold, such that Pr(d+) > 0

and/or Pr(c−) > 0, the expressions of Proposition 1 may (similarly to the WR under CD)

still identify treatment effects on subsets of compliers and defiers. de Chaisemartin (2012)

shows that this is the case if LM is replaced by a weaker local stochastic monotonicity

(LSM) assumption, which appears plausible in many empirical contexts:5

5We have also considered a local version of CD. However, this assumption turns out to be equivalent
to LSM if Cp1

and Cq0 are non-empty and to CD if these sets are empty. More details ara available from
the authors upon request.
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Assumption 3 (local stochastic monotonicity, LSM): Let y(d) be in Y , for d =

0, 1. Then the condition Pr(T = c|Y (d) = y(d)) ≥ Pr(T = d|Y (d) = y(d)) implies that

Pr(T = c|Y (1) = y(1), Y (0) = y(0)) ≥ Pr(T = d|Y (1) = y(1), Y (0) = y(0)). Similarly, the

condition Pr(T = c|Y (d) = y(d)) ≤ Pr(T = d|Y (d) = y(d)) implies that Pr(T = c|Y (1) =

y(1), Y (0) = y(0)) ≤ Pr(T = d|Y (1) = y(1), Y (0) = y(0)).

Assumption 3 admits the existence of both compliers and defiers at any given value

of the marginal potential outcome distribution. However, LSM requires that if the share

of one type of subjects weakly dominates the share of the other subject conditional on

either Y (1) or Y (0), it must also dominate conditional on both potential outcomes jointly.

Under Assumption 1 alone, the data reveal such a dominance conditional on one of the two

potential outcomes: p1(y) ≥ q1(y) implies that Pr(T = c|Y (1) = y) ≥ Pr(T = d|Y (1) = y),

and similarly p1(y) ≤ q1(y) implies that Pr(T = c|Y (1) = y) ≤ Pr(T = d|Y (1) = y).

Moreover, it follows from q0(y) ≥ p0(y) that Pr(T = c|Y (0) = y) ≥ Pr(T = d|Y (0) = y),

and from q0(y) ≤ p0(y) that Pr(T = c|Y (0) = y) ≤ Pr(T = d|Y (0) = y). When enforcing

Assumption 4, de Chaisemartin (2012) shows that the identification results of Proposition

1 apply to a subset of compliers outnumbering the defiers whenever Pr(T = c|Y (1) =

y(1), Y (0) = y(0)) ≥ Pr(T = d|Y (1) = y(1), Y (0) = y(0)), and similarly to a subset

of defiers outnumbering the compliers whenever Pr(T = c|Y (1) = y(1), Y (0) = y(0)) ≤

Pr(T = d|Y (1) = y(1), Y (0) = y(0)). Under Assumptions 1 and 3, Result 1 of Proposition

1 can be shown to correspond to

∫
y∈Cq1

y · (p1(y)−min(p1(y), q1(y)))dy

Pr(D = 1|Z = 1)− λ1
−

∫
y∈Cp0

y · (q0(y)−min(p0(y), q0(y)))dy

Pr(D = 0|Z = 0)− λ0

=
E(Y (1)− Y (0)|T = c+) · Pr(T = c+)− E(Y (1)− Y (0)|T = d+) · Pr(T = d+)

Pr(T = c+)− Pr(T = d+)

= E(Y (1)− Y (0)|T = cs∗),
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where

Pr(D = 1|Z = 1)− λ1 = Pr(D = 0|Z = 0)− λ0 = Pr(T = c+)− Pr(T = d+) = Pr(T = cs∗).

Here cs∗ denotes the “local” comvivors in Cq1 and Cp0 . Note that Pr(T = cs∗) is greater

than or equal to the share of comvivors under CD given by Pr(cs) = Pr(T = c+)−Pr(T =

d+)− (Pr(T = d−)− Pr(T = c−)). Since Pr(T = d−)− Pr(T = c−) ≥ 0, if both LSM and

CD hold, LSM admits identifying the LATE on a larger share of compliers than the latter

when Pr(T = d−) − Pr(T = c−) > 0 (i.e., Cp1 and Cq0 are non-empty). This may lead

to important finite sample efficiency gains using estimators of the LATE given by Result

1 of Proposition 1 and potentially to higher external validity. Analogous results hold for

Result 2 of Proposition 1 and thus also for the joint population of local comvivors and

local defiers-survivors considered in de Chaisemartin (2012).

Finally, it is worth mentioning that Assumption 3 is a local version of stochastic

monotonicity, i.e., Pr(T = c|Y (1), Y (0)) ≥ Pr(T = d|Y (1), Y (0)), see, e.g., Small and Tan

(2007), which is stronger than and sufficient for CD, see the discussion in de Chaisemartin

(2016). In contrast, Assumption 3 is neither sufficient nor necessary for CD. Recall

that the latter holds if there exists some subset in c+ and c− whose share equals

Pr(T = d+) + Pr(T = d−) and whose LATE equals the joint LATE on d+ and d−. On the

other hand, LSM implies that there exists a subset in c+ whose share equals Pr(T = d+)

and whose LATE equals the LATE on d+ (and an analogous restriction for d− and c−,

respectively). Similarly as for LM, a testable implication for Assumption 1 and LSM is

that Pr(D = 1|Z = 1)− λ1 = Pr(D = 0|Z = 0)− λ0.
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3 Estimation

Estimation of the LATEs presented in Proposition 1 will be based on the sample analogy

principle. For that purpose, rewrite Results 1-3 of Proposition 1 as

µc =

∫
y∈Cq1

y(p1(y)− q1(y))dy∫
y∈Cq1

p1(y)− q1(y)dy
−

∫
y∈Cp0

y(q0(y)− p0(y))dy∫
y∈Cp0

q0(y)− p0(y)dy
,

µd =

∫
y∈Cp1

y(q1(y)− p1(y))dy∫
y∈Cp1

q1(y)− p1(y)dy
−

∫
y∈Cq0

y(p0(y)− q0(y))dy∫
y∈Cq0

p0(y)− q0(y)dy
,

µc,d =

∫
y∈Cq1

y(p1(y)− q1(y))dy∫
y∈Cq1

p1(y)− q1(y)dy +
∫
y∈Cp1

q1(y)− p1(y)dy
−

∫
y∈Cp0

y(q0(y)− p0(y))dy∫
y∈Cp0

q0(y)− p0(y)dy +
∫
y∈Cq0

p0(y)− q0(y)dy

+

∫
y∈Cp1

y(q1(y)− p1(y))dy∫
y∈Cq1

p1(y)− q1(y)dy +
∫
y∈Cp1

q1(y)− p1(y)dy
−

∫
y∈Cq0

y(p0(y)− q0(y))dy∫
y∈Cp0

q0(y)− p0(y)dy +
∫
y∈Cq0

p0(y)− q0(y)dy
,

where the level sets Cq1 , Cp0 , Cp1 , and Cq0 are defined by (35). By sample analogy, the

estimators of interest can then be obtained as

µ̂c =
θ̂1

P̂1|1 − λ̂1
− θ̂0

P̂0|0 − λ̂0
, (37)

µ̂d =
θ̂2

P̂1|0 − λ̂1
− θ̂3

P̂0|1 − λ̂0
, (38)

µ̂c,d =
θ̂1 + θ̂2

P̂1|1 + P̂1|0 − 2λ̂1
− θ̂0 + θ̂3

P̂0|0 + P̂0|1 − 2λ̂0
, (39)

where

θ̂0 =

∫
Cp0

y (q̂0(y)− p̂0 (y)) dy, θ̂1 =

∫
Cq1

y (p̂1(y)− q̂1 (y)) dy,

θ̂2 =

∫
Cp1

y (q̂1(y)− p̂1 (y)) dy, θ̂3 =

∫
Cq0

y (p̂0(y)− q̂0 (y)) dy, (40)
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and

λ̂d =

∫
Y

min (p̂d (y) , q̂d (y)) dy, d = 0, 1, P̂d|z =
1

n

n∑
i=1

I (Di = d) I (Zi = z)
1
n

∑n
i=1 I (Zi = z)

, d, z = 0, 1.

Let I (·) denote the indicator function, which equals one if its argument holds true and

is zero otherwise. Standard kernel based methods are used to obtain estimators of the

relevant densities, i.e.,

p̂d(y) =
f̂Y,D,Z (y,D = d, Z = 1)

f̂Z (Z = 1)
, q̂d(y) =

f̂Y,D,Z (y,D = d, Z = 0)

f̂Z (Z = 0)
,

for

f̂Y,D,Z (y,D = d, Z = z) =
1

n

n∑
i=1

L(Di,Zi),(d,z)Wh,Yi,y, f̂Z (Z = z) =
1

n

n∑
i=1

LZi,z.

Here, L and W are product kernels, see Li and Racine (2007), pp. 164-165, defined as

L(Di,Zi),(d,z) = I (Di = d) I (Zi = z) , Wh,Yi,y =
1

h
w

(
y − Yi
h

)
, LZi,z = I (Zi = z) ,

where h denotes the bandwidth. The Gaussian kernel is used throughout the simulations

(presented in the online appendix) and in the empirical application (presented in Section

4). Integrals can be computed numerically using any of the many approximation methods

available. For the benchmark estimators, we use the trapezoid rule. We refer to these

estimators as “plug-in” estimators. Moreover, in the online appendix we present a set of

estimators that are based on a computationally more convenient approximation of integrals

of density functions. This approximation imposes the restriction that a proper density

must integrate to unity. We will refer to estimators based on this type of approximation

as “modified plug-in” estimators.
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To derive the asymptotic properties of the estimators for known level sets we introduce

the following assumptions on the kernel estimators.

Assumption 4 (kernel estimation): (a) The general nonnegative bounded

kernel function, w (·), satisfies (i)
∫
w (v) dv = 1, (ii) w (v) = w (−v), and (iii)∫

v2w (v) dv = κ2 > 0; (b) supy∈Y B (y,Di = d, Zi = z) = M(d,z),y < ∞ for all d = 0, 1

and z = 0, 1, where B (y,D = d, Z = z) = 1
2
κ2
∇2(fY,D|Z(y,D=d|Z=z))

(∇y)2

/
fZ (Z = z); (c) for all

d = 0, 1 (i) infy∈Y pd (y) = Mpi,y > 0, and (ii) infy∈Y qd (y) = Mqi,y > 0; (d) (Yi, Di, Zi)

for i = 1, 2, ..., n is an i.i.d. distributed random vector with a joint mixed distribution

given by fY,D,Z (Yi = y,Di = d, Zi = z) with support Y × (0, 1) × (0, 1), where Y ⊆ R.

Furthermore, all absolute second order moments E
(
|Y |2

)
, Epd

(
|Y |2

)
and Eqd

(
|Y |2

)
exist

for d = 0, 1.

Assumption 4 is standard for kernel-based estimation methods. Assumption 4(a)

implies that the estimated density is well defined. Assumption 4(b) imposes twice

continuous differentiability of pd and qd. It is worth noticing that Assumption 4(c) ensures

that p and q are not truncated and rules out boundary effects. It simplifies the proof, but

can be relaxed by using boundary kernels (see Li and Racine, 2007). Assumption 4(d) is

written in general terms and implies, for instance, the existence of the following moments:

Ep1 (Yi|Yi ∈ Cq1), Eq1 (Yi|Yi ∈ Cq1), Ep0 (Yi|Yi ∈ Cp0), Eq0 (Yi|Yi ∈ Cp0), E (|Yi|), etc.

We can now establish the following asymptotic properties of the estimators of the

LATEs given by Proposition 1:
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Theorem 1 (asymptotics): Let the conditions of Assumption 4 hold and let the level

sets Cp0 , Cq0 , Cp1 , and Cq1 be known. Then

√
n (µ̂c,d − µc,d − bc,d)

d→ N (0,Ωc,d) ,

√
n (µ̂c − µc − bc)

d→ N (0,Ωc) ,

√
n (µ̂d − µd − bd)

d→ N (0,Ωd) ,

for n → ∞, h → 0, and
√
nh2 → 0, where bc,d, bc, and bd denote finite sample bias terms

that vanish asymptotically. Detailed expressions for Ωc,d,Ωc, and Ωd are provided in the

online appendix.

