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Abstract

We consider the problem of checking first order dominance for finite bivariate dis-

tributions. We observe that this can be formulated as a special bipartite network

problem related to the classical transportation problem. We exploit this observation to

develop a new characterization of first order dominance and fast dominance-checking

algorithms.

Keywords: Multidimensional first order dominance, usual stochastic order, characteriza-
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1 Introduction

Dominance comparisons of distributions are a methodological cornerstone in economics,

finance, probability theory, and statistics, among other fields. In welfare economics, for

instance, dominance concepts are used to partially order population distributions according

to better social welfare or less inequality (e.g. Atkinson and Bourguignon (1982), Gravel and

Moyes (2012)), in decision analysis and finance stochastic orderings are used for evaluating

risky assets (e.g. Sriboonchita et al. (2009)), and in statistics various order restrictions can

form part of a null or alternative hypothesis (e.g. Silvapulle and Sen (2011)). For a general

discussion of stochastic dominance theory we refer to Marshall and Olkin (1979), Müller

and Stoyan (2002), and Shaked and Shanthikumar (2007).

The canonical stochastic dominance concept is that of first order dominance, also known

as the usual (stochastic) order (Lehmann (1955)). First order dominance captures the

intuition that one (dominant) distribution is better, i.e. gives higher outcomes, than the

other (dominated) distribution. For two multidimensional finite distributions, f and g, f
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first order dominates distribution g if and only if one of the following three (equivalent)

conditions hold: (a) it is possible to obtain g from f by moving probability mass from

better to worse outcomes, (b) the cumulative probability mass at f is smaller than or equal

to that at g for every comprehensive subset of outcomes1, and (c) the expected utility

of f is as least as high as that of g for any non-decreasing utility function.2 Thus, first

order dominance is an ordinal concept that does not rely on assumptions about the relative

importance of dimensions or the complementarity/substitutability relationships between

dimensions (Arndt et al. (2012)).3

In the one-dimensional case, much research into the nature of first order dominance

has been conducted (for example, the bibliography by Bawa (1982) contains more than 400

references), and the theory is by now well developed and the applications many. Surprisingly,

perhaps, there have to date only been few empirical applications of the first order dominance

concept to cases with two or more dimensions. An important reason might be that checking

multivariate first order dominance is not so easy with existing methods (unless the total

number of outcomes is small), and there is a gap in research on how this can be done

efficiently. The most direct way to check first order dominance is to use definition (b). Here

one needs to check an inequality for each comprehensive subset of outcomes. However, the

number of inequalities to be tested grows dramatically in the total number of outcomes,

so it is not an efficient method. Mosler and Scarsini (1991) and Dyckerhoff and Mosler

(1997) describe a method based on linear programming for checking first order dominance

in the general multivariate finite case, based on definition (a) above. To our knowledge, the

first empirical implementations of a method along these lines appear in Arndt et al. (2012)

and Arndt et al. (2013). An alternative approach would be to make use of a network flow

formulation of the problem, as outlined in Preston (1974) or Hansel and Troallic (1978), and

then check for dominance via computation of the maximum flow. We are not aware of any

actual implementations of such a method for checking multivariate first order dominance.

In this paper we present two algorithms for identifying first order dominance in the finite

bivariate case. The first algorithm is an intuitive and constructive approach for testing

first order dominance by identifying a finite sequence of diminishing bilateral transfers or

showing that no such sequence exists in O(n2) time, where n is the number of outcomes.

The second algorithm is indirect. It either states that first order dominance exists or shows

1A comprehensive subset holds the property that if an outcome is in the subset, then all smaller outcomes
are also included in that subset.

2Less restrictive dominance criteria for better distributions have been defined by imposing stronger
restrictions on the set of admissible utility functions. See, e.g., Levy and Paroush (1974), Harder and
Russell (1974), Huang et al. (1978), Atkinson and Bourguignon (1982), Mosler (1984), Russell and Seo
(1978), and Scarsini (1988).

3In the multidimensional context the first order dominance concept has been used with other meanings
than the one given here. In particular, Atkinson and Bourguignon (1982) and others have used the term
“first order dominance” to denote a less restrictive stochastic dominance concept (also known as an orthant
stochastic order cf. e.g. Dyckerhoff and Mosler (1997)) suitable under a substitutability relationship between
the dimensions.
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that a comprehensive set violates (b). We use the first (direct) algorithm to prove the

correctness of the indirect algorithm in the case where first order dominance exists. The

second algorithm has O(n) worst case complexity.

The paper is organized as follows. First, in section 2 the necessary notation and basic

definitions are introduced. Next, in section 3 we give some basic insights along with a new

characterization of first order dominance for the general multivariate case. In section 4 we

turn to algorithms for the bivariate case. Section 5 concludes.

