

A Column Generation Approach for Solving the Patient

Admission Scheduling Problem

by

Troels Martin Range,

Richard Martin Lusby

and

Jesper Larsen

Discussion Papers on Business and Economics
No. 1/2013

FURTHER INFORMATION
Department of Business and Economics

Faculty of Social Sciences
University of Southern Denmark

Campusvej 55
DK-5230 Odense M

Denmark

Tel.: +45 6550 3271
Fax: +45 6550 3237

E-mail: lho@sam.sdu.dk
ISBN 978-87-91657-79-5 http://www.sdu.dk/ivoe

A Column Generation Approach for Solving the Patient

Admission Scheduling Problem

Troels Martin Range

Department of Business & Economics, COHERE, University of Southern Denmark,
Campusvej 55, 5230 Odense M, Denmark,

tra@sam.sdu.dk

Richard Martin Lusby

Department of Engineering Management, Technical University of Denmark
Produktionstorvet, building 426, 2800 Kgs. Lyngby

rmlu@dtu.dk

Jesper Larsen

Department of Engineering Management, Technical University of Denmark
Produktionstorvet, building 426, 2800 Kgs. Lyngby

jesla@dtu.dk

January 8, 2013

Abstract

This paper addresses the Patient Admission Scheduling (PAS) problem. The PAS
problem deals with assigning elective patients to beds, satisfying a number of soft
and hard constraints. The problem can be seen as part of the functions of hospital
management at an operational level. There exists a small number of different variants
on this problem. We propose an optimization-based heuristic building on branch-and-
bound, column generation, and dynamic constraint aggregation for one of the variants.
We achieve tighter bounds than previously reported in the literature, and in addition
we are able to produce new best solutions for five out of six instances from a publicly
available repository.

Keywords: Patient admission scheduling, column generation, dynamic constraint aggre-
gation, dual disaggregation, branch-and-bound.
JEL Code: C61 MSC Code: 90B35, 90C57

1 Introduction

In this paper we consider a new approach for solving the Patient Admission Scheduling
(PAS) problem. In many countries, the allocation of patients to wards (more specifically, to

1

beds) is carried out by a central planning unit in the hospital management. The algorithm
presented in this paper can assist hospital management at the operational level in assigning
elective patients to beds, attempting to satisfy as many as possible of the individual patient
preferences, while making sure critical medical equipment is available. Hospitals usually
have slack in order to deal with emergency patients, which are, naturally, difficult to plan
for. Emergency patients are not considered in this study.

The area of patient admission scheduling in hospitals is important for a high-quality
health care system. To provide health care services is perhaps one of the most complex
industries worldwide. Planning and managing the operations of a hospital in an efficient
manner requires a sound knowledege of the hospital system, and understanding the pa-
tient flow is critical for this. Most literature within patient admission scheduling focuses on
the strategic (and tactical) level and describes tools and cases for assisting hospital man-
agement with tactical and strategic planning problems. Some examples are Jittamai and
Kangwansura [2011], Harper [2002], Kusters and Groot [1996]. The aim here is to have the
right number of beds available in order to increase the efficiency of the hospital.

The problem that we investigate in this paper is the operational version of the PAS
problem. This problem has not received much attention until recently. It is indirectly part
of scheduling operating rooms, which has achieved some attention. The survey in Guerriero
and Guido [2011] lists some 129 publications that focus on optimization of the operating
theaters of a hospital.

The operational version of PAS has been described with slightly different twists in the
few existing articles available. In Hutzschenreuter et al. [2008] an agent-based model for
the problem is presented. A model of the patient flow is generated in order to admit an
optimal mix of patients from different departments with special attention to the common
usage of (central) hospital resources. The work is based on a detailed description of the
patient flow and its probabilities. This system can be used to develop policies for achieving
a good patient mix and to facilitate efficient hospital operations.

In contrast to this, Chen et al. [2010] develop a generic algorithm for an admission
scheduling problem for only one department. The algorithm uses historical data and opti-
mizes a long-term admission strategy instead of suggesting a specific schedule.

The remaining work in this area, Demeester et al. [2010], Bilgin et al. [2012], Ceschia
and Schaerf [2011], all consider the same version of PAS. This definition of the PAS problem
was originally presented in Demeester et al. [2010]. In addition, the authors have published
a website containing instances1, currently best known solutions, and a solution validator.

The problem has a fixed number of elective patients. In practice, elective patients often
wait for an admission date; however, in this particular context, each patient has already
been assigned both an admission and a discharge date. In addition, each patient states
their medical requirements. The aim is then to determine which beds are assigned to which
patients in order to maximize the patient comfort and efficiency of the medical operations.
This planning has to be done in compliance with a few hard constraints; for example, admis-
sion and discharge dates must be respected, mandatory medical equipment needs to be in
the room assigned, and male and female patients cannot share the same room. In this paper
we present a new mathematical formulation of the problem and devise an efficient column
generation-based heuristic for solving it. Our methodology utilizes a dynamic constraint ag-
gregation procedure to overcome some of the problems associated with solving large integer
programming formulations. The methodology is tested on the first six of the benchmark in-

1http://allserv.kahosl.be/∼peter/pas.

2

stances provided by Demeester et al. [2010], where we report tighter LP bounds, signficantly
faster running times than previous mathematical programming approaches to achieve these,
and five new best known integer solutions.

The structure of this paper is as follows. In Section 2, we introduce the PAS problem in
more detail and present a binary integer programming formulation to model it. Section 3
describes the proposed solution methodology as well as a detailed discussion on the dynamic
constraint aggregation procedure. Here we also introduce a new dual disaggregation strategy.
Computational results are described in Section 4, and conclusions from this study are drawn
in Section 5.

2 Problem Definition

In this section we consider the PAS problem in more detail. In particular, we provide a
detailed overview of the constraints of the problem and introduce the required terminology
and notation that is used throughout the paper. The description of the problem is consistent
with that of Demeester et al. [2010].

The PAS problem requires that a set of patients requiring medical attention, P, are
assigned to a set of hospital beds over a prespecified daily time horizon. We denote the
set of consecutive days that comprise this planning horizon as T . Each patient, p ∈ P, is
assumed to have a known admission date, ap ∈ T , and a known discharge date, dp ∈ T ,
which together define the duration of the patient’s stay in the hospital. We letW = {(p, t) ∈
P × T |ap ≤ t < dp} be the set of all patient-time combinations; in other words, the set of
all patient days which must be assigned at the hospital.

For treatment each patient requires one or more so-called specialisms (e.g. cardiology,
oncology, gerontology, etc.). Typically, patients need just one specialism. There are, how-
ever, some multi-spec patients who require more than one. In this case, the time needed
by each specialism is known. Each bed is located in a particular room, and each room be-
longs to a particular department at the hospital. Every department has the ability to cater
for the treatment of a variety of specialisms, but with varying degrees of expertise. Some
departments also have an age policy (e.g. pediatrics, gerontology), which means that the
department can only admit patients of a certain age. As is the case for departments, rooms
also have a ranked list of specialisms for which they are suitable. Furthermore, every room
has a certain number of identical beds, termed the room capacity (typically this is one, two,
or four beds) and is equipped with a set of properties (e.g. oxygen and telemetry) that can
be used for treatment. The presence of certain room properties for a patient may either
be required or simply preferred. Each room also has a gender policy. This stipulates that
all patients in the room must be male, female, mixed (but the same gender on any given
day), or unrestricted. The rooms at the hospital can be classified as a particular room type,
where all rooms of a particular type are identical. We denote the set of all room types at
the hospital as R, and for each r ∈ R we let Nr be the number of available rooms of this
type. Since all beds in a given room are identical and all the rooms of a particular type
are also identical, one can equivalently view the PAS problem as finding an assignment of
patients to room types over the planning horizon.

