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Abstract

We examine the strategy-proof allocation of multiple divisible and indivisi-
ble resources; an application is the assignment of packages of tasks, workloads,
and compensations among the members of an organization. We find that
any allocation mechanism obtained by maximizing a separably concave func-
tion over a polyhedral extension of the set of Pareto-efficient allocations is
strategy-proof. Moreover, these are the only strategy-proof and unanimous
mechanisms satisfying a coherence property and responding well to changes
in the availability of resources. These mechanisms generalize the parametric
rationing mechanisms (Young, 1987), some of which date back to the Babylo-
nian Talmud.
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1 Introduction

This paper introduces incentive compatible mechanisms to allocate multiple divisible
and indivisible resources. Applications include the assignment of packages of tasks,
workloads, support personnel, and compensations among a hospital’s medical staff
or among an academic department’s faculty. These allocation problems differ from
combinatorial auctions and package exchanges (as surveyed by Milgrom, 2007) in
that cash transfers are constrained or impossible. Despite their relevance, these
“package assignment problems” have not been studied systematically.

As in most economic design problems, the relevant information to evaluate the
welfare impact of choosing a mechanism, the preferences of the agents involved, is pri-
vately held. Successful real-life mechanisms overcome this difficulty, and the result-
ing incentives for manipulation, by making truthful preference revelation a dominant
strategy. These mechanisms are known as strategy-proof and examples include the
matching mechanisms in school choice (Abdulkadiroğlu and Sönmez, 2003; Pathak
and Sönmez, 2008; Abdulkadiroğlu et al., 2009), kidney exchange (Roth et al., 2004,
2005), and entry level labor markets (as surveyed by Roth, 2002). The focus on
dominant strategy incentive compatibility is due to its minimal assumptions about
agents’ knowledge and behavior. Since reporting preferences truthfully is a domi-
nant strategy, equilibrium behavior does not depend on beliefs, common knowledge
of rationality and the information structure, etc. This gives a predictive power and
robustness that is important for practical mechanism design (Wilson, 1987; Berge-
mann and Morris, 2005).

Unfortunately, in package assignment problems, sequential dictatorship is essen-
tially the only strategy-proof and efficient mechanism.1 This mechanism is neither
individually rational nor equitable. Often these distributional objectives will over-
ride efficiency and thus exclude this mechanism. In other words, the designer faces
a tradeoff between efficiency and any other objective she may want to implement.
This paper describes the class of strategy-proof mechanisms that avoid a number of
drawbacks once efficiency is relaxed.

First, we exclude the most inefficient mechanisms. Every mechanism in the class is
unanimous : if an allocation yielding each agent her ideal assignment is feasible, then
the mechanism delivers this allocation. Though sequential dictatorship is the only
efficient mechanism in the class, strongly egalitarian mechanisms are also members.

Second, we exclude mechanisms that recommend allocations contradicting each

1Sequential dictatorship is the mechanism whereby agents are arranged sequentially and re-
sources are allocated accordingly. The first agent in the sequence is assigned her best possible
package. Conditional on this, the second agent is assigned her best possible package, and so forth.
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other. A mechanisms is consistent if its recommendations in problems involving
different groups of agents and resources are coherent.2

Third, we exclude mechanisms that don’t respond well to changes in the avail-
ability of resources. A mechanism is resource-monotonic if, when the supply of each
resource increases, no agent’s assignment of any resource decreases. This excludes
mechanisms that are discontinuous in changes in the availability of resources. The
joint implication of our properties is to exclude mechanisms that depend on infor-
mation that may be regarded as irrelevant: preferences over unavailable resources,
how an agent compares the packages received by agents other than herself, etc.

Every strategy-proof, unanimous, consistent, and resource monotonic mechanism
is specified by a list of concave functions (Theorems 1, 2, and 3). These functions
determine how heavily an agent’s welfare is weighed against another’s. According to
the scarcity of resources, a function is drawn from this list for each agent and each
resource. The sum of these functions is then maximized subject to efficiency con-
straints. The unique maximizer is the allocation recommended by the mechanism.
We call the mechanisms defined in this way separably concave. Appropriately spec-
ifying the list of concave functions defines mechanisms satisfying additional design
objectives: when resources are privately owned so that each agent starts off with an
endowment of the resources, individual rationality with respect to these endowments
has precise implications on the functional forms of the functions. Fairness properties
like “no-envy” (Foley, 1967) or “fair net trades” (Schmeidler and Vind, 1972) can
also be achieved specifying a list of functions (see Section 5).

The rest of this paper is organized as follows. Section 2 overviews the most rel-
evant literature. Section 3 introduces the package assignment problem. Section 4
introduces the strategic and normative properties of mechanisms. Section 5 intro-
duces the separably concave mechanisms and contains the main results. Section 6
illustrates the flexibility these mechanisms have to accommodate additional design
criteria. All proofs are collected in the Appendix.

2 Related literature

To the best of our knowledge, package assignment problems, involving the alloca-
tion of multiple divisible and indivisible resources, have not been studied, especially
in connection with strategy-proofness. The framework however does overlap and

2Consistency is one the most thoroughly studied principles in resource allocation. See Thomson
(2011) for an overview. Balinski (2005) and Thomson (2012) discuss the normative content of
consistency which Balinski calls “coherence.”
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include, as special cases, well known resource allocation problems.
There are two strands of research on allocation problems where agents are as-

signed or exchange packages of indivisible objects. The most mature strand focuses
on price equilibria (Gul and Stacchetti, 1999; Bikhchandani and Ostroy, 2002; Mil-
grom, 2007; Milgrom and Strulovici, 2009). The analysis relies heavily on the analyt-
ical power of transferable utility and necessarily on the assumption that agents are
not budget-constrained: each agent has enough cash to pay the dollar value of her
preferred package. Preferences are also assumed to be non-decreasing in the amounts
received. Moreover, these models only deal with the allocation of packages of indivis-
ible objects and cash transfers whereas our model captures the allocation of multiple
divisible and indivisible resources. These features limit the relevance of this strand
of research to the problem of allocating resources or tasks among the members of an
organization where budgets and institutional constraints restrict what cash transfers
are possible.

The second strand of research on the assignment of packages of indivisible objects
focuses on situations where institutional constraints bar the use of cash transfers or
any other divisible resource altogether. An application is course allocation in business
schools (Budish, 2011). Unfortunately, the strategy-proof and efficient mechanisms
are somewhat limited to those based on sequential dictatorships (Pápai, 2000; Klaus
and Miyagawa, 2001).

Perhaps the simplest package assignment situation is an Edgeworth box economy.
Already here, Hurwicz (1972) established that no individually rational allocation
mechanism is strategy-proof and efficient. In fact, a strategy-proof and efficient
mechanism is dictatorial (Zhou, 1991; Schummer, 1997; Goswami et al., 2013).3

These impossibility results depend critically on the multidimensionality of as-
signments. If a single divisible resource is to be allocated among agents with single-
peaked preferences over their assignments, there is a strategy-proof and efficient
mechanism satisfying various equity properties, the “uniform rule” (Sprumont, 1991).
Moreover, extensive classes of strategy-proof and efficient mechanisms satisfying
other desirable properties are known (Barberà et al., 1997; Moulin, 1999; Massó
and Neme, 2007). These properties include consistency (Thomson, 1994a; Dagan,
1996) and resource-monotonicity notions (Thomson, 1994b). Most relevantly, Moulin
(1999) describes all the strategy-proof, efficient, consistent, and resource-monotonic
mechanisms, albeit with no reference to separably concave maximization. Since,
in the single resource case, our properties imply efficiency (Lemma 3), Theorems 2
and 3 both strengthen this characterization, proving unanimity is sufficient, and

3Essentially, the conclusions are as grim when more than two agents are involved. See Goswami
et al. (2013), Serizawa (2002), and the references therein.
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give an intuitive description of Moulin’s mechanisms in terms of separably concave
maximization.

Finally, the separably concave mechanisms contribute to a recent literature that
extends Sprumont’s uniform rule to allocation problems involving multiple divisi-
ble commodities. Here, preferences satisfy a generalized form of single-peakedness,
“multi-dimensional single-peakedness.”4 This extension of the uniform rule, a sep-
arably concave mechanism (Section 6), is the only strategy-proof mechanism satis-
fying a weak efficiency notion and no-envy (Amóros, 2002; Adachi, 2010). Weak-
ening efficiency to unanimity and specifying that agents with the same preferences
receive welfare-equivalent assignments essentially singles out the extended uniform
rule among strategy-proof mechanisms (Morimoto et al., 2013). A systematic study
of the joint consequences of strategy-proofness, a weak efficiency notion, and no-envy
in broader preference domains is available (Cho and Thomson, 2012); these results
establish that the domain of multidimensional single-peaked preference is “maximal”
for the existence of non-trivial strategy-proof and envy-free mechanisms.

3 The package assignment problem

We now describe the elements of a package assignment problem.5 Agents drawn
from a finite set AAA are assigned packages consisting of amounts of one or more
different resource kinds. Let NNN denote the subsets of A. The finite set KKK indexes
the different resource kinds that may be available. The resource kinds that are
available in indivisible units are indexed by III while those available in divisible units
are indexed by DDD. Thus, K is partitioned into I and D.

Each agent has a maximum capacity to receive each of the resources. For example,
a worker may be assigned a workload ranging from zero hours to at most ten hours per
day so her assignment of the workload lies in [0, 10] if the workload is divisible and in
{0, 1, 2, . . . , 10} if the workload can only be assigned in one hour shifts. Introducing

4Unlike in the allocation of a single commodity, where strict convexity delivers single-peakedness,
the vastness of the class of possibly satiated preferences over a multidimensional commodity space
requires a stand to be taken on what the relevant preference domain is. Multi-dimensional single-
peakedness was introduced by Barberà, Gul, and Stacchetti (1993) who studied the implications
strategy-proofness in multidimensional public choice problems. Earlier work by Border and Jordan
(1983) studied closely related domain restrictions in spatial public choice problems.

5The basic mathematical notation is as follows: Let {Yi}i∈I be a family of sets Yi indexed by
I. Let Y I ≡ ×i∈IYi. For each y ∈ Y I and each J ⊆ I, we denote by yJ the projection of y onto
Y J . If x, y ∈ RI , then x ≥ y means that, for each i ∈ I, xi ≥ yi. For each i ∈ I, ei ∈ RI denotes
the ith standard basis vector, the vector with a one in the ith coordinate and zeros elsewhere. We
boldface notation when first introduced.
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Figure 1: (a) Feasible allocations of a divisible resource of kind ` among agents i and j. The
allocations corresponding to an an amount m` = 0 and m` = 5 are represented by the the dot and
the thick line, respectively. (b) Feasible allocations of a resource of kind `, available in indivisible
units, among agents i and j. The allocations corresponding to available units m` = 0 and m` = 5
are represented by the the dot and the five aligned dots, respectively.

notation, for each agent i ∈ A, her assignment of resource kind ` ∈ K is bounded
above by X̄`

iX̄
`
iX̄
`
i ; the range of assignments of resource kind ` that she may receive,

denoted X`
iX
`
iX
`
i , is thus [0, X̄`

i ] if ` is in D and {0, 1, . . . , X̄`
i } if ` is in I. Thus, agent

i’s assignment lies in XiXiXi ≡ ×`∈KX`
i which we refer to as the agent’s assignment

space. We allow for the possibility that agent i is “not qualified” to receive a share
of resource `, that is X̄`

i = 0.
Each agent, i ∈ A, is equipped with a complete and transitive preference relation

RiRiRi over her assignment space, Xi. As usual, PiPiPi denotes the asymmetric part of Ri.
The maximizers ofRi overXi are denoted p(Ri)p(Ri)p(Ri) and are referred to as the peak of RiRiRi.
Whenever p(Ri) is a singleton, say {p}, we will abuse notation, letting p(Ri) stand
for p. The preference relation Ri is multidimensional single-peaked if p(Ri) is a
singleton and, for each pair of distinct x, y ∈ Xi, [p(Ri) ≥ y ≥ x or p(Ri) ≤ y ≤ x]
implies y Pi x.6 LetRiRiRi denote the class of multidimensional single-peaked preferences
over Xi. For each N ∈ N , let RRR ≡ (Ri)i∈N and p(R)p(R)p(R) ≡ (p(Ri))i∈N .

For each group of agents N ∈ N and each resource kind ` ∈ K, there is a range
of amounts of the resource that can be allocated among the agents in N . This range,
denoted M `(N)M `(N)M `(N), is [0,

∑
i∈N X̄

`
i ] if ` is in D and {0, 1, . . . ,

∑
i∈N X̄

`
i } if ` is in I.

6Barberà, Gul, and Stacchetti (1993) only consider strict preferences over a discrete space. We
do not exclude indifferences.
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A generic amount in M `(N) is denoted m`m`m`. Thus, the possible resource profiles
available to be allocated among the agents in N is M(N)M(N)M(N) ≡ ×`∈KM `(N). For each
N ∈ N and each m ∈ M(N), a feasible allocation specifies a distribution of m
among the agents in N , a z ∈ XN such that

∑
i∈N zi = m. For each N ∈ N

and each m ∈ M(N), let Z(N,m)Z(N,m)Z(N,m) denote the collection of feasible allocations, the
feasible set. Figures 1a and 1b illustrate allocations of a divisible and an indivisible
resource, respectively, among two agents.