Proof of Theorem 1 See the online appendix. �

Theorem 1 implies that if the level sets Cp0 , Cq0 , Cp1 , and Cq1 are known, the LATE es-

timators defined in (37),(38), and (39) are
√
n-consistent and asymptotically normal under

relatively mild regularity conditions. To evaluate how well the asymptotic distributions of

Theorem 1 approximate the finite sample distributions of the LATE estimators, we have

run an extensive set of Monte Carlo simulations in which we investigate properties such

as one-sided coverage probabilities, bias, and efficiency. The simulation results are very

encouraging and suggest that the asymptotic distribution of the LATE estimators satis-

factorily approximates the finite sample behavior.

In the online appendix we propose a set of asymptotically equivalent estimators. For

known level sets, these estimators do not require kernel smoothing and selection of band-

width parameters. This feature makes them particularly attractive from a practical and

computational perspective. Throughout the discussion we will refer to these estimators as

“bandwidth-free” estimators.
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A caveat of our discussion so far is that in empirical applications the level sets are typi-

cally unknown and need to be estimated. Anderson, Linton, and Whang (2012) and Mam-

men and Polonik (2013) suggest plug-in methods for estimating the level sets. One possi-

ble candidate could be Ĉp0 = {y ∈ C : q̂0 (y)− p̂0 (y) > cn, q̂0 (y) > 0, p̂0 (y) > 0}, where cn

is a positive and data-dependent threshold parameter that approaches zero as the sample

size goes to infinity. We recommend an alternatively and novel bootstrap-based plug-in es-

timator. Define ∆̂d (y) = p̂d (y)− q̂d (y), which is estimated based on cross-validated band-

width selection, and denote by ∆̂∗d (y) the bootstrap estimate of ∆̂d (y). The level sets can

then be estimated using the following pointwise (1− α)%-confidence intervals, e.g.,

Ĉpd =

{
y ∈ < : Median

(
∆̂∗d (y)

)
+ Z1−α

2

√
Var

(
∆̂∗d (y)

)
< 0

}
, (41)

Ĉqd =

{
y ∈ < : Median

(
∆̂∗d (y)

)
− Z1−α

2

√
Var

(
∆̂∗d (y)

)
> 0

}
, (42)

for d = 0, 1, where Z1−α
2

is the (1− α
2
)-percentile of the standard normal distribution.6

Deriving the asymptotic properties of our estimators when using estimated level sets is

outside the scope of this paper. However, the simulations presented in the online appendix

strongly suggest that the properties of the estimators do not change substantially when we

replac known level sets with the estimated level sets given by (41) and (42).

In the simulation study, we also compare the LATE estimators given by (37), (38),

and (39) to the commonly used 2SLS. We find that in cases where there are no defiers,

these LATE estimators can perform better in terms of smaller variance and smaller mean

squared error relatively to 2SLS, which is evidence in support of Imbens and Rubin

(1997). This implies that even in cases where monotonicity is a reasonable assumption it

is recommendable to use the LATE estimators (37), (38), and (39), as they are efficient

6As it is commonly argued, the median is prefered over the mean of
(

∆̂∗
d (y)

)
because of increased

precision/robustness of the resulting bootstrap statistic
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relative to 2SLS. Our simulation results suggest that efficiency gains can be substantial in

small samples with a relatively weak instrument.

4 Empirical application

This section provides an application to the 1980 U.S. census data analyzed by Angrist

and Krueger (1991), which (among other cohorts) contain 486,926 males born in 1940-49.

Angrist and Krueger (1991) assess the effect of education on wages by using the quarter of

birth as an instrument to control for potential endogeneity (for example, due to unobserved

ability) between the treatment and the outcome. The idea is that the quarter of birth

instrument affects education through age-related schooling regulations. As documented in

Angrist and Krueger (1992), state-specific rules require that a child must have attained the

first grade admission age, which is six years in most cases, on a particular date during the

year. Because schooling is compulsory until the age of 16 in most states, see Appendix 2

in Angrist and Krueger (1991), pupils who are born early in the year are in the 10th grade

when turning 16. As the school year usually starts in September and ends in July, these

pupils have nine years of completed education if they decide to quit education as soon

as possible. In contrast, pupils born after the end of the academic year but still entering

school in the same year they turn six will have ten years of completed education at age 16.

This suggests education to be monotonically increasing in the quarter of birth.

However, the quarter of birth instrument is far from being undisputed. For instance,

Bound, Jaeger, and Baker (1995) challenge the validity of the exclusion restriction and

present empirical results that point to systematic patterns in the seasonality of birth (for

instance w.r.t. performance in school, health, and family income), which may cause a direct

association with the outcome. In line with these arguments, Buckles and Hungerman (2013)
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document large differences in maternal characteristics for births throughout the year (with

winter births being more often realized by teenagers and unmarried women) based on U.S.

birth certificate data and census data. For this reason, we will only consider quarters two

and three in our analysis (i.e., the warmer seasons of the year). We acknowledge that this

may not completely dissipate concerns about seasonality, but nevertheless assume that

Assumption 1 is satisfied for the subsample born in the second or third quarters of the

year (244,512 observations). The instrument Z is equal to zero for individuals born in the

second quarter and equal to unity if born in the third quarter. The treatment D is a binary

indicator that is equal to zero for individuals receiving high school education or less (i.e.,

up to 12 years of education) and unity if obtaining at least some higher education (i.e., 13

years or more). That is, we are interested in the returns to having at least some college

education. According to our definition, roughly 48% (52%) of our sample receive lower

(higher) education. The outcome variable Y is the log weekly wage.

Secondly, a crucial question related to standard IV estimation is whether positive

monotonicity holds for all individuals. This appears unlikely in the light of strategic

school entry behavior as documented by Barua and Lang (2009), which may entail

deviations from the schooling regulations. The authors present empirical evidence of

redshirting based on 1960 U.S. census data implying that many parents did not enroll

their children at the earliest permissible entry age but postponed school entry. This

occurred particularly often for children born late in the year. Aliprantis (2012) provides

further empirical support for redshirting based on the Early Childhood Longitudinal

Study. Moreover, Klein (2010) acknowledges that redshirting may also be induced by

schools, which are generally not obliged to admit all children who turn six before the

state-wide cutoff date. As discussed in Klein (2010), both redshirting and school policies

may reverse the relation between education and the instrument for some individuals.

Because children with postponement are close to seven when entering school and will just
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have started the 10th grade when turning 16, some of them may decide to drop out

directly, with only nine years of completed education. In contrast, pupils born earlier will

be at an advanced stage of the 10th grade when turning 16 and may therefore decide to

complete the grade, thus having at least 10 years of completed education. For these

individuals, compulsory schooling decreases in the quarter of birth and therefore violates

monotonicity.

The implausibility of monotonicity motivates the use of the weaker Assumption 2

imposing local monotonicity only, while Assumption 1 (i.e., the exclusion restriction) will

be maintained. LM is satisfied if wage is a positive function of socio-economic status and

if socio-economic status also determines postponement. This is the case if parents with a

high socio-economic status are more inclined to delay their children’s school entry, for

example, because they can more easily afford child care costs for an extra year and/or

behave more strategically in terms of schooling decisions compared to other groups.

Empirical evidence pointing in this direction is provided by Bedard and Dhuey (2006),

who report that children from the top quarter of the socio-economic distribution are

over-represented among those who redshirt, and Aliprantis (2012), who finds that children

whose enrollment is delayed are disproportionately wealthy with better-educated parents

and more books at home. To summarize, it would be anticipated to find defiers to be

situated in regions in the upper part of the wage distribution conditional on a particular

level of education and compliers to come from regions in the lower part.

The plausibility of this hypothesis can be checked graphically by plotting the estimated

differences between pd and qd for d = 1, 0. For this purpose, the bootstrap procedure

outlined in Section 3 is applied and the respective 95% confidence bands are computed

accordingly. In each of the 6000 bootstrap replications the densities pd(y) and qd(y) are

estimated by kernel methods and cross-validated bandwidth on an equidistant grid of 1000
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values on the support of the empirical weekly log wage distributions. The results are

plotted in Figure 3. Under LM, the compliers are located in the green areas with 95%

confidence, which, in agreement with our hypothesis, are in the lower part of the wage

distribution both under treatment and non-treatment. The defiers are located in the blue

areas, which, as conjectured, are in the upper part of the log wage distributions in both

treatment states. Results are similar when 90% confidence bands are used, as shown in the

online appendix. Note that if Assumption 2 fails, potential wage distributions of compliers

and defiers overlap. This is a possibility here, as redshirting probably is not solely a

function of socio-economic status but also of other factors, and wage is therefore not the

only determinant of subject type. However, if the weaker Assumption 3 holds instead, the

green and blue areas provide the areas for the compliers-survivors and defiers-survivors,

respectively; see the discussion in Section 2.3.

After having obtained estimators of all the level sets based on the bootstrap according

to (41) and (42), we can estimate the LATEs for the compliers, the defiers, and their joint

distribution by the bandwidth-free estimators µ̂ac , µ̂
a
d, and µ̂ac,d, the plug-in estimators µ̂c,

µ̂d, and µ̂c,d, as well as the modified plug-in estimators denoted by µ̂bc, µ̂
b
d, and µ̂bc,d (see

Section 3). For the plug-in and modified plug-in estimators we use Silverman’s rule of

thumb bandwidth, denoted b, raised to the power of 3/2.7 Likewise, we test the scale

constraint Pr(D = 1|Z = 1) − λ1 − (Pr(D = 0|Z = 0) − λ0) = 0 based on all three

estimation methods. Concerning inference, we bootstrap the estimators of interest 6000

times to approximate their distributions, and the associated p-values are computed by

assessing the rank of the estimates in their respective re-centered bootstrap distributions.

We use two-sided hypothesis tests when computing p-values of the scale constraint and the

LATE estimators and compute p-values associated with one-sided tests for complier and

7This particular choice of bandwidth (i.e., h = b(3/2)) is motivated by Theorem 1 and is sufficient for
the condition

√
nh2 → 0 to be satisfied.
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Figure 3: Estimated differences in densities of log weekly wages (w), i.e., p̂d (w) − q̂d (w)
(blue solid line) under treatment (d = 1, lower panel) and non-treatment (d = 0, upper
panel). The red dashed lines indicate 95% confidence bands. Estimations of the curves are
based on 6000 bootstrap replications using a Gaussian Kernel and cross-validated band-
width selection. Compliers are classified/estimated to exists in the green areas, whereas
defiers exist in the blue areas.
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defier shares (as the theoretical lower bound of these magnitudes is zero).

Table 2 presents the estimation results based on estimated level sets (using 95% (C95)

and 90% (C90) confidence bands) in addition to 2SLS (which is numerically equivalent

to the Wald estimator). The first six columns contain the estimates of the complier and

defier shares using the bandwidth-free estimators and the two plug-in type estimators,

respectively. Either share is, albeit very small (0.3% to 0.4%), significant at the 5% level

irrespectively of the estimation method. This indicates a violation of global monotonicity,

rendering 2SLS generally inconsistent. Furthermore, the difference between complier and

defier shares is very small, entailing a weak instrument problem for 2SLS for reasons

discussed in Section 2. Indeed, a first stage OLS regression of D on a constant and Z yields

a t-value of only 0.778 for the coefficient on Z, so that one would incorrectly conclude that
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the share of compliers is not statistically different from zero when incorrectly assuming

global monotonicity. For this reason, our proposed methods not only come with potential

gains in robustness, but also in efficiency. The next three columns give the estimates

of Pr(D = 1|Z = 1) − λ1 − (Pr(D = 0|Z = 0) − λ0) for testing the scale constraint,

which must not be statistically different from zero under the null (see Section 2). For each

of our estimation approaches and inference methods, the estimates are close to zero and

not statistically significant at any conventional level, so that the identifying assumptions

cannot be rejected.