In the process of assigning patients to room types, several constraints must be respected.
These can be classified as hard or soft constraints. The former must be respected, while the
latter can be violated; however, a penalty is incurred for each violation. For the version of
the PAS problem that we consider, there are three types of hard constraints. Firstly, there

3

is the rather obvious requirement that no two patients can simultaneously occupy the same
bed. Viewed from a room type assignment perspective, this is equivalent to stating that
the capacity of the room type must not be violated on any day. Secondly, on each day of
the planning horizon each room type should contain patients that correspond to its gender
policy. Finally, each patient should be assigned a room type consistent with their age.

All other constraints are considered soft and will be described in turn. We begin by
discussing those penalties that are incurred when assigning a given patient, p ∈ P, to a
particular room type, r ∈ R, since all such individual penalties can be accumulated to
obtain one patient room type assignment penalty, dpr. Firstly, each patient has a preference
for the capacity of the room in which they will stay. A patient who is assigned a room
type with a capacity larger than their preference incurs a penalty. Secondly, a patient
should be placed in a department whose most competent specialism matches the patient’s
required specialism. Lower levels of expertise are penalized. Similarly, a patient should
receive a room type that best matches the patient’s specialism. Imperfect matches are again
penalized. Finally, in terms of room properties, patients should receive a room type that
is equipped with their required and preferred properties. Missing properties are penalized;
however, missing required properties are more heavily penalized than preferred ones. The
only penalty not related to room type assignment concerns the transfer of patients between
room types on successive days. Since it is undesirable to transfer patients during their stay,
every time a patient is transferred a transfer-out penalty, to, and a transfer-in penalty, ti,
are incurred.

Given the problem description outlined above, one can formally state the PAS problem
as follows: find the minimum penalty allocation of patients to room types so that each
patient is allocated to a room type during their stay while respecting the various room type
capacities, gender policies, and age policies.

Figure 1 gives an illustrative example of how patients could be assigned to a room type
containing four beds over a 14-day time horizon. Male patients are indicated by a solid
gray rectangle, while female patients are represented by a dark gray, hatched rectangle.
The horizontal lines connecting successive rectangles indicate that the respective rectangles
represent the same patient. A solid white rectangle simply indicates that the relevant
bed is empty. Note that this particular assignment of patients over the planning horizon
corresponds to a room schedule for this room type. The set of all feasible room schedules
for a given room type, r ∈ R, is denoted as Sr.

The PAS problem can be formulated as the following 0-1 integer program. The binary
decision variable xrs states whether or not the solution contains room schedule s ∈ Sr for
room type r ∈ R. Allocating room schedule s ∈ Sr to room type r ∈ R is assumed to
incur crs in penalties (i.e. the sum of all penalties incurred for the room type over the time
horizon). The binary indicator variable asw states whether or not a given room schedule,
s ∈ Sr, contains patient time combination w ∈ W.

4

1 3 4 5 6 7 8 9 10 11 12 132

1

2

3

4

14

Day
B

ed

Figure 1: Example of a room schedule for 14 days

min
∑
r∈R

∑
s∈Sr

crsxrs, (1)

s.t.
∑
r∈R

∑
s∈Sr

aswxrs = 1 ∀w ∈ W, (2)

∑
s∈Sr

xrs ≤ Nr ∀r ∈ R, (3)

xrs ∈ {0, 1} ∀r ∈ R,∀s ∈ Sr. (4)

The objective function, given by (1), minimizes the sum of the penalties incurred in
allocating the room schedules. Constraint set (2) ensures that each patient is assigned
a room for each night of their respective stays, while constraints (3) prevent staff from
assigning more room schedules for a particular room type than there are rooms of that
type. The binary restrictions on the decision variables are given by (4). To complete the
description we let πw be the dual variable value on constraint (2) associated with patient-
time combination w ∈ W and let σr be the dual variable value on constraint (3) associated
with room type r ∈ R.

It may be observed that this formulation is essentially from a room type perspective.
That is, only legal room schedules for each room type are included in the model. As a
consequence, the constraints on the gender policy of the room type and its bed count are
embedded in the column definition of the model. Therefore, we expect the LP relaxation
of this formulation to be tighter than one that simply considers the assignment of patients
to beds. For the latter case, additional constraints are required to enforce both the gender
requirement and the bed counts of the respective room types.

The above formulation is characterized by an exponential number of variables and, com-
paratively speaking, relatively few constraints. This makes it an ideal candidate for a column
generation based approach. However, while the number of constraints is far smaller than the
number of possible variables, it is still large enough (|W| is at least 2244 for the instances
we consider) to impede the performance of a linear program solver. Hence, we develop a
column generation approach which utilizes dynamic constraint aggregation to help reduce

5

the row dimension of the formulation. The details of this algorithm will be described in the
subsequent section.

3 Solution Approach

To solve the PAS problem we propose a column generation-based approach that incorporates
a dynamic constraint aggregation procedure to improve the performance of the algorithm.
The dynamic constraint aggregation is of crucial importance in that it reduces the row di-
mension of the set partitioning problem. Column generation is a widely used decomposition
technique for solving large-scale optimization problems in which it is impossible to consider
all variables explicitly in the formulation. In column generation the problem is decomposed
into a master problem and one (or more) pricing problem(s), respectively. In what follows
we describe the structure of both the master and subproblems as well as provide a detailed
explanation of how we apply the dynamic constraint aggregation methodology.

3.1 Master Problem

The PAS master problem is identical in structure to that of model (1)-(4); however, it
only contains a subset of the possible variables. The role of the pricing problem is to
identify favorable variables dynamically using the dual variable information from an optimal
solution of the relaxed master problem. To obtain the relaxed master problem, we replace
constraints (4) with

xrs ≥ 0. (5)

The premise in column generation is that many of the variables will be non-basic in an
optimal solution to the original problem, so one should only generate those variables that
have the potential to improve the objective function value. Thus, the objective function for
the pricing problem is the reduced cost calculation of the non-basic variables. For the PAS
problem we identify one pricing problem for each room type, where each has an objective
function of the form ∑

(p,t)∈W

(dpr − πpt)ztp + tiγi + toγo − σr. (6)

Here, ztp is a binary variable indicating whether or not patient time combination (p, t) ∈ W
is assigned to room type r ∈ R, and γi and γo give the total number of transfers into and
out of room type r ∈ R over the planning horizon.

Column generation is hence an iterative procedure between the master and pricing prob-
lems. The master problem solves to optimality a relaxed, restricted version of the original
problem, which contains a subset of promising variables, while the pricing problems identify
favorable variables to append to the master problem. If no such variable is found, the pro-
cess terminates, and one has found an optimal solution to the LP relaxation of the original
problem. If integrality is desired, column generation can be embedded in a branch-and-price
framework. The reader is referred to Desrosiers et al. [2005] for an introduction to column
generation.

