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Abstract

We consider a cost sharing problem among agents on a line. The

problem is closely related to the classic airport game, but in our model

agents are characterized by their location, rather than their needed

runway length. We characterize a family of cost allocation rules in

which agents pay a share of the incremental costs as well as any debt

from upstream agents, with the Bird rule (where agents pay their full

incremental cost) and the ‘free rider’ rule (where the terminal agent

pays everything) as the two extreme cases. We also extend the analysis

to cost sharing among agents located on a fixed tree structure.
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1 Introduction

The airport game is a classic cost sharing problem in the game theory liter-

ature (see, e.g., the surveys in [13] and [14]). The question posed is how the

cost of a given runway is shared among a set of aircrafts which need different

lengths of the runway in order to be served. Traditionally, it is modeled as

a problem with a given set of agents (which we may think of as aircrafts)

and each agent is characterized by a non-negative number interpreted as the

needed length (cost) of the runway. A solution describes how the cost of a

runway that satisfies the need of the agent with the highest demand (and

therefore satisfies the need of all agents) is divided among the agents in any

such situation.

While the airport model has proved useful for capturing many practi-

cal cases ([10]) and providing a case for applications of cooperative game

theoretical solutions with especially nice properties ([8], [9], [3], [12]), the

classical interpretation and its associated solutions is also somewhat narrow.

For instance, when agents are sharing the costs of washing staircases, eleva-

tor installation, or scaffolding in apartment buildings, it is relevant to take

into account the space utilized by the agents in the structure, and not only

the maximal length needed.

In this paper we consider a problem of allocating the cost of a shared

facility geometrically described as a line. Agents are characterized by their

location on the line, rather than their needed length of the line as in the

classical airport game, and their utility may depend on both the distance to

the ’root’ (point 0 on the line) as well as the size of the section of the line

which they occupy.

In particular, we investigate a single-parameter family of allocation rules

where agents’ payments are based on shares of their incremental costs as well

as any ‘debt’ from prior agents - to be dubbed the sequential λ-contribution

rules. This family encompasses the so-called Bird rule (where each agent

pays the cost of the adjacent edge in the direction of the root; see [2]) and

the ‘free rider’ rule (where terminal agents share the total cost) as extremes.

We provide an axiomatic characterization of sequential λ-contribution

rules and further single out the two extreme rules in the family: The Bird rule
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and the ‘free rider’ rule. The essential feature of the sequential λ-contribution

rules is that agents’ payments are independent of the presence of downstream

agents both with respect to their costs and their number. This is in contrast

to the sequential equal contributions rule, where agents’ cost shares depend

on the number of downstream agents.

We also extend our analysis to fixed tree structures and show how our

axioms can be adapted to this more general setting by generalizing our char-

acterization results.

2 The chain model

We study cost allocation in a variable population model. The universe of

agents is identified with the set of natural numbers N. Let N be the set of

all finite non-empty subsets of N.

A chain cost allocation problem is a pair (N,C) where N ∈ N is a set of

agents and C = {Ci}i∈N ∈ RN
++ is a vector of agent characteristics such that

i > j ⇒ Ci > Cj for i, j ∈ N . A possible interpretation could be that Ci

is the location on a line of agent i; i.e., a distance from the reference point 0

(the root). Note that this interpretation differs from the usual airport model

where Ci is interpreted as the stand-alone cost of agent i; i.e., the cost of

building a runway (of length Ci) for aircraft type i, see, e.g., [10]. Let C
denote the set of such problems. With N = {1, . . . , n}, some examples could

be:

• The line is a time line. For instance, [0, Cn] could be the total range

of opening hours of a given airport facility (e.g., a gate), and [Ci−1, Ci]

could be the time slot assigned to airline i.

• The reference point 0 is a source of noise (or some other bad generating

increasing disutility the closer the agent gets to 0), and [Ci−1, Ci] is the

spacial location occupied by agent i.