A package assignment problem or economy involving the agents in N ∈ N
consists of a profile of preferences and a profile of resources to be allocated among
the agents in N , (R,m)(R,m)(R,m) ∈ RN×M(N). For each N ∈ N , let ENENEN denote the collection
of possible economies involving the agents in N .

4 Allocation mechanisms and their properties

A mechanism is a mapping ϕ that recommends, for each economy (R,m), a unique
feasible allocation denoted ϕ(R,m)ϕ(R,m)ϕ(R,m). We now introduce the strategic and norma-
tive properties of mechanisms. Unless otherwise specified, we state definitions with
respect to a generic group of agents N ∈ N and a generic mechanism ϕ.

We start by recalling the classical efficiency notion. An allocation x ∈ Z(N,m)
is (Pareto) efficient at (R,m)(R,m)(R,m) ∈ EN if there is no y ∈ Z(N,m) such that, for each
i ∈ N , yi Ri xi and, for at least one i ∈ N , yi Pi xi. For each (R,m) ∈ EN , let
P (R,m)P (R,m)P (R,m) denote the set of efficient allocations.

Efficiency: For each (R,m) ∈ EN , ϕ(R,m) ∈ P (R,m).

A minimal efficiency requirement is that the unanimously best allocation is cho-
sen whenever feasible.

Unanimity: For each (R,m) ∈ EN such that p(R) ∈ Z(N,m), ϕ(R,m) = p(R).

We turn to strategic issues. As discussed before, strategy-proofness is the most
compelling incentive compatibility criterion. This has led to its central place in mar-
ket design. Examples include second-price auctions, deferred acceptance and top-
trading cycles mechanisms for school-choice problems (Abdulkadiroğlu and Sönmez,
2003), and the matching mechanisms proposed for kidney exchange (Roth et al.,
2004, 2005). This paper is a contribution to a body of positive results, identifying
strategy-proof mechanisms with desirable distributional properties in economic do-
mains. This is in contrast to abstract social choice where strategy-proofness implies
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that non-trivial mechanisms are dictatorial (Gibbard, 1973; Satterthwaite, 1975).

Strategy-proofness: For each (R,m) ∈ EN , each i ∈ N , and each R′i ∈ Ri,
ϕi(R,m) Ri ϕi(R

′
i, R−i,m).

Beyond its implementation appeal, strategy-proofness has been advocated on fair-
ness grounds. If a mechanism is not strategy-proof, strategic agents can manipulate
the at the expense of non-strategic agents (Pathak and Sönmez, 2008).

We move on to consistency, a concept introduced in Nash-bargaining by Harsanyi
(1959).7 Harsanyi argued that if an allocation is viewed as a desirable compromise
among a group of agents, then it should not be the case that upon receiving their
assignments, two agents pooling their resources will arrive at a different compromise.
This idea has been key in the analysis of a wide range of allocation problems.8

Consistency: For each {N,N ′} ⊆ N such that N ′ ⊆ N , each (R,m) ∈ EN , and
each i ∈ N ′, ϕi(RN ′ ,

∑
j∈N ′ ϕj(R,m)) = ϕi(R,m).

Consistency implies “non-bossiness” (Satterthwaite and Sonnenschein, 1981), a
property that has played a role in the study of strategy-proofness in economic envi-
ronments. Non-bossiness requires that an agent is only able to alter another agent’s
assignment by altering her own. That is, a mechanism ϕ is non-bossy if, for each
(R,m) ∈ EN , each i ∈ N , and each R′i ∈ Ri, ϕi(R,m) = ϕi(R

′
i, R−i,m) implies, for

each j ∈ N , ϕj(R,m) = ϕj(R
′
i, R−i,m). Non-bossiness has proved useful in the study

of classical exchange economies (Barberà and Jackson, 1995; Goswami et al., 2013)
and in various one-sided matching problems (Svensson, 1999; Pápai, 2000, 2001).

The last property we consider concerns the changes in a mechanism’s recommen-
dations in response to changes in the availability of resources. The property is as
follows: if there is more to divide then nobody should get less; equivalently, if there
is less to divide then nobody should get more. In the special case of our model when
a single resource kind is to be allocated, when K is a singleton, this is exactly the
resource-monotonicity property studied by (Moulin, 1999). Moreover, in this context
and under efficiency, Moulin’s notion coincides with those in Thomson (1994b) and
Ehlers (2002).

7Harsanyi (1977, Page 196) calls the property “multilateral equilibrium.”
8As recommended before, see Thomson (2011) for an overview of the extensive literature on

consistency and see Balinski (2005) and Thomson (2012) for a discussion of the normative content
of consistency. Balinski calls the property “coherence” and argues that it is an important part of
what is perceived as just.
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Resource-monotonicity: For each (R,m) ∈ EN and each m′ ∈ M(N), m′ ≥ m
implies ϕ(R,m′) ≥ ϕ(R,m).

5 Separably concave mechanisms

We offer a full description of the class of strategy-proof, unanimous, consistent and
resource-monotonic mechanisms for the package assignment problem (Theorems 1, 2
and 3 below). As we will show, all these mechanisms maximize a separably concave
function over a polyhedral extension of the set of efficient allocations.

To illustrate the separably concave mechanisms in the simplest setting, consider
the problem of allocating a divisible amount of administrative work m` to the medical
staff in a hospital. Doctors 1, . . . , n would rather do as little of the work as possible
and each can do at most X̄`

1, . . . , X̄
`
n, respectively. The question of how to allocate m`

among 1, . . . , n has been the subject of a whole strand of research since it was formu-
lated in the context of the adjudication of conflicting claims (O’Neill, 1982).9 Specific
examples and proposed awards can be found in the Babylonian Talmud. However, a
systematic procedure or mechanism yielding the awards in these scriptures remained
elusive until Aumann and Maschler (1985) succeeded in providing one. Young (1987)
then observed that the recommendations made by this mechanism can be computed
as solutions to the following optimization problem:

max
∑n

i=1 ui(zi) subject to
∑n

i=1 zi = m` and 0 ≤ zi ≤ X̄`
i ,

where

ui(zi) ≡

{
ln zi if 0 ≤ zi ≤ X̄`

i

2
,

ln(X̄`
i − zi) if

X̄`
i

2
≤ zi ≤ X̄`

i .

Note that ui is concave. In fact, the central solutions to this problem can be de-
scribed as solutions to optimization problems analogous to the one above: each
“parametric” mechanism (Young, 1987) can be defined by appropriately choosing
the ui functions.10 Another central allocation mechanism in the parametric class,
“constrained equal awards,” is obtained by setting ui(zi) = −z2

i .
We have assumed that each doctor prefers as small a share of the administrative

work as possible. Note that these preferences are single-peaked and that any division

9Claims problems have several interpretations (taxation, bankruptcy, rationing, etc.) and are
the most thoroughly studied problems in fair allocation. See Thomson (2003) for a survey.

10Young (1987) considers a less general class of concave functions where the function ui is specific
to agent i only in that X̄`

i may be specific to i.
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of the administrative workload among the doctors is efficient with respect to these
preferences. Thus, we could also define the mechanism rationalizing the awards
in the Talmud as the solution to a maximization problem over the set of efficient
allocations:

max
∑n

i=1 ui(zi) subject to (z1, . . . , zn) ∈ P (R1, . . . , Rn,m
`),

where K is assumed to be the singleton {`} and preferences R1, . . . , Rn are assumed
to be monotone.

A somewhat surprising observation is that if we were to drop the assumption that
R1, . . . , Rn are monotone preference relations—and just assume single-peakedness—we
could compute the recommendations made by the uniform rule (Sprumont, 1991) by
solving11

max
∑n

i=1−z2
i subject to (z1, . . . , zn) ∈ P (R1, . . . , Rn,m

`). (1)

The uniform rule is strategy-proof (Bénassy, 1982; Sprumont, 1991). An insight of
this paper is that replacing any −z2

i by any strictly concave ui in the above program
defines a strategy-proof mechanism. This observation extends to our general package
assignment model.

All of our mechanisms are obtained as solutions to optimization problems similar
to the ones above. The main difference, is that when more than one resource is to
be allocated (when |K| ≥ 2), optimization is no longer defined over the efficient set
but over a set containing it. In the single resource case, the two sets coincide (see
Remark 1 in the Appendix).

Informally, the mechanisms introduced here are specified as follows: for each
resource kind `, each agent i is equipped with a pair (uxd,`i , uxs,`i ) of concave functions
over her possible assignments of resource `. The allocation is computed as follows:
in situations of excess demand (xdxdxd) for resource `̀̀,12 the allocation of resource `
is chosen so as to maximize

∑
i u

xd,`
i while insuring no agent receives more than her

preferred consumption of `. In situations of excess supply (xsxsxs) for resource `̀̀,13

the allocation of resource ` is chosen so as to maximize
∑

i u
xs,`
i while insuring no

agent receives less than her preferred consumption of `.

11This can be derived from either of the following facts: the allocation recommended by the uni-
form rule can be obtained by choosing the unique allocation that minimizes the variance among all
efficient allocations (Schummer and Thomson, 1997). The allocation recommended by the uniform
rule is the Lorenz dominant element among all efficient allocations (De Frutos and Massó, 1995).

12The sum of the preferred consumptions of resource ` exceeds the available amount.
13The sum of the preferred consumptions of resource ` is less than the available amount.
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Formally, let UUU denote the profiles of functions u ≡ {(uxd,`i , uxs,`i ) : i ∈ A, ` ∈ K}
where uxd,`i , uxs,`i : [0, X̄`

i ]→ R are strictly concave and continuous. A mechanism ϕ is
separably concave if there is u ∈ U such that, for each N ∈ N , each (R,m) ∈ EN ,
and each ` ∈ K,14

ϕ(R,m)|` = arg max{
∑
uxd,`i (zi) : z ≤ p(R)|`, z ∈ Z(N,m)|`} if

∑
p(Ri)|` ≥ m`,

ϕ(R,m)|` = arg max{
∑
uxs,`i (zi) : z ≥ p(R)|`, z ∈ Z(N,m)|`} if

∑
p(Ri)|` ≤ m`,

where summations are taken over i ∈ N . Let ϕuϕuϕu denote the separably concave
mechanism specified by u ∈ U .

Theorem 1. Every strategy-proof, unanimous, consistent, and resource-monotonic
mechanism is separably concave.

Thus, if the mechanism ϕ is strategy-proof, unanimous, consistent, and resource-
monotonic, there is a profile of concave functions u in U such that ϕ = ϕu. Con-
versely, when all resoruces are divsible, every profile u also induces a strategy-proof,
unanimous, consistent, and resource-monotonic mechanism (Theorem 2, below).
However, when there are indivisibilities, not every profile u will induce a well de-
fined mechanism. Additional necessary and sufficient structure on the profiles in U
ensuring this is established shortly (Theorem 3, below).

Divisible resources

If all resources are divisible, the set of feasible allocations is compact and convex.
Moreover, for each N in N and each m in M(N), the set of feasible allocations
Z(N,m) coincides with the product of the Z(N,m)|` sets taken over ` in K. Thus,
if all resources are divisible, the separably concave mechanisms are well defined in
that they select a single feasible allocation.

Theorem 2. If all resources are divisible, the separably concave mechanisms are the
only strategy-proof, unanimous, consistent, and resource-monotonic mechanisms.

Theorem 2 can be restated as follows: if all resources are divisible, so K coin-
cides with D, a mechanism ϕ is strategy-proof, unanimous, consistent, and resource-
monotonic if and only if there is u ∈ U such that ϕ = ϕu.

14Here, ϕ(R,m)|`, Z(N,m)|`, and p(R)|` denote the projections of ϕ(R,m), Z(N,m), and p(R),
all in ×i∈NXi, onto ×i∈NX`

i . Similarly, p(Ri)|` denotes the projection of p(Ri) in Xi onto X`
i .
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Indivisible and divisible resources

We now introduce additional necessary and sufficient structure on U ensuring that
each of its profiles of concave functions induces a well defined mechanism.

For each indivisible resource kind, ` ∈ I, let I`I`I` denote the profiles of functions
(ui)i∈A such that each ui : [0, X̄`

i ]→ R is strictly concave and, for each m` ∈M `(A),15

arg max
{∑

A ui(zi) :
∑

A zi = m`, 0 ≤ zi ≤ X̄`
i

}
is a profile of integers. (2)

Let U∗U∗U∗ denote the profiles of functions u ≡ {(uxd,`i , uxs,`i ) : i ∈ A, ` ∈ K} in U such
that, for each ` ∈ I, (uxd,`i )i∈A and (uxs,`i )i∈A are in I`.