2 Notation and Definitions

An outcome is a vector x = (x1, . . . , xm), where each attribute xj is from an attribute

set Xj = {1, 2, ..., nj}, j = 1, . . . ,m, and m ≥ 2. The outcome set is the product set

X = X1 × . . . × Xm and has cardinality n = Πm
j=1nj . If m = 2, then we have a bivariate

case. For any two elements, x,y ∈ X , we define y ≤ x such that yj ≤ xj for all j, and

y < x such that xj ≤ yj for all j and y 6= x. A set Y ⊆ X is called comprehensive if x ∈ Y ,

y ∈ X , and y ≤ x imply y ∈ Y .

A distribution is a real-valued function f on X , such that f(x) ≥ 0 for all x ∈ X and
∑

x∈X f(x) = 1. We say that a distribution g can be derived from a distribution f by a

bilateral transfer (of probability mass) if there are outcomes x,y such that g(z) = f(z) for

z 6= x,y ∈ X . Note that if the two distributions are identical except for the values in x

and y, then we can obtain g from f by transferring a suitable amount of probability mass

between x and y.4 A diminishing bilateral transfer is a shift of probability mass from one

outcome, x, to another, y, such that y < x.

Suppose that f and g denote two distribution functions. We say that f first order

dominates g if one of the following three equivalent properties (A)-(C) hold.5

(A) g can be obtained from f by a finite number of diminishing bilateral probability mass

transfers.

(B)
∑

x∈Y g(x) ≥
∑

x∈Y f(x) for any comprehensive set Y ⊆ X .

(C)
∑

x∈X u(x)f(x) ≥
∑

x∈X u(x)g(x) for every non-decreasing function u.6

4As f and g are distribution functions and only differ in x and y, we must have that if f(y) ≤ g(y) then
f(x) ≥ g(x) and g(y) − f(y) = f(x) − g(x). Thus the bilateral transfer we consider is to increase f(y)
by f(x) − g(x) and decrease f(x) by the same amount. The resulting distribution function will then be
equivalent to g.

5The equivalence between (B) and (C) was proven by Lehmann (1955) and Levhari et al. (1975). The
equivalence between (A) and (B) can be obtained as a corollary of a theorem by Strassen (1965) (see e.g.
Kamae et al. (1977)) or can be established through an application of the max-flow min-cut theorem for flow
networks (see e.g. Preston (1974)). Østerdal (2010) gives a direct proof for equivalence between (A) and
(B) in the finite case.

6A real-valued function u on X is non-decreasing if x,y ∈ X and y ≤ x implies u(y) ≤ u(x).
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We add the following notation to ease the description of first order dominance. Given

an outcome x ∈ X , let L(x) = {y ∈ X |y ≤ x} be the lower set and U(x) = {y ∈ X |x ≤ y}

be the upper set. For two distributions, f and g, we define the real valued function s(x) :=

f(x)−g(x) for x ∈ X along with the sets P = {x ∈ X |s(x) > 0} and R = {x ∈ X |s(x) < 0}.

For the elements of R, probability mass has to be added to f for f to become equivalent to

g and, likewise, for the elements of P , probability mass has to be subtracted from f for f to

become equivalent to g. Thus, for f to first order dominate g, the elements of P have excess

probability mass which needs to be transferred to one or more elements of R by diminishing

transfers. More precisely, for each element p ∈ P we have to transfer s(p) probability mass

to a number of elements in L(p) ∩R. In a similar vein, each element r ∈ R requires −s(r)

probability mass to be transferred from a number of elements in U(r) ∩ P for f to become

equivalent to g by diminishing bilateral transfers.

When using diminishing bilateral transfers to obtain g from f it should be noted that

we can omit all the elements x ∈ X having s(x) = 0. The reason is that if we transfer

some probability mass from x to an element z of L(x) \ {x}, then the same amount of

probability mass has to be transferred to x from some element of y ∈ U(x) \ {x}. By the

definition of U(x) we must have that L(x) ⊂ L(y), and the transfer to and from x can

therefore be replaced by a direct transfer from y to z. More generally, if a sequence of

diminishing bilateral transfers uses intermediate elements of X , then, as just described, it is

always possible to replace one or more of these diminishing bilateral transfers with a direct

diminishing bilateral transfer. Consequently, no outcome needs to both send and receive

probability mass. We let C = {(p, r) ∈ P × R|r ∈ L(p)} be the pairs of outcomes which

correspond to possible (direct) diminishing bilateral transfers.

3 Basic insights

With the definitions given in section 2 we can formulate the problem of checking first order

dominance between two finite multivariate distributions as a bipartite network problem. It

is essentially a transportation, problem where the “suppliers” from P have to transport a

required amount to the “customers” from R. If it is possible to transport probability mass

from p ∈ P to r ∈ R, i.e. (p, r) ∈ C, we incur a unit cost of zero of transportation from

p to r, whereas if it is not possible to transport probability mass from p to r, then a unit

cost of one is incurred for transporting probability mass from p to r. Solving the resulting

transportation problem either yields a zero value objective, in which case we have identified

a finite set of diminishing bilateral transfers, or a strictly positive objective showing that it

is necessary to send something from p ∈ P to a r /∈ L(p)∩R. Hence, if the objective is zero,

then we have by (A) that f first order dominates g, whereas if the objective is positive, then

f does not first order dominate g. If we let b = max{|P |, |R|} and d = min{|P |, |R|}, and k is
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the number of feasible connections, then this problem can be solved in O(b log b(k+d log d))

by the method described by Kleinschmidt and Schannath (1995). Furthermore, there is

a set-up cost of Θ(n) for identifying P and R from X and of O(|P ||R|) for identifying

which arcs are feasible. Note that |P ||R| = bd, which is part of the algorithm’s complexity.