In all the cases we consider, including those exemplified above, agents are

associated with locations on a line and have to share the total cost of the

situation. Assuming a one-to-one correspondence between distance and cost,
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the total cost maxj∈N{Cj} must be allocated among the agents involved

taking into account that agents are concerned with the distance from 0 to

their location Ci as well as their increment Ci − Ci−1.
Generally, a cost allocation rule assigns a vector of cost shares φ(N,C) ∈

RN to each problem (N,C) in C satisfying budget balance,
∑

i∈N φi(N,C) =

maxj∈N{Cj}; boundedness, 0 ≤ φi(N,C) ≤ Ci for all i ∈ N ; and anonymity.
1

In the rest of the paper we assume (without loss of generality) that a

game with n players has the player set N = {1, . . . , n}. Thus, the total

cost Cn can be decomposed into the sum of incremental costs as illustrated

below: The incremental cost of the first agent is C1, the incremental cost of

the second agent is C2 − C1, and so forth.

t · · ·t tt0 C1 C2 Cn

3 Cost Allocation in Chains

As mentioned above, it is inherent in the model that agents only care about

the part of the chain between their location Ci and the source 0. Thus, a

natural property to ask from the allocation rules is that the cost share of

agent i is independent of the exact location of any (downstream) agent j

with Cj > Ci. This ‘independence’ property is satisfied by many well-known

rules; for instance, the rule where each agent pays for the increment that she

is responsible for, i.e., where cost shares are given by

xBi = Ci − Ci−1, (1)

for all i ∈ N . The allocation defined by (1) is often named the Bird alloca-

tion, but it appears under many different names in the literature, e.g., the

sequential full contributions rule ([14]).

1Formally, φ satisfies anonymity if, for any problem (N,C) ∈ C, g being a bijective

function from N to N ′ and (N ′, C ′) being the game defined by C ′g(i) = Ci for all i ∈ N ,

we have φg(i)(N
′, C ′) = φi(N,C).
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In this paper we will investigate a family of rules based on allocating

incremental cost in the following way: The first agent pays a share λ ∈ [0, 1]

of his incremental cost, the second agent pays a share λ of his incremental

cost as well as any remaining ‘debt’ from the first agent, etc., and the last

agent, n, pays the residual. Hence, cost shares are determined recursively as

xλ1 = λC1, x
λ
2 = λ(C2 − C1 + (1− λ)C1) = λ(C2 − xλ1) and so forth. That is,

xλi = λ(Ci −
i−1∑
j=1

xλj ), (2)

for all i = 1, . . . , n− 1 and xλn = Cn −
∑n−1

j=1 x
λ
j .

Note that we may rewrite (2) in the closed form expression

xλi = λ
(
Ci − Ci−1 + (1− λ)(Ci−1 − Ci−2) + · · ·+ (1− λ)i−1C1

)
,

for i = 1, . . . , n− 1 and

xλn = Cn − Cn−1 + (1− λ)(Cn−1 − Cn−2) + · · ·+ (1− λ)i−1C1.

Denote the corresponding family of allocation rules by φλ. Clearly, φ1 is

the Bird allocation rule (1). The opposite extreme, φ0, represents the case

where the first n− 1 agents free ride and the last agent pays the total cost.

A popular allocation rule in the literature (see, e.g., [7]) is the rule where

all downstream agents share equally each incremental cost; i.e., cost shares

are given by

xSi =
i∑

k=1

Ck − Ck−1
n+ 1− k

. (3)

This rule appears under many different names in the literature, e.g., the serial

rule or the sequential equal contributions rule ([14]). This rule coincides with

the Shapley value of a TU-game (N, c) defined by c(S) = maxi∈S{Ci}, for all

S ⊆ N . Axiomatic characterizations can be found in [5], [11], [1], and [12].