A mechanism ϕ is separably concave if there is u ∈ U∗ such that ϕ = ϕu.
This definition of the separably concave mechanisms refines the previous one: when
there are indivisibilities, Theorem 3 below establishes that U∗ contains all of the
profiles of concave functions that induce well defined mechanisms. Moreover, when
all resources are divisible, U = U∗ and the two definitions are identical.

It is not immediately obvious that the separably concave mechanisms are well
defined when there are indivisibilities. Though the optima of the maximization
problem defining a separably concave mechanism’s recommendation are guaranteed
to be feasible allocations, the optima may contain more than one allocation. This
possibility is ruled out by the following lemma. It establishes that an allocation
chosen by the maximization problem defining a separably concave mechanism is,
in fact, the unique solution to a maximization problem over the convex hull of the
feasible set. Since this convex hull contains the feasible set, there is in fact a single
solution to the optimization problem over the feasible set.

Lemma 1. For each u ∈ U∗, each N ∈ N , each (R,m) ∈ EN , and each ` ∈ K,16

ϕu(R,m)|` = arg max{
∑
uxd,`i (zi) : z ≤ p(R)|`, z ∈ coZ(N,m)|`} if

∑
p(Ri)|` ≥ m`,

ϕu(R,m)|` = arg max{
∑
uxs,`i (zi) : z ≥ p(R)|`, z ∈ coZ(N,m)|`} if

∑
p(Ri)|` ≤ m`,

where summations are taken over i ∈ N and coZ(N,m) is the convex hull of Z(N,m).

We can now state the main result:

Theorem 3. The separably concave mechanisms are the only strategy-proof, unan-
imous, consistent, and resource-monotonic mechanisms.

15The optimization problem has a unique solution because we are maximizing a strictly concave
function and the constraints define a convex and compact set. Note also that there is no preference
data in (2).

16Here, ϕ(R,m)|`, Z(N,m)|`, and p(R)|` denote the projections of ϕ(R,m), Z(N,m), and p(R),
all in ×i∈NXi, onto ×i∈NX`

i . Similarly, p(Ri)|` denotes the projection of p(Ri) in Xi onto X`
i .
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Theorem 3 can be restated as follows: a mechanism ϕ is strategy-proof, unani-
mous, consistent, and resource-monotonic if and only if there is u ∈ U∗ such that
ϕ = ϕu. Theorems 1 and 2 are corollaries of Theorem 3.

To understand the full breadth of Theorem 3, we characterize the structure of
the profiles of concave functions in I`. Lemma 2, below, shows that we can restate
the optimization problem in (2) as an integer linear program in a higher dimensional
space. Lemma 2 is also used to prove Lemma 1 (see the Appendix). In effect,
Lemma 2 shows that a profile in I` can be approximated by a profile of piece-wise
linear functions with decreasing slopes.

To state Lemma 2, define, for each ` ∈ I, h(`)h(`)h(`) ≡ maxi∈A X̄
`
i , and let C`C`C` denote

the class of matrices ccc ≡ {cik ∈ R+ : i ∈ A; k = 1, 2, . . . , h(`)} such that: (i) for each
i ∈ A, ci1 > ci2 > · · · > ciX̄`

i
> 0 and, if k > X̄`

i , then cik = 0; and (ii) all non-zero
entries in matrix c are distinct.

Lemma 2 (Linear approximation). If (ui)i∈A ∈ I` (c ∈ C`), then there is c ∈ C`
((ui)∈A ∈ I`) such that, for each m` ∈M `(A), if

x = arg max
{∑

i∈A ui(zi) :
∑

i∈A zi = m`, 0 ≤ z ≤ X̄`
}

and

y = arg max
{∑

i∈A
∑h(`)

k=1 cikzik :
∑

i∈A
∑h(`)

k=1 zik = m`, 0 ≤ zik ≤ 1
}

then, for each i ∈ A, xi =
∑h(`)

k=1 yik and y ∈ {0, 1}|A|×h(`).

Further results for the single resource case

The case where a single resource is to be allocated has received considerable attention,
starting with Sprumont (1991). Examples of allocation problems that fit this descrip-
tion include the division of a partnership’s output according to the partners’ time
investments in the partnership, rationing a commodity under disequilibrium prices
(Sprumont, 1991), the assignment of workloads to fixed wage employees (Thomson,
1994b), and distributing a scarce product among retailers in a supply chain (Cachon
and Lariviere, 1999).

Some properties of the separably concave mechanisms that hold in this case do
not hold in general. For example, all separably concave mechanisms are efficient and
are immune to coalitional manipulation (Section 6).

By Theorem 3, the separably concave mechanisms are the only strategy-proof,
unanimous, consistent, and resource-monotonic mechanisms. Moreover, these prop-
erties imply efficiency when K is a singleton.

Lemma 3. If K is a singleton, a strategy-proof, unanimous, and consistent mech-
anism is efficient.
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Therefore, by Theorem 3, we obtain the following:

Corollary 1. If K is a singleton, the separably concave mechanisms are the only
strategy-proof, efficient, consistent, and resource-monotonic mechanisms.

For the single resource case, Corollary 1 establishes the coincidence of the sep-
arably concave mechanisms with the “fixed-path” mechanisms of Moulin (1999).
Apart from representing the class of strategy-proof, efficient, consistent, and resource-
monotonic mechanisms as solutions to optimization problems, our characterization
is tighter: Theorem 3 weakens efficiency to unanimity.

An additional insight from our results is that they bridge a gap with the literature
on claims problems discussed in the beginning of this Section. Claims problems can
be formally embedded as special cases of our model, where K is a singleton, pref-
erences are monotone, and the upper capacity constraints are interpreted as claims.
As we saw, the separably concave mechanisms subsume the parametric mechanisms
of Young (1987), some of which date back to the Babylonian Talmud (Aumann and
Maschler, 1985; Young, 1987). Thus, the class of separably concave mechanisms can
be viewed as extending and generalizing the parametric mechanisms to the package
assignment problems studied here.

6 Applications

We now illustrate the breadth and flexibility of the separably concave mechanisms
to accommodate individual rationality and various distributional objectives. For
simplicity, we discuss applications in the case of divisible resources.

Equity

A central equity notion in fair allocation is “no-envy” (Foley, 1967). A mechanism
ϕ satisfies no-envy if, for each N ∈ N , each (R,m) ∈ EN , and each pair of agents
i, j ∈ N , ϕi(R,m) Ri ϕj(R,m). That is, the recommended allocations are such that
each agent finds her assignment to be at least as desirable as that of any other agent.
Equal treatment of equals, a much weaker property, requires that identical agents
receive identical assignments. That is, for each N ∈ N , each (R,m) ∈ EN , and each
pair of agents i, j ∈ N such that Ri = Rj, ϕi(R,m) = ϕj(R,m). Note that these
properties require that agents have the same assignment spaces.

There is a unique separably concave mechanism satisfying either of these proper-
ties. The usual definition of this mechanism (Amóros, 2002; Adachi, 2010; Morimoto
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et al., 2013), the commodity-wise uniform rule, UUU , is as follows: for each N ∈ N ,
each (R,m) ∈ EN , and each ` ∈ K,

U(R,m)|` =

{
min{p(Ri)|`, λ`} if

∑
i∈N p(Ri)|` ≥ m`,

max{p(Ri)|`, λ`} if
∑

i∈N p(Ri)|` ≤ m`,

where, for each ` ∈ K, λ` is the solution to
∑

i∈N min{p(Ri)|`, λ`} = m` if the first
case above holds and otherwise is the solution to

∑
i∈N max{p(Ri)|`, λ`} = m`.

An alternative definition of the commodity-wise uniform rule, emphasizing its
membership in the separably concave class, is as follows: U = ϕu where u ∈ U∗ is such
that, for each i ∈ A, each ` ∈ K, and each z ∈ X`

i , u
xd,`
i (z) = uxs,`i (z) = −z2. The

arguments establishing this coincidence are the same, repeated resource by resource,
as those used to establish the coincidence of the usual definition of the uniform rule
(Sprumont, 1991) and that in the optimization problem in (1).

When all resources are divisible and all agents share the same assignment spaces,
the commodity-wise uniform rule is the only strategy-proof, unanimous, and non-
bossy mechanism recommending allocations satisfying equal treatment of equals
(Morimoto et al., 2013). It is straightforward to verify that consistency implies
non-bossiness (see Lemma 6 in the Appendix). Thus, the commodity-wise uniform
rule is singled out, within the separably concave mechanisms, by equal treatment
of equals. Since the commodity-wise uniform rule satisfies no-envy (Adachi, 2010),
which implies equal treatment of equals, it is also the only separably concave mech-
anism satisfying no-envy.

Priorities

Suppose that we need to prioritize the agents in A, which we label {1, 2, . . . , n}, so
that agent 1 has the highest priority, agent 2 has the second highest priority, and so
forth. This means that, if agent 1 is not being assigned her ideal assignment or peak,
then there should be no other allocation improving upon her current assignment.
Conditional on this being achieved, if agent 2 is not being assigned her peak, then
there should be no alternative allocation improving upon her current assignment,
and so forth. There is a u ∈ U∗ such that ϕu implements this priority scheme.17

17For each agent, i ∈ {1, 2, . . . , n−1}, each ` ∈ K, and each (xi, xi+1), (yi, yi+1) ∈ X`
i ×X`

i+1, let
u = {(v`k, w`

k) : k ∈ A, ` ∈ K} ∈ U be such that, for each i and each `, v`i and w`
i are differentiable,

and, dropping the ` superscript to avoid clutter, [v′i(xi) > v′i+1(xi+1) and v′i(yi) > v′i+1(yi+1)], and
[w′i(xi) < w′i+1(xi+1) and w′i(yi) < w′i+1(yi+1)]. Then, for each (R,m) ∈ EA, if x = ϕu(R,m), it
is straightforward to verify that, for each z ∈ Z(N,m), x1 R1 z1, that for each z ∈ Z(N,m) such
that z1 = x1, x2 R2 z2, and so forth.
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Note that this mechanism is efficient. In fact, this is the sequential dictatorship
mechanism discussed in the Introduction.

Individual endowments

To discuss individual rationality and other properties specific to situations with in-
dividual endowments, we now account for this data. We specify that each agent
i ∈ A has an endowment of resources ωiωiωi in her assignment space Xi. Then, for each
N ∈ N , we consider the subclass of economies (R,m) ∈ EN such that,

∑
N ωi = m.

These are the economies where the resources to be allocated among the agents in
N are precisely the sum of their endowments. For each N ∈ N , let ENωENωENω denote this
subclass of economies.

A mechanism ϕ is individually rational if, for each N ∈ N , each (R,m) ∈ ENω ,
and each i ∈ N , ϕi(R,m) Ri ωi. That is, we acknowledge each agent’s right to
receive an assignment at least as desirable as her endowment. Many mechanisms in
our class are individually rational. For example, the generalized commodity-wise
uniform rule is the separably concave mechanism specified by u ∈ U∗ such that,
for each i ∈ A, each ` ∈ K, and each z ∈ X`

i , u
xd,`
i (z) = uxs,`i (z) = −(z − ω`i )2.

The notion of fair net trades (Schmeidler and Vind, 1972) extends no-envy to
situations with individual endowments. It requires that the way the allocation we
recommend adjusts over endowments satisfies no-envy. A mechanism ϕ satisfies
fair net trades if, for each N ∈ N , each (R,m) ∈ ENω , and each pair of agents
i, j ∈ N , ϕi(R,m) Ri (ωi +ϕj(R,m)−ωj), where ϕj(R,m)−ωj is j’s “adjustment.”
The requirement is mute when these welfare comparisons are not well defined. The
generalized commodity-wise uniform rule satisfies fair net trades.

Group strategy-proofness

A distinguishing feature of the case where a single resource is to be allocated is
that the separably concave mechanisms are immune to manipulations by groups
of agents. A mechanism ϕ is group strategy-proof if, for each N ∈ N , each
(R,m) ∈ EN , and each N ′ ⊆ N , there is no R′N ′ ∈ RN ′ such that (i) for each i ∈
N ′, ϕi(R

′
N ′ , RN\N ′ ,m) Ri ϕi(R,m) and, (ii) for some i ∈ N ′, ϕi(R′N ′ , RN\N ′ ,m) Pi

ϕi(R,m).

Proposition 1. If K is a singleton, the separably concave mechanisms are group
strategy-proof.
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If more than one resource is to be allocated (when the cardinality of K is greater
than one), the separably concave mechanisms are not necessarily group strategy-
proof. The commodity-wise uniform rule is not (Morimoto et al., 2013).

Appendix

The following notation will be used in this Appendix: for each N ∈ N , each Y ⊆
×i∈NXi, and each ` ∈ K, Y |`Y |`Y |` denotes the projection of Y onto ×i∈NX`

i . When
Y is the singleton {y} we let y`y`y` = Y |`. For each ` ∈ K, let p`(Ri)p`(Ri)p`(Ri) denote the
projection of p(Ri) onto X`

i . For each N ∈ N , each R ∈ RN , and each ` ∈ K, let
p`(R)p`(R)p`(R) ≡ (p`(Ri))i∈N . For each N ∈ N , each ` ∈ K, each r ∈ ×i∈NX`

i , and each
α ∈M `(N), let

S`(r, α)S`(r, α)S`(r, α) ≡ {z ∈ ×i∈NX`
i :
∑

N zi = α, z ≤ r}.