6

3.2 Pricing Problem

In the pricing problem we have to identify a room schedule for each room type satisfying
the room constraints such that (6) is minimized. That is, a room schedule that places at
most Qr patients in the room in any time period and satisfies the gender constraints.

We let Pr ⊆ P be the subset of patients which are compatible with room specification,
thereby leaving out patients who do not satisfy the gender policy or the age policy for the
room. We let Vr = {(p, t) ∈ W|p ∈ Pr} be the considered patient-time combinations for the
room type r.

The gender policy of the room can be considered as a categorization of the patients. If
the room has either the male policy, the female policy or the unrestricted policy, then the
room only has a single category of patients. On the other hand, if the room has the mixed
policy, then both genders are considered, but only one of the genders can be present in the
room at any time. Thus, let C be the index set of the categories and let mcp ∈ {0, 1} be a
parameter taking the value 1 if and only if patient p ∈ Pr belongs to category c ∈ C.

A variable γipt measures whether or not patient p is transferred into the room from period
t− 1 to period t, and γopt indicates whether or not patient p is transferred out of the room
from period t−1 to period t. For each day t the variable vct states whether or not a patient
from category c is present in the room. A mathematical model for the pricing problem is
then

min
∑

(p,t)∈Vr

(dpr − πpt)zpt +
∑

(p,t)∈Vr

(tiγipt + toγopt) (7)

s.t.
∑
p∈Pr

zpt ≤ Qr, t ∈ T (8)

zpt − zp,t−1 ≤ γipt p ∈ Wr, ap < t < bp (9)

zp,t−1 − zpt ≤ γopt p ∈ Wr, ap < t < bp (10)

mcpzpt ≤ vct c ∈ C, t ∈ T (11)∑
c∈C

vct ≤ 1 t ∈ T (12)

zpt ∈ {0, 1} (p, t) ∈ Vr (13)

γipt, γ
0
pt ≥ 0 (p, t) ∈ Vr (14)

vct ≥ 0 c ∈ C, t ∈ T . (15)

The objective (7) corresponds to the variable part of the reduced cost coefficient of a column
given in (6). The number of patients transferred into the room is γi =

∑
(p,t)∈Vr γ

i
pt and

the number of patients transferred out of the room is γo =
∑

(p,t)∈Vr γ
o
pt. Constraints

(8) ensure that the room capacity is not violated. For each patient in each period within
the patient’s admission, constraints (9) and (10) measure, respectively, whether or not the
patient is transferred into the room and whether or not the patient is transferred out of the
room. Next, constraints (11) and (12) enforce the gender policy where only one category,
as defined above, is allowed into the room in each period. If we only have a single category,
then |C| = 1 and constraints (11) and (12) will be redundant, in which case they can be
removed from the problem. Finally, the types of variables are stated in (13)-(15). Note that
if the zpt-variables are binary, then the other variables will take binary values in an optimal
solution, and thus we let the other variables be standard non-negative continuous variables.

7

Instead of solving model (7)-(15) directly, we use a variety of heuristics and dynamic
programming algorithms to solve the pricing problems. We use heuristics as, most of the
time, they yield sufficiently good columns with negative reduced cost using only short com-
putation time. When the heuristics cannot identify any negative reduced cost columns, we
turn to an exact dynamic programming approach, which gives a number of negative reduced
cost columns if any such columns exist.

We primarily use three different pricing heuristics. The two first are based on greedily
selecting patients for their full stay by increasing contribution to the reduced-cost coefficient.
In this way, we avoid the penalties of transferring patients in and out of the room. The
first heuristic greedily selects the patient with most negative contribution to the reduced
cost which is compatible with the already allocated patients. In this heuristic, patients
are not selected according to the time interval during which they occupy the bed and, as a
consequence, the corresponding schedule can display unused beds on many days. To remedy
this, the second heuristic increments time period, t, such that we can only select patients,
p, with ap = t. Then patients starting in period t are selected greedily as long as they
are compatible with already allocated patients. If no more patients can be found, then the
period t is incremented and the process is repeated.

The third heuristic is based on the following observation. If the room has only one
bed, i.e. capacity Qr = 1, then the pricing problem reduces to a shortest-path problem
in a directed acyclic graph. Hence, solving this shortest path problem and multiplying
the resulting value with the room capacity yield a lower bound on the problem (7)-(15).
Subtracting σr from this lower bound gives a lower bound on the reduced-cost coefficient of
any schedule for room type r. On the other hand, if we resolve the shortest-path problem,
where we have removed the patients not compatible with the patients found on previous
shortest paths, then we will get a feasible room schedule, where each path corresponds to the
occupation of a single bed in the room throughout the planning period. Thus, solving the
increasingly restricted shortest path problem Qr times results in a feasible room schedule. In
contrast to the two first greedy heuristics, the shortest path based heuristic allows transfers.

The two first heuristics are very fast and are both run for each room in each pricing.
The shortest path-based heuristic is run only for those room types which have a negative
lower bound on the reduced costs.

When the heuristics cannot identify any negative reduced cost room schedules, we solve
the pricing for a subset of room types by dynamic programming. The sequence in which
we try to price out each room type is based on the lower bound on the reduced cost for
any schedule for the room type. We select the room types in increasing value of the lower
bound of the reduced cost. If the number of negative reduced cost columns obtained is
sufficiently large, then the exact pricing is prematurely terminated. If not, then the dynamic
programming algorithm is run on all room types having a negative lower bound on the
reduced cost.

The dynamic programming approach uses the increasing days t ∈ T as stages and
(Ct(S), S) as states, where S ⊆ Pr having |S| ≤ Qr and the patients in S are compatible
with each other, i.e. do not violate the gender policy. Ct(S) is then the lowest penalty
with which we can obtain S in period t using any feasible sequence of sets S1, . . . , St−1.
Given two sets, S′ and S, we let γit−1,t(S

′, S) be a function calculating the number of
patients transferred in from S′ to S. Likewise, we let γot−1,t(S

′, S) be the number of patients
transferred out of the room from S′ to S. Note that these two functions do not add newly
arrived patients or discharged patients. If we let Ft be the set of feasible subsets S ⊆ Pr

satisfying 1) that for each patient p ∈ S the patient has to be admitted, i.e. ap ≤ t < bp;

8

2) that the number of patients in the room at time t is no larger than the number of beds
available, i.e. |S| ≤ Qr; and 3) that the gender policy of the room is satisfied. Then we can
calculate Ct(S) by the following recursion:

Ct(S) =


∑
p∈S

(dpr − πpt), t = 1∑
p∈S

(dpr − πpt) + min
S′∈Ft−1

{
Ct−1(S′) + tiγi

t−1,t(S
′, S) + toγo

t−1,t(S
′, S)

}
t > 1

(16)

In each stage the dynamic programming constructs the sets S and identifies the cost by
the recursion (16). The size of Ft is exponential in Qr and |Pr|, and thus this algorithm is
not polynomially bounded in the worst case. We can, however, apply preprocessing as well
as dominance criteria between states, which significantly reduces the computation times.
The preprocessing is stronger the closer the solution of the pricing problem is to price out,
which makes it possible to solve the dynamic programming problem for a single room in
less than a second in most cases. The reader is referred to Range et al. [2012] for further
details on the preprocessing, the dynamic programming algorithm as well as the shortest
path based bound.