Note that payments of the sequential equal contribution rule (3) depends

on the number of downstream agents in contrast to payments of the sequential

λ-contribution rules (2). This aspect will be further explored in the section

below.
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Moreover, we observe that for λ 6= 0, the cost shares of the sequential λ-

contribution rules (2) are not necessarily non-decreasing in the stand-alone

cost (contrary to the cost shares of the sequential equal contribution rule

(3)). In the traditional interpretation of the airport model this seems to be

a quite undesirable feature of the λ-family. In other interpretations, how-

ever, incremental costs play a more prominent role, and hence an allocation

reflecting solely stand-alone cost will not be reasonable.

Example 1: Consider three airline companies, A, B, and C sharing a gate

which is open for 12 hours. Airline A is assigned time slot [0, 5], B is assigned

time slot [5, 7], and C is assigned time slot [7, 12]. Customers of all airlines

can use the gate facilities at any time during opening hours. Thus, an airline

partially benefits from opening hours prior to its own time slot since its

customers have access to the gate facilities. Now the airport has to allocate

the total cost of having the gate open for 12 hours between the three airline

companies. The figure below illustrates the situation.

| Ct |tA B closeopen

5 7 120

Assume a unit cost per hour of having the gate open such that the three

airlines face the problem of sharing the total cost of 12.

Using the Bird rule (1) we get (xA, xB, xC) = (5, 2, 5), whereas using the

serial rule (3) we get (xA, xB, xC) = (5/3, 8/3, 23/3). Clearly, the Bird rule

ignores the benefit from customers being able to use the gate facilities prior

to their own departure. The serial rule, on the other hand, fails to reflect the

length of the time slot used by each company.

Now the sequential λ-contribution rule (2) represents a kind of compro-

mise with the Bird rule as one extreme case. Consider λ = 0.5, which yields

the cost shares (xA, xB, xC) = (2.5, 2.25, 7.25). Airline B now pays less than

airline A but still more than its incremental cost. Note that airline C being

the last and largest naturally pays most. 4
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4 Axiomatics

We now provide an axiomatic characterization of the family of allocation

rules φλ.

The last agent in the order plays a special role in the cost allocation

problem because he determines the total cost of the group. For any other

agent i, a natural requirement is that the cost share of i shall only depend

on the part of the problem that is determined by his own location as well as

the location of the agents that are closer to the reference point 0. Indeed, as

there are no benefitting externalities for agent i with respect to the number

and locations of downstream agents, it seems reasonable to assume that the

cost share of agent i is independent of that. Formally,

Independence of Downstream Agents (IDA): For two cost allocation

problems (N,C) and (N ′, C ′) with {1, . . . ,m+ 1} ⊂ N ∩N ′ and C ′i = Ci for

all i ≤ m

φi(N
′, C ′) = φi(N,C)

for all i ≤ m.

In words, if two cost allocation problems coincide for a lower coalition

of agents with no agent being the last agent, then these agents should pay

the same. IDA is clearly satisfied by the sequential full contributions rule

(as well as the rest of the λ-contribution rules, φλ), but it is not satisfied

by the sequential equal contributions rule because the cost shares depend on

the total number of agents in the chain.

For the next axiom we need to define a reduced cost profile. Let n ≥ 2 and

consider the cost profile C, and let φ(N,C) be the associated cost allocation.

Then excluding agent 1 results in a new cost profile Cφ
−1 for the reduced

problem where agent 1’s cost share, φ1(N,C), is subtracted from the cost of

all the remaining agents; i.e.,

Cφ
−1 = (C2 − φ1(N,C), . . . , Cn − φ1(N,C)).

We now require that the allocation among agents {2, . . . , n} is unchanged by

exclusion of agent 1. Formally,
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First-Agent Consistency (FAC): For all cost allocation problems (N,C)

φi(N \ {1}, Cφ
−1) = φi(N,C)

for all i ≥ 2.

This axiom is analyzed in [12]. They show that several rules satisfy FAC;

for example both the sequential equal- and the sequential full contributions

rule, and all rules satisfying FAC result in core allocations.

Finally, we consider the property of scale covariance stating that if costs

are scaled by a factor α, so is the solution.