Thus, using a transportation problem algorithm directly yields a time complexity of O(n+

b log b(k + d log d)).7

Below we present an alternative linear programming model which is based on the ob-

servation that we just need to identify a feasible transportation problem solution having

objective value equal to zero. Let zpr ≥ 0 be the amount of probability mass transferred

from p to r, where (p, r) ∈ C. Furthermore, let cp ≥ 0 for p ∈ P and dr ≥ 0 for r ∈ R

be two sets of auxiliary variables. For given values of the zpr variables, cp measures the

amount of probability mass not transferred out of p ∈ P to elements r ∈ L(p)∩R (in order

to reach s(p)). Likewise, dr measures the excess amount (compared to −s(r)) of probability

mass transferred to element r ∈ R from the elements in U(r) ∩ P . Then the problem is to

identify a feasible set of transfers such that the amount of probability mass which cannot

be transferred out of p ∈ P and the amount of probability mass received beyond −s(r) for

r ∈ R are minimized. Hence, we have to solve the following linear program:

Z∗ =min
∑

p∈P

cp +
∑

r∈R

dr (1)

s.t.
∑

r∈L(p)∩R

zpr + cp ≥ s(p), p ∈ P (2)

∑

p∈U(r)∩P

zpr − dr ≤ −s(r), r ∈ R (3)

zpr ≥ 0, (p, r) ∈ C (4)

cp ≥ 0, p ∈ P (5)

dr ≥ 0, r ∈ R (6)

The objective (1) of this problem is to minimize the untransferred probability mass from

the elements of P as well as the excess probability mass transferred to elements of R. The

first constraint (2) states that each element p ∈ P either has to transfer to the elements

in L(p) ∩ R or leave some of the probability mass untransferred. The second constraint

(3) states that an element of r cannot receive more than −s(r) probability mass from the

elements in U(r)∩P , but if it does, then the excess probability mass is added to dr.
8 Finally,

7The worst case complexity of the maximum flow problem described by Preston (1974) or Hansel and
Troallic (1978) is O((|P | + |R|)2|C|) using the preflow-push algorithm described by Goldberg and Tarjan
(1988). The linear programming based approaches described by Mosler and Scarsini (1991) and Dyckerhoff
and Mosler (1997) are typically solved by means of pseudo-polynomial algorithms such as the Simplex
algorithm; see Schrijver (1987).

8To be consistent we use the convention that a sum of no elements is zero, i.e. if L(p) ∩ R = ∅, then
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the constraints (4)-(6) just state the non-negativity of the variables.

A solution for problem (1)-(6) will be denoted (z, c,d), where z = (zpr)(p,r)∈C , c =

(cp)p∈P , and d = (dr)r∈R. A solution is said to be feasible if it satisfies all the constraints

(2)-(6). Furthermore, a solution is said to be optimal if it is feasible and minimizes objective

(1). If the solution is optimal, then it is denoted (z∗, c∗,d∗). A feasible solution to (1)-(6)

with
∑

p∈P cp +
∑

r∈R dr = 0 has the characteristic that the inequality constraints (2) and

(3) have to be binding, which is summarized in Lemma 1. This is an important observation

for the direct algorithm described in section 4.2.

Lemma 1. Let (z, c,d) be a feasible solution to problem (1)-(6). If
∑

p∈P cp+
∑

r∈R dr = 0,

then

1. cp = 0 for all p ∈ P ,

2. dr = 0 for all r ∈ R,

3. constraints (2) and (3) will be binding.

Proof. Let (z, c,d) be a feasible solution to problem (1)-(6) with
∑

p∈P cp +
∑

r∈R dr = 0.

As
∑

p∈P cp +
∑

r∈R dr = 0, and both c ≥ 0 and d ≥ 0, we must have that cp = 0 for all

p ∈ P and dr = 0 for all r ∈ R showing parts 1 and 2 of the lemma. Part 3 of the lemma

can be realized as follows: For each pair (p, r) ∈ C the variable zpr is present in exactly one

of the constraints (2), and the corresponding coefficient is equal to one. The same holds for

constraint (3). Thus, we have the relation

∑

p∈P

∑

r∈L(p)∩R

zpr =
∑

r∈R

∑

p∈U(r)∩P

zpr

Hence, summarizing constraint (2) yields the following

∑

p∈P

(s(p)− cp) ≤
∑

p∈P

∑

r∈L(p)∩R

zpr

=
∑

r∈R

∑

p∈U(r)∩P

zpr

≤
∑

r∈R

(−s(r) + dr)

Note that, as
∑

x∈X s(x) =
∑

x∈X f(x) −
∑

x∈X g(x) = 0, we have that
∑

p∈P s(p) =
∑

r∈R −s(r). Consequently, the above has to hold with equality when cp = 0 and dr = 0.