3.3 Dynamic Constraint Aggregation

Dynamic constraint aggregation is a technique for efficiently solving large set partitioning
problems. Set partitioning problems with a large row dimension are notoriously degenerate,
and this often results in excessively long solution times for the resulting linear programs. Dy-
namic constraint aggregation attempts to reduce the row dimension (and hence the potential
degeneracy) of set partitioning problems by partitioning the constraints into aggregated sets
of constraints, known as clusters. The set partitioning problem is then restated in terms of
the clusters; that is, there is one partitioning constraint for each cluster. The reduced size
of the aggregated problem means it is also easier to solve.

Naturally, the aggregation impacts the columns that can be included in the model. Only
columns that are compatible with the aggregation are considered in the optimization. A
column is said to be compatible if it covers all elements of a cluster or none of them. Due
to the possibility of excluding favorable columns depending on the choice of aggregation,
the aggregation is dynamically updated if one detects incompatible columns that have a
favorable reduced cost. A theoretical framework for this methodology was first proposed by
Villeneuve [1999], while the first implementation of dynamic constraint aggregation can be
found in Elhallaoui et al. [2005]. Elhallaoui et al. [2010] make the procedure so-called multi
phase. In the multi phase approach a strategy for pricing columns in order of increasing
incompatibility is incorporated.

According to Elhallaoui et al. [2005], the initial motivation for constraint aggregation
arose in crew scheduling applications, where it was observed that crews very rarely change
vehicles. A similar property is also true for the PAS problem: here the transferring of pa-
tients is extremely undesirable. That is, all patient time combinations for a single patient
are likely to be assigned to the same room schedule. Using this observation, one could con-
sider all consecutive patient-time combinations for a certain patient as a single, aggregated
patient-time combination. Formally, in patient admission scheduling, an aggregation of the
partitioning constraints into a set of clusters H results in a partition, Q, of W. This is
defined as follows:

9

Q = {Wh : h ∈ H}, where Wi ∩Wj = ∅ ∀i, j ∈ H, i 6= j,
⋃
h∈H

Wh =W

.

3.3.1 Aggregated Master Problem

The aggregated master problem can be written as follows. Here all notation is the same
as the disaggregated model with the exception of the indicator variables ash. These simply
indicate whether or not a given room schedule, s ∈ Sr (r ∈ R), covers all the patient-time
combinations contained in partition h ∈ H or none of them.

min
∑
r∈R

∑
s∈Sr

crsxrs, (1)

s.t.
∑
r∈R

∑
s∈Sr

ashxrs = 1 ∀h ∈ H, (17)

∑
s∈Sr

xrs ≤ Nr ∀r ∈ R, (3)

xrs ≥ 0 ∀r ∈ R,∀s ∈ Sr. (5)

Observe that the objective function (1), constraints (3), and constraints (4) are inherited
from the disaggregated model. The only difference arises in constraint set (17). Here there is
now just one partitioning constraint for each partition h ∈ H. To complete the description,
we let αh be the dual variable value on constraint (17) associated with partition h ∈ H.
Since constraint set (3) is unchanged from the disaggregated model, the dual variable on
constraint (3) associated with room type r ∈ R remains σr.

3.3.2 Dual Disaggregation

In order to generate new columns that are compatible with the disaggregated model (or
prove that none exists), one must first obtain duals that are consistent with the disaggre-
gated model by disaggregating the dual variable values obtained from the aggregated master
problem. Elhallaoui et al. [2005] disaggregate duals by solving shortest-path problems in a
specially designed graph. They observe that the dual has to satisfy∑

w∈Wh

πw = αh, ∀h ∈ H (18)

in order for the disaggregated dual variable values to be consistent with the aggregated dual
variable values. To further disaggregate the aggregated duals, the authors apply a heuristic
based on a shortest-path problem where as many of the dual constraints for the incompatible
columns are satisfied. The main reason for using the heuristic is that it is reasonably fast.

Here we present a new dual disaggregation strategy that is similar in structure to that of
the linear programming model proposed by Elhallaoui et al. [2011] for solving the so-called
complementarity problem. This problem arises in the author’s improved primal simplex
algorithm and requires one to obtain a complete, feasible dual solution from a reduced
problem. Instead of a complementarity problem we solve a dual feasibility problem directly.
When applying dynamic constraint aggregation, we observe that only a small subset of

10

clusters is actually violated. A violated cluster is one for which there exists an incompatible
room schedule that covers some, but not all, of the patient-time combinations contained in
the cluster. In what follows we denote the subset of non-violated (resp. violated) clusters
as U ⊆ H (resp. U ⊆ H). Furthermore, we denote the set of room schedules for a certain

room type, r ∈ R, that are incompatible with the current aggregation as SQr . Each of the
compatible room schedules is included in the aggregated master problem and all relevant
information that can be derived from these is contained in the aggregated dual αu, where
u ∈ U . As these aggregated duals can be disaggregated in any way such that (18) is feasible,
the only columns of interest when disaggregating the aggregated dual variables are those
representing incompatible room schedules. A dual constraint for any room schedule can be
written as ∑

h∈H

∑
w∈Wh

aswπw + σr ≤ crs ∀r ∈ R, ∀s ∈ SQr .

If we rewrite this in terms of the sets U and U and move the constant terms to the right-hand
side, we obtain∑

u∈U

∑
w∈Wu

aswπw ≤ crs − σr −
∑
u∈U

∑
w∈Wu

aswπw ∀r ∈ R, ∀s ∈ SQr .

One knows by construction that no room schedule violates any cluster u ∈ U . Thus, one
can replace

∑
u∈U

∑
w∈Wu

aswπw with
∑

u∈U asuαu and obtain∑
u∈U

∑
w∈Wu

aswπw ≤ crs − σr −
∑
u∈U

asuαu ∀r ∈ R, ∀s ∈ SQr . (19)

These constraints must be satisfied if the aggregated dual solution is an optimal dual so-
lution to the disaggregated master problem. To ease the notation, we let yrs = crs − σr −∑

u∈U asuαu and formulate the following LP to determine if the aggregated dual variables
can be successfully disaggregated.

min
∑
r∈R

∑
s∈SQ

r

srs, (20)

s.t.
∑

w∈Wu

πw = αu ∀u ∈ U , (21)

∑
u∈U

∑
w∈Wu

aswπw − srs ≤ yrs ∀r ∈ R, s ∈ SQr , (22)

srs ≥ 0 ∀r ∈ R, s ∈ SQr , (23)

πw ≥ 0 ∀w ∈ W. (24)

Here, srs (where r ∈ R, s ∈ SQr) are auxiliary variables capturing the magnitude of violation
for the relevant dual constraint (19). The objective function, given by (20), minimizes the
sum of the violations. Constraintset (21) enforces the requirement that the sum of the
disaggregated dual variables is the value of the aggregated dual, while constraints (22)
determine the magnitude of violation in constraints (19). Constraints (23) are the non-
negativity requirements on the srs variables. Finally, we also add constraints (24) to ensure
that the disaggregated dual variables are also non-negative. This is because we relax the

11

partitioning constraints (17) to be covering constraints when solving the aggregated master
problem and thus restrict the dual variables to be non-negative, effectively stabilizing them.
By restricting the sign of the aggregated dual variables αh (h ∈ H) to be non-negative,
we can automatically set πw = 0 for w ∈ Wh whenever αh = 0 (h ∈ H). This stabilizing
technique gave a significant speed up when solving the dual disaggregation problem.