Given a set B, let coBcoBcoB denote its convex hull. Given a function f : R→ R, for each
x ∈ R, let ∂+f(x)∂+f(x)∂+f(x) and ∂−f(x)∂−f(x)∂−f(x) denote the right hand and left hand derivatives of f
at x, respectively.

A.1 Proof of Lemma 2 (linear approximation)

Firstly, we show that, given a u ∈ I`, an appropriate c ∈ C` can be constructed.
Secondly, we show that, given a c ∈ C`, an appropriate u ∈ I` can be constructed.

Let ` ∈ I, h ≡ h(`) = maxi∈A X̄
`
i , and m̄ ≡

∑
i∈A X̄

`
i . For each u ≡ (ui)i∈A ∈ I`,

each c ∈ C`, and each ν ∈M `(A) let

x(ν, u) = arg max
{∑

i∈A ui(zi) :
∑

i∈A zi = ν, 0 ≤ z ≤ X̄`
}

and (3)

y(ν, c) = arg max
{∑

i∈A
∑h

k=1 cikzik :
∑

i∈A
∑h

k=1 zik = ν, 0 ≤ zik ≤ 1
}
. (4)

Constructing c ∈ C`c ∈ C`c ∈ C` from u ∈ I`u ∈ I`u ∈ I`

Let u ∈ I`. By the definition of I`, u ∈ I` implies that, for each ν ∈ M `(A),
x(ν, u) ∈ ZA and

∑
i∈A xi(ν, u) = ν.

Step 1. For each ν ∈M `(A), x(ν, u) ≥ x(ν − 1, u).
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Proof. Suppose not, then there is i ∈ A such that xi(ν, u) < xi(ν−1, u) and j ∈ A\{i}
such that xj(ν, u) > xj(ν−1, u). A necessary conditions for optimality of x(ν−1, u)
is that, ∂+uj(xj(ν − 1, u)) ≤ ∂−ui(xi(ν − 1, u)). By strict concavity we obtain the
first and last inequality,

∂−uj(xj(ν, u)) < ∂+uj(xj(ν − 1, u)) ≤ ∂−ui(xi(ν − 1, u)) < ∂+ui(xi(ν, u)).

Thus, ∂−uj(xj(ν, u)) < ∂+ui(xi(ν, u)), but this contradicts optimality of x(ν, u) which
requires that ∂−uj(xj(ν, u)) ≥ ∂+ui(xi(ν, u)). Hence, x(ν, u) ≥ x(ν − 1, u). v

Summing up we have that

xi(ν, u) =

{
xi(ν − 1, u) + 1 if, for each j ∈ A \ i, xj(ν, u) = xj(ν − 1, u)
xi(ν − 1, u) otherwise.

We can now define the entries in the matrix c: for each i ∈ A and each j ∈ M `(A),
let

cij ≡ max
ν∈{0,1,...,m̄}

{
m̄−

∑
i∈A

xi(ν, u) : xi(ν, u) = j, j ≤ X̄`
i

}
, if j > X̄`

i let cij ≡ 0.

Step 2. c ∈ C`.

Proof. By definition, if j > X̄`
i , then cij = 0. We will now show that cij > cij′

whenever j < j′. For each ν ∈M `(A) let g(ν) ≡ m̄−
∑

i∈A xi(ν, u). Let j < j′ ≤ X̄`
i .

Note that, for each ν ∈M `(A), g(ν) = g(ν − 1)− 1. Hence g is a strictly decreasing
function. By definition of c, xi(ν, u) = j < j′ = xi(ν

′, u). Hence ν < ν ′, since
x(ν, u) ≥ x(ν − 1, u). Thus, g(ν) > g(ν ′) and we have shown that cij > cij′ .

Next we will show that each positive entry in c is distinct. Let i, i′ ∈ A and
j, j′ ∈ M `(A). Suppose that cij = ci′j′ > 0. By previous argument i 6= i′, since
cij < ci′j′ or cij > ci′j′ if i = i′. By assumption cij = ci′j′ therefore by definition of
c, g(ν) = g(ν ′). Thus,

∑
i∈A xi(ν, u) =

∑
i∈A xi(ν

′, u). But this equality can only
hold if ν = ν ′. By optimality of g at ν, and also at ν ′ since ν = ν ′, and the fact
that g is strictly decreasing it follows that xi(ν, u) = xi(ν − 1, u) + 1 and xi′(ν, u) =
xi′(ν − 1, u) + 1. Summing over all agents and noting that x(ν, u) ≥ x(ν − 1, u)
gives us

∑
i∈A xi(ν, u) ≥

∑
i∈A xi(ν − 1, u) + 2. But this contradicts feasibility, since∑

i∈A xi(ν, u) =
∑

i∈A xi(ν − 1, u) + 1. Thus, each positive entry in c is distinct. We
have now established that c ∈ C`. v

Let m′ ∈ M `(A), y′ ≡ y(m′, c) and x′ ≡ x(m′, u). The following step concludes
the first part of the Lemma.
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Step 3. For each i ∈ A, x′i =
∑h

k=1 y
′
ik.

Proof. By way of contradiction, suppose that there is i ∈ A such that x′i >
∑h

k=1 y
′
ik.

Then there is j ∈ A such that x′j <
∑h

k=1 y
′
jk. Let a ≡

∑h
k=1 y

′
ik and b ≡

∑h
k=1 y

′
jk.

By assumption x′i > a and x′j < b, hence it is possible to give more to agent i and less
to agent j. Thus, a necessary condition for optimality at y is that ∂+ui(a) ≤ ∂−uj(b).
By strict concavity, the fact that a < x′i and b > x′j it follows that,

∂−ui(x
′
i) < ∂+ui(a) ≤ ∂−uj(b) < ∂+uj(x

′
j).

Thus, ∂−ui(x
′
i) < ∂+uj(x

′
j). But this contradicts optimality of x′, since a necessary

condition for optimality at x′ is that ∂+uj(x
′
j) ≤ ∂−ui(x

′
i). Thus, x′i =

∑h
k=1 y

′
ik. v

Constructing u ∈ I`u ∈ I`u ∈ I` from c ∈ C`c ∈ C`c ∈ C`

Let c ∈ C` and

γ ≡ min{|cik − cjl| : i, j ∈ A; k, l = 1, . . . , h; cik 6= cjl}
2

.

Note that γ > 0. For each i ∈ A, let fi : [0, X̄`
i ] → R be such that fi(0) = ci1

and, for each k = 0, 1, . . . , X̄`
i − 1 and each xi ∈ (k, k + 1], fi(xi) = −γ(xi −

k) + ci(k+1). For each i ∈ A, each xi ∈ [0, X̄`
i ], let ui(xi) ≡

∫ xi
0
fi(t)dt. Since

each fi is strictly decreasing, each ui is strictly concave. Let u ≡ (ui)i∈A. Let
µ ∈M `(A) = {0, 1, . . . ,

∑
i∈A X̄

`
i }, x ≡ x(µ, u), and y ≡ y(µ, c). Let B and C denote

the constraint set in the optimization problems defining x and y in equation (3)
and (4), respectively.

Step 4. y ∈ {0, 1}|A|×h.

Proof. Because c ∈ C`, the solution to problem max{
∑

i∈A
∑h

k=1 cikzik : z ∈ C}
is unique and is a vertex of the polyhedron C. Moreover, each vertex of C is in
{0, 1}|A|×h. Thus, y ∈ {0, 1}|A|×h. v

Step 5. Let D ≡ {ik : (i, k) ∈ A× {1, . . . , h}, cik > 0} be labelled according to

d1 = i′k′ if, for each ik ∈ D \ {i′k′}, ci′k′ > cik;

d2 = i′′k′′ if, for each ik ∈ D \ {d1, i
′′k′′}, ci′′k′′ > cik, and so forth.

Then, cd1 > cd2 > · · · > cd|D| and

for each d ∈ {d1, . . . , dµ}, yd = 1 and, for each d ∈ {dµ+1, . . . , d|D|}, yd = 0.
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Proof. The fact that cd1 > cd2 > · · · > cd|D| follows immediately from the labeling
and the fact that all the positive entries in matrix c are distinct. Because y maximizes∑

i∈A
∑h

k=1 cikzik over C, for each pair i, j ∈ A, and each pair k, k′ ∈ {1, . . . , h},

[there is α > 0 such that y + α(ejk′ − eik) ∈ C] implies cjk′ ≤ cik,

and, because c ∈ C`, if (j, k′) and (i, k) are distinct,

[there is α > 0 such that y + α(ejk′ − eik) ∈ C] implies cjk′ < cik. (5)

Then, the desired conclusion follows from Step 4. v

Before proceeding, note that, since x maximizes
∑

a∈A ua, for each pair i, j ∈ A,

[there is α > 0 such that x+ α(ej − ei) ∈ B] implies ∂+uj(xj) ≤ ∂−ui(xi). (6)

Also, note the following: if i, j and k, k′ denote indexes such that cik 6= cjk′ , then,
for each zi ∈ (k − 1, k] and each zj ∈ (k′ − 1, k′], the definition of γ and the fact
|(zj − (k′ − 1))− (zi − (k − 1))| ≤ 1 imply −γ[(zj − (k′ − 1))− (zi − (k − 1))] ≤ γ <
|cjk − cik′|. Thus, if cik > cjk′ , rearranging yields

−γ(zj − (k′ − 1)) + cjk′ < −γ(zi − (k − 1)) + cik. (7)

Step 6. x ∈ ZA.

Proof. If not, there are i ∈ A and k ∈ {0, 1, . . . , X̄`
i − 1} such that k < xi < k + 1.

Since µ is an integer, this implies there are j ∈ A \ {i} and k′ ∈ {0, 1, . . . , X̄`
i − 1}

such that k′ < xj < k′ + 1. Thus,

fi(xi) = −γ(xi − k) + ci(k+1) and fj(xj) = −γ(xj − k′) + cj(k′+1).

Thus, there is α > 0 such that x + α(ei − ej) ∈ B and x + α(ej − ei) ∈ B. Thus,
by (6), ∂+ui(xi) ≤ ∂−uj(xj) and ∂+uj(xj) ≤ ∂−ui(xi). Moreover, because fi and fj
are smooth at xi and xj, respectively, ∂−ui(xi) = ∂+uj(xj) and ∂−uj(xj) = ∂+uj(xj).
Thus,

−γ(xj − k′) + cj(k′+1) = ∂−uj(xj) = ∂−ui(xi) = −γ(xi − k) + ci(k+1),

contradicting (7) since, without loss of generality, ci(k+1) > cj(k′+1). Thus, x ∈ ZA. v

Step 7. Let i, j ∈ A be such that i 6= j. By Step 6, there are k ∈ {0, 1, . . . , X̄`
i } and

k′ ∈ {0, 1, . . . , X̄`
j} such that xi = k and xj = k′. Then,

[there is α > 0 such that x+ α(ej − ei) ∈ B] implies 0 < cj(k′+1) < cik,
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Proof. Note that [there is α > 0 such that x+α(ej − ei) ∈ B] implies k′ = xj < X̄`
j .

Thus, since c ∈ C`, 0 < cj(k′+1). Then, by (6) and the definitions of ui, uj,

cj(k′+1) = −γ(k′ − k′) + cj(k′+1) = ∂+uj(xj) ≤ ∂−ui(xi) = −γ(k − k − 1) + cik < cik,

as desired. v

Step 8. For each i ∈ A, xi =
∑h

k=1 yik.

Proof. If not, there are i, j ∈ A such that xi <
∑h

l=1 yil and xj >
∑h

l=1 yjl. For
each g ∈ A, let kg denote the largest k such that ygk = 1. Since, for each g ∈ A,
cg1 > · · · > cgkg , Step 5 implies that, for each k ∈ {1, . . . , kg}, ygk = 1. By Step 6,
there are integers k, k′ such that x′i = k and xj = k′. Then, by Step 4,

k = xi <
∑h

l=1 yil = ki and k′ = xj >
∑h

l=1 yjl = kj.

Moreover,
∑h

k=1 yjk ≥ 0 and
∑h

k=1 yik ≤ |{k : cik > 0}| ≤ X̄`
i imply that k < X̄`

i

and k′ > 0. Thus, there is α > 0 such that x + α(ei − ej) ∈ B. Thus, by Step 5,
0 < ci(k+1) < cjk′ . Since k + 1 ≤ ki, ci(k+1) ≥ ciki . Now, recall that k′ > kj implies
yjk′ = 0. Thus, by Step 5, cjk′ < ciki . Combining these inequalities,

ci(k+1) < cjk′ < ciki ≤ ci(k+1).

This contradiction establishes the desired conclusion. v

A.2 Proof of Lemma 1

Before proving Lemma 1 we need the following result.