When cp = 0 we have that
∑

p∈P s(p) =
∑

p∈P

∑
r∈L(p)∩R zpr. Now suppose that for

an element p′ ∈ P we have that s(p′) <
∑

r∈L(p′)∩R zp′r. Then some other p′′ ∈ P

must exist having s(p′′) >
∑

r∈L(p′′)∩R zp′′r, i.e. requiring that cp′′ > 0, which forces the

∑
r∈L(p)∩R zpr = 0, and if U(r) ∩ P = ∅, then

∑
p∈U(r)∩P zpr = 0.
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objective to be positive. Hence, for the objective to have value zero we therefore must

have s(p) =
∑

r∈L(p)∩R zpr for all p ∈ P . Therefore, constraint (2) must be binding for

an optimal solution to have value zero. An analog argument can be made for (3), and

consequently both constraints (2) and (3) have to be binding.

Clearly, if the optimal solution for problem (1)-(6) is zero, Z∗ = 0, then we have a feasible

finite series of diminishing bilateral transfers – showing that f first order dominates g –

whereas a positive objective corresponds to the case where no feasible series of diminishing

bilateral transfers exists.9 In the latter case we conclude that f does not first order dominate

g.

Lemma 1 gives a further characterization of first order dominance. That is, if f first

order dominates g, then we know that a solution (z∗, c∗,d∗) having value Z∗ = 0 ex-

ists and consequently having c∗ = 0, d∗ = 0,
∑

r∈L(p)∩R z∗
pr

= s(p) for all p ∈ P , and
∑

p∈U(r)∩P z∗
pr

= −s(r) for all r ∈ R. The following theorem states this observation explic-

itly:

Theorem 1. f first order dominates g if and only if a vector z ∈ R
|C| exists with z ≥ 0

and

∑

r∈L(p)∩R

zpr =f(p)− g(p), ∀p ∈ P (7)

∑

p∈U(r)∩P

zpr = g(r)− f(r), ∀r ∈ R (8)

Proof. If f first order dominates g, then a finite sequence of diminishing bilateral transfers

exists. Consequently, a feasible set of transfers between elements of C exists yielding a

solution value of zero for problem (1)-(6). Then directly by Lemma 1 we have that (7) and

(8) hold. On the other hand, if z ≥ 0 exists such that (7) and (8) hold, then it is a feasible

solution for problem (1)-(6) with c = 0 and d = 0. The values of zpr then constitute a

finite sequence of diminishing bilateral transfers.

The linear programming model (1)-(6) may have alternative solutions yielding the same

objective value. We make the following observation for a feasible solution.

Lemma 2 (Equivalence of transfer). Let (z, c,d) be a feasible solution for (1)-(6). Let

x,y ∈ P and v,w ∈ L(x) ∩ L(y) ∩R and put

β = min {zxv, zyw} (9)

9The number of constraints, not counting the non-negativity constraints, in problem (1)-(6) is exactly
|P | + |R|. Hence, the basis of the LP will consist of |P | + |R| variables which can attain a non-negative
value, while the remaining variables are non-basic at a lower bound of zero. Thus, we need at most |P |+ |R|
diminishing bilateral transfers.
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If β > 0, then we can construct an alternative solution (z′, c′,d′) having c′ = c, d′ = d,

and all elements of z′ equal to the corresponding elements of z except for

z′
xv

= zxv − β (10)

z′
yw

=zyw − β (11)

z′
xw

=zxw + β (12)

z′
yv

= zyv + β (13)

with the same objective value.

Proof. If the two solutions have c′ = c and d′ = d, then they have the same objective value.

Thus, we have to show that altering z to z′ maintains c′ = c and d′ = d. Both for x and

y we have added and subtracted β in constraint (2), thus not changing the values cx and

cy. Furthermore, we have for both v and w added and subtracted β in the constraint (3)

thereby not changing dv or dw either. Consequently, as solution z was feasible so will z′ be,

and they will have the same objective value.

x

y

v

w

Figure 1: Swap of probability mass transfer.

The observation from Lemma 2 is illustrated for the bivariate case in Figure 1. The

full arrows are the bilateral transfers which are decreased, whereas the dashed arrows are

the bilateral transfers which are increased. Lemma 2 will be used to show that given

any solution to (1)-(6) with objective value zero we can construct an alternative solution

following a specific pattern. As a consequence, it will only be necessary to search for this

pattern when checking first order dominance in the bivariate case.
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4 Algorithms for the Bivariate Case

First we introduce a constructive O(n2) algorithm for identifying a finite sequence of dimin-

ishing bilateral transfers. Then we observe that it is not necessary to construct the finite

sequence of diminishing bilateral transfers directly to show that such a sequence exists, and

we use this observation as a base for an O(n) algorithm determining whether or not f first

order dominates g.