If one obtains an objective function value of zero when solving this problem, dual disag-
gregation is indeed feasible and the solution can be used to price new columns; however, if
the converse is true, i.e. if there is at least one room schedule for which the corresponding
srs > 0, then the aggregated dual solution can never be optimal for the disaggregated prob-
lem and re-aggregation is necessary. When reaggregating, room schedules with srs > 0 are
forced into the aggregation to ensure that they are compatible with the aggregation. An
overview of the solution approach is depicted in Figure 2.

Solve Aggregated Master Problem

Create Initial Partition

Disaggregate Dual Variables

Price Columns

Negative reduced cost?

Change Partition?

Update Partition and Aggregated
 Master Problem

Optimal Solution Found

No

No

Yes

Yes

Figure 2: Dynamic Constraint Addition

As a starting point, the algorithm requires one to construct an initial aggregation. To do
this, we implement a greedy, daily assignment heuristic with look-ahead penalties to yield
an upper bound. The initial aggregation is based on this heuristic solution. At this point the
algorithm enters an iterative loop betwen the master problem and room type subproblems.
If no subproblem returns a room schedule with negative reduced cost, the current set of
room schedules in the relaxed, aggregated master problem is optimal. Otherwise, a decision
of whether the aggregation should be revised or not is made. Typically, the decision to
reaggregate is based on the number of incompatible columns returned from the pricing
problems. If only incompatible columns are returned, reaggregation is necessary, while if

12

only compatible columns are returned, no change to the aggregation is necessary. In the
case where both incompatible and compatible columns are returned a decision is usually
based on the ratio of the best reduced cost from each set.

3.4 Forcing Integrality

The previous sections describe a column generation based approach for solving the relaxed
master problem. However, to find a solution to the original problem, i.e. model (1)-(4),
one must reintroduce the binary restriction on the decision variables, where it is violated.
In this section we describe possible strategies for enforcing the integrality of the solution.
Finally, we motivate and justify the use of the greedy variable fixing routine of Lusby et al.
[2012] to obtain an integer solution to the original problem.

When implementing column generation, the most conventional approach to obtain an
integer solution is to incorporate the procedure in a branch-and-price framework. This is
akin to the normal branch-and-bound procedure for solving mixed integer programming
(MIP) problems, with the exception that columns are dynamically added at each node of
the branch-and-bound tree. Since the relaxed master problem only contains a subset of the
possible columns of the original model, the pricing problem(s) must be solved at each node
of the branch-and-bound tree to ensure optimality of the procedure.

When solving a standard binary integer program, one typically employs variable branch-
ing. With this approach one identifies a fractional variable in the solution to the relaxed
problem and then partitions the solution space into two disjoint subspaces (branches). In
the left branch the variable is bounded downwards (i.e. assumes the value of zero), while in
the right branch the variable is forced to take its upper bound value of one. This approach,
however, does not transfer easily to a column generation setting. In column generation, the
property that prevents one from regenerating previously generated variables is the reduced
cost of a variable. Existing basic variables have a reduced cost of zero, while existing non-
basic variables have a non-negative reduced cost. This is, however, not true for variables
with an upper bound. Non-basic variables with a value equal to their upper bound can have
a negative reduced cost. One can enforce the bounds on the variables by adding relevant
constraints to the master problem. The corresponding dual variables on these constraints
can then be included in the reduced cost calculation to ensure that all variables have a
non-negative reduced cost. However, it is usually extremely cumbersome to monitor the
dual costs for individual variables in the pricing problem. The more preferred approach is
a branching strategy that results in minimal changes to the master and pricing problems.

The method of constraint branching developed by Ryan and Foster [1981] is well suited to
set partitioning, set packing, and set covering problems, and is often easily incorporated into
a column generation approach. This approach requires one to identify two constraints (each
with a unit right-hand side) that are covered fractionally in an optimal solution to a relaxed
version of the problem. Based on the identification of a such a pair of constraints, one then
partitions the solution space into two subspaces. In the left branch the two constraints are
required to be covered by the same variable, while in the right branch it is required that they
are covered by different variables. From a column generation perspective, it is usually easy
to implement such a procedure. Upon identifying a branch, one removes from the current
master problem those variables that are inconsistent with branch and then ensures that
the subproblem does not return any variables that do not satisfy the branch by modifying
the subproblem in some way. Typically this approach is preferred in a column generation
context as one can circumvent the need for additional constraints (and the necessary dual

13

variables) in the master problem.
For the PAS problem, two different types of constraint branches are possible. The

first, which could be considered the more conventional one, concerns two different patient-
time combinations. One knows that in an optimal integer solution, two different patient-
time combinations must be assigned to the same room schedule or to two different ones.
Alternatively, one could look at the slightly less traditional constraint branch consisting of a
patient-time combination and a particular room type. That is, when branching, one would
force a certain patient-time combination to be assigned to a particular room type (or ban
it from doing so). However, since the right-hand side of the room type constraint is not
required to be unit value, one would expect this branch to be weaker than the traditional
constraint branch, where each constraint defining the branch has a unit right-hand side.
Indeed, the power of the constraint branch relies on this property. Furthermore, since the
number of beds in a particular room type can also be higher than one, forcing a particular
patient-time combination to be assigned to a given room type is unlikely to have a dramatic
impact on the possibilities for the other patients. Similarly, banning a given patient-time
combination from a particular room type is not likely to cause a dramatic change in the
objective function value (at least in the early phases of branching). Coupling the constraint
branching idea possibilities with a severely degenerate set partitioning problem suggests that
an exact branch-and-price strategy is unlikely to be successful. Preliminary tests reinforced
this; the fractionality of the solutions did not decrease until a large number of branches had
been enforced.

Another, slightly different, approach is to branch on the number rooms of a given room
type used. That is, upon solving a relaxed version of the PAS problem, a room type that
has a fractional number of its rooms used can be identified and two disjoint subspaces can
be identified accordingly. The left branch would ensure that the number of rooms that could
be used for the identified room type could be no more than the floor of its current fractional
value, while the right branch would ensure that the number of rooms used would be at least
the ceiling of its fractional coverage. For example, if we denote the fractional coverage of
room type r ∈ R in the optimal solution to the relaxed master problem as fr, one could
create the following two branches:

Left branch:
∑
s∈Sr

xrs ≤ bfrc, (25)

Right branch:
∑
s∈Sr

xrs ≥ dfre. (26)

The nice feature of this approach is that it can be incorporated into the the column
generation framework with no modification to the subproblem structure being necessary.
When branching, only the right-hand side (and perhaps the sense) of the relevant room
type constraint in the master problem must be changed. It is, however, not a complete
branching strategy. That is, a fractional allocation of patient time combinations to the
room types might still exist, even though an integer number of rooms of each room type
is used. This branching strategy can be extended to incorporate a gender component; i.e.
enforce the requirement that a certain number of rooms of a given room type are occupied by
one of the genders. It would not be as trivial to implement as simple room type branching,
as additional constraints would be needed in the master problem, and the resulting dual
variables would also have to be accounted for in the subproblems. Again, however, this is

14

not a complete branching strategy and would require an additional branching method (i.e.
the constraint branch ideas above) to ensure integrality of the final solution.