The lower part of Table 2 presents the LATE estimators on the joint population of de-

fiers and compliers (LATEcd), on the compliers only (LATEc), and on the defiers only

(LATEd) as well as the 2SLS estimator. The precision of the 2SLS estimator is relatively

low, implying that zero returns to higher education cannot be rejected. In contrast, the

LATEs on compliers, defiers, and the joint population are highly significant, and the re-

sults suggest that education increases weekly wages by roughly 80 to 100%. In conclusion,

our results suggest that the wage effects of higher education are substantial and quite ho-

mogeneous across compliers and defiers.8 We wish again to point out that if Assumption

2 is violated but Assumption 3 holds, then the estimated shares and treatment effects still

apply but in this case only to subpopulations of compliers and defiers. Alternatively, in-

voking CD instead and thereby focussing on 2SLS, would not permit us to draw conclu-

sions about the returns to education due to the apparent weak instrument problem. More-

over, under the CD assumption, the estimated share of (global) compliers-survivors, which

is equivalent to the first stage of a 2SLS regression, would not be significantly different

from zero, while the estimated share of local compliers-survivors is small, but statistically

significant according to our methods.

8We would like to point out that our estimation results are robust to educated modifications of the
level sets. The level set robustness results are available from the authors upon request.
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Table 2: LATEs of having completed more than 12 years of education on log weekly wage among cohorts born in the second
and third quarters of the year in the 1940s (n=244,512).

Level set Compliers Defiers Test
P (T = c)a P (T = c) P (T = c)b P (T = d)a P (T = d) P (T = d)b Testa Test Testb

C90
estimator 0.004 0.004 0.004 0.003 0.004 0.004 −0.001 −0.001 −0.001
p-value 0.011 0.013 0.013 0.021 0.014 0.014 0.675 0.704 0.707

C95
estimator 0.003 0.003 0.003 0.003 0.003 0.003 −0.001 −0.001 −0.001
p-value 0.012 0.011 0.011 0.026 0.026 0.027 0.724 0.699 0.700

Level set LATEcd LATEc LATEd WALD
µ̂a
c,d µ̂c,d µ̂b

c,d µ̂a
c µ̂c µ̂b

c µ̂a
d µ̂d µ̂b

d 2SLS

C90
estimator 0.907 0.906 0.906 0.801 0.816 0.816 1.023 0.995 0.995 1.379
p-value 0.003 0.003 0.003 0.010 0.010 0.010 0.023 0.015 0.017 0.213

C95
estimator 0.928 0.921 0.921 0.898 0.880 0.880 0.963 0.969 0.969 1.379
p-value 0.001 0.001 0.001 0.007 0.006 0.006 0.018 0.019 0.018 0.213

Note: µ̂a denotes the bandwidth-free estimator, µ̂ denotes the plug-in estimator, while µ̂b is the modified plug-in estimator. A similar notation

is used for all the other parameters. C90 and C95 denote the level sets based on 90 and 95% confidence bands, respectively. For the plug-in and

the modified plug-in estimators we use a bandwidth, b
3
2 , where b is Silverman’s rule-of-thumb bandwidth. Bootstrap p-values are based on 6000

resamples.
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5 Conclusion

We have demonstrated that local average treatment effects (LATEs) are identified under

strictly weaker conditions than the standard assumptions invoked in the literature. Under

the assumption of joint independence of the instrument and the potential treatment

states/outcomes, the (global) monotonicity of the treatment in the instrument may be

weakened to local monotonicity (LM). This implies that defiers no longer need to be

assumed away, so that also the LATEs on the defiers as well as on the joint population of

defiers and compliers are identified. Furthermore, even if monotonicity is satisfied, using

the novel LATE estimators might result in substantial efficiency gains compared to the

2SLS estimator.

Even when relaxing monotonicity, LM might still be considered restrictive in some

applications. In this case, however, the proposed approach still identifies treatment effects

on subsets of compliers and defiers if the conditions of the weaker LSM, which might be

more plausible in some empirical applications, are satisfied.

We have applied our new methods to U.S. census data previously analyzed by Angrist

and Krueger (1991) in an attempt to estimate the returns to higher education for males

born in 1940-49 by using the birth quarter as an instrument for education. We have pro-

vided evidence in support of the existence of both compliers and defiers in this population

and illustrated that traditional LATE estimation is not robust to ignoring defiers. In par-

ticular, the 2SLS estimator is very imprecisely estimated because compliers and defiers net

out, thereby creating a weak instrument problem. In contrast, the new LATE estimators

introduced are much more efficient and predict large returns to higher education for com-

pliers and defiers that are very similar in magnitude. Finally, we have illustrated how a

visual inspection of the estimated complier and defier distributions can help in assessing

the plausibility of the global and local monotonicity assumptions.
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A Proof of the equivalence of the four scale con-

straints

We first show that under Assumptions 1 and 2, the defiers’ scale constraint Pr(D = 1|Z =
0) − λ1 = Pr(D = 0|Z = 1) − λ0 (with λd =

∫
Y min(pd(y), qd(y))dy) is equivalent to the

constraints faced by the compliers, i.e.,

Pr(D = 1|Z = 0)− λ1 = Pr(D = 0|Z = 1)− λ0
1− Pr(D = 0|Z = 0)− λ1 = 1− Pr(D = 1|Z = 1)− λ0

Pr(D = 1|Z = 1)− λ1 = Pr(D = 0|Z = 0)− λ0.

where the last line is the scale constraint for the compliers. The scale constraints for the
always takers and the never takers, respectively, are given by

λ1 = 1− δ0, and 1− δ1 = λ0,

where δd =
∫
Y max(pd(y), qd(y))dy. Considering λ1 = 1− δ0,

λ1 = 1− δ0
Pr(D = 1|Z = 1)− λ1 = Pr(D = 1|Z = 1)− (1− δ0)
Pr(D = 1|Z = 1)− λ1 = δ0 − Pr(D = 0|Z = 1)

Pr(D = 1|Z = 1)− λ1 =

∫
Y

max(p0(y), q0(y))dy −
∫
Y
p0(y)dy

Pr(D = 1|Z = 1)− λ1 =

∫
Y
p0(y)dy +

∫
Y
q0(y)dy −

∫
Y

min(p0(y), q0(y))dy −
∫
Y
p0(y)dy

Pr(D = 1|Z = 1)− λ1 = Pr(D = 0|Z = 0)− λ0.

This completes the proof.�
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B Structural models satisfying Assumptions 1 and 2

To judge the implications of Assumptions 1 and 2 in a structural model, consider the fol-
lowing two stage endogenous treatment selection model, with the first stage being charac-
terized by a random coefficient model:9

Yi = ϕ(Di, εi),

Di = I (γ0 + γiZi + νi > 0) , (B.1)

where i indexes a particular subject. I (·) is the indicator function which is equal to one if
its argument holds true and zero otherwise. ϕ is a general function, and εi, νi denote the
unobservables in the outcome and treatment equation and may be arbitrarily correlated.
γ0, γi denote the constant term and the random coefficient on the instrument, respectively.
Our assumptions require that whenever p1(Yi) ≥ q1(Yi) or q0(Yi) ≥ p0(Yi), respectively, γi
is large enough to satisfy Di(1) = I(γ0 + γi + νi > 0) ≥ Di(0) = I(γ0 + νi > 0), which
locally rules out defiers. A sufficient condition for this is γi ≥ 0. For p1(Yi) ≤ q1(Yi)
or q0(Yi) ≤ p0(Yi), respectively, it must hold that γi is small enough to satisfy Di(0) =
I(γ0 + νi > 0) ≥ Di(1) = I(γ0 + γi + νi > 0). A sufficient condition for this is γi ≤ 0. Note
that global monotonicity would restrict γi in either one or the other way of any i, while
Assumption 2 restricts γi only locally.

To give an idea about possible setups in which Assumption 2 holds while monotonicity
does not, we provide two parametric examples that put further structure on the equations
in (B.1). Firstly, assume that the outcome equation is characterized by the following model:

Yi = α0 + α1Di + α2Diεi + εi, (B.2)

where α0 is the constant, α1, α2 are the coefficients on the treatment and its interaction
(capturing individual effect heterogeneity), and εi is assumed to have finite first and second
moments. In this case, Yi(0) = α0 + εi, Yi(1) = α0 + α1 + (1 + α2)εi and the individual
treatment effect is α1 + α2εi. Moreover, assume that the coefficient on Z in the first stage
is a deterministic function of εi:

γi = β0 + ρεi, (B.3)

where β0 is a constant and ρ isthe coefficient on the unobserved term in the structural
equation. For ρ > 0, it follows that Di(1) ≥ Di(0) for all εi ≥ 0 and Di(1) ≤ Di(0) for
all εi ≤ 0, while the contrary holds for ρ < 0. As Yi is a monotonic function of εi (unless
α2 is exactly −1 and Di = 1), the outcomes of the compliers and defiers do not overlap
conditional on the treatment state so that LM is satisfied.

9We are indebted to Joshua Angrist for making valuable suggestions concerning potential models that
fit our framework.
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Secondly, we consider an extension of our setup to a Roy (1951) -type model, which
implies that the probability of treatment increases with the gains it creates. To this end,
we maintain the previous outcome equation (B.2), but modify the first stage:

Di = I (Yi(1)− Yi(0) + γiZi + νi > 0) = I (β0 + α1 + (α2 + ρZi)εi + νi > 0) , (B.4)

where the individual level treatment effect, e.g., the returns to education or training,
now influences the selection into treatment. In this case νi, if different from zero, may
be interpreted as individual costs, disutility, or utility of the treatment not reflected by
the treatment effect per se. The instrument Z exogenously shifts participation, but the
direction depends again on εi as specified in (B.3). The expression left of the equality
follows from substituting Yi(1) − Yi(0) by α1 + α2εi and using (B.3). Again, this model
implies a non-overlapping support of the potential outcomes of compliers and defiers due
to γi being a deterministic function of εi and Yi being monotonic in εi.
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C Non-binary instruments

This section discusses the identification of LATEs in the presence of a multi-valued discrete
instrument with bounded support.10 Under (global) monotonicity, Frölich (2007) shows
that if the support of Z is bounded so that Z ∈ [zmin, zmax], where zmin and zmax are finite
upper and lower bounds, it is possible to define and identify LATEs on the compliers with
respect to any two distinct subsets of the support of Z. The proportion of compliers in
general varies depending on the choice of subsets and is maximized when choosing the
endpoints zmin, zmax. In our framework which allows for compliers and defiers, this result
no longer holds in general without specifying LM more tightly. To see this, let z and z′

∈ [zmin, zmax] denote two subsets such that z 6= z′. Define Z̃ as

Z̃ =

 1 if Z ∈ z

0 if Z ∈ z′
. (C.1)

Let there exist a random variable Z such that Z⊥(D(1), D(0), Y (1), Y (0)), where ⊥
denotes independence.

As an example, consider the case that the instrument can take three values, e.g. Z ∈
{0, 1, 2}, such that instead of Assumption 1 we invoke the following independence assump-
tion:

Assumption 1a: Let there exist a random variable Z such that Z⊥(D(2), D(1), D(0), Y (1), Y (0)),
where ⊥ denotes independence.

Without imposing any form of monotonicity, there now exist eight types according
to D(2), D(1), D(0), see Table 3. Positive monotonicity rules out types 3, 5, 6, and 7
so that only always takers (type 1), never takers (type 8) and compliers when switching
the instrument from 0 to 1 (type 2) or from 1 to 2 (type 4) exist. In this framework,
one could possibly think of five different definitions of z, z′: (i) z = {0}, z′ = {1}, (ii)
z = {1}, z′ = {2}, (iii) z = {0}, z′ = {2}, (iv) z = {0, 1}, z′ = {2}, (v) z = {0}, z′ = {1, 2}.
(iii) maximizes the complier proportion, namely the joint proportion of types 2 and 4. This
is the case because it may induce individuals to react on the treatment that are otherwise
always or never takers when the instrument has less asymptotic power, i.e., operates over
a smaller support, such as in (i), which only covers type 2, and in (ii), which covers type
4. In contrast, (iv) and (v) may be chosen to maximize finite sample power, because
these setups encounter at least as many observations as (iii), at the cost of a weakly lower
complier proportion.