For both algorithms the elements of X are searched in a specific order. This ordering is

described in section 4.1. Then in section 4.2 we introduce the direct algorithm, and finally

in section 4.3 we introduce the indirect algorithm for checking first order dominance.

4.1 Ordering elements

The elements ofX can be completely ordered in many ways – in this paper we use two specific

complete orderings. In what follows we let a, b ∈ {1, 2} with a 6= b. We say that an element

x = (x1, x2) ∈ X has a lower (a, b)-order than y = (y1, y2) ∈ X if xa < ya or if xa = ya and

xb > yb. In case x has a lower (a, b)-order than y then we write oab(x) < oab(y). Hence, the

ordering increases with increasing element indices from Xa subsequently decreasing elements

of Xb.

4.2 A direct approach

First we identify a sequence of diminishing bilateral transfers which may give a solution

where Z∗ = 0, and then we show that if a solution having value Z∗ = 0 exists, then we

can transform this solution into the solution found by this sequence. Consequently, we have

that the solution found by the given sequence will identify a solution having value Z∗ = 0

if and only if such a solution exists.

In the direct algorithm we manipulate the variables of the formulation (1)-(6) in such a

way that we keep dr = 0 for all r ∈ R while keeping constraint (2) binding. Hence, we have

that cp = s(p) −
∑

r∈L(p)∩R zpr for all p ∈ P , and we put ρr = −s(r) −
∑

p∈U(r)∩P zpr.

Clearly, ρr corresponds to the slack variable of constraint (3) and has to be non-negative.

Implicitly, we initialize zpr = 0 for all pairs (p, r) ∈ P × R.10 Thus, increasing zpr will

decrease both cp and ρr, and the aim is to identify a sequence of increases of zpr such that

both cp and ρr become zero for all p and r.

The direct approach is given in Algorithm 1. It initializes the variables and then repeats

three steps, which results in either a solution to the problem (1)-(6) with a value zero

(terminating in step 1) or a positive objective value (terminating in step 2).

10It is not necessary to initialize zpr explicitly as we just need to keep track of which pairs (p, r) have
increased values of zpr.
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Step 0 Initialize cp = s(p) for all p ∈ P and ρr = −s(r) for all r ∈ R.

Step 1 Select p ∈ P with minimal (1, 2)-order, o12(p), such that cp > 0. If no such p

exists, then terminate, continue otherwise.

Step 2 Select r ∈ L(p) ∩ R with maximal (2, 1)-order, o21(r), such that ρr > 0. If no
such r exists, then terminate else continue.

Step 3 Update
zpr = min{cp, ρr}
cp = cp − zpr

ρr = ρr − zpr

(14)

Go to step 1.

Algorithm 1: Direct bilateral transfer algorithm

An example of the progression in the three steps is given in the left part of Figure 2. It

shows the sequence of selections of elements of P and R. Elements of P are white nodes,

whereas elements of R are black nodes. The first element of P encountered is p1, and it

transfers probability mass to r6, r5, r4, and r3. While r6, r5, and r4 are fully saturated, r3

only received a fraction of −s(r3), and it can therefore receive more later in the algorithm.

The sequence of diminishing transfers of probability mass away from p1 is illustrated by

the full black arrows in the figure. The same is then done for p2 and p3, where the gray

arrows represent the sequence of diminishing transfers from p2 and the dashed arrows show

the sequence of diminishing transfers from p3.

r
8

r
7

r
5

r
6

r
3

r
4

r
2

r
1

p
1

p
2

p
3

1

.

.

.

j

.

.

.

n2

n2 + 1

0 1
. . .

i
. . . n1

L(i, j − 1)

U(i + 1, j)

Figure 2: Left: The process of the O(n2) algorithm. Right: The base sets for the O(n)
algorithm.

Clearly, if a solution with value Z∗ = 0 is found then we have identified a feasible solution

to problem (1)-(6), and we can therefore conclude that f first order dominates g. On the

other hand, if a solution value greater than zero is found by the approach above, then we

need to guarantee that no zero value solution actually exists. We do this in Theorem 2 by
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showing that if a zero value solution exists, then the solution found by the above approach

will also have a value of zero. We need the following Lemma:

Lemma 3. Let X = X1 ×X2. Given four elements x,y,v,w ∈ X having w ∈ L(x) and

v ∈ L(y), then if x1 ≤ y1 and v2 ≥ w2, then w ∈ L(y).

Proof. This can be realized as follows: As w ∈ L(x) then w1 ≤ x1, and by assumption we

have that x1 ≤ y1. Furthermore, we have that v ∈ L(y), then v2 ≤ y2, and by assumption

we have that w2 ≤ v2. Hence, w ∈ L(y).

Theorem 2. Algorithm 1 terminates in at most O(n2) iterations and either terminates with

a finite sequence of diminishing bilateral transfers or shows that no such sequence exists.