Lemma 4. If (u`i)i∈A ∈ I`, then for each N ∈ N and each m` ∈M `(N),

arg max
{∑

N ui(zi) :
∑

N zi = m`, 0 ≤ z ≤ X̄`
N

}
∈ ZN .

Proof. Let (u`i)i∈A ∈ I`, N ∈ N and m` ∈ M `(N). Let x(m`, u) and y(m`, c) be
defined as in equation (3) and (4). By Lemma 2 there is c ∈ C` such that, for each

ν ∈M `(A) and for each i ∈ A, xi(ν, u) =
∑h(`)

k=1 yik(ν, c)
First we prove that there is an m̂ ∈ M `(A) such that

∑
N xi(m̂, u) = m`: Let

m ∈ M `(A). Suppose there is i ∈ A such that xi(m,u) > xi(m + 1, u). Then there
is j ∈ A \ {i} such that xj(m + 1, u) ≥ xj(m,u) + 1. By optimality at x(m,u),
ci(xi(m,u)) > cj(xj(m,u)+1)). By optimality at x(m+ 1, u), ci(xi(m,u)) < cj(xj(m,u)+1). But
this is a contradiction. Thus, for each i ∈ A, xi(m,u) ≤ xi(m+ 1, u). By feasibility∑

A xj(m + 1, u) =
∑

A xj(m,u) + 1. Hence there is i ∈ A such that xi(m + 1, u) =
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xi(m,u) + 1 and, for each j ∈ A \ {i}, xj(m+ 1, u) = xj(m,u). Restricting attention
to N we have that

∑
N xi(m + 1, u) =

∑
N xi(m,u) + 1, if there is j ∈ N such that

xj(m + 1, u) = xj(m,u) + 1, otherwise
∑

N xi(m + 1, u) =
∑

N xi(m,u). Consider
the sequence (

∑
N xi(k, u))k∈M`(A). It is a weakly increasing sequence bounded by∑

N X̄
`
i and, for each k ∈M `(A),

∑
N xi(k + 1, u)−

∑
N xi(k, u) ≤ 1. Thus, there is

m̂ ∈M `(A) such that
∑

N xi(m̂, u) = m`.
Let x̃ ≡ x(m`, u) and suppose, by way of contradiction, that x̃ /∈ ZN . From

the previous paragraph, there is m̂ ∈ M `(A) such that
∑

N xi(m̂, u) =
∑

N x̃i. Let
x̂ ≡ x(m̂, u). By Lemma 2, x̂N ∈ ZN . Thus, x̃ 6= x̂N . By the optimality of x̃,∑

N ui(x̃) >
∑

N ui(x̂i). Note that
∑
x̃i =

∑
x̂i = m`. Therefore by optimality of x̂,∑

A\N ui(x̂i) +
∑

N ui(x̂i) >
∑

A\N ui(x̂i) +
∑

A\N ui(x̃i). But this is a contradiction

to optimality of x̃. Thus, x̃ ∈ ZN . v

Proof of Lemma 1. The first part of this proof consists of showing that the solutions
of the maximization problems in Lemma 1 are feasible, in particular, that when
resources are indivisible the corresponding coordinates of the solutions are integral.
The second part of the proof shows that these solutions, in fact, coincide with the
recommendations made by the separably concave mechanisms.

Let u ≡ {(u`i , v`i ) : i ∈ A, ` ∈ K} ∈ U∗, N ∈ N , (R,m) ∈ EN , ` ∈ K, and
p ≡ p`(R). Without loss of generality, suppose that

∑
N pi ≥ m` and let

x` ≡ arg max{
∑

i∈N u
`
i(zi) : z ≤ p, z ∈ coZ(N,m)|`}

and note that coS`(p,m`) is equal to constraint set defining x`.
Part 1. Since Z(N,m) has a product structure, it suffices to show that x` ∈
Z(N,m)|`. If ` indexes a divisible resource (` ∈ D), then, Z(N,m)|` is itself con-
vex, implying coZ(N,m)|` = Z(N,m)|`. Thus, if all resources are divisible, there is
nothing to prove. It remains to prove that, if ` ∈ I, x` ∈ Z(N,m)|`. Let

y ≡ arg max{
∑

i∈N u
`
i(zi) : z ∈ coS`((X̄`

i )i∈N ,m
`)}.

By Lemma 4, (u`i)i∈A ∈ I` implies y ∈ ZN+ . Since y ∈ coZ(N,m)|`, y ∈ Z(N,m)|`.
Since coS`(p,m`) ⊆ coS`((X̄`

i )i∈N ,m
`),
∑

i∈N u
`
i(yi) ≥

∑
i∈N u

`
i(x

`
i). Thus, if y ∈

coS`(p,m`), since the optimum is unique, x` = y ∈ Z(N,m)|`, as desired. It remains
to consider the case where y /∈ coS`(p,m`). Then, there is h ∈ N such that yh > ph.

Step 1. For each i ∈ N , yi ≥ pi implies x`i = pi ∈ Z+.

Otherwise, because x` ∈ coS`(p,m`), x`i < pi and, since
∑

i∈N yi = m` =
∑

i∈N x
`
i

there is j ∈ N such that yj < x`j ≤ pj. This would lead to a contradiction: it implies
there is a real number ε > 0 such that
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x` + ε(ei − ej) ∈ coS`(p,m`) and y + ε(ej − ei) ∈ coS`((X̄`
i )i∈N ,m

`).

Assume that the above is indeed true. Then, a necessary condition for x` and y
to maximize

∑
i∈N u

`
i over coS`(p,m`) and coS`((X̄`

i )i∈N ,m
`), respectively, is that,

∂+u
`
i(x

`
i) ≤ ∂−u

`
j(x

`
j) and ∂+u

`
j(yj) ≤ ∂−u

`
i(yi). On the other hand, since u`i and u`j

are strictly concave, we obtain the first and last inequalities in

∂+u
`
j(yj) > ∂−u

`
j(x

`
j) ≥ ∂+u

`
i(x

`
i) > ∂−u

`
i(yi),

which contradicts ∂+u
`
j(yj) ≤ ∂−u

`
i(yi). This establishes that, in fact, x`i = pi. Recall

that, since preferences are defined over Xi and ` ∈ I, pi ∈ Z+. This completes Step 1.

Let N ′ ≡ {i ∈ N : yi < pi} and m′ ≡
∑

i∈N ′ yi +
∑

i∈N\N ′(yi − pi), and

y′ ≡ arg max{
∑

i∈N ′ u
`
i(zi) : z ∈ coS`((X̄`

i )i∈N ′ ,m
′)}.

Note that
∑

N ′ pi ≥ m′ and x`N ′ = arg max{
∑

i∈N ′ u
`
i(zi) : z ∈ coS`(pN ′ ,m

′)}. By

Lemma 4, (u`i)i∈A ∈ I` implies y′ ∈ ZN ′+ . Clearly, since coS`(pN ′ ,m
′) ⊆ coS`((X̄`

i )i∈N ′ ,m
′),

if y′ ∈ coS`(pN ′ ,m
′), then, for each i ∈ N ′, x`i = y′i ∈ Z+. Combining this with

Step 1, would yield x` ∈ Z(N,m)|` as desired. It remains to consider the case where
y′ /∈ coS`(pN ′ ,m

′). Then, there is h ∈ N ′ such that y′h > ph.

Step 2. For each i ∈ N ′, y′i ≥ pi implies x`i ∈ Z+.

Step 2 is symmetric to Step 1 and is proven symmetrically. We can then move
on to Step 3 and so on. At each step, either we establish that x` ∈ Z(N,m)|` or
decrease the number of coordinates of x` that are possibly non-integer. Since N is
finite, the desired conclusion is eventually reached.

Part 2. Let A ≡ {z : z ≤ p`, z ∈ coZ(N,m)|`}, B ≡ {z : z ≤ p`, z ∈ Z(N,m)|`},
and w ≡ ϕu(R,m)|`. By Part 1, x` ∈ B. Thus, by the definition of ϕu,

∑
i∈N u

`
i(wi) ≥∑

i∈N u
`
i(x

`
i). By the definition of x`, since w ∈ A,

∑
i∈N u

`
i(wi) ≤

∑
i∈N u

`
i(x

`
i). Thus,

w maximizes
∑

i∈N u
`
i over A. Since the maximizer of

∑
i∈N u

`
i over A is unique, in

fact, w = x`. v

A.3 Proof of Theorems 1, 2, and 3

Theorem 3 implies Theorems 1 and 2. Throughout the rest of the Appendix, we will
use the definition of the separably concave mechanisms arrived at in Lemma 1, where
the recommendation of the mechanism is obtained by maximizing over the convex
hull of the feasible set. Next we establish that each separably concave mechanism
satisfies the properties in Theorems 2 and 3.
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Lemma 5. The separably concave mechanisms are strategy-proof, unanimous, con-
sistent and resource-monotonic.

Proof of Lemma 5: resource-monotonicity. Let u ≡ {(u`i , v`i ) : i ∈ A, ` ∈ K} ∈ U∗
and N ∈ N . Let (R,m) ∈ EN and m̂ ∈ M(N) be such that m̂ ≥ m. Let x ≡
ϕu(R,m) and x̂ ≡ ϕu(R, m̂). We need to show that x̂ ≥ x. Suppose, instead, that
there are i ∈ N and ` ∈ K such that x`i > x̂`i . By the definition of ϕu, if m` = m̂`,
x` = x̂`. Thus,

∑
k∈N x̂

`
k = m̂` > m` =

∑
k∈N xk. Thus, there is j ∈ N such

that x̂`j > x`j. Suppose that
∑

k∈N p
`(Rk) ≥ m`. Thus, by the definition of ϕu, for

each k ∈ N , x`k ≤ p`(Rk). If m̂` ≥
∑

k∈N p
`(Rk), then, by the definition of ϕu,

x̂`i ≥ p`(Ri) ≥ x`i . Thus, in the case under consideration,
∑

k∈N p
`(Rk) > m̂` > m`.

Then, by the definition of ϕu, x` and x̂` maximize
∑

k∈N u
`
k over coS`(p`(R),m`)

and coS`(p`(R), m̂`) respectively. Since x̂`j > x`j ≥ 0 and x̂`i < x`i < p`(Ri), there is
ε > 0 such that x̂` + ε(ei− ej) ∈ coS`(p`(R), m̂`). Thus, a necessary condition for x̂`

to maximize
∑

k∈N u
`
k over coS`(p`(R), m̂`) is that ∂+u

`
i(x̂

`
i) ≤ ∂−u

`
j(x̂

`
j). Moreover,

since u`i and u`j are strictly concave, we obtain the first and last inequalities in

∂+u
`
j(x

`
j) > ∂−u

`
j(x̂

`
j) ≥ ∂+u

`
i(x̂

`
i) > ∂−u

`
i(x

`
i).

Thus, ∂+u
`
j(x

`
j) > ∂−u

`
i(x

`
i). Since x`i > x̂`i ≥ 0 and x`j < x̂`j ≤ p`(Rj), there is

ε > 0 such that x` + ε(ej − ei) ∈ coS`(p`(R),m`). This, in addition to x̂`j > x`j ≥ 0,
implies that x` does not maximize

∑
k∈N u

`
k over coS`(p`(R),m`). This contradiction

establishes that, in fact, x̂ ≥ x. v

Proof of Lemma 5: consistency. Let u ≡ {(u`i , v`i ) : i ∈ A, ` ∈ K} ∈ U∗ and
{N,N ′} ⊆ N be such that N ′ ⊆ N . Let (R,m) ∈ EN and x ≡ ϕu(R,m). By
way of contradiction, suppose that y ≡ ϕu(RN ′ ,

∑
N ′ xk) 6= xN ′ . Thus, there is

` ∈ K such that x`N ′ 6= y`. Suppose that
∑

i∈N p
`(Ri) ≥ m`. By the defini-

tion of ϕu, for each i ∈ N , x`i ≤ p`(Ri) and, for each i ∈ N ′, y`i ≤ p`(Ri).
Then, x`N ′ 6= y`, because the maximization problem defining y` has a unique so-
lution,

∑
i∈N ′ u

`
i(x

`
i) <

∑
i∈N ′ u

`
i(y

`
i ). Recall that

∑
i∈N ′ x

`
i =

∑
i∈N ′ y

`
i . Thus,

z` ≡ (y`, x`N\N ′) ≤ p`(R) and
∑

i∈N z
`
i = m`. Thus,

∑
i∈N u

`
i(x

`
i) <

∑
i∈N u

`
i(z

`
i ).

Thus, x` 6= ϕu(R,m)|`, contradicting the definition of ϕu. A symmetric argument
applies if

∑
i∈N p

`(Ri) ≤ m`. v

Proof of Lemma 5: unanimity. Let N ∈ N , (R,m) ∈ EN and suppose that p(R) is
a feasible allocation. Thus, for each ` ∈ K, m` =

∑
i∈N p

`(Ri). Moreover, for each
` ∈ K, each agent i ∈ N cannot get more than p`(Ri) nor less than p`(Ri). Thus,
each agent is assigned her peak p(Ri). v
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Proof of Lemma 5: strategy-proofness. Let u ≡ {(u`i , v`i ) : i ∈ A, ` ∈ K} ∈ U∗. Let
N ∈ N and (R,m) ∈ EN and x ≡ ϕu(R,m). Let i ∈ N and R̃ ∈ RN be such that,
for each j ∈ N \ {i}, R̃j = Rj. Let y ≡ ϕu(R̃,m). We will prove that, for each
` ∈ K, either y`i ≤ x`i ≤ p`(Ri) or y`i ≥ x`i ≥ p`(Ri).