Using the above branching strategies in a complete branch-and-price framework, it is
theoretically possible to find the optimal solution to the PAS problem, albeit potentially
very time consuming. Since this is a problem arising in practice, where excessive run times
are undesirable, we prefer to implement a heuristic branching strategy where the main focus
is to quickly find an integer solution of high quality. The approach we adopt is the aggressive
variable fixing strategy of Lusby et al. [2012]. This was proven to be an extremely efficient
approach on the generalized set covering problem. The idea is to identify variables to fix
in an optimal, fraction solution. Due to the difficulties associated with bounding variables
from above in column generation, solely lower bounds are introduced. As the PAS problem
is modeled as a binary integer program, enforcing a lower bound of one on a decision variable
will be equivalent to fixing the variable at one. In what follows, we describe the variable
fixing routine as it applies to the PAS problem.

Consider an optimal solution, x∗, to the relaxed master problem. If xrs ∈ {0, 1}, ∀r ∈
R, s ∈ Sr, then x∗ is also a solution to the original problem, and the algorithm terminates.
If this is not the case, we consider the fractional component of each of the variables f∗rs =
x∗rs − bx∗rsc and determine which one(s) to fix to a new lower bound of one. The criterion
for fixing a variable to one is based on a pre-specified threshold τ (with 0 ≤ τ ≤ 1). All
variables whose fractional value is at least τ have their lower bounds changed from zero to
one. That is, we enforce

xrs ≥ 1,∀r ∈ R, s ∈ Sr. (27)

If f∗rs < τ, ∀r ∈ R, s ∈ Sr, we enforce the requirement that the variable with the
largest fractional value is fixed to one. The approach effectively generates one path in the
full branch-and-price tree. Unlike the work of Lusby et al. [2012], this fixing routine may
not result in a feasible integer solution. This is because patients only have a set of room
types to which they can be assigned. In other words, not all patients can be assigned to
all room types, and some patients are definitely more flexible with respect to this property
than others. Through a sequence of potentially greedy variable fixings, it is possible to
arrive at a situation where there are no feasible room types left for a particular patient. To
guard against this possibility, we offer an alternative strategy. The procedure first identifies
for each patient the room schedule that the patient fractionally covers the most (i.e. one
room schedule for each patient). These fractional values are first sorted by patient flexibility,
where flexibility is measured as the number of remaining feasible room types for the patient,
and then in order of decreasing magnitude. Based on this ranking, the largest fractional
variable for the room schedule containing the least flexible patient is chosen as the variable
to fix. Prior to enforcing the fixing, a look-ahead procedure quickly determines whether
fixing the chosen variable will result in infeasibility on the next iteration. If this is the case,
we consider the next patient in the ranked list. This has an impact when we change the
order in which the patients are ranked. For the decreasing fractional ordering (DFR) we
clearly select the column with the largest fractional value regardless of the threshold. If the
look-ahead procedure determines that fixing the column will result in infeasibility in the
next iteration, then it is not fixed. On the other hand, if it is fixed, then the next fixing has
to take into account that the previous column was fixed when checking for infeasibilities.
In the increasing flexible ordering case (IFL) we select the columns by increasing flexibility
while the column value is still at least equal to the threshold. Again we have to check
for infeasibilities, and this may yield another set of columns being fixed compared to the

15

previous strategy. In case no column above the threshold can be fixed, then the first possible
column for each of the orderings are fixed. Note that for the IFL case we may select columns
with significantly smaller values than in the DFR case.

An alternative approach of ranking columns is to use a weighted sum of different criteria
and choose the column(s) having the smallest weighted sum. An obvious criterion is to use
the value of the variable, i.e. 1−x∗rs. If we only use this criterion, then we will get a similar
approach to the threshold approach described above, with a threshold of 1. Therefore we
add another criterion. As discussed above, fixing only on largest variable value may yield a
situation where it is not feasible to fix any of the remaining columns in the last iterations.
Thus, we take the least flexible patient into account, though in another flavor. On average
the penalty of having the patient p in the hospital for a single period in the solution x∗ is

dp =
∑
r∈R

drp
∑
s∈S

∑
(p,t)∈W

a(p,t)s

dp − ap
x∗sr.

For each patient, p, we then say that good available compatible room types r are those
which are in fact available as well as compatible and also have drp ≤ dp. The latter part
states that any room type having too high a patient-room penalty will not be considered
a good compatible room type. For each room schedule we identify the patient having the
least number of good compatible rooms. If we normalize this with the difference between
the patient having the largest number of good compatible rooms and the patient having the
least number of good compatible rooms then we have the second criterion used in the fixing.
We let βf be the weight of the first criterion (i.e. of 1 − x∗rs) and βc be the weight of the
second criterion (the normalized number of good available compatible rooms).

Finally, when a lower bound of one is imposed on any given variable, a check is made
to see if there is any spare capacity in the room schedule being fixed. If this is the case,
those patients not contained in the room schedule, but fractionally assigned to other room
schedules, are considered and an attempt is made to assign each of them to the room schedule
being fixed without incurring a total penalty greater than what they currently have. If a
patient can be assigned (and while there is still capacity in the room schedule), the change
is made. Note that if we did not consider this, we would simply waste spare capacity.

We observe that the room schedules in the LP solution tend to be unfilled, which is the
reason for filling up room schedules when fixing them. This is likely due to over-capacity
of the available beds and rooms, as well as patients may incur the same penalty when
being allocated to different room types i.e. the rooms are equally bad from that patient’s
perspective. As a consequence, it does not matter for the algorithm in which room type the
patient is placed, and the column generation will converge towards an arbitrary alternative
solution. From the point of view of the variable fixing this may be prohibiting because we
have no control of how many different room types are still available. Whenever a room type
becomes unavailable, then we risk having patients who cannot have their requirements met.
Hence, we are interested in having as many different room types available as possible. To
this end, we change the master problem slightly by penalizing the use of the last room of
each type. Suppose that δ is the penalty of using the last room of a type, and let 0 ≤ vr ≤ 1
measure the magnitude of usage of the last room. Then we change the objective (1) of the
master problem to

min
∑
r∈R

∑
s∈Sr

crsxrs +
∑
R
δvr (28)

16

and the upper bound constraint (3) on the number of room types to∑
s∈Sr

xrs ≤ Nr − 1 + vr, ∀r ∈ R, (29)

leaving the remaining constraints (17) and (5) in the aggregated master problem unchanged.
Selecting δ > 0 sufficiently small will force the column generation to choose the alternative
solution where as many different room types are available as possible. Note that setting δ
too large will most likely increase the objective value in terms of the original objective (1).
If we select δ = 0, we will have a model where each solution has the value of the original
model.

4 Computational Results

In this section we discuss the effectiveness of the proposed algorithm by comparing its
performance on the first six of the 13 benchmark instances provided by Demeester et al.
[2010]. The first six instances all contain a time horizon of 14 days, while the remaining
seven instances contain between 14 and 91 days and are more difficult. The latter set of
instances contain more room properties, different gender properties, and also enforce age
constraints on the departments. Due to the increased complexity and size of the model, these
have been left as a topic of future research. Furthermore, previous attempts at solving even
just the smaller instances using mathematical programming techniques have proven futile.
For comparative purposes, we will compare with the best known bounds, running times,
and solutions obtained by Ceschia and Schaerf [2011]. In order to make this comparison we
use the standard penalties described by Demeester et al. [2010]. As a point of reference,
Table 1 provides a summary of the six instances we consider. It reports, the number of
rooms (Rooms), the number of room types (|R|), the number of beds (Beds), the number of
patients (|P|), the number of time periods (|T |), the number of patient time combinations
(|W|), the number of departments at the hospital (Depts.), the number different room
properties (Props.), and the number of different specialisms (Specs.).