Identification becomes more complicated if we abandon (global) monotonicity. Without
further restrictions, all eight types may exist, out of which two are pure compliers (types 2
and 4), two are pure defiers (types 5 and 7) and two even switch from compliance to defiance

10We thank Toru Kitagawa for very helpful comments concerning the case of non-binary instruments.
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Table 3: Types for Z ∈ {0, 1, 2}

Type T D(2) D(1) D(0)
1 1 1 1
2 1 1 0
3 1 0 1
4 1 0 0
5 0 1 1
6 0 1 0
7 0 0 1
8 0 0 0

(type 6) or vice versa (type 3). Clearly, if LM is imposed w.r.t. D(1), D(0) only, which
allows identifying LATEs within (i), or w.r.t. D(2), D(1) only, which allows identifying
LATEs within (ii), identification of LATEs in (iii) to (v) is generally not feasible. The
reason is that the densities of compliers and defiers across (i) and (ii) may net each other
out when coarsening the values of the instrument as in (iii) and (iv) or when considering
endpoints only as in (v). I.e., some y(1) and/or y(0) might be inhabited by compliers
in (i) and defiers in (ii) or vice versa such that any definition of z, z′ not consisting of
neighboring support points in Z does in general not identify LATEs. One possibility to
establish identification is to assume that LM holds over all values in the support of the
instrument.

Assumption 2a: For all subjects in the population, either Pr(D(2) ≥ D(1) ≥
D(0)|y(d)) = 1 or Pr(D(0) ≥ D(1) ≥ D(2)|y(d)) = 1 ∀ y(d) ∈ Y , where d ∈ {0, 1}.

Assumption 2a rules out types 3 and 6 globally, implying that no individuals switch their
treatment state in opposite directions for distinct pairs of instrument values. Furthermore,
either defying types 5 and 7 or complying types 2 and 4 must not exist locally for any
y(d), meaning that over the entire range of instrument values, the support of defiers and
compliers never overlaps. Under Assumptions 1a and 2a, the LATEs on types 2, 4, 5, and
7 are identified. I.e., (i) identifies the LATEs on types 2 and 7 and (ii) those on types 4
and 5. Analogously to the setup under global monotonicity, (iii) now maximizes both the
proportions of compliers and defiers by identifying the LATEs on the types 2 and 4 jointly
as well as on 5 and 7 jointly.
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D Proof of Theorem 1

In this section we provide a detailed proof of Theorem 1. First we provide a set of assump-
tions, A1 to A4, which restate Assumption 4 in the main text. Secondly, we present and
proof three helpful lemmas. Thereafter, the results of Theorem 1 follows readily.

Assumption A1 The general nonnegative bounded kernel function w (·) satisfies (i)∫
w (v) dv = 1, (ii) w (v) = w (−v), and (iii)

∫
v2w (v) dv = κ2 > 0.

Assumption A2 supy∈Y B (y,Di = d, Zi = z) = M(d,z),y < ∞ for all d = 0, 1 and z =

0, 1 where B (y,D = d, Z = z) = 1
2
κ2
∇2(fY,D|Z(y,D=d|Z=z))

(∇y)2

/
fZ (Z = z).

Assumption A3 For all d = 0, 1 (i) infy∈Y pd (y) = Mpi,y > 0, and (ii) infy∈Y qd (y) =
Mqi,y > 0.

Assumption A4 (Yi, Di, Zi) for i = 1, 2, ..., n is an i.i.d. distributed random vector with
a joint mixed distribution given by fY,D,Z (Yi = y,Di = d, Zi = z) with support Y×(0, 1)×
(0, 1) where Y ⊆ R. Furthermore, all absolute second order moments E

(
|Y |2

)
, Epd

(
|Y |2

)
and Eqd

(
|Y |2

)
exist for d = 0, 1.

Assumptions A1-A4 are very commonly used in the kernel estimation literature, and
hold for a wide range of data generating processes. In particular, Assumption A3 ensures
that p and q are not truncated and rules out boundary effects. Assumption 3 simplifies the
proof and can be relaxed by using boundary kernels (see, Li and Racine, 2007). Assumption
A4 is stated in very general terms and implies the existence of moments like, for example,
Ep1 (Yi|Yi ∈ Cq1), Eq1 (Yi|Yi ∈ Cq1), Ep0 (Yi|Yi ∈ Cp0), Eq0 (Yi|Yi ∈ Cp0), E (|Yi|) etc.

We now establish the asymptotic distribution of θ̂1 by the following lemma:

Lemma 1 Let θ1 be the true value of θ̂1 defined in Section Estimation. Under Assump-
tions A1, A2, A3, and A4, for n→∞, h→ 0, and

√
nh2 → 0, it follows

√
n
(
θ̂1 − θ1 − a1

)
d→ N

(
0, σ2

p1,(q1)
+ σ2

q1,(q1)
− 2σp1,q1,(q1)

)
,
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where a1 = h2
∫
Cq
y (B (y,D = 1, Z = 1)−B (y,D = 1, Z = 0)) dy, and

σ2
p1,(q1)

= E

(YiI (Di = 1) I (Zi = 1)
1
n

∑n
j=1 I (Zj = 1)

1 (Yi ∈ Cq1)− Ep1 (Yi|Yi ∈ Cq1)

)2
 ,

σ2
q1,(q1)

= E

(YiI (Di = 1) I (Zi = 0)
1
n

∑n
j=1 I (Zj = 0)

1 (Yi ∈ Cq1)− Eq1 (Yi|Yi ∈ Cq1)

)2
 ,

σp1,q1,(q1) = E

((
YiI (Di = 1) I (Zi = 1)

1
n

∑n
j=1 I (Zj = 1)

1 (Yi ∈ Cq1)− Ep1 (Yi|Yi ∈ Cq1)

)
×(

YiI (Di = 1) I (Zi = 0)
1
n

∑n
j=1 I (Zj = 0)

1 (Yi ∈ Cq1)− Eq1 (Yi|Yi ∈ Cq1)

))
.

Proof of Lemma 1 We can write

√
n
(
θ̂1 − θ1

)
=
√
n

∫
Cq

y (p̂1(y)− p1(y)) dy −
√
n

∫
Cq

y (q̂1(y)− q1(y)) dy

= : A1n + A2n,

Consider first the term A1n given as

A1n =
√
n

∫
Cq

y (p̂1(y)− p1(y)) dy

=
√
n

∫
Cq

y (p̂1(y)− E (p̂1(y))) dy +
√
n

∫
Cq

y (E (p̂1(y))− p1(y)) dy

= : A11n + A12n.

As p̂1(y) is a kernel estimator it is well known that under standard regularity conditions,

(Ep1 (p̂1(y))− p1(y)) = h2B (y,D = 1, Z = 1) +O
(
h3
)
,
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where B (y,D = 1, Z = 1) is defined as in Assumption A2, see, e.g., Li and Racine (2007)
pages 166 and 167. Given Assumptions A2 and A3 we can write

A12n =
√
n

∫
Cq

y (Ep1 (p̂1(y))− p1(y)) dy

=
1

2

√
nh2κ2

∫
Cq

yB (y,D = 1, Z = 1) dy +O
(√

nh3
) ∫

Cq

ydy

≤ 1

2

√
nh2κ2M(1,1),u

∫
Cq

|y| dy +O
(√

nh3
) ∫

Cq

|y| dy

=
1

2

√
nh2κ2M(1,1),u

∫
Cq

|y|
p1 (y)

p1 (y) dy +O
(√

nh3
) ∫

Cq

|y|
p1 (y)

p1 (y) dy

≤ 1

2

√
nh2κ2M(1,1),u

∫
Y

|y|
p1 (y)

p1 (y) dy +O
(√

nh3
) ∫
Y

|y|
p1 (y)

p1 (y) dy

≤ 1

2

√
nh2κ2M(1,1),uM

−1
p1,l

∫
Y
|y| p1 (y) dy +O

(√
nh3
)
M−1

p1,l

∫
Y
|y| p1 (y) dy

=
1

2

√
nh2κ2M(1,1),uM

−1
p1,l
Ep1 (|y|) +O

(√
nh3
)
M−1

p1,l
Ep1 (|y|)

= O
(√

nh2
)
.

Next, consider A11n:

A11n =
√
n

∫
Cq

y (p̂1(y)− Ep1 (p̂1(y))) dy =
√
n

∫
Cq

y (p̂1(y)− Ep1 (p̂1(y))) dy

=
√
n

∫
Cq

y
(
p̂1(y)− p1(y)− h2B (y,D = 1, Z = 1) + o

(
h2
))
dy

=
√
n

∫
Cq

yp̂1(y)dy −
√
n

∫
Cq

yp1(y)dy −
√
n

∫
Cq

(
yh2B (y,D = 1, Z = 1) + o

(
h2
))
dy.

47



Note that

√
n

∫
Cq

yp̂1(y)dy =
√
n

∫
Cq

y
1
nh

∑n
i=1 I (Di = d) I (Zi = z)w

(
y−Yi
h

)
1
n

∑n
i=1 I (Zi = z)

dy

=
√
n

1

n

n∑
i=1

I (Di = d) I (Zi = z)
1
n

∑n
j=1 I (Zj = z)

∫
Cq

y
1

h
w

(
y − Yi
h

)
dy

=
√
n

1

n

n∑
i=1

I (Di = d) I (Zi = z)
1
n

∑n
j=1 I (Zj = z)

∫
C̃q

(Yi + vh)w (v) dv

=
√
n

1

n

n∑
i=1

YiI (Di = d) I (Zi = z)
1
n

∑n
j=1 I (Zj = z)

∫
C̃q

w (v) dv +

√
nh

n∑
i=1

I (Di = d) I (Zi = z)
1
n

∑n
j=1 I (Zj = z)

∫
C̃q

vw (v) dv

=
√
n

1

n

n∑
i=1

YiI (Di = d) I (Zi = z)
1
n

∑n
j=1 I (Zj = z)

∫
C̃q

w (v) dv

where

C̃q1 =

{
v ∈ R : v =

y − Yi
h

for (y, Yi, h) ∈ Cq1 × Y × R+

}
.

Importantly, note that if Yi < min (Cq1), it follows that limh→0 C̃q1 = (∞;∞) and sim-

ilarly, if Yi > max (Cq1), then limh→0 C̃q1 = (−∞;−∞). Additionally, if Yi ∈ Cq1 , then

limh→0 C̃q1 = (−∞;∞). This implies that

∫
C̃q

w (v) dv = 1 (Yi ∈ Cq1) ,

∫
C̃q

vw (v) dv = 0.

Consequently,

lim
h→0

∫
Cq

yp̂1(y)dy = Ep̂1(Yi|Yi ∈ Cq1) =
1

n

n∑
i=1

YiI (Di = 1) I (Zi = 1)
1
n

∑n
j=1 I (Zj = 1)

1 (Yi ∈ Cq1) ,

and∫
Cq

yp1(y)dy = Ep1(Yi|Yi ∈ Cq1),

∫
Cq

(
yh2B (y,D = 1, Z = 1) + o

(
h2
))
dy = O

(
h2
)
.
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Given Assumption A4, we can apply the Lindeberg-Levy central limit theorem to the
random variable YiI (Di = 1) I (Zi = 1) / 1

n

∑n
j=1 I (Zj = 1) and write the limit of A11n as

A11n →
1√
n

n∑
i=1

(
YiI (Di = 1) I (Zi = 1)

1
n

∑n
j=1 I (Zj = 1)

− Ep1 (Yi|Yi ∈ Cq1)

)
d→ N

(
0, σ2

p1,(q1)

)
,

for n→∞, h→ 0 and
√
nh2 → 0. Similary, we have

A21n →
1√
n

n∑
i=1

(
YiI (Di = 1) I (Zi = 0)

1
n

∑n
j=1 I (Zj = 0)

− Eq1 (Yi|Yi ∈ Cq1)

)
d→ N

(
0, σ2

q1,(q1)

)
.

Trivially, we define
Acov (A11n, A21n) = σp1,q1,(q1),

which is guaranteed to exists by Cauchy-Schwarts and the existence of σ2
p1

and σ2
q1

. This
completes the proof of Lemma 1. �

Lemma 2 Let the assumptions of Lemma 1 hold. Then

(
θ̂1

P̂1|1 − λ̂1

)
d→ N

(
θ1 − a1
P1|1 − λ1

,
σ2
p1,(q1)

+ σ2
q1,(q1)

− 2σp1,q1,(q1)

n
(
P1|1 − λ1

)2
)
,

for n→∞, h→ 0 and
√
nh2 → 0.