Scale Covariance (SC): For all cost allocation problems (N,C)

φ(N,αC) = αφ(N,C)

for all α > 0.

Scale Covariance is a relatively mild condition, which is satisfied by most

well known rules; e.g. both the sequential equal- and the sequential full con-

tributions rule.

Theorem 1: A cost allocation rule φ satisfies IDA, FAC, and SC if and

only if φ(N,C) = φλ(N,C).

Proof: It is easy to see that φλ satisfies IDA and SC. To see that φλ satisfies

FAC, let xi = φλi (N,C) and x̃i = φλi (N \ {1}, C
φ
−1). Then x̃2 = λ(C2− x1) =

x2. For 3 ≤ i < n, we have x̃i = λ
(
Ci − x1 −

∑i−1
j=2 x̃j

)
. Thus, by induction

x̃i = xi and x̃n = Ci− x1−
∑n−1

j=2 x̃j = xn. Thus, x̃i = φλi (N,C) for all i ≥ 2.

Consider the reverse statement. First, let N = {1} and C = C1. By

budget balance, φ1(N,C) = C1 = φλ1(N,C). Next, add a second agent

with C2 > C1. Let N ′ = {1, 2} and C ′ = (C1, C2). Then φ1(N
′, C ′) ∈

[0, C1] so φ1(N
′, C ′) = λC1 = φλ1(N ′, C ′) for some λ ∈ [0, 1]. By IDA, λ is

independent of C2. Moreover, λ is independent of C1. To see this, suppose

to the contrary that we have C ′ = (C1, C2) and C̃ = (C̃1, C̃2) with C2 = C̃2

and φ1(N
′, C ′) = λC1 and φ1(N

′, C̃) = λ̃C̃1 with λ 6= λ̃. Then, by SC,
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φ1(N
′, C̃1

C1
C) = C̃1

C1
λC1 = λC̃1 6= λ̃C̃1, contradicting that λ is independent of

C2. Now by budget balance, φ2(N
′, C ′) = C2 − φ1(N

′, C ′) = φλ2(N ′, C ′).

Next, suppose there is λ such that φ = φλ for all problems with up to k

agents, k ≥ 2. Now, consider the problem (Nk, Ck) with Nk = {1, . . . , k}
and Ck = {C1, . . . , Ck} and add an agent k + 1 such that Ck+1 > Ck. By

IDA, φi(N
k+1, Ck+1) = φi(N

k, Ck) = φλi (N
k, Ck) for all i ≤ k − 1. By

FAC, φk(N
k+1, Ck+1) = φk(N

k+1 \ {1}, Ck+1,φ
−1 ) and thus by the induction

hypothesis φk(N
k+1, Ck+1) = φλk(N

k+1, Ck+1). By budget balance

φk+1(N
k+1, Ck+1) = Ck+1 −

k∑
i=1

φλi (N
k+1, Ck+1) = φλk+1(N

k+1, Ck+1).

Q.E.D.

Remark 1: Independence of the axioms: 1. The sequential equal contribu-

tions rule satisfies FAC and SC, but not IDA; 2. φλ, defined as in (2) but

where λ = C1/(1 + C1), satisfies IDA and FAC, but not SC; and 3. the rule

for which φi(N,C) = λ(Ci − Ci−1) for i = 1, . . . , n − 1 (where C0 = 0 and

0 < λ < 1) and φn(N,C) = Cn −
∑n−1

j=1 φj(N,C) satisfies IDA and SC, but

not FAC.

The sequential full contributions rule φ1 can be singled out by replacing

FAC and SC with a property stating that cost shares should be increasing in

incremental costs. Formally,

Incremental Cost Ranking (ICR): For every cost allocation problem

(N,C)

φi(N,C) ≥ φj(N,C)

for all i and j with Ci − Ci−1 ≥ Cj − Cj−1.

Theorem 2: A cost allocation rule φ satisfies IDA and ICR if and only if

it is the sequential full contributions rule φ = φ1.