Let ` ∈ K, p ≡ p`(R), q ≡ p`(R̃), and, for each z ∈ RN
+ , f(z) ≡

∑
i∈N u

`
i(zi).

Case 1:
∑

N pj ≥ m`
∑

N pj ≥ m`
∑

N pj ≥ m`.

Case 1.1: x`i = pix`i = pix`i = pi.

Suppose that
∑

N qk ≤ m`. Then, for each j ∈ N \ {i}, y`j ≥ qj = pj ≥ x`j. Thus,
since

∑
j∈N x

`
j = m` =

∑
j∈N y

`
j, y

`
i ≤ x`i ≤ pi.

Suppose that
∑

N qk ≥ m`. If qi ≤ pi, then, by the definition of ϕu, y`i ≤ qi. Thus,
y`i ≤ x`i = pi. When qi > pi we will prove that if y` 6= x`, then y`i ≥ x`i . Suppose
y` 6= x`. Since qi > pi, coS`(p,m`) ⊆ coS`(q,m`). Thus f(y`) > f(x`). If y`i < x`i
then y` ∈ coS`(p,m`). This is not possible since x` is the maximizer for f over
coS`(p,m`). Thus, y`i ≥ x`i = pi as desired.

Case 1.2: x`i 6= pix`i 6= pix`i 6= pi.

Suppose that
∑

N qk ≤ m`. Then, for each j ∈ N \ {i}, y`j ≥ qj = pj ≥ x`j. Thus,
since

∑
j∈N x

`
j = m` =

∑
j∈N y

`
j, y

`
i ≤ x`i ≤ pi.

Suppose that
∑

N qk ≥ m`.

• If qi ≤ x`i , then, by the definition of ϕu, y`i ≤ qi. Thus, y`i ≤ x`i ≤ pi.

• If qi > x`i . We will show that y`i = x`i . Note first that, by the definition of
ϕu, x` ≤ p, and since x`i 6= pi, x

`
i < pi. Thus, x` ∈ coS`(q,m`). By definition,

y` ∈ coS`(q,m`). Suppose first that y`i < x`i . Since, for each j ∈ N \{i}, qj = pj
then y` ∈ coS`(p,m`). But this contradicts x` being the maximizer of f over
coS`(p,m`). Thus, y`i ≥ x`i . If y`i > x`i , by feasibility there is j ∈ N \ {i} such
that y`j < x`j. Hence, there is ε > 0 such that y`+ε(ej−ei) ∈ coS`(q,m`). Thus,
a necessary condition for y` to maximize f over coS`(q,m`) is that ∂+u

`
j(y

`
j) ≤

∂−u
`
i(y

`
i ). Moreover, since u`i and u`j are strictly concave, we obtain the first

and last inequalities in

∂−u
`
j(x

`
j) < ∂+u

`
j(y

`
j) ≤ ∂−u

`
i(y

`
i ) < ∂+u

`
i(x

`
i).
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Thus, ∂−u
`
j(x

`
j) < ∂+u

`
i(x

`
i). Since x`i < pi and x`j > y`j ≥ 0, there is ε > 0 such

that x` + ε(ei − ej) ∈ coS`(p,m`). This implies that x` does not maximize f
over coS`(p,m`). This contradiction establishes that, in fact, y`i = x`i .

Case 2:
∑

N pj ≤ m`
∑

N pj ≤ m`
∑

N pj ≤ m`. It can be shown, in an analogous manner to Case 1, that
either y`i ≥ x`i ≥ pi or y`i ≤ x`i ≤ pi.

From Cases 1 and 2 it follows that, for each ` ∈ K, either y`i ≥ x`i ≥ pi or y`i ≤ x`i ≤ pi.
Note that Ri is multidimensional-single-peaked. Thus, xi Ri yi. v

The proof that the properties in Theorem 2 jointly single out the class of separably
concave mechanisms consists of a number of lemmas (Lemmas 6 through 14 below).
These Lemmas are then used to establish the Theorem via the so-called “Elevator
Lemma” that has been important in the study of the consistency principle.18

Lemma 6. A consistent mechanism is non-bossy.

Proof of Lemma 6: non-bossiness. Let N ∈ N , (R,m) ∈ EN , and i ∈ N . Let R′ ∈
RN be such that, for each j ∈ N \{i}, R′j = Rj. Let x ≡ ϕ(R,m) and x′ ≡ ϕ(R′,m).
Suppose, as in the hypothesis of non-bossiness, that x′i = xi. Then,

∑
N\{i} x

′
j =∑

N\{i} xj. Thus, (R′N\{i},
∑

N\{i} x
′
j) = (RN\{i},

∑
N\{i} xj). Thus, by consistency,

for each j ∈ N \ {i}, x′j = ϕj(RN\{i},
∑

N\{i} xj) = xj. Thus, x′ = x. v

The following lemma establishes that a mechanism in Theorem 2 satisfies another
weak efficiency property, strengthening on unanimity : if the amount of one of the
resource kinds exactly matches the aggregate demand for this resource, then every
agent ought to receive her preferred amount of this resource.

Lemma 7. Let ϕ be a mechanism satisfying the properties in Theorem 2. For each
N ∈ N , each (R,m) ∈ EN , and each ` ∈ K, if

∑
N p

`(Ri) = m`, then ϕ(R,m)|` =
p`(R).

Proof. Let N ∈ N , (R,m) ∈ EN , x ≡ ϕ(R,m) and p ≡ p`(R). Let ` ∈ K and
suppose that

∑
N pi = m`. By way of contradiction, assume that x` 6= p. Let

m ∈ M(N) be such that m` = m` and, for each k ∈ K \ {`}, mk = 0. Let
x ≡ ϕ(R,m). By feasibility, for each k ∈ K\{`} and each i ∈ N , xki = 0. By resource-
monotonicity, x` = x`. By assumption, x` 6= p. Thus, x` 6= p and there is i ∈ N
such that x`i 6= pi. Let R′i ∈ Ri be such that p`(R′i) = pi and, for each k ∈ K \ {`},
pk(R′i) = 0. By strategy-proofness at (Ri, RN\{i},m), ϕi(R

′
i, RN\{i},m)|` 6= pi. Since

18See Thomson (2011) for a survey.
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∑
N pk = m` there is j ∈ N \ {i} such that ϕj(R

′
i, RN\{i}, m)|` 6= pj. Let R′j ∈ Rj be

such that p`(R′j) = pj and, for each k ∈ K \ {`}, pk(R′j) = 0 By strategy-proofness
at (Rj, R

′
i, RN\{i,j},m), ϕj(R

′
j, R

′
i, RN\{i,j},m)|` 6= pj. Let

y ≡ ϕ(R′i, R
′
j, RN\{i,j},m). By consistency, y{i,j} = ϕ(R′i, R

′
j, yi + yj).

Suppose that y`i + y`j = pi + pj. By unanimity, yj = p(R′j) and yi = p(R′i). However,
y`j 6= pj, a contradiction to unanimity. Thus, for this case, x` = p and we have
established Lemma 7.

Suppose instead that y`i + y`j 6= pi + pj. Since
∑

N pk = m` there is k ∈
N \ {i, j} such that y`k 6= pk. Let R′k ∈ Rk be such that p`(R′k) = pk and, for
each k ∈ K \ {`}, pk(R′k) = 0. By strategy-proofness at (Rk, R

′
j, R

′
i, RN\{i,j,k},m),

ϕk(R
′
i, R

′
j, R

′
k, RN\{i,j,k},m)|` 6= pk. Let

z ≡ ϕ(R′i, R
′
j, R

′
k, RN\{i,j,k},m). By consistency ϕ(R′i, R

′
j, R

′
k, zi + zj + zk) = z{i,j,k}.

Suppose that z`i + z`j + z`k = pi + pj + pk. By unanimity, zi = p(R′i), zj = p(R′j) and
zk = p(R′k) . However, z`k 6= pk, a contradiction to unanimity. Similarly to before
this contradiction implies that x` = p`(R).

Suppose instead that z`i + z`j + z`k 6= pi + pj + pk. Since
∑

N pi = m` there is
g ∈ N \ {i, j, k} such that z`g 6= pg. From here on we repeat an analogous argument
to the one given above when y`i + y`j 6= pi + pj. We will either derive a contradiction
to unanimity or conclude that there is another agent in N \ {i, j, k, g} that is not
assigned her peak amount of resource `.

Since the set of agents is finite and
∑

N pi = m` there is N ′ ⊆ N such that,∑
N ′ ϕi(R

′
N ′ , RN\N ′ ,m)|` =

∑
N ′ pi.

Let w ≡ ϕ(R′N ′ , RN\N ′ ,m). By consistency, for each i ∈ N ′, ϕi(R′N ′ , RN\N ′ ,
∑

N ′ wi) =
ϕi(R

′
N ′ , RN\N ′ ,m). Note that, for each k ∈ K \ {`},

∑
N ′ p

k(R′i) = 0. By una-
nimity, for each i ∈ N ′, wi = p(R′i). However, consider the last agent, call her
h ∈ N , equipped with the preferences R′h ∈ Rh such that p`(R′h) = ph and, for each
k ∈ K \ {`}, pk(R′h) = 0. By strategy-proofness at (Rh, R

′
N ′\{h}, RN\N ′ ,m), w`h 6= ph.

But this contradicts unanimity. Thus, x` = p`(R). v

Next we introduce a technical property. A mechanism ϕ satsifies same-sidedness
if, for each N ∈ N and (R,m) ∈ EN , if

∑
i∈N p

`(Ri) ≤ m`, then ϕ(R,m)|` ≤ p`(R);
if
∑

i∈N p
`(Ri) ≥ m`, then ϕ(R,m)|` ≥ p`(R).

Building on Lemma 7, we now prove that the properties in Theorem 2 imply
same-sidedness.
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Lemma 8. Let ϕ be a mechanism satisfying the properties in Theorem 2. Then ϕ
satisfies same-sidedness.

Proof. Let N ∈ N , (R,m) ∈ EN and x ≡ ϕ(R,m). By way of contradiction assume
that ϕ does not satisfy same-sidedness at x. This means that there are two agents,
say agent i and j, and one resource ` ∈ K such that x`i < p`(Ri) and x`j > p`(Rj).
Let pi ≡ p`(Ri) and pj ≡ p`(Rj)

Let m ∈ M(N) be such that m` = m` and, for each k ∈ K \ {`}, mk = 0. Let
x ≡ ϕ(R,m). By feasibility, for each k ∈ K \ {`} and each i ∈ N , xki = 0. By
resource-monotonicity, x` = x`. By consistency, x{i,j} = ϕ(Ri, Rj, xi + xj). Since

x`i 6= pi and x`j 6= pj, by Lemma 7, x`i + x`j 6= pi + pj.
Suppose that x`i + x`j > pi + pj. Let R′i ∈ Ri be such that p`(R′i) = x`i + x`j − pj

and, for each k ∈ K \{`}, pk(R′i) = pk(Ri). Let y ≡ ϕ(R′i, Rj, xi+xj). By feasibility,
for each k ∈ K \ {`}, yki = 0. Since p`(R′i) + pj = x`i + x`j, by Lemma 7, y`i = p`(R′i).
By construction p`(R′i) = x`i + x`j − pj. By assumption x`j > pj. Thus, pi ≥ y`i > x`i .
Since, for each k ∈ K \{`}, xki = yki = 0, yi Pi xi. However this contradicts strategy-
proofness since agent i can manipulate at (Ri, Rj, xi + xj). Thus, x`i must be on the
same side of the peak for each i ∈ N .

If x`i + x`j < pi + pj, a symmetric argument applies and we reach again a contra-

diction. v

The following is a key step in the proof. We use our previous lemmas to show
that, in allocating resource of kind `, a mechanism satisfying the properties in The-
orem 2 only uses information pertaining to `. Thus, the availability of other kinds
of resources does not affect how resource ` is allocated.

Lemma 9. Let ϕ be a mechanism satisfying the properties in Theorem 2. Then, for
each N ∈ N , each pair (R,m), (R̃, m̃) ∈ EN , and each ` ∈ K,

if p`(R) = p`(R̃) and m` = m̃`, then ϕ(R,m)|` = ϕ(R̃, m̃)|`.

Proof. Let N ≡ {1, 2, . . . , n} ∈ N . Let (R,m), (R̃, m̃) ∈ EN , and ` ∈ K be such that
p`(R) = p`(R̃), m` = m̃`. Let q ≡ p`(R), x ≡ ϕ(R,m), and x̃ ≡ ϕ(R̃, m̃). We will
prove that x` = x̃`.