Instance Rooms |R| Beds |P| |T | |W| Depts. Props. Specs.
1 98 77 286 693 14 2390 4 2 4
2 151 124 465 778 14 3905 6 2 6
3 131 107 395 757 14 3156 5 2 5
4 155 124 471 782 14 3576 6 2 6
5 102 77 325 631 14 2244 4 2 4
6 104 80 313 726 14 2821 4 2 4

Table 1: Problem Instances

Our approach has been implemented in C++ using the MinGW 4.5.2 compiler. We have
used the Coin-or interface to the CPLEX 12.2 32bit solver with default settings to solve the
LP-relaxation of the master problems, as well as the dual disaggregation problem. The
computational tests have been performed on a Windows 7 laptop equipped with an Intel i7
cpu and 8Gb RAM. In the default setting CPLEX uses two parallel processes for solving
linear programs, whereas the remaining part of the program is executed on a single core of
the cpu.

17

We begin the analysis with a direct comparison between the lower bound achieved using
the proposed methodology, which utilizes dynamic constraint aggregation (DCA), and the
current best known lower bounds of Ceschia and Schaerf [2011]. Furthermore, we also com-
pare the DCA with a standard column generation procedure (i.e. no constraint aggregation)
and with the DCA approach using the room penalty extension (DCA RP). Table 2 reports
the bounds obtained as well as the time taken to achieve them. Note that the objective
function value obtained with the DCA RP method must be adjusted to account for the
incurred, artificial penalties that we have added. Hence, for this approach there are two
objective value columns in the table.

Ceschia & Schaerf Std. Col. Gen. DCA DCA RP
Instance t (s) LP∗ t (s) LP∗ t (s) LP∗ t (s) LP∗ Adj LP

1 13957.8 645.00 292.23 646.933 153.07 646.933 171.16 647.527 646.933
2 46465.5 1111.50 744.13 1120.27 420.33 1120.27 438.08 1121.21 1120.27
3 23574.2 747.00 315.87 758.84 253.56 758.84 273.25 759.731 758.84
4 71291.7 1141.10 1458.64 1144.93 1374.97 1144.93 1604.82 1145.85 1144.93
5 34718.9 620.80 158.34 623.00 102.86 623.00 118.6 623.533 623.00
6 14473.9 787.00 354.30 791.40 168.36 791.40 187.45 792.125 791.40

Table 2: LP Results

Std. Col. Gen. DCA
Instance It Rows Cols Frac It Rows Cols Frac ICols

1 77 2467 12457 623 39 729 10761 584 0
2 111 4029 17817 719 56 879 15366 715 0
3 59 3263 13079 679 43 815 12194 653 9
4 280 3700 23040 670 224 1020 26516 681 474
5 59 2321 9219 542 29 664 8395 540 0
6 76 2901 14781 651 32 765 12785 645 0

Table 3: LP solution statistics

One can observe that for all instances the proposed room schedule model provides a
tighter, and in some cases, a much tighter bound than that of Ceschia and Schaerf [2011]. For
example, in instance 3 the bound is improved by some 1.6%. Furthermore, in all instances
all three column generation based procedures are overwhelmingly faster. Therefore, not only
does the model provide tighter bounds, but we can also obtain these bounds in a fraction
of the time. The comparison between the standard column generation procedure and that
of the DCA approach illustrates the power of the constraint aggregation procedure. With
the exception of instance 4, significant gains in the root relaxtion time can be seen. Table 3
provides some summary statistics for the standard column generation procedure and the
DCA approach. It reports the number of iterations (It), the number of rows and columns
in the master problem, and the number of fractional columns at the optimal LP solution.
For the DCA approach, it also reports the number of incompatible columns identified at the
last iteration of the column generation (ICOL). One can see that the increased speed up
from DCA most likely comes from the reduced number of iterations and a smaller master
problem. The small difference in solution times between the two different approaches for
instance 4 is probably due to the large number of incompatible columns; a reaggregation of

18

W into a new set of clusters is required every time we wish to force incompatible columns
into the master problem

Finally, we present the results obtained using the greedy variable fixing routine described
in Section 3.4 to force integrality of the solutions. The results of these tests are shown in
Table 4 and table 5. Both of these tables include the best known solution values (CS
UB) reported by Ceschia and Schaerf [2011], which are compared to our results. Our
best solutions are underlined in the tables. If our results are equal to those reported by
Ceschia and Schaerf [2011], then the result is shown in italics. Results shown in boldface
are where our method achieves solutions that are better than the best solutions reported in
the literature.

We test and compare two different approaches: the first fixes just one variable (room
schedule) per iteration, while the second fixes all variables whose value is above the threshold
τ , where τ = 0.8. For each of the two methods we further test and compare two different
strategies. In the single variable case we first look at the impact of setting the room penalty
to zero (δ = 0) or 0.01 (δ = 0.01). That is, in the latter approach one incurs a penalty of 0.01
for using the last room of any type. We also consider the strategy in which one considers
a weighted sum fractionality of the room schedules (see Section 3.4) and the normalized
number of good available compatible rooms. Here we test two alternative strategies, one
where we only use the the largest fractionality of column (βf = 1, βc = 0) and a second
where the two criteria are weighted evenly (βf = βc = 1). Table 4 summarizes the results.
The table reports, for each fixing strategy, the time used to obtain the solution and its value
(UB). Recall that the fixing strategy will identify one solution only and that it is heuristic
in nature.

βf = 1.0, βc = 0.0 βf = 1.0, βc = 1.0
δ = 0 δ = 0.01 δ = 0 δ = 0.01

Instance CS UB t(s) UB t(s) UB t(s) UB t(s) UB
1 655.6 489.98 655.2 666.47 657.2 508.14 695.8 685.15 686.6
2 1137.2 1270.90 1160.4 1330.49 1157.4 1307.08 1149.8 1298.98 1132.8
3 773.6 709.67 768.2 920.68 792.6 666.35 769.2 963.25 777.6
4 1172.2 5628.51 1210.0 6226.98 1247.6 5678.29 1259.2 5461.72 1192.6
5 625.6 300.67 628.0 401.59 629.6 297.43 634.0 360.55 624.8
6 798.0 637.27 792.6 672.13 798.0 1003.45 846.2 724.54 810.2

Table 4: Variable fixing using weights

From the table, one can observe that the solutions obtained using the δ = 0 strategy
tend to outperform the δ = 1 approach. The δ = 0 setting with βc = 0 provides three
new best known solution values (test instances 1, 3, and 6), while the others are not far
from their respective best known solutions. With the exception of instance 4, all solutions
are found within 20 minutes. The results further suggest that using the βf = βc = 1
strategy is beneficial only if the the room penalty approach is also used. This setting
(δ = 0,βf = βc = 1) also produces two solutions (test instances 2 and 5) which are better
than those previously reported.