Proof: It is easy to see that φ1 satisfies IDA and ICR.

Consider the reverse statement. First, let N = {1} and C = C1. By

budget balance, φ1(N,C) = C1 = φ1
1(N,C). Next, add a second agent with
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C2 > C1. Let N ′ = {1, 2} and C ′ = (C1, C2). Then φ1(N
′, C ′) ∈ [0, C1] so

φ1(N
′, C ′) = λC1 = φλ1(N ′, C ′) for some λ ∈ [0, 1]. By IDA, λ is independent

of C2. Now, assume that λ < 1. Then by budget balance we may choose C2

such that ICR is violated (for example C2 = 2C1). Thus, λ = 1 as desired.

By repeated use of IDA we are done. Q.E.D.

The ‘free-rider’ rule φ0 can be singled out by considering the classical ranking

axiom stating that cost shares should be ranked as the ordering of the agents

stand-alone costs. Formally,

Ranking (R): For every cost allocation problem (N,C)

Ci < Cj ⇒ φi(N,C) ≤ φj(N,C)

for all agents i and j.

Theorem 3: A cost allocation rule φ satisfies IDA and R if and only if

φ = φ0.

Proof: It easy to see that φ0 satisfies both IDA and R. Consider the converse

claim. By contradiction, suppose that there exists a problem (N,C) and an

agent i ∈ N , i 6= n, such that φi(N,C) = ε > 0.

Now consider a new problem (N ′, C ′), where N ′ = {1, . . . , n+x} for some

arbitrarily chosen x > Cn+1
ε

and Cj ∈ (Cn, Cn + 1] for each j > n. By IDA

φi(N
′, C ′) = φi(N,C) = ε, and hence by R we get that φj(N

′, C ′) ≥ ε for

j > n. Thus,
∑n+x

j=n+1 φj(N
′, C ′) ≥ xε > Cn + 1, violating budget balance.

We conclude that φi(N, c) = 0 for i = 1, . . . , n− 1. Q.E.D.

5 Extension to Tree Models

The family of allocation rules φλ has a natural extension to cost allocation

among agents connected to a root by a fixed tree. A fixed tree is a graph

with no cycles such that all agents are connected to the root via a unique

path.
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Imagine for example an airport terminal building with entrance at node

0 where different companies are responsible for different sections and have

to share the total cost of maintenance, services or some other type of cost

related to the flow of passengers through the facility.

Let (N0, E, c) be a fixed tree cost allocation problem, where N0 = N ∪{0}
is the set of agents including the root, E is the set of edges in tree, and

c : E → R is an edge cost function. Given a tree, let ci denote the edge

cost of agent i (that is, the cost of the edge leaving the node i on agent i’s

unique connected path to the root). The total cost of the tree is therefore

C =
∑

i∈N ci.

As before, a cost allocation rule assigns a vector of cost shares φ(N0, E, c) ∈
RN to each problem (N0, E, c) satisfying: budget balance,

∑
i∈N φi(N

0, E, c) =

C; boundedness, 0 ≤ φi(N
0, E, c) ≤

∑
i∈Ni

ci for all i ∈ N , where Ni ⊆ N is

the set of nodes on agent i’s unique connected path to the root (including

node i itself); and anonymity.2

Let δ(i) be the degree of node i (i.e., the number of nodes directly con-

nected to node i in the tree). For i ∈ N , if δ(i) = 1, node i is called a

terminal node.

The family of allocation rules φλ defined in (2) easily extend to fixed

trees: Agents that are not at terminal nodes pay a share λ ∈ [0, 1] of their

edge cost ci as well as an equal share (between successors of the node prior to

i) of any remaining ‘debt’, and agents at terminal nodes pay their respective

residuals. For an agent i, let {1, . . . , i− 1} denote the nodes prior to node i

2Defined as the natural extension of the definition in footnote 1.
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on i’s path to the root, ordered in terms of increasing distance to the root.