Proof of Lemma 2 First we establish the asymptotic properties of Pd|z where d = 0, 1
and z = 0, 1. Note that

Pr (D = d|Z = z) =
Pr (D = d, Z = z)

Pr (Z = z)
.

By analogy, the estimator we consider is given by

P̂d|z =
1
n

∑n
i=1 I (Di = d) I (Zi = z)
1
n

∑n
i=1 I (Zi = z)

.

Under Assumption A4, this expression is the ratio of two consistent maximum likelihood
estimators (MLE). Specifically, the numerator is the MLE of a multinomial distribution
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and the denominator is the MLE of a Bernoulli distribution. Hence, by Slutsky it follows
that

P̂d|z − Pr (D = d|Z = z)
p→ 0,

in probability as n→∞ and that the rate of convergence is
√
n . Furthermore, Schmid and

Schmidt (2006) show that under our assumptions λ̂i for i = 0, 1 converges in probability to
λi =

∫
Y min (pi(y), qi (y)) dy. By application of Slutsky and the result of Lemma 1, Lemma

2 follows trivially. This completes the proof of Lemma 2. �

Lemma 3 Let the assumptions of Lemma 1 hold. Then, for n → ∞, h → 0 and√
nh2 → 0,

(
θ̂0

P̂0|0 − λ̂0

)
d→ N

(
θ0 − a0
P0|0 − λ0

,
σ2
p0,(p0)

+ σ2
q0,(p0)

− 2σp0,q0,(p0)

n
(
P0|0 − λ0

)2
)
,

where a0 = h2
∫
Cp
y (B (y,D = 0, Z = 1)−B (y,D = 0, Z = 0)) dy, and

σ2
p0,(p0)

= E

(YiI (Di = 0) I (Zi = 1)
1
n

∑n
j=1 I (Zj = 1)

1 (Yi ∈ Cp0)− Ep0 (Yi|Yi ∈ Cp0)

)2
 ,

σ2
q0,(p0)

= E

(YiI (Di = 0) I (Zi = 0)
1
n

∑n
j=1 I (Zj = 0)

1 (Yi ∈ Cp0)− Eq0 (Yi|Yi ∈ Cp0)

)2
 ,

σp0,q0,(p0) = E

((
YiI (Di = 0) I (Zi = 1)

1
n

∑n
j=1 I (Zj = 1)

1 (Yi ∈ Cp0)− Ep0 (Yi|Yi ∈ Cp0)

)

×

(
YiI (Di = 0) I (Zi = 0)

1
n

∑n
j=1 I (Zj = 0)

1 (Yi ∈ Cp0)− Eq0 (Yi|Yi ∈ Cp0)

))
.

Proof of Lemma 3 The proof of Lemma 3 is symmetric to the proof of Lemma 2, and
therefore omitted. �

Proof of Theorem 1 Let Assumptions A1, A2, A3, and A4 hold. The result regarding
the asymptotic distribution of

√
n (µ̂c − µc − bc) follows directly from applying Lemmas 1,

2, and 3 for bc = a0 − a1. Furthermore, notice that by Lemmas 2 and 3, the asymptotic
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variance-covariance matrix Ωc is given by

Ωc = Avar (µ̂c)

= Avar

(
θ̂1

P̂1|1 − λ̂1

)
+ Avar

(
θ̂0

P̂0|0 − λ̂0

)
− 2 ∗ Acov

(
θ̂1

P̂1|1 − λ̂1
,

θ̂0

P̂0|0 − λ̂0

)

Ωc =

(
σ2
p0,(p0)

+ σ2
q0,(p0)

− 2σp0,q0,(p0)(
P0|0 − λ0

)2
)

+

(
σ2
p1,(q1)

+ σ2
q1,(q1)

− 2σp1,q1,(q1)(
P1|1 − λ1

)2
)
−

2
Acov

(
θ̂0, θ̂1

)
(
P0|0 − λ0

) (
P1|1 − λ1

) .
Proceeding similarly, the proofs of the asymptotic distributions of

√
n (µ̂c,d − µc,d − bc,d)

and
√
n (µ̂d − µd − bd) follow straightforwardly and are therefore omitted. It can be shown

that

Ωc,d =

(
σ2
p1 ,(q1)

+ σ2
q1 ,(q1)

+ σ2
p1 ,(p1)

+ σ2
q1 ,(p1)

− 2
(
σp1 ,q1 ,(q1)

+ σp1 ,q1 ,(p1)

)(
P1|1 + P1|0 − 2λ1

)2
)

+(
σ2
p0,(p0)

+ σ2
q0,(p0)

+ σ2
p0,(q0)

+ σ2
q0,(q0)

− 2
(
σp0,q0,(p0) + σp0,q0,(q0)

)(
P0|0 + P0|1 − 2λ0

)2
)
−

2
Acov

(
θ̂1 + θ̂2, θ̂0 + θ̂3

)
(
P1|1 + P1|0 − 2λ1

) (
P0|0 + P0|1 − 2λ0

) ,
Ωd =

(
σ2
p0,(p1)

+ σ2
q0,(p1)

− 2σp0,q0,(p1)(
P0|1 − λ0

)2
)

+

(
σ2
p1 ,(q0)

+ σ2
q1 ,(q0)

− 2σp1 ,q1 ,(q0)(
P1|0 − λ1

)2
)
−

2
Acov

(
θ̂2, θ̂3

)
(
P1|0 − λ1

) (
P0|1 − λ0

) .
This completes the proof of Theorem 1. �
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E Alternative estimators

E.1 Two alternative estimators

We subsequently discuss two alternative estimation approaches to the one presented in the
main text, even though all 3 are equivalent asymptotically. Lemmas 2 and 3 above show
that an alternative approach to µ̂c (and µ̂c,d, µ̂d) in the main text can be based on

θ̂a0 =
1

n

n∑
i=1

Yi

(
1 (Di = 0) 1 (Zi = 0)

1
n

∑n
i=1 1 (Zi = 0)

− 1 (Di = 0) 1 (Zi = 1)
1
n

∑n
i=1 1 (Zi = 1)

)
1 (Yi ∈ Cp0) , (E.1)

θ̂a1 =
1

n

n∑
i=1

Yi

(
1 (Di = 1) 1 (Zi = 1)

1
n

∑n
i=1 1 (Zi = 1)

− 1 (Di = 1) 1 (Zi = 0)
1
n

∑n
i=1 1 (Zi = 0)

)
1
(
Yi ∈ Cq1

)
, (E.2)

θ̂a2 =
1

n

n∑
i=1

Yi

(
1 (Di = 1) 1 (Zi = 1)

1
n

∑n
i=1 1 (Zi = 1)

− 1 (Di = 1) 1 (Zi = 0)
1
n

∑n
i=1 1 (Zi = 0)

)
1
(
Yi ∈ Cp1

)
, (E.3)

θ̂a3 =
1

n

n∑
i=1

Yi

(
1 (Di = 1) 1 (Zi = 1)

1
n

∑n
i=1 1 (Zi = 1)

− 1 (Di = 1) 1 (Zi = 0)
1
n

∑n
i=1 1 (Zi = 0)

)
1
(
Yi ∈ Cq0

)
. (E.4)

In addition one can exploit that min (a, b) = 1
2

(a+ b)− 1
2
|a− b| and write the expression

for λd, for d = 0, 1, as follows:

λd =

∫
Y

min (pd (y) , qd (y)) dy =
1

2

∫
Y

(pd (y) + qd (y)) dy − 1

2

∫
Y
|pd (y)− qd (y)| dy

=
1

2

∫
Y

(pd (y) + qd (y)) dy − 1

2

∫
Cpd

(qd (y)− pd (y)) dy − 1

2

∫
Cqd

(pd (y)− qd (y)) dy,

since 1
2

∫
Cpd ,qd

|pd (y)− qd (y)| dy = 0. Alternative estimators of λ0 and λ1 can therefore be

obtained as

λ̂ad =
1

2

(
1

n

n∑
i=1

(
1 (Di = d) 1 (Zi = 1)

1
n

∑n
i=1 1 (Zi = 1)

+
1 (Di = d) 1 (Zi = 0)

1
n

∑n
i=1 1 (Zi = 0)

))
− (E.5)

1

2

(
1

n

n∑
i=1

(
1 (Di = d) 1 (Zi = 0)

1
n

∑n
i=1 1 (Zi = 0)

− 1 (Di = d) 1 (Zi = 1)
1
n

∑n
i=1 1 (Zi = 1)

)
1 (Yi ∈ Cpd)

)
−

1

2

(
1

n

n∑
i=1

(
1 (Di = d) 1 (Zi = 1)

1
n

∑n
i=1 1 (Zi = 1)

− 1 (Di = d) 1 (Zi = 0)
1
n

∑n
i=1 1 (Zi = 0)

)
1
(
Yi ∈ Cq

d

))
,
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for d = 0, 1. We denote by µ̂ac,d, µ̂
a
c , and µ̂ad the LATE estimators making use of θ̂ai for

i = 0, .., 3 and λ̂ad for d = 0, 1 instead of the expressions offered in the main text.

A further set of alternative and asymptotically equivalent LATE estimators can be
derived using a computationally convenient approximation of the integrals involved in all
our parameters. This approximation uses the fact that a proper density must integrate
to 1. Let Y min = min(Y1, . . . , Yn) and Y max = max(Y1, . . . , Yn) the minimum and the

maximum sample values of Y , respectively, ∆ = Y max−Y min

k
, and Y ∗i = Y min + i∆. It can

be shown (a proof i sketched in the next subsection) that as k →∞, estimators based on
the parameters defined below are equivalent to the plug-in estimator:

θ̂b0 =
1

k

k∑
i=1

Y ∗i

(
f̂ (Y ∗i , D = 0, Z = 0) P̂0|0∑n
i=1 f̂ (Y ∗i , D = 0, Z = 0)

−
f̂ (Y ∗i , D = 0, Z = 1) P̂0|1∑k
i=1 f̂ (Y ∗i , D = 0, Z = 1)

)
1 (Y ∗i ∈ Cp0) ,(E.6)

θ̂b1 =
1

k

k∑
i=1

Y ∗i

(
f̂ (Y ∗i , D = 1, Z = 1) P̂1|1∑k
i=1 f̂ (Y ∗i , D = 1, Z = 1)

−
f̂ (Y ∗i , D = 1, Z = 0) P̂1|0∑k
i=1 f̂ (Y ∗i , D = 1, Z = 0)

)
1
(
Y ∗i ∈ Cq1

)
,(E.7)

θ̂b2 =
1

k

k∑
i=1

Y ∗i

(
f̂ (Y ∗i , D = 1, Z = 0) P̂1|0∑k
i=1 f̂ (Y ∗i , D = 1, Z = 0)

−
f̂ (Y ∗i , D = 1, Z = 1) P̂1|1∑k
i=1 f̂ (Y ∗i , D = 1, Z = 1)

)
1
(
Y ∗i ∈ Cp1

)
,(E.8)

θ̂b3 =
1

k

k∑
i=1

Y ∗i

(
f̂ (Y ∗i , D = 0, Z = 1) P̂0|1∑k
i=1 f̂ (Y ∗i , D = 0, Z = 1)

−
f̂ (Y ∗i , D = 0, Z = 0) P̂0|0∑k
i=1 f̂ (Y ∗i , D = 0, Z = 0)

)
1
(
Y ∗i ∈ Cq0

)
,(E.9)

with
f̂Y,D,Z (Y ∗i , D = d, Z = z) ≡ f̂ (Y ∗i , D = d, Z = z) ,

P̂d|z =
1

n

n∑
i=1

I (Di = d) I (Zi = z)
1
n

∑n
i=1 I (Zi = z)

, d, z = 0, 1,

and

λ̂bd =
1

2

k∑
i=1

(
f̂ (Y ∗i , D = d, Z = 1) P̂d|1∑k
i=1 f̂ (Y ∗i , D = d, Z = 1)

+
f̂ (Y ∗i , D = d, Z = 0) P̂d|0∑k
i=1 f̂ (Y ∗i , D = d, Z = 0)

)
− (E.10)

1

2

k∑
i=1

(
f̂ (Y ∗i , D = d, Z = 1) P̂d|1∑k
i=1 f̂ (Y ∗i , D = d, Z = 1)

−
f̂ (Y ∗i , D = d, Z = 0) P̂d|0∑k
i=1 f̂ (Y ∗i , D = d, Z = 0)

)
1
(
Y ∗i ∈ Cqd

)
−

1

2

k∑
i=1

(
f̂ (Y ∗i , D = d, Z = 0) P̂d|0∑k
i=1 f̂ (Y ∗i , D = d, Z = 0)

−
f̂ (Y ∗i , D = d, Z = 1) P̂d|1∑k
i=1 f̂ (Y ∗i , D = d, Z = 1)

)
1
(
Y ∗i ∈ Cpd

)
,

for d = 0, 1. We denote by µ̂bc,d, µ̂
b
c, and µ̂bd the LATE estimators that make use of θ̂bi for

i = 0, .., 3 and λ̂bd for d = 0, 1.
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E.2 Alternative approximation of the integral of the minimum

of two density functions

Consider the integral

β =

∫ b

a

min(fx(z), fy(z))dz.