In comparison, Table 5 reports the results of fixing all variables in a fractional LP optimal
solution with value at least 0.8. Here we also test and compare two different strategies,
namely the decreasing fractional ordering (DFL) and the increasing flexible ordering (IFL).
For each of these we also test the impact of setting δ = 0 and δ = 0.01. From the results one
can see that, due to the fact that we have the possibility of fixing more variables per iteration,
the solution times decrease in comparison to the single variable fixing case. However, we also

19

Decreasing fractional order (DFR) Increasing flexible ordering (IFL)
δ = 0 δ = 0.01 δ = 0 δ = 0.01

Instance CS UB t(s) UB t(s) UB t(s) UB t(s) UB
1 655.6 458.75 681.2 952.74 666.4 379.37 655.6 710.55 657.6
2 1137.2 1147.55 1176.2 1416.87 1184.8 1259.75 1150.8 1224.09 1146.8
3 773.6 572.33 - 745.32 781.0 571.23 787.0 852.33 796.2
4 1172.2 4484.55 1251.2 5347.90 1179.0 5097.36 1188.6 6197.94 1213.6
5 625.6 281.20 625.6 428.31 628.8 252.53 624.0 367.26 626.4
6 798.0 1026.09 - 734.60 803.8 638.27 837.4 723.10 806.2

Table 5: Variable fixing using threshold 0.8

increase the possibility of not finding a feasible solution and in some cases we do not (see for
example instances 3 and 6 with no room penalty and the DFL approach). The remaining
three strategies seem equally good, as not one strategy dominates the others. Including
the last room penalty is effective in the sense that we can produce a feasible solution to all
instances. However, not including the room penalty and considering patients in terms of
flexibility also has potential. This approach yields the best known solution for instance 5.

In general, it should be noted that the best feasible solutions are very close to the lower
bound that we have found. For example, in test instance 5 we have a gap of only 1 unit and
in instance 6 we have a gap of 1.2 units. The largest gap on the newly found best solutions
is 1.28% above the lower bound for test instance 1. This indicates that the lower bound is
very tight in many cases. For the best known solution for instance 4 found by Ceschia and
Schaerf [2011] the gap is 2.38%, which is still small, while our best solution for instance 4
has a gap of 2.98%, which is still reasonable.

The computational results show that a column generation based heuristic approach using
aggressive variable fixing is a viable approach for identifying high-quality solutions for PAS.
While in most cases providing feasible solutions, the column generation based heuristic also
provides a quality measure through the lower bound obtained in the root node. This is, in
our opinion, a significant advantage compared to heuristics in general.

5 Conclusion

The Patient Admission Scheduling problem is an intriguing and important part of hospital
management. For hospitals with a central planning unit, producing an optimal or near-
optimal plan can be highly important for patients as well as the hospital – a good plan
will result in better care with a better utilization of resources and a focus on the right
resources. It will minimize extra work in moving patients around the hospital and allocating
the patients to the wards best suited for their needs given the overall set of elective patients.

In this paper we have developed a new state-of-the-art optimization-based approach for
the PAS problem as defined by Demeester et al. [2010]. The method is based on column
generation to give tight bounds and a branch-and-bound framework – leading to a branch
and price set-up – to guide the solution process in finding near-optimal solutions. The
framework is based on variable fixing. In order to efficiently handle the relatively large
master problem of the method, dynamic constraint aggregation has been incorporated in the
approach. This reduces the master problem significantly although, due to the administrative
overhead, the reduction is not fully carried over into a running time reduction.

On the six first instances from Demeester et al. [2010] we produce new best solutions
in five cases. Overall, it should be noted that the gaps we obtain are in general small, for

20

example the largest gap on the newly found best solutions is 1.28% above the lower bound.
In conclusion, our optimization-based heuristic is currently the best approach for the

small instances of the PAS problem. For the larger instances the approach needs further
refinements. For future research we could utilize the fact that even in a long time horizon
most almost all patients are usually only in the hospital for a short while. This suggests that
a rolling-horizon time window approach would be able to give us near-optimal solutions even
for larger instances than the current instances over 14 days. Another remaining challenge
is also to be able to produce the best solutions with one parameter setting or incorporate a
self-adjusting approach on the parameters in the method.

21

References
B. Bilgin, P. Demeester, M. Misir, W. Vancroonenburg, and G. Vanden Berghe. One hyper-heuristic approach to

two timetabling problems in health care. Journal of Heuristics, 18(3):401–434, 2012.

S. Ceschia and A. Schaerf. Local search and lower bounds for the patient admission scheduling problem. Computers
and Operations Research, 38:1452 – 1463, 2011.

N. Chen, Z. Zhan, J. Zhang, J. Zhang, O. Liu, and H. Liu. A genetic algorithm for the optimization of admission
scheduling strategy in hospitals. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC)
2010, pages 1 – 5. IEEE, 2010.

P. Demeester, W. Souffriau, P. De Causmaecker, and G. Vanden Berghe. A hybrid tabu search algorithm for
automatically assigning patients to beds. Artificial Intelligence in Medicine, 48:61–70, 2010.

J. Desrosiers, M. Lübbecke, and M. M. Solomon. Column generation. In Guy Desaulniers, Jacques Desrosiers, and
Marius M. Solomon, editors, A Primer in Column Generation, chapter 1. Springer: New York, 2005.

I. Elhallaoui, D. Villeneuve, F. Soumis, and G. Desaulniers. Dynamic aggregation of set-partitioning constraints
in column generation. Operations Research, 53(4):632 – 645, 2005.

I. Elhallaoui, A. Metrane, F. Soumis, and G. Desaulniers. Multi-phase dynamic constraint aggregation for set
partitioning type problems. Mathematical Programming Series A, 123:345–370, 2010.

I. Elhallaoui, A. Metrane, G. Desaulniers, and F. Soumis. An improved primal simplex algorithm for degenerate
linear programs. Informs Journal on Computing, 23(4):569–577, 2011.

F. Guerriero and R. Guido. Operational research in the management of the operating theatre: a survey. Health
Care Management Science, 14(1):89–114, 2011. ISSN 13869620, 15729389. doi: 10.1007/s10729-010-9143-6.

P. R. Harper. A framework for operational modelling of hospital resources. Health Care Management Science, 5:
165 – 173, 2002.

A. K. Hutzschenreuter, P. A. N. Bosman, I. Blonk-Altena, J. Aarle, and H. L. Poutré. Agent-based patient
admission scheduling in hospitals. In Proceedings of the 7th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2008) – Industry and Applications Track, pages 42 – 52, May 2008.

P. Jittamai and T. Kangwansura. A hospital admission planning model for emergency and elective patients
under stochastic resource requirements and no-shows. 2011 IEEE Internationl Conference on Industrial
Engineering and Engineering Management (IEEM), pages 166–170, 2011. ISSN 21573611, 2157362x. doi:
10.1109/IEEM.2011.6117900.

R. J. Kusters and P. M. A. Groot. Modelling resource availability in general hospitals design and implementation
of a decision support model. European Journal of Operational Research, 88:428 – 445, 1996.

R. M. Lusby, A Dohn, T. M. Range, and J. Larsen. A column generation based heuristic for rostering with work
patterns. Journal of the Operational Research Society, 63:261 – 277, 2012.

T. M. Range, R. M. Lusby, and J. Larsen. Solving the selective multi-category parallel-servicing problem. Working
paper, 2012.

D. M. Ryan and B. A. Foster. An integer programming approach to scheduling. In A. Wren, editor, Computer
Scheduling of Public Transport, pages 269 – 280. North-Holland Publishing Company, 1981.

D. Villeneuve. Logiciel de génération de colonnes. PhD thesis, Université de Montréal, Montreal, Quebec, Canada,
1999.

22