Proof. If Algorithm 1 terminates in step 1, then a sequence of diminishing bilateral transfers

has been found satisfying all of the constraints (2) and (3). This has been done such that

all cp values have been decreased to zero while keeping the dr values at zero. Hence, a finite

sequence of diminishing bilateral transfers exists.

Suppose that we have a solution z∗ having value Z∗ = 0, and z∗ is not equal to a

solution found by the approach above. Let the solution found by the approach above be

z with z∗ 6= z. As these are not identical, an element x ∈ P must exist such that the

corresponding v ∈ R found by the approach above is not transferring as much probability

mass from x to v in the optimal solution z∗ as in the solution z. Hence z∗
xv

< zxv. Note that

Algorithm 1 is greedy and transfers as much as possible to elements with a lower (1, 2)-order

before transferring probability mass to elements with a higher (1, 2)-order. Therefore, the

lowest (1, 2)-order element x having z∗
xv

6= zxv will have z∗
xv

< zxv. Select first pair (x,v)

in the (1, 2)-order where z∗
xv

< zxv. Hence, a pair (x,w) must exist where w ∈ R would

be selected later by step 2 with value z∗
xw

> 0. As w is selected later, we must have that

o21(v) > o21(w), and consequently v2 ≥ w2. Note that the gray area in Figure 1 is the

area of possible selections of the element w. On the other hand, an element y ∈ P found

later in the (1, 2)-ordering in step 1 must transfer probability mass to v, because constraint

(3) holds with equality in the optimal solution with value Z∗ = 0, and therefore z∗
yv

> 0.

Because y is selected later than x in step 1, we must have that o12(x) < o12(y) and therefore

that x1 ≤ y1. Using Lemma 3 we can conclude that v,w ∈ L(x)∩L(y)∩R. Hence, we can

do the exchange given by Lemma 2 increasing z∗
xv

and z∗
yw

while decreasing z∗
xw

and z∗
yv

correspondingly. This process can be continued until the two solutions are identical. Thus,

if we have a solution z∗ with value Z∗ = 0, we can always transform it into an alternative

solution which can be constructed by Algorithm 1. Consequently, if it is not possible to

identify a zero-value solution by Algorithm 1, then no zero value solution exists, and we can

therefore conclude that no finite sequence of diminishing bilateral transfers exists.

The approach using the three steps above has a time complexity of O(n2), as for each

element p ∈ P we have to search through the elements of L(p) to identify a suitable element
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r ∈ L(p) ∩R.

4.3 An indirect approach

We now present a more efficient algorithm for the first order dominance. Like Algorithm

1 it is based on iterating through the elements of X in increasing (1, 2)-order, but it only

records how much probability mass is transferred between specific aggregated subsets with-

out specifying the bilateral transfers directly.

To ease the notation, we expand the sets X1 and X2 to X1 = X1 ∪ {0} and X2 =

X2 ∪ {n2 + 1}. Now we use the simpler notation x = (i, j) for i ∈ X1 and j ∈ X2.

Furthermore, we let fij = f(x), gij = g(x), and sij = s(x). We let f0j = g0j = s0j = 0 for

all j ∈ X2, and fi,n2+1 = gi,n2+1 = si,n2+1 = 0 for all i ∈ X1. We say that elements (i, ·)

are the column of i, and the elements (·, j) are the row of j. See Figure 2 for an illustration

of the set-up, where the dashed boxes correspond to the artificial elements added, and the

hatched boxes correspond to the row and column elements in row j and column i having a

lower (2, 1)-order and higher (1, 2)-order, respectively, compared to the element (i, j).

For each element (i, j) ∈ X we associate a variable eij ≥ 0, which is the excess probability

mass left in element (i, j) after processing this element and all elements having lower (1, 2)-

order. The value of eij is the amount of probability mass which can be transferred to row

j by some unprocessed element y ∈ U(i+ 1, j). We also associate the variable uij ≥ 0 with

the untransferred probability mass from the set of elements (i, h) in column i with h ≥ j

after processing element (i, j) and all elements having a lower (1, 2)-order. The value uij is

the amount of probability mass which is necessary to transfer to some element in L(i, j−1).

Again we let the boundary values be e0j = 0 for all j ∈ X2 and ui,n2+1 = 0 for all i ∈ X1.

It is important to note that a value of eij = 0 means that no more probability mass can be

sent to elements (h, j) with h = 1, . . . , i in the remaining iterations. Furthermore, if uij > 0,

then some of the elements (i, k) for k = j, . . . , n2 have untransferred probability mass. In

this case we need to transfer at least uij into the set L(i, j − 1). On the other hand, if

uij = 0, then all required probability mass has been transferred. The variables eij and uij

will never be positive simultaneously. If they were, then we could send δ = min{eij , uij}

from (i, j) to the elements of row i and then decrease both variables by δ. Clearly, δ is zero

when either eij or uij is zero, in which case it is not possible to reduce these further.