Let ∆ = b−a
k

, using the fact that such an integral can be approximated with a Riemman
sum we can write

β1 =
k∑
i=0

min (fx (a+ i∆) , fy (a+ i∆)) ∆

Let θj =
∑k

i=0 fj(a + i∆) for j=x,y. Note that for j = x, y θj∆ ≈ 1 provided that fx and
fy are proper pdfs. Then we can write

β2 =
k∑
i=0

min

(
fx(a+ i∆)

θx∆
,
fy(a+ i∆)

θy∆

)
∆

=
k∑
i=0

min

(
fx(a+ i∆)

θx
,
fy(a+ i∆)

θy

)

This shows that β2 is also a valid approximation for e as k → ∞. Using this result
and simple algebra it is easy to derive the parameters defined at the end of the previous
subsection.
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F Simulations

The simulation study will be divided into two main parts. In the first part, the limited
sample distributions of the LATE estimators are simulated and compared to the asymptotic
distributions of Theorem 1. In the second part, simulations are used to illustrate the basic
properties of the finite sample LATE point estimates in terms of bias and efficiency.

For all the simulation results presented, the data is assumed to be generated from the
following model:

Y (1)|T = a ∼ N (0, 1), Y (0)|T = n ∼ N (0, 1),

Y (d)|T = c ∼ d · NT (2, .25, 0.5, 5) + (1− d) · NT (−2, .25,−5, .5),

Y (d)|T = d ∼ d · NT (−2, .25,−5,−.5) + (1− d) · NT (2, .25, .5, 5),

Pr(T = a) = 0.5 · (1− Pr(T = c)) , Pr(T = n) = Pr(T = a)− Pr(T = d), Z ∼ Bernoulli(0.5).

N (0, 1) denotes a standard normal distribution, while NT (µ, σ2, A,B) is the truncated
normal distribution on the interval [A,B].

In this setup, the shares of always and never takers are defined as functions of the
shares of compliers and defiers, which are to be defined. Note that the random assignment
of Z implies the satisfaction of Assumption 1. Furthermore, Assumption 2 is satisfied
because the supports of compliers’ and defiers’ potential outcomes do not overlap in either
treatment state. Finally, it follows from the definition of types that D = Z if T = c,
D = 1 − Z if T = d, D = 1 if T = a, and D = 0 if T = n. In our benchmark
scenario we fix the complier and defier shares to Pr(T = c) = 0.20 and Pr(T = d) = 0.15,
respectively. Consequently, the LATE parameters of primary interest in the population
are µc,d = 0.57, µc = 4.00 and µd = −4.00. The level sets associated with the model are
given as Cp0 = (−5;−.5] , Cq0 = (.5; 5] , Cp1 = (−5;−.5] and Cq1 = (.5; 5] .

F.1 One-sided coverage probabilities

According to Theorem 1 the asymptotic or nominal one-sided coverage probability is given
by

P
((
µ̂n − zq

(
σ̂∞/
√
n
))
≤ µ

)
= q, (F.1)

where P (·) denotes the standard normal distribution and zq is the assocated q’th
quantile and σ̂∞ equals the estimated asymptotic variance of µ̂n. Equation (F.1) implies
that if the sample size is sufficiently large, then the proportion of times the quantity
(µ̂n − zq (σ̂∞/

√
n)) is observed to be smaller than µ will equal q. This suggests that in

order to evaluate how well the asymptotic distributions of Theorem 1 approximate the
finite sample distributions of the LATE estimators, the following simulated quantity can
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be considered

F̃n,m (µ|q) =
1

m

m∑
j=1

I
((
µ̂jn − zq

(
σ̂∞/
√
n
))
≤ µ

)
, (F.2)

for q ∈ (0, 1), where I (A) is the indicator function that equals unity if A is true and is zero
otherwise. m denotes the number of Monte Carlo replications, n is the sample size, while
µ̂jn denotes the LATE estimator based on simulation sample j. The asymptotic variance is
computed only once based on an independently simulated sample of 20000 observations. If

we observe that F̃n,m (µ|q) ≈ q for all q ∈ (0, 1) we take this as evidence that the asymptotic
distribution provides a satisfying approximation for the finite sample distribution of µ̂n for
a sample size equal to n.

In Tables 4 - 6 results on the simulated coverage probabilities under the assumption
that the level sets Cp0 , Cq0 , Cp1 , and Cq1 are known are reported for sample sizes
n = (3200, 6400, 12000) and quantiles q = (0.025, 0.05, 0.10, 0., 25, 0.5, 0.75, 0.95, 0.0975).
Tables 4 - 6 differ only in the choice of bandwidths, denoted by h. In Table 4, results
are based on the Silverman (1986) rule-of-thumb bandwidth (denoted by b), i.e.,

h = 1.06 · s · n− 1
5 = b, where s is the sample standard deviation. Even in large samples,

the simulated coverage probabilities of the estimators that depend on the choice of a
bandwidth, (µ̂c,d, µ̂c, µ̂d (see the main text) and µ̂bc,d), µ̂

b
c), µ̂

b
d) (see Section E in this

appendix) do not always closely match the nominal rates. This is not too surprising, since
the rule-of-thumb bandwidth does not satisfy the condition

lim
n→∞

√
nh2 = 0, (F.3)

which is one of the key assumptions of Theorem 1. For the bandwidth-free LATE estimators
µ̂bc,d, µ̂

b
c and µ̂bd (see Section E in this appendix), the results of Table 4 are encouraging,

particularly for samples sizes n = (6400, 12800), as the simulated coverage probabilities
are generally close to the nominal ones. Notice that the results for the bandwidth-free
estimators are by construction the same across Tables 4 - 6 because bluntly speaking,
h = 0 for all n. Therefore, the bandwidth-free estimators can be interpreted as limits of
the estimators of Theorem 1 such that condition (F.3) is always satisfied for µ̂bc,d, µ̂

b
c and

µ̂bd.

In Table 5, the results are reported for b3/2 as in Anderson, Linton, and Whang (2012)
and for this choice the condition in (F.3) is satisfied. Indeed, the correspondence of nomi-
nal and simulated coverage rates are improving for all sample sizes for the two bandwidth-
dependent LATE estimators. When undersmooting even more severly by setting the band-
width equal to b5/2, the results improve further, as illustrated in Table 6. This suggests
that at least in our simulations, the asymptotic distribution of the LATE estimators ap-
proximates their finite sample behavior decently if the plug-in densities are sufficiently un-
dersmoothed when taking the Silverman rule-of-thumb bandwidth as reference.
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Table 4: Simulated coverage probabilities under known level sets using the Silverman rule-of-thumb bandwidth (b)

LATEcd LATEc LATEd

F̂ (µ̂c,d) F̂ (µ̂ac,d) F̂ (µ̂bc,d) F̂ (µ̂c) F̂ (µ̂ac ) F̂ (µ̂bc) F̂ (µ̂d) F̂ (µ̂ad) F̂ (µ̂bd)

n=3200
q=0.025 0.021 0.023 0.024 0.012 0.023 0.012 0.045 0.053 0.045
q=0.050 0.042 0.046 0.045 0.024 0.048 0.025 0.068 0.082 0.068
q=0.250 0.226 0.241 0.232 0.199 0.226 0.198 0.287 0.279 0.285
q=0.500 0.495 0.503 0.506 0.466 0.465 0.466 0.540 0.538 0.538
q=0.750 0.745 0.758 0.754 0.723 0.735 0.724 0.771 0.756 0.767
q=0.950 0.947 0.952 0.948 0.943 0.923 0.945 0.964 0.955 0.964
q=0.975 0.975 0.970 0.975 0.970 0.962 0.970 0.984 0.979 0.983

n=6400
q=0.025 0.029 0.028 0.028 0.014 0.028 0.014 0.035 0.028 0.035
q=0.050 0.061 0.060 0.062 0.037 0.060 0.037 0.067 0.059 0.069
q=0.250 0.271 0.270 0.278 0.212 0.256 0.213 0.276 0.255 0.275
q=0.500 0.511 0.520 0.506 0.442 0.497 0.443 0.537 0.477 0.537
q=0.750 0.769 0.776 0.769 0.719 0.749 0.720 0.783 0.740 0.781
q=0.950 0.952 0.949 0.952 0.933 0.940 0.932 0.966 0.946 0.966
q=0.975 0.971 0.973 0.972 0.969 0.970 0.970 0.990 0.979 0.990

n=12800
q=0.025 0.027 0.028 0.029 0.012 0.024 0.012 0.046 0.035 0.046
q=0.050 0.053 0.054 0.054 0.032 0.051 0.032 0.078 0.054 0.078
q=0.250 0.243 0.252 0.243 0.165 0.256 0.164 0.293 0.242 0.294
q=0.500 0.506 0.506 0.502 0.419 0.507 0.419 0.542 0.464 0.542
q=0.750 0.750 0.762 0.752 0.682 0.730 0.682 0.802 0.754 0.801
q=0.950 0.954 0.945 0.955 0.917 0.949 0.917 0.970 0.960 0.970
q=0.975 0.978 0.977 0.978 0.954 0.977 0.954 0.989 0.981 0.989

Note: The nominal coverage probabilities (quantiles of the asymptotic distribution according to Theorem 1) are given in the first column. F̂ (µ̂c,d),

F̂ (µ̂c), F̂ (µ̂d) denote the estimated distributions based on the respective LATE estimators on compliers and/or defiers in the main text. F̂ (µ̂a
c,d),

F̂ (µ̂a
c ), F̂ (µ̂a

d) denote the estimates for the bandwidth-free estimators, while F̂ (µ̂b
c,d), F̂ (µ̂b

c), F̂ (µ̂b
d) denote the estimates for the modified plug-in

estimators, see Section E in this appendix. The number of replications equals 6000.
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Table 5: Simulated coverage probabilities under known level sets using bandwidth b3/2

LATEcd LATEc LATEd

F̂ (µ̂c,d) F̂ (µ̂ac,d) F̂ (µ̂bc,d) F̂ (µ̂c) F̂ (µ̂ac ) F̂ (µ̂bc) F̂ (µ̂d) F̂ (µ̂ad) F̂ (µ̂bd)

n=3200
q=0.025 0.021 0.023 0.023 0.011 0.023 0.011 0.046 0.053 0.046
q=0.050 0.046 0.046 0.045 0.034 0.048 0.035 0.067 0.082 0.067
q=0.250 0.235 0.241 0.232 0.218 0.226 0.217 0.273 0.279 0.268
q=0.500 0.504 0.503 0.509 0.489 0.465 0.489 0.523 0.538 0.525
q=0.750 0.762 0.758 0.760 0.737 0.735 0.737 0.766 0.756 0.767
q=0.950 0.948 0.952 0.950 0.941 0.923 0.941 0.961 0.955 0.960
q=0.975 0.976 0.970 0.976 0.971 0.962 0.972 0.982 0.979 0.982

n=6400
q=0.025 0.028 0.028 0.029 0.023 0.028 0.023 0.031 0.028 0.031
q=0.050 0.061 0.060 0.063 0.043 0.060 0.043 0.056 0.059 0.056
q=0.250 0.278 0.270 0.279 0.251 0.256 0.251 0.248 0.255 0.246
q=0.500 0.519 0.520 0.517 0.490 0.497 0.490 0.491 0.477 0.492
q=0.750 0.772 0.776 0.778 0.753 0.749 0.755 0.747 0.740 0.747
q=0.950 0.949 0.949 0.951 0.945 0.940 0.945 0.952 0.946 0.952
q=0.975 0.972 0.973 0.972 0.982 0.970 0.983 0.982 0.979 0.982

n=12800
q=0.025 0.028 0.028 0.027 0.021 0.024 0.021 0.041 0.035 0.041
q=0.050 0.055 0.054 0.056 0.048 0.051 0.049 0.065 0.054 0.065
q=0.250 0.246 0.252 0.252 0.230 0.256 0.230 0.247 0.242 0.248
q=0.500 0.504 0.506 0.505 0.498 0.507 0.498 0.480 0.464 0.480
q=0.750 0.760 0.762 0.761 0.732 0.730 0.730 0.762 0.754 0.763
q=0.950 0.949 0.945 0.950 0.942 0.949 0.942 0.964 0.960 0.963
q=0.975 0.979 0.977 0.977 0.968 0.977 0.968 0.982 0.981 0.982