First suppose that
∑

N qi > m`. Assume, by way of contradiction, that x` 6= x̃`.
Then, there is an agent, say 1, such that x`1 > x̃`1. By feasibility, since m` = m̃`,
there is another agent, say 2, such that x`2 < x̃`2. By same-sidedness (Lemma 8),
x` ≤ q and x̃` ≤ q. Thus, x̃`1 < x`1 ≤ q1 and x`2 < x̃`2 ≤ q2. Let m ∈ M(N) be
such that m` = m` and, for each k ∈ K \ {`}, mk = 0. Let x ≡ ϕ(R,m) and
x̃ ≡ ϕ(R̃,m). For each i ∈ N \ {1}, let R′i ∈ Ri be such that p`(R′i) = qi and, for
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each k ∈ K \ {`}, pk(R′i) = 0. Let z ≡ ϕ(R′2, RN\{2},m). By resource-monotonicity,
x` = x` and x̃` = x̃`. By feasibility,

for each k ∈ K \ {`} and each i ∈ N , xki = x̃ki = zki = 0. (8)

By same-sidedness (Lemma 8), z`2 ≤ q2. Thus, by strategy-proofness at (R′2, RN\{2},m),
z2 R′2 x2, implying x`2 ≤ z`2. Similarly, by strategy-proofness at (R2, RN\{2},m),
x`2 ≥ z`2. Thus, x`2 = z`2. By non-bossiness (Lemma 6), z = x. Repeating this
argument, for agents 3 through n, yields x = ϕ(R1, R

′
N\{1},m). Similarly, we can

show that x̃ = ϕ(R̃1, R
′
N\{1},m). Recall that x̃`1 < x`1 ≤ q1 and, for each k ∈ K \ {`},

xk1 = x̃k1 = 0. Thus, x1 P̃1 x̃1. This contradicts strategy-proofness at (R̃1, R
′
N\{1},m).

Thus, in fact, x` = x̃`.
If
∑

N qi < m`, then, an analogous argument again reaches a contradiction. Thus
again, x` = x̃`.

If
∑

N qi = m`, then, by same-sidedness (Lemma 8), x` = x̃`. v

Next, we use Lemma 9 to “decompose” our multidimensional allocation problem
into |K| uni-dimensional allocation problems. The result is reminiscent of the de-
composition of strategy-proof social choice functions into “marginal” strategy-proof
social choice functions in choice problems where preferences have some degree of
separability over a set of alternatives with a product structure (Barberà, Gul, and
Stacchetti, 1993; Le Breton and Sen, 1999).

Formally, for each N ∈ N and each ` ∈ K, define the mapping ψ`ψ`ψ`, specifying, for
each

(p`,m`) ∈ [×i∈NX`
i ]×M `(N),

a feasible division of m` among the agents in N ,

ψ`(p`,m`) ∈ {x ∈ ×i∈NX`
i :
∑

N xi = m`}.

Let ΨΨΨ denote the class of profiles of such mappings, one of each ` ∈ K, {ψ` : ` ∈ K}.

Lemma 10. Let ϕ be a mechanism satisfying the properties in Theorem 2. Then,
there is {ψ` : ` ∈ K} ∈ Ψ such that, for each N ∈ N , and each (R,m) ∈ EN ,

ϕ(R,m) = {ψ`(p`(R),m`) : ` ∈ K}.

Proof. This follows immediately from Lemma 9. v

In the following lemma, we will use the properties in Theorem 2 and Lemma 10 to
construct a profile of concave functions, two concave functions for each resource-agent
pair.
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Lemma 11. Let ϕ be a mechanism satisfying the properties in Theorem 3. By
Lemma 10, there is {ψ` : ` ∈ K} ∈ Ψ such that, for each N ∈ N and each (R,m) ∈
EN , ϕ(R,m) = {ψ`(p`(R),m`) : ` ∈ K}. Moreover, for each ` ∈ K, ψ` satisfies the
following properties:

(i) For each i ∈ A, there is a strictly concave function uxd,`i with domain X`
i such

that, for each m` ∈M `(A),

ψ`((X̄`
i )i∈A,m

`) = arg max
{∑

k∈A u
xd,`
k (zk) : zi ∈ X`

i ,
∑

k∈A zk = m`
}
.

Moreover, if ` ∈ I, (uxd,`i )i∈A ∈ I`.

(ii) For each i ∈ A, there is a strictly concave function uxs,`i with domain X`
i such

that, for each m` ∈M `(A),

ψ`((0)i∈A,m
`) = arg max

{∑
k∈A u

xs,`
k (zk) : zi ∈ X`

i ,
∑

k∈A zk = m`
}
.

Moreover, if ` ∈ I, (uxs,`i )i∈A ∈ I`.

Proof. We prove (i) in the Lemma. (The proof of (ii) is symmetric.) Let ` ∈ K,
X̄` ≡ (X̄`

i )i∈A, X` ≡ ×i∈AX`
i , M ≡M `(A), and σ ≡

∑
k∈A X̄

`
k.

Without loss of generality, when ` is divisible, we can assume that, for each i ∈ A,
the interior of X`

i relative to R is non-empty.19 Similarly, when ` comes in indivisible
units we assume that the convex hull of X`

i has non-empty interior relative to R. In
the arguments that follow, when ` comes in indivisible units, we proceed as if it were
divisible identifying X`

i with its convex hull.

Step 1. Constructing a monotone path g.

For each m ∈ M , let g(m) ≡ ψ`(X̄,m). By the resource-monotonicity of ϕ, for
each pair m,m′ ∈M `, m′ ≥ m implies,

g(m′) = ψ`(X̄`,m′) ≥ ψ`(X̄`,m) = g(m).

Thus, for each k ∈ A, each gk is increasing in m. By feasibility, g(0) = (0)k∈A and
g(σ) = X̄`.

When ` is divisible, it is clear that g is continuous on the interval M .20

19Otherwise we could replace A by A` ≡ {i ∈ A : X̄`
i 6= 0} in all the arguments in the proof and

attribute, to each i ∈ A \A` any finite function uxd,`
i with domain X`

i = {0}.
20See the first step in the proof of Theorem 2 of Thomson (1994b).
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Figure 2: An illustration of the construction of a monotone path in the the integral case: Suppose
that A = {i, j} and that agents have increasing preferences over their consumption of resource kind
`, available in indivisible units. (a) As the amount of the resource increases from 0 to 1 (1 to 2,
2 to 3, . . . ), by resource-monotonicity, the allocation recommended by the mechanism is above or
to the right of (0,0) ((1,0), (2,0), . . . ). (b) We obtain a continuous monotone path by connecting
the allocations of resource ` obtained in part (a). The arguments in Lemma 11, for the divisible
resource case, can then be applied to construct a profile of concave functions.

When ` comes in indivisible units, the allocations of resource ` can be “connected”
uniquely by a continuous monotone path as is illustrated in going from Figure (2a)
to Figure (2b). Abusing notation, we will denote this continuous path by g as well.

Step 2. Constructing (uxd,`i )i∈A from g.

For each m ∈ M and each i ∈ A, let hi : X`
i → R denote a strictly increasing

such that hi(0) = 0, hi(X
`
i ) = σ,

for each xi ∈ intX`
i , xi = gi(m) if and only if lim

z↑xi
hi(z) ≤ m ≤ lim

z↓xi
hi(z),

0 = gi(m) if and only if 0 ≤ m ≤ lim
z↓0

hi(z), and

X̄`
i = gi(m) if and only if lim

z↑X̄`
i

hi(z) ≤ m ≤ σ.

(9)

For each xi ∈ X`
i , let fi(xi) ≡

∫ xi
0
hi(t)dt. Then, fi : X`

i → R is a well-defined,
closed, and proper convex function.21 Additionally, because hi is strictly increasing,

21See Theorem 24.2 in (Rockafellar, 1970, page 230). In this context, the closedness of fi is
equivalent to its lower semi-continuity.

31



fi : X`
i → R is strictly convex. For each i ∈ A, let uxd,`iu

xd,`
iu
xd,`
i ≡ −fi. Hence, each

uxd,`i : X`
i → R is strictly concave.

Step 3. Verifying that (uxd,`i )i∈A is as claimed in the Lemma.

For each i ∈ A, let fi ≡ −uxd,`i . It suffices to establish that, for each m ∈M ,

g(m) = arg min

{∑
A

fk(zk) :
∑
A

zk = m, z ∈ X`

}
. (10)

Case 1: m = 0m = 0m = 0 or m = σm = σm = σ. If m = 0, {z ∈ X` :
∑

A zk = 0} = (0)k∈A. Thus,
arg min

{∑
A fk(zk) : z ∈ X`,

∑
A zk = 0

}
= (0)k∈A = g(0), as desired. A symmetric

argument establishes (10) when m = σ.

Case 2: σ > m > 0σ > m > 0σ > m > 0. Let a ≡ arg min
{∑

A fk(zk) :
∑

A zk = m, z ∈ X`
}

. For each
k ∈ A, let Fk : R→ R be the function such that, for each xk ∈ X`

k, Fk(xk) = fk(xk)
and, for each xk /∈ X`

k, Fk(xk) =∞. Note that, under the standard convention that
the convex combination of a finite number and ∞ is itself ∞, Fk : R→ R is convex,
closed, and proper. Moreover,

a = arg min {
∑

A Fk(zk) :
∑

A zk = m}.

Clearly, there is x in the relative interior ofX` such that
∑

A xi = m and
∑

A Fk(xk) =∑
A fk(xk) 6= −∞. Thus, by Corollary 28.2.2 in Rockafellar (1970), there is a Kuhn-

Tucker coefficient λ∗ ∈ R for the optimization problem min {
∑

A Fk(zk) :
∑

A zk = m}.
For each (x, λ) ∈ RA×R, let L(x, λ) ≡

∑
A Fk(xk)+λ[m−

∑
A xk]. By Theorem 28.3

in Rockafellar (1970),

min
x∈RA

L(x, λ∗) = λ∗m+
∑
k∈A

min {Fk(xk)− λ∗xk : xk ∈ R}

= λ∗m+
∑
k∈A

{Fk(ak)− λ∗ak}.
(11)

Thus, for each k ∈ A and each xk ∈ R,

Fk(xk) ≥ Fk(ak) + λ∗(xk − ak).

Thus, λ∗ is in the sub-differential of Fk at ak. That is, for each k ∈ A, λ∗ ∈ ∂Fk(ak).
By the definitions of fk and Fk in Step 2 and Theorem 24.2 in Rockafellar (1970),
(i) if ak is in the interior of X`

k, ∂Fk(ak) = [limz↑ak hk(z), limz↓ak hk(z)] , (ii) if ak = 0,
∂Fk(ak) = (−∞, limz↓ak hk(z)] , and (iii) if ak = X̄`

k, ∂Fk(ak) = [limz↑ak hk(z),∞) .
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Moreover, since σ > m > 0, there are i, j ∈ A such that ai < X̄`
i and 0 < aj. Thus,

since hi and hj are strictly increasing,

hi(ai) ≤ limz↓ai hi(z) < hi(X̄
`
i ) = σ and 0 = hj(0) < limz↑aj hj(z) ≤ hj(aj).

Thus, 0 < λ∗ < σ. Thus, by (9), for each k ∈ A, gk(λ
∗) = ak. Thus, m =

∑
A ak =∑

A gk(λ
∗) = λ∗. Thus, m = λ∗ and g(m) = a, confirming (10).

Finally, by construction, if ` ∈ I, (uxd,`i )i∈A ∈ I`. v

Next, using the profile of concave function constructed in Lemma 11, we prove
Theorems 2 and 3 for economies involving two agents.

Lemma 12. Let ϕ denote a mechanism satisfying the properties in Theorem 3. Then,
there is u ∈ U∗ such that, for each N ∈ N consisting of two agents and each
(R,m) ∈ EN , ϕ(R,m) = ϕu(R,m).

Proof. Let ` ∈ K. Let {i, j} ∈ N and (R,m) ∈ E{i,j} be such that p`(Ri) + p`(Rj) ≥
m`. We will prove that there is u ∈ U∗ such that ϕ(R,m)|` = ϕu(R,m)|`. (A
symmetric argument establishes the same conclusion if instead p`(Ri)+p`(Rj) ≤ m`.)

Let X̄` ≡ (X̄`
i )i∈A, X` ≡ ×i∈AX`

i , and R̄ ∈ RA be such that p`(R̄) = (X̄`
i )i∈A

and, for each k ∈ K \ {`}, pk(R̄) = pk(R). Let x ≡ ϕ(R̄i, R̄j,m). By Lemma 11,
there are

{ψk : k ∈ K} ∈ Ψ and u = {(uxd,ki , uxd,ki ) : i ∈ A, k ∈ K} ∈ U

such that, for each m̃ ∈M(A),

ϕ(R̄, m̃)|` = ψ`(X̄`, m̃`)

= arg max

{∑
i∈A

uxd,`i (zi) : z ∈ X`,
∑
i∈A

zi = m̃`

}
≡ ϕu(R̄, m̃)|`.