Let tij = ui,j+1 − ei−1,j + sij be net required transfer after processing element (i, j). If

tij > 0, then tij units still have to be transferred to L(i, j − 1), whereas if tij < 0, then we

can still transfer −tij units to the elements in (h, j) for h = 1, . . . , i from U(i + 1, j). We

can calculate the values of eij and uij by the following recursions:

uij = max {0, tij} , (i, j) ∈ X (15)
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and

eij = max {0,−tij} , (i, j) ∈ X (16)

By this recursion we transfer as much as possible from the elements (i, k) with k ≥ j to the

elements (h, j) with h ≤ i before proceeding to the next element with higher (1, 2)-order.

The indirect algorithm can be stated as in Algorithm 2.

Step 0 Let f0j = g0j = e0j = 0 for all j ∈ X2 and fi,n2+1 = gi,n2+1 = ui,n2+1 = 0 for
all i ∈ X1.

Let i = 1, j = n2.

Step 1 Calculate
sij = fij − gij
tij = ui,j+1 − ei−1,j + sij
uij = max {0, tij}
eij = max {0,−tij}

Step 2 Choose one of the following

• If j > 1, then put j = j − 1 and goto step 1.

• If j = 1, i < n1, and ui1 = 0, then put i = i+ 1, j = n2 and goto step 1.

• If j = 1 and ui1 > 0, then return FALSE.

• If j = 1, i = n1, and ui1 = 0, then return TRUE.

Algorithm 2: Indirect bilateral transfer algorithm

The algorithm iterates through the elements of X in the (1, 2)-order. Each element is

processed at most once, and processing an element requires a constant number of calcula-

tions. Hence, the time complexity is O(n). Intuitively, if for some x = (i, 1) we achieve

ui1 > 0, then it is required to transfer probability mass from an element in (i, h) with

h ≥ 1 to an element in L(i, 0), but as the element (i, 0) /∈ X does not exist, we have that

L(i, 0) = ∅ and we can therefore not accommodate the required transfer. Hence, we can

conclude that it is not possible to make a sequence of diminishing bilateral transfers, and

the algorithm terminates, which implies that f does not first order dominate g. On the

other hand, if the algorithm iterates through all the elements of X without this happening,

then we have found a feasible sequence of diminishing bilateral transfers, and the algorithm

concludes that f first order dominates g.

Lemma 4 states the case where the algorithm returns that f first order dominates g,

whereas Lemma 5 describes the case where the algorithm returns that f does not first order

dominate g. Finally, Theorem 3 states the correctness and time complexity of the indirect

algorithm.

Lemma 4. If Algorithm 2 terminates with un11 = 0, then a finite sequence of diminishing

bilateral transfers exists such that g can be obtained from f .

Proof. We prove this by showing that the sequence of diminishing bilateral transfers ob-
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tained by algorithm 1 can be obtained by algorithm 2 as well. Algorithm 2 traverses the

elements in increasing (1, 2)-order and therefore encounters elements of P in the same order

as Algorithm 1. Suppose that we maintain a list L of the encountered elements of p ∈ P

having cp > 0 which is sorted in increasing (1, 2)-order. These are the elements for which we

have not transferred a sufficient amount of probability mass. Furthermore, for each element

j ∈ X2 we maintain a list Qj of encountered elements of R with ρr > 0 which is sorted in

increasing (2, 1)-order. When reaching element (i, j) ∈ X then if sij > 0 we add the (i, j)

to the end of L as it has the highest encountered (1, 2)-order. On the other hand, if sij < 0,

then we add the (i, j) to the front of Qj as it has a lower (2, 1)-order than the other elements

of the list Qj . The value tij corresponds to
∑

p∈L cp −
∑

r∈Qj
ρr after doing the above in-

sertions. If either L or Qj is empty, then it is not possible to transfer any probability mass

and therefore the next element from X is selected in increasing (1, 2)-order. On the other

hand, if both lists are not empty, then it is possible to transfer probability mass. Therefore,

repeat the following until either L or Qj becomes empty; select the first element of p ∈ L

and the last element of r ∈ Qj. Put zpr = min{cp, ρr} and then update cp = cp − zpr and

ρr = ρr − zpr. Either cp or ρr becomes zero. If cp becomes zero, then p is removed from

L, and if ρr becomes zero, then r is removed from Qj . In this way, we always allocate the

lowest (1, 2)-order p ∈ P having cp > 0 to the highest compatible (2, 1)-order element of

r ∈ R. If ui1 = 0, then we have that tij ≤ 0, which indicates that
∑

p∈L cp ≤
∑

r∈Q1
ρr.

If at this point
∑

p∈L cp > 0, then we can still transfer this amount to L(i, 1) and decrease
∑

p∈L cp and
∑

r∈Q1
ρr accordingly. Consequently, if ui1 = 0, then the list L is empty, and

we proceed to the next column. When the algorithm reaches element (n1, 1) with a value of

un1,1 = 0, then we have constructed a finite series of diminishing bilateral transfers. This is

exactly what Algorithm 1 does, and we can therefore obtain a finite sequence of diminishing

bilateral transfers to obtain g from f .