Note: The nominal coverage probabilities (quantiles of the asymptotic distribution according to Theorem 1) are given in the first column. F̂ (µ̂c,d),

F̂ (µ̂c), F̂ (µ̂d) denote the estimated distributions based on the respective LATE estimators on compliers and/or defiers in the main text. F̂ (µ̂a
c,d),

F̂ (µ̂a
c ), F̂ (µ̂a

d) denote the estimates for the bandwidth-free estimators, while F̂ (µ̂b
c,d), F̂ (µ̂b

c), F̂ (µ̂b
d) denote the estimates for the modified plug-in

estimators, see Section E in this appendix. The number of replications equals 6000.
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Table 6: Simulated coverage probabilities under known level sets using bandwidth b5/2

LATEcd LATEc LATEd

F̂ (µ̂c,d) F̂ (µ̂ac,d) F̂ (µ̂bc,d) F̂ (µ̂c) F̂ (µ̂ac ) F̂ (µ̂bc) F̂ (µ̂d) F̂ (µ̂ad) F̂ (µ̂bd)

n=3200
q=0.025 0.019 0.023 0.021 0.017 0.023 0.017 0.051 0.053 0.051
q=0.050 0.045 0.046 0.046 0.050 0.048 0.050 0.074 0.082 0.074
q=0.250 0.236 0.241 0.236 0.220 0.226 0.220 0.270 0.279 0.268
q=0.500 0.507 0.503 0.507 0.493 0.465 0.493 0.525 0.538 0.527
q=0.750 0.760 0.758 0.760 0.738 0.735 0.738 0.761 0.756 0.762
q=0.950 0.949 0.952 0.950 0.939 0.923 0.939 0.957 0.955 0.957
q=0.975 0.972 0.970 0.974 0.965 0.962 0.965 0.979 0.979 0.979

n=6400
q=0.025 0.025 0.028 0.025 0.028 0.028 0.028 0.025 0.028 0.027
q=0.050 0.063 0.060 0.062 0.054 0.060 0.054 0.051 0.059 0.051
q=0.250 0.271 0.270 0.271 0.271 0.256 0.271 0.248 0.255 0.247
q=0.500 0.522 0.520 0.522 0.511 0.497 0.512 0.472 0.477 0.474
q=0.750 0.775 0.776 0.778 0.760 0.749 0.760 0.737 0.740 0.736
q=0.950 0.949 0.949 0.950 0.950 0.940 0.949 0.945 0.946 0.944
q=0.975 0.975 0.973 0.975 0.979 0.970 0.979 0.976 0.979 0.977

n=12800
q=0.025 0.028 0.028 0.028 0.026 0.024 0.026 0.035 0.035 0.036
q=0.050 0.054 0.054 0.052 0.054 0.051 0.054 0.060 0.054 0.059
q=0.250 0.246 0.252 0.248 0.257 0.256 0.259 0.240 0.242 0.240
q=0.500 0.512 0.506 0.511 0.509 0.507 0.510 0.453 0.464 0.454
q=0.750 0.757 0.762 0.758 0.738 0.730 0.739 0.743 0.754 0.743
q=0.950 0.947 0.945 0.947 0.944 0.949 0.944 0.961 0.960 0.960
q=0.975 0.980 0.977 0.980 0.973 0.977 0.973 0.980 0.981 0.980

Note: The nominal coverage probabilities (quantiles of the asymptotic distribution according to Theorem 1) are given in the first column. F̂ (µ̂c,d),

F̂ (µ̂c), F̂ (µ̂d) denote the estimated distributions based on the respective LATE estimators on compliers and/or defiers in the main text. F̂ (µ̂a
c,d),

F̂ (µ̂a
c ), F̂ (µ̂a

d) denote the estimates for the bandwidth-free estimators, while F̂ (µ̂b
c,d), F̂ (µ̂b

c), F̂ (µ̂b
d) denote the estimates for the modified plug-in

estimators, see Section E in this appendix. The number of replications equals 6000.
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F.2 Estimation bias and efficiency

Tables 7-9 report results on bias and efficiency under the various sample sizes of the various
LATE estimators for bandwidths b, b3/2, b5/2, respectively, and of 2SLS. Common to all
three tables is that the level sets are again assumed to be known. In terms of simulated
average bias (BIAS) and simulated median bias (MBIAS) the bandwidth-free LATE
estimators µ̂bc,d, µ̂

b
c, and µ̂bd perform very well and the bias measures are very close to zero

even for a moderate sample size of n = 800. In fact, the bandwidth-free LATE estimators
outperform the alternative estimators with bandwidth choices b and b3/2 uniformly over all
sample sizes. When setting the bandwidth to b5/2 all LATE estimators perform similarly
well and for all sample sizes the bias measures are close to zero. In terms of efficiency,
measured by the standard deviation of the estimators (SD), and root mean squared error
(RMSE), the differences across the three types of estimators are minor across bandwidths
for all sample sizes. For all methods the simulated bias terms and standard deviations
approach zero as the sample size increases, confirming they are consistent as implied by
Theorem 1. In contrast, the 2SLS estimator remains severely biased and imprecise in all
simulations even when n = 12800.

Next, we investigate the finite sample behavior of the methods when the level sets are
assumed to be unknown and estimated by kernel methods according to equations (42)
in the main text. In Table 10, the results are reported when setting the bandwidth to
b3/2 in any of the kernel procedures. Not surprisingly, the simulated biases and standard
deviations of all of our suggested LATE estimators increase for small to moderate sample
sizes when the level sets need to be estimated. However, the effects of relying on estimated
rather than the true level sets appears to vanish in large samples. For n = 12800, the
biases are all close to zero and of similar magnitudes as in Table 8, while the simulated
standard errors are are only slightly larger than those in Table 8.

Finally, we consider the case that there are no defiers, P (T = d) = 0, such that global
monotonicity holds. When the level sets are known, our LATE estimators on the compliers
are about four times more precise than the (also consistent) 2SLS estimator and interest-
ingly generally also less biased, see Table 11. When the level sets are unknown, there esti-
mation introduces some bias to our methods as can be seen from Table 12. However, our
LATE estimators for the compliers still clearly dominate 2SLS, whose standard deviations
and RMSEs are at least twice as high as those of our methods for any sample size.
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Table 7: Simulation results on the performance of LATE estimators under known level sets using the Silverman rule-of-thumb
bandwidth (b)

LATEcd LATEc LATEd LATE
µ̂c,d µ̂ac,d µ̂bc,d µ̂c µ̂ac µ̂bc µ̂d µ̂ad µ̂bd 2SLS

RMSE
n=800 0.329 0.356 0.328 0.142 0.185 0.142 0.187 0.257 0.186 722.496
n=1600 0.230 0.254 0.229 0.098 0.128 0.097 0.125 0.168 0.125 483.395
n=3200 0.163 0.175 0.162 0.071 0.089 0.071 0.097 0.121 0.097 263.379
n=6400 0.116 0.124 0.116 0.051 0.062 0.051 0.068 0.081 0.068 28.642
n=12800 0.081 0.087 0.081 0.037 0.042 0.037 0.048 0.056 0.048 25.609

BIAS
n=800 0.013 0.017 0.024 −0.036 0.011 −0.037 0.026 −0.026 0.022 0.425
n=1600 −0.003 0.000 0.002 0.001 0.017 0.000 0.001 −0.017 0.000 47.853
n=3200 0.003 0.002 0.005 0.009 0.008 0.009 −0.010 −0.011 −0.011 35.703
n=6400 −0.004 −0.006 −0.004 0.007 −0.001 0.007 −0.007 0.001 −0.007 26.534
n=12800 0.000 −0.002 0.000 0.008 0.000 0.008 −0.008 0.001 −0.008 24.982

MBIAS
n=800 0.016 0.019 0.031 −0.046 −0.011 −0.048 0.035 −0.002 0.033 19.258
n=1600 −0.009 −0.008 −0.006 −0.005 0.009 −0.004 0.004 −0.006 0.001 23.995
n=3200 −0.001 −0.001 0.001 0.007 0.007 0.006 −0.011 −0.011 −0.013 24.292
n=6400 −0.003 −0.007 −0.003 0.007 0.000 0.008 −0.006 0.004 −0.006 24.056
n=12800 −0.001 −0.002 −0.001 0.006 −0.001 0.007 −0.005 0.006 −0.005 24.058

SD
n=800 0.329 0.356 0.327 0.138 0.185 0.137 0.185 0.256 0.185 722.858
n=1600 0.230 0.254 0.229 0.098 0.127 0.097 0.125 0.167 0.125 481.261
n=3200 0.163 0.175 0.162 0.070 0.089 0.070 0.096 0.121 0.096 261.079
n=6400 0.116 0.124 0.116 0.051 0.062 0.050 0.067 0.081 0.067 10.789
n=12800 0.081 0.087 0.081 0.036 0.042 0.036 0.047 0.056 0.047 5.633

Note: BIAS, MBIAS, SD, and RMSE provide the simulated average bias, simulated median bias, standard deviation, and root mean squared

error of the LATE estimators, respectively. µ̂c,d, µ̂c, µ̂d denote the LATE estimators on compliers and/or defiers discussed in the main text. µ̂a
c,d,

µ̂a
c ), µ̂a

d denote the bandwidth-free estimators, while µ̂b
c,d, µ̂b

c, µ̂
b
d denote the bias corrected estimators, see Section E in this appendix. The number

of replications equals 6000.
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Table 8: Simulation results on the performance of LATE estimators under known level sets using the bandwidth b3/2

Performance: Known level sets LATEcd LATEc LATEd LATE
µ̂c,d µ̂ac,d µ̂bc,d µ̂c µ̂ac µ̂bc µ̂d µ̂ad µ̂bd 2SLS

RMSE
n=800 0.333 0.356 0.332 0.151 0.185 0.150 0.204 0.257 0.203 722.496
n=1600 0.236 0.254 0.235 0.107 0.128 0.106 0.138 0.168 0.138 483.395
n=3200 0.167 0.175 0.167 0.076 0.089 0.076 0.106 0.121 0.106 263.379
n=6400 0.120 0.124 0.120 0.054 0.062 0.054 0.073 0.081 0.073 28.642
n=12800 0.084 0.087 0.084 0.039 0.042 0.039 0.051 0.056 0.051 25.609

BIAS
n=800 0.013 0.017 0.020 −0.022 0.011 −0.022 0.011 −0.026 0.009 0.425
n=1600 −0.003 0.000 0.000 0.004 0.017 0.004 −0.003 −0.017 −0.003 47.853
n=3200 0.003 0.002 0.004 0.006 0.008 0.006 −0.008 −0.011 −0.008 35.703
n=6400 −0.006 −0.006 −0.006 0.000 −0.001 0.000 −0.001 0.001 −0.001 26.534
n=12800 −0.001 −0.002 −0.001 0.002 0.000 0.002 −0.001 0.001 −0.001 24.982