Thus, by the consistency of ϕ and ϕu (Lemma 5), for each {i, j} ∈ N and each
m ∈M({i, j}),

x` = ψ`(X̄`
i , X̄

`
j ,m

`)

= arg max
{
uxd,`i (zi) + uxd,`j (zj) : zi ∈ X`

i , zj ∈ X`
j , zi + zj = m`

}
≡ ϕu(R̄i, R̄j,m)|`.
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For each R′ ∈ R{i,j}, let S(R′) ≡ {z ∈ R{i,j}+ : z ≤ p`(R′), zi+zj = m`}. We establish
the first equality in

ϕ(R,m)|` = arg max
{
uxd,`i (zi) + uxd,`j (zj) : (zi, zj) ∈ S(R)

}
= ϕu(R,m)|`, (12)

where the second inequality follows from the definition of ϕu.

Case 1: x` ∈ S(R)x` ∈ S(R)x` ∈ S(R). Since p`(R) ≤ p`(R̄{i,j}), S(R) ⊆ S(Ri, R̄j) ⊆ S(R̄i, R̄j).
Thus, establishing the first equality in (12) amounts to proving that ϕ(R,m)|` = x`.
Let w ≡ ϕ(Ri, R̄j,m) and y ≡ ϕ(R,m). By Lemma 10, for each k ∈ K \ {`},
wk = xk and yk = xk. Thus, suppose that w` 6= x`. If x`i < w`i , w

` ∈ S(Ri, R̄j)
implies x`i < w`i ≤ p`(Ri) ≤ p`(R̄i). Then, wi P̄i xi, contradicting strategy-proofness
at (R̄i, R̄j,m). If x`i > w`i , x

` ∈ S(R) implies w`i < x`i ≤ p`(Ri). Then, xi Pi
wi, contradicting strategy-proofness at (Ri, R̄j,m). Thus, w = x. Using a similar
argument we go from (Ri, R̄j,m) to (R,m), arriving at y = w = x. Thus, inf fact,
ϕ(R,m)|` = x`, as desired.

Case 2: x` /∈ S(R)x` /∈ S(R)x` /∈ S(R). Then, without loss of generality, i is such that x`i > p`(Ri).
Let y = ϕ(R,m). Suppose that y`i 6= p`(Ri). Thus, by Lemma 8 and since p`(Ri) +
p`(Rj) ≥ m`, y`i < p`(Ri). Let R′i ∈ Ri be such that p(R′i) = p(Ri) and xi P

′
i yi. Let

w ≡ ϕ(R′i, Rj,m). By Lemma 9, w = y. Note that p`(Ri) + p`(Rj) ≥ m` = x`i + x`j
and p`(R̄i) ≥ x`i > p`(Ri) implies p`(Rj) > x`j. Thus, x` ∈ S(R̄i, Rj). Thus, by
Case 1, x` = ϕ(R̄i, Rj,m)|`. Moreover, by Lemma 9, since, for each k ∈ K \ {`},
pk(R̄i, Rj) = pk(R̄i, R̄j), x

k = ϕ(R̄i, Rj,m)|k. Thus,

ϕi(R̄i, Rj,m) = xi = yi P
′
i wi = ϕi(R

′
i, Rj,m),

which contradicts strategy-proofness at (R′i, Rj,m). Thus, yi = p`(Ri). Thus, y is
the allocation in S(R) that is closest to x. This establishes (12). v

The rest of the proof of Theorem 2 relies on the fact that the separably concave
mechanisms are “conversely consistent.” This property requires it to be possible to
deduce if an allocation is desirable for an economy if the restriction of this allocation
is itself considered desirable for each two agent sub-economy.22 A mechanism ϕ is
conversely consistent if, for each N ∈ N and each (R,m) ∈ EN ,

[x ∈ Z(N,m) and, for each {i, j} ⊆ N , x{i,j} = ϕ(R{i,j}, xi + xj)] ⇒ x = ϕ(R,m).

22See Thomson (2011) for a detailed discussion of the property.
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Lemma 13. The separably concave mechanisms are conversely consistent.

Proof. Let u ≡ {(uxd,`i , uxs,`i ) : ` ∈ K, i ∈ A} ∈ U . Since the separably concave
mechanisms are strategy-proof, unanimous, resource-monotonic, and consistent, by
Lemma 10, there is {ψ` : ` ∈ K} ∈ Ψ such that, for each N ∈ N , and each
(R,m) ∈ EN ,

ϕu(R,m) = {ψ`(p`(R),m`) : ` ∈ K}.
By Lemma 5, ϕu is resource-monotonic. Using Lemma 9, this implies that, for each
N ∈ N , each R ∈ RN , and for each pair m̂`, m̃` ∈M `(N),

m̂` > m̃` ⇒ ψ`(p`(R), m̂`) ≥ ψ`(p`(R), m̃`). (13)

Let N ∈ N , and (R,m) ∈ EN . Let x ∈ Z(N,m) be such that, for each {i, j} ⊆ N ,
x{i,j} = ϕu(Ri, Rj, xi + xj). Let y ≡ ϕu(R,m). Since ϕu is consistent, y{i,j} =
ϕu(Ri, Rj, yi + yj). Thus, by consistency, if there is {i, j} ⊆ N such that y{i,j} 6=
x{i,j}, yi + yj 6= xi + xj. If so, without loss of generality, there is ` ∈ K such that
y`i + y`j > x`i + x`j. Thus, by (13),

y`{i,j} = ψ`(p`(Ri, Rj), y
`
i + y`j) ≥ ψ`(p`(Ri, Rj), x

`
i + x`j) = x`{i,j}

and, without loss of generality, i is such that y`i > x`i . Thus, since
∑

N x
`
h =

m` =
∑

N y
`
h, there is k ∈ N \ {i, j} such that y`k < x`k. By consistency, y{i,k} =

ϕu(Ri, Rk, yi+yk) and, by assumption, x{i,k} = ϕu(Ri, Rk, xi+xk). Thus, if y`i +y`k ≥
x`i + x`k, by (13), y`k ≥ x`k, which is not the case. Thus, y`i + y`k < x`i + x`k. Thus, by
(13), y`{i,k} ≤ x`{i,k}, contradicting y`i > x`i . Thus, ϕu is conversely consistent. v

As we mentioned in the beginning of this Section, the last step in the proof of
Theorem 3 and consists of the following “Elevator Lemma.” This step establishes
that, if a consistent mechanism coincides with a conversely consistent mechanism for
two agent economies then, in fact, they coincide in general. Recall that, in Lemma 12,
we proved that a mechanism satisfying the properties in Theorems 2 coincides with
a separably concave mechanism. The following results “elevates” this coincidence
from two agent economies to those with any finite number of agents.

Lemma 14. Let ϕ denote a mechanism satisfying the properties in Theorem 3. Then,
there is u ≡ {(uxd,`i , uxs,`i ) : ` ∈ K, i ∈ A} ∈ U∗ such that ϕ = ϕu.

Proof. Let N ∈ N , (R,m) ∈ EN , and x ≡ ϕ(R,m). By consistency, for each
{i, j} ⊆ N , ϕ(Ri, Rj, xi + xj) = x{i,j}. By Lemma 12, there is u ≡ {(uxd,`i , uxs,`i ) : ` ∈
K, i ∈ A} ∈ U∗ such that for each {i, j} ⊆ N , ϕ(Ri, Rj, xi+xj) = ϕu(Ri, Rj, xi+xj).
By Lemma 13, ϕu is conversely consistent. Thus, ϕu(R,m) = x = ϕ(R,m), as
desired. v
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A.4 Results for the single resource case

We first recall useful facts (Sprumont, 1991) that will be helpful in the proof of
Lemma 3.

Remark 1. Suppose that K is a singleton. Let N ∈ N and (R,m) ∈ EN .
(i) P (R,m) is a compact and convex set.
(ii) Allocation x ∈ Z(N,m) is efficient at (R,m) ∈ EN if and only if

∑
N p(Ri) ≥ m

implies x ≤ p(R), and
∑

N p(Ri) ≤ m implies x ≥ p(R).

Proof of Lemma 3. Suppose that K is a singleton. Let ϕ denote a unanimous, con-
sistent, and strategy-proof mechanism. We will prove that ϕ is efficient. If ϕ is not
efficient, there are N ∈ N and (R,m) ∈ EN such that x ≡ ϕ(R,m) is not efficient at
(R,m), x /∈ P (R,m). Thus, by (ii) in Remark 1, there is a pair i, j ∈ N such that
xi < p(Ri) and xj > p(Rj). By consistency, x{i,j} = ϕ(Ri, Rj, xi+xj). By unanimity,
either xi +xj < p(Ri) + p(Rj) or xi +xj > p(Ri) + p(Rj). Without loss of generality,
assume the former. Let R′i ∈ Ri be such that p(R′i) = xi + xj − p(Rj) > 0 and
y ≡ ϕ(R′i, Rj). Since, p(R′i) + p(Rj) = xi + xj, p(R

′
i, Rj) ∈ Z({i, j}, xi + xj). Thus,

by unanimity, yi = p(R′i) and yj = p(Rj). However, by feasibility, xi < yi < p(Ri).
Thus, yi Pi xi, contradicting strategy-proofness at (Ri, Rj). This contradiction es-
tablishes that ϕ is efficient. v

Finally we establish that the separably concave mechanisms are group strategy-
proof when K is a singleton.

Proof of Proposition 1. Let N ∈ N , u ≡ {(uxdi , uxsi ) : i ∈ A} ∈ U∗, (R,m) ∈ EN ,
and x ≡ ϕu(R,m). If

∑
N p(Ri) = m, then, for each i ∈ N , xi = p(Ri) and no agent

has an incentive to misreport her preferences. Suppose that
∑

N p(Ri) > m.
Let M ⊆ N and (R′,m) ∈ EN be such that, for each j ∈ N \M , R′j = Rj. Let

x′ ≡ ϕu(R′,m) and assume that

for each i ∈ N , x′i Ri xi. (14)

We will prove that (14) implies x = x′. (This implies that the group of agents M
cannot manipulate at (R,m).) Because preferences are single-peaked and x ≤ p(R)
(by Remark 1), a necessary condition for (14) is that

for each i ∈M , xi ≤ x′i. (15)

Case 1:
∑

N p(R
′
j) ≤ m

∑
N p(R

′
j) ≤ m

∑
N p(R

′
j) ≤ m. Since ϕu is efficient, for each j ∈ N \M , x′j ≥ p(R′j) =

p(Rj) ≥ xj. Thus,
∑

M xk ≥
∑

M x′k. Thus, by (15) and because preferences are
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single-peaked, if there is i ∈ M such that x′i Pi xi there is also j ∈ M such that
xj Pi x

′
j. Thus, (15) requires that

∑
N p(R

′
j) > m.

Case 2:
∑

N p(R
′
j) > m

∑
N p(R

′
j) > m

∑
N p(R

′
j) > m and x ∈ P (R′,m)x ∈ P (R′,m)x ∈ P (R′,m). Thus, by the definition of ϕu, x′ 6=

x requires x′ ∈ P (R′,m) \ P (R,m). Then, by Remark 1, there is i ∈ N such
such that p(R′i) ≥ x′i > p(Ri) ≥ xi. Thus, P (R′i, RN\{i},m) ⊇ P (R,m) and, since
RN\M = R′N\M , i ∈ M . Additionally, because preferences are single-peaked, (14)

and x′i > p(Ri) ≥ xi requires p(Ri) > xi. Thus, from the definition of ϕu and
by Remark 1, x = ϕu(R′i, RN\{i},m). Thus, x′ ∈ P (R′,m) \ P (R′i, RN\{i},m). Thus,
there is j ∈ N \{i} such that p(R′j) ≥ x′j > p(Rj) ≥ xj. Thus, P (R′i, R

′
j, RN\{i},m) ⊇

P (R,m) and, since RN\M = R′N\M , j ∈ M . Additionally, because preferences are

single-peaked, (14) and x′j > p(Rj) ≥ xj requires p(Rj) > xj. Thus, from the
definition of ϕu and by Remark 1, x = ϕu(R′i, R

′
j, RN\{i,j},m). Clearly, we can

continue in this way until we exhaust M . Thus, (15) implies x = x′.
Case 3:

∑
N p(R

′
j) > m

∑
N p(R

′
j) > m

∑
N p(R

′
j) > m and x /∈ P (R′,m)x /∈ P (R′,m)x /∈ P (R′,m). Then, by Remark 1, there is i ∈ N

such that p(Ri) ≥ xi > p(R′i) ≥ x′i. Since RN\M = R′N\M , i ∈ M . This contradicts

(15). Thus, (15) implies x = x′.
Cases 1 through 3 establish that, when

∑
N p(Ri) ≥ m, (14) implies x = x′. A

symmetric argument yields the same conclusion when
∑

N p(Ri) ≤ m. Clearly, this
conclusions hold for each (R,m) ∈ EN and each group of agents M ⊆ N . Thus, ϕu

is group strategy-proof. v
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