Lemma 5. If Algorithm 2 terminates with ui1 > 0 a comprehensive set Y ⊆ X exists such
∑

x∈Y g(x) <
∑

x∈Y f(x).

Proof. We can explicitly identify a comprehensive set which violates (B) if the value of

ui1 > 0 for some i ∈ X1. First, note that

uij − eij = max{0, tij} −max{0,−tij} = tij = ui,j+1 − ei−1,j + sij

and suppose that we are given a comprehensive set Y . Then we have

∑

(i,j)∈Y

(uij − eij) =
∑

(i,j)∈Y

(ui,j+1 − ei−1,j) +
∑

(i,j)∈Y

sij (17)
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Now let
H = { i ∈ X1 | (i, 1) ∈ Y }

I = { j ∈ X2 | (1, j) ∈ Y }

J = { (i, j) ∈ Y | (i+ 1, j) /∈ Y }

K = { (i, j) /∈ Y | (i, j − 1) ∈ Y }

The sets J and K are illustrated in Figure 3, where Y is the gray area (including both

shades of gray). The union of the hatched boxes corresponds to J , whereas the union of the

dark gray boxes is the set K. Furthermore, the dashed box is the elements (i, 1) ∈ Y with

i ∈ H , and the dotted box is the elements (1, j) with j ∈ I. We can then rearrange (17) as

∑

(i,j)∈Y

sij =
∑

j∈I

e0j −
∑

(i,j)∈J

eij +
∑

h∈H

uh1 −
∑

(i,j)∈K

uij (18)

where
∑

j∈I e0j = 0 by the definition of e0j . Showing that the comprehensive set Y violates

condition (B) corresponds to showing that
∑

(i,j)∈Y sij > 0, which is equivalent to showing

that
∑

h∈H uh1 >
∑

(i,j)∈J eij +
∑

(i,j)∈K uij .

Y

0 1
. . .

i
. . . n1

Figure 3: A violated comprehensive set.

Suppose that the Algorithm 2 terminates with ui1 > 0. Then we know that uh1 = 0 for

h = 1, . . . , i−1 and therefore
∑

h∈H uh1 = ui1. Hence, if we can construct the comprehensive

set Y such that
∑

(h,j)∈J ehj +
∑

(h,j)∈K uhj = 0 then we have the violation we are seeking.

We construct Y implicitly by constructing J and K explicitly. Each time an element (h, j)

is added to J , then all elements (a, j) with a ≤ h are added to Y . Start with (h, j) = (i, 1).

Because ui1 > 0, we have that ei1 = 0. Therefore add (i, 1) to J . Repeat the following

until h = 0. If uh,j+1 = 0, add (h, j + 1) to K and put h = h − 1, otherwise uh,j+1 > 0
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and consequently eh,j+1 = 0 and therefore add (h, j + 1) to J and put j = j + 1. When

terminating we have only added elements to J having ehj = 0 and elements to K having

elements uhj = 0, thus having
∑

(i,j)∈J eij +
∑

(i,j)∈K uij = 0 < ui1 showing that (B) is

violated by Y.

Theorem 3. Algorithm 2 terminates in O(n) iterations either stating that f first order

dominates g or that f does not first order dominate g.

Proof. If the algorithm terminates with un11 = 0, then we have by Lemma 4 and property

(A) that f first order dominates g. On the other hand, if the algorithm terminates with ui1 >

0 for some i ∈ X1, then by Lemma 5 a violated comprehensive set exists. Consequently, by

property (B) f does not first order dominate g. Finally, as each element of X is traversed

maximally once and the number of operations for each element is constant, the algorithm

terminates in O(n) iterations.

It is possible to achieve the sequence of diminishing bilateral transfers without increasing

the worst case time complexity by augmenting Algorithm 2. The proof of Lemma 4 uses

insertion of elements into lists. These lists and the corresponding insertions could be added

to an augmented version of Algorithm 2. Insertions and deletions of elements from the

lists are only performed in the end of the lists, and we can therefore do this in O(1) time

complexity. Throughout the algorithm at most |P |+ |R| elements is inserted into the lists,

as any element is inserted into one of the lists only once. Hence, the number of insertions

and number of deletions are therefore bounded by |P |+ |R| and this augmentation will have

a complexity of O(n).

Furthermore, it is also possible to derive a violating comprehensive set without increas-

ing the worst case time complexity by applying the constructive method in the proof of

Lemma 5. The method uses no more than max{|P |, |R|} iterations of complexity O(1), and

Algorithm 2 can therefore be augmented with this construction and still have a worst case

time complexity of O(n).

5 Conclusion

In this paper we have obtained a new characterization of first order dominance for the

general multivariate case. Furthermore, we have described two algorithms for checking first

order dominance in the bivariate case, one of which has linear time worst case complexity.

It remains an open topic for further research to develop an efficient approach for checking

first order dominance in the multivariate case.
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