MBIAS
n=800 0.008 0.019 0.023 −0.033 −0.011 −0.034 0.026 −0.002 0.025 19.258
n=1600 −0.014 −0.008 −0.007 −0.001 0.009 −0.001 0.007 −0.006 0.007 23.995
n=3200 −0.003 −0.001 −0.002 0.002 0.007 0.002 −0.008 −0.011 −0.010 24.292
n=6400 −0.007 −0.007 −0.007 0.001 0.000 0.001 0.001 0.004 0.001 24.056
n=12800 −0.003 −0.002 −0.002 0.000 −0.001 0.000 0.003 0.006 0.003 24.058

SD
n=800 0.333 0.356 0.332 0.149 0.185 0.148 0.203 0.256 0.203 722.858
n=1600 0.236 0.254 0.236 0.106 0.127 0.106 0.138 0.167 0.138 481.261
n=3200 0.167 0.175 0.167 0.076 0.089 0.076 0.105 0.121 0.105 261.079
n=6400 0.120 0.124 0.120 0.055 0.062 0.055 0.073 0.081 0.073 10.789
n=12800 0.084 0.087 0.084 0.039 0.042 0.039 0.051 0.056 0.051 5.633

Note: BIAS, MBIAS, SD, and RMSE provide the simulated average bias, simulated median bias, standard deviation, and root mean squared

error of the LATE estimators, respectively. µ̂c,d, µ̂c, µ̂d denote the LATE estimators on compliers and/or defiers discussed in the main text. µ̂a
c,d,

µ̂a
c ), µ̂a

d denote the bandwidth-free estimators, while µ̂b
c,d, µ̂b

c, µ̂
b
d denote the bias corrected estimators, see Section E in this appendix. The number

of replications equals 6000.
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Table 9: Simulation results on the performance of LATE estimators under known level sets using the bandwidth b5/2

Performance: Known level sets LATEcd LATEc LATEd LATE
µ̂c,d µ̂ac,d µ̂bc,d µ̂c µ̂ac µ̂bc µ̂d µ̂ad µ̂bd 2SLS

RMSE
n=800 0.343 0.356 0.342 0.167 0.185 0.167 0.229 0.257 0.229 722.496
n=1600 0.246 0.254 0.245 0.118 0.128 0.118 0.155 0.168 0.155 483.395
n=3200 0.172 0.175 0.172 0.084 0.089 0.084 0.116 0.121 0.116 263.379
n=6400 0.123 0.124 0.123 0.059 0.062 0.059 0.079 0.081 0.079 28.642
n=12800 0.086 0.087 0.086 0.041 0.042 0.041 0.055 0.056 0.055 25.609

BIAS
n=800 0.011 0.017 0.016 −0.008 0.011 −0.009 −0.004 −0.026 −0.005 0.425
n=1600 −0.004 0.000 −0.001 0.009 0.017 0.009 −0.008 −0.017 −0.008 47.853
n=3200 0.003 0.002 0.003 0.005 0.008 0.005 −0.009 −0.011 −0.009 35.703
n=6400 −0.007 −0.006 −0.007 −0.002 −0.001 −0.002 0.002 0.001 0.002 26.534
n=12800 −0.002 −0.002 −0.002 0.000 0.000 0.000 0.001 0.001 0.001 24.982

MBIAS
n=800 0.008 0.019 0.011 −0.023 −0.011 −0.023 0.010 −0.002 0.011 19.258
n=1600 −0.009 −0.008 −0.009 0.006 0.009 0.006 −0.001 −0.006 −0.002 23.995
n=3200 −0.002 −0.001 −0.002 0.001 0.007 0.001 −0.010 −0.011 −0.009 24.292
n=6400 −0.006 −0.007 −0.005 −0.001 0.000 −0.001 0.004 0.004 0.004 24.056
n=12800 −0.004 −0.002 −0.003 −0.001 −0.001 −0.001 0.006 0.006 0.006 24.058

SD
n=800 0.343 0.356 0.342 0.167 0.185 0.166 0.229 0.256 0.229 722.858
n=1600 0.246 0.254 0.245 0.117 0.127 0.117 0.154 0.167 0.155 481.261
n=3200 0.172 0.175 0.172 0.084 0.089 0.084 0.116 0.121 0.116 261.079
n=6400 0.123 0.124 0.123 0.059 0.062 0.059 0.079 0.081 0.079 10.789
n=12800 0.086 0.087 0.086 0.041 0.042 0.041 0.055 0.056 0.055 5.633

Note: BIAS, MBIAS, SD, and RMSE provide the simulated average bias, simulated median bias, standard deviation, and root mean squared

error of the LATE estimators, respectively. µ̂c,d, µ̂c, µ̂d denote the LATE estimators on compliers and/or defiers discussed in the main text. µ̂a
c,d,

µ̂a
c ), µ̂a

d denote the bandwidth-free estimators, while µ̂b
c,d, µ̂b

c, µ̂
b
d denote the bias corrected estimators, see Section E in this appendix. The number

of replications equals 6000.
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Table 10: Simulation results on the performance of LATE estimators under estimated level sets using the Silverman rule-of-
thumb bandwidth

Performance: Estimated level sets LATEcd LATEc LATEd LATE
µ̂c,d µ̂ac,d µ̂bc,d µ̂c µ̂ac µ̂bc µ̂d µ̂ad µ̂bd 2SLS

RMSE
n=800 0.313 0.335 0.314 0.189 0.209 0.189 0.199 0.219 0.198 Inf
n=1600 0.243 0.257 0.244 0.138 0.151 0.138 0.143 0.158 0.143 461.141
n=3200 0.158 0.167 0.158 0.103 0.114 0.103 0.117 0.127 0.117 57.078
n=6400 0.115 0.121 0.115 0.080 0.086 0.080 0.087 0.096 0.087 27.864
n=12800 0.080 0.082 0.080 0.060 0.065 0.060 0.064 0.069 0.064 25.806

BIAS
n=800 −0.009 −0.014 −0.003 −0.071 −0.087 −0.072 0.027 0.054 0.026 Inf
n=1600 0.013 0.007 0.015 −0.055 −0.056 −0.055 0.024 0.036 0.024 51.680
n=3200 −0.003 −0.004 −0.002 −0.034 −0.035 −0.034 0.027 0.031 0.027 29.403
n=6400 −0.002 −0.003 −0.002 −0.023 −0.023 −0.023 0.020 0.020 0.020 26.194
n=12800 −0.005 −0.004 −0.004 −0.010 −0.010 −0.010 0.011 0.011 0.011 25.186

MBIAS
n=800 −0.028 −0.032 −0.013 −0.053 −0.072 −0.052 0.007 0.038 0.007 21.671
n=1600 0.014 −0.001 0.014 −0.045 −0.044 −0.045 0.013 0.025 0.013 21.863
n=3200 −0.003 −0.005 −0.004 −0.030 −0.033 −0.030 0.017 0.021 0.017 24.264
n=6400 −0.001 −0.001 −0.001 −0.020 −0.020 −0.020 0.017 0.018 0.018 23.973
n=12800 −0.007 −0.007 −0.006 −0.006 −0.009 −0.006 0.009 0.007 0.009 24.055

SD
n=800 0.313 0.335 0.314 0.175 0.190 0.175 0.197 0.212 0.197 .
n=1600 0.243 0.257 0.244 0.126 0.141 0.126 0.141 0.154 0.141 458.466
n=3200 0.158 0.167 0.158 0.097 0.109 0.097 0.114 0.123 0.113 48.946
n=6400 0.115 0.121 0.115 0.076 0.083 0.076 0.085 0.094 0.085 9.507
n=12800 0.080 0.082 0.080 0.059 0.065 0.059 0.063 0.068 0.063 5.627

Note: BIAS, MBIAS, SD, and RMSE provide the simulated average bias, simulated median bias, standard deviation, and root mean squared

error of the LATE estimators, respectively. µ̂c,d, µ̂c, µ̂d denote the LATE estimators on compliers and/or defiers discussed in the main text. µ̂a
c,d,

µ̂a
c ), µ̂a

d denote the bandwidth-free estimators, while µ̂b
c,d, µ̂b

c, µ̂
b
d denote the bias corrected estimators, see Section E in this appendix. The number

of replications equals 6000.
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Table 11: Simulation results on the performance of LATE estimators under known level sets and no defiers using the bandwidth
b3/2

Performance: Known level sets LATEc LATE
µ̂c µ̂ac µ̂bc 2SLS

RMSE
n=800 0.175 0.202 0.174 0.800
n=1600 0.123 0.139 0.123 0.535
n=3200 0.086 0.096 0.086 0.368
n=6400 0.065 0.069 0.065 0.264
n=12800 0.045 0.048 0.045 0.180

BIAS
n=800 −0.009 0.026 −0.013 0.141
n=1600 −0.005 0.009 −0.006 0.036
n=3200 0.004 0.010 0.003 0.012
n=6400 0.003 0.003 0.003 0.018
n=12800 0.002 0.001 0.002 0.004

MBIAS
n=800 −0.022 0.008 −0.026 0.049
n=1600 −0.013 −0.004 −0.014 −0.013
n=3200 −0.002 0.004 −0.003 −0.009
n=6400 0.002 0.000 0.001 0.000
n=12800 −0.001 −0.001 −0.001 −0.001

SD
n=800 0.175 0.201 0.173 0.788
n=1600 0.123 0.139 0.123 0.534
n=3200 0.086 0.096 0.086 0.368
n=6400 0.065 0.069 0.065 0.263
n=12800 0.045 0.048 0.045 0.180

Note: BIAS, MBIAS, SD, and RMSE provide the simulated average bias, simulated median bias, standard deviation, and root mean squared

error of the LATE estimators, respectively. µ̂c,d, µ̂c, µ̂d denote the LATE estimators on compliers and/or defiers discussed in the main text. µ̂a
c,d,

µ̂a
c ), µ̂a

d denote the bandwidth-free estimators, while µ̂b
c,d, µ̂b

c, µ̂
b
d denote the bias corrected estimators, see Section E in this appendix. The number

of replications equals 6000.
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Table 12: Simulation results on the performance of LATE estimators under estimated level sets and no defiers using the
bandwidth b3/2

Performance: Estimated level sets LATEc LATE
µ̂c µ̂ac µ̂bc 2SLS

RMSE
n=800 0.264 0.278 0.267 0.807
n=1600 0.189 0.201 0.190 0.552
n=3200 0.163 0.169 0.163 0.365
n=6400 0.117 0.121 0.117 0.247
n=12800 0.092 0.096 0.092 0.177

BIAS
n=800 −0.115 −0.119 −0.118 0.138
n=1600 −0.068 −0.069 −0.070 0.088
n=3200 −0.066 −0.067 −0.067 0.007
n=6400 −0.040 −0.041 −0.040 0.007
n=12800 −0.030 −0.030 −0.030 0.006

MBIAS
n=800 −0.074 −0.081 −0.077 0.021
n=1600 −0.042 −0.045 −0.042 0.034
n=3200 −0.041 −0.041 −0.042 −0.017
n=6400 −0.028 −0.028 −0.029 −0.008
n=12800 −0.017 −0.017 −0.017 0.006

SD
n=800 0.238 0.252 0.239 0.795
n=1600 0.176 0.188 0.177 0.546
n=3200 0.149 0.156 0.149 0.365
n=6400 0.110 0.114 0.110 0.247
n=12800 0.087 0.092 0.087 0.177

Note: BIAS, MBIAS, SD, and RMSE provide the simulated average bias, simulated median bias, standard deviation, and root mean squared

error of the LATE estimators, respectively. µ̂c,d, µ̂c, µ̂d denote the LATE estimators on compliers and/or defiers discussed in the main text. µ̂a
c,d,

µ̂a
c ), µ̂a

d denote the bandwidth-free estimators, while µ̂b
c,d, µ̂b

c, µ̂
b
d denote the bias corrected estimators, see Section E in this appendix. The number

of replications equals 6000.
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G Level set figure for C90

Figure 4: Estimated differences in densities of log weekly wages (w), i.e., p̂d (w) − q̂d (w)
(blue solid line) under treatment (d = 1, lower panel) and non-treatment (d = 0, upper
panel). The red dashed lines indicate 90% confidence bands. Estimation of the curves are
based on 6000 bootstrap replications using a Gaussian Kernel and cross-validated band-
width selection. Compliers are classified/estimated to exists on the green areas whereas
defiers exists on the blue areas.
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