Then we get

xλi = λ(ci + (1−λ)ci−1

δ(i−1)−1 + · · ·+ (1−λ)i−1c1∏i−1
z=1(δ(z)−1)

),

for non-terminal agents. For terminal agents we get

xλi = ci + (1−λ)ci−1

δ(i−1)−1 + · · ·+ (1−λ)i−1c1∏i−1
z=1(δ(z)−1)

.

Again, λ = 1 gives us the sequential full contributions rule (the Bird allo-

cation x1i = ci for all i), and λ = 0 gives the rule where agents at terminal

nodes pay all the relevant costs.

It is easy to extend the axioms of the chain model: In the context of trees

it is natural to assume independence of sub-trees connected directly to the

root (as there are no externalities between agents in different sub-trees). We

dub such an axiom Tree Independence (TI).

An agent j is a downstream agent for an agent i if and only if i is prior

to j on j’s path to the root. For any non-terminal agent i, IDA now states

that if two trees are similar except for the sub-tree of downstream agents of

i, then i should pay the same. We dub this new axiom Tree Independence of

Downstream Agents (TIDA).

Next, consider extending First-Agent Consistency (FAC). In the context

of trees, FAC only applies to trees where a single agent is connected directly

to the root. Excluding this agent (agent 1) results in a new tree. For this

tree the reduced edge cost profile is defined as follows: For an immediate

successor of agent 1 the edge cost is changed to ci + c1−φ1(N0,E,c)
δ(1)−1 , and for all

other agents the edge cost is unchanged, ci. Given this reduced edge cost

profile we now require that cost shares of the other agents should remain

unchanged by applying φ to the new tree. We dub this new axiom Tree

First-Agent Consistency (TFAC).

The Scale Covariance axiom applies with the obvious changes.

We now state the following result.

Theorem 4: The result of Theorem 1 extends to the fixed tree model with

the above restatements of the axioms.
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Proof: It is easy to see that φλ satisfies the axioms for any λ. We show the

converse claim.

Define a k-node as the node for which the unique path to the root contains

exactly k edges. Consider an arbitrary tree and a 1-node i. If i is a terminal

node, then by TI and budget balance we have φi = ci. Otherwise, by TIDA

and Theorem 1 there exists a λ such that φi = φλi . Moreover, if there exists

another non-terminal 1-node j, then by anonymity and TIDA φj = φλj with

the same λ.

By induction, assume that φ = φλ for any tree with at most n, k-nodes,

k > 1. We wish to show that φ = φλ for any tree with at most n+1 k-nodes,

k > 1. Consider now an arbitrary tree with n k-nodes and add to the tree an

n+ 1’th k-node j. Without loss of generality we assume that j is a terminal

node. By TI we can disregard sub-trees connected to the root not containing

j. By applying TFAC to the 1-node in the sub-tree containing j’s path to

the root we are back to a situation with at most n k-nodes, k > 1 and we

are done. Q.E.D.

Remark 2: The two ways to single out the extreme rules φ1 and φ0, men-

tioned in Theorems 2 and 3, respectively, extend in a similar fashion to the

fixed tree model.

Remark 3: As shown in [6], the cooperative game related to the fixed

tree (where c(S) is defined as the minimal cost needed to join all agents in

coalition S ⊂ N to the root via a connected subgraph of the fixed tree) is

concave so the core is relatively large. Indeed, φλ results in core allocations

for all λ ∈ [0, 1].

Example 2: Consider five airline companies A,B,C,D, and E located on a

tree as shown below assuming that ci = 1 for each company i.
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For λ = 0.5 we get cost shares,

φ0.5
A = 0.5

φ0.5
B = 1.25

φ0.5
C = 0.625

φ0.5
D = φE = 1.3125.

Thus, for λ = 0.5 and identical edges cost, it is an advantage to be early in the

tree as well as having many followers. As λ → 1, the allocation approaches

equal split. As λ→ 0, payments are pushed to companies B, D and E. 4
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