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Abstract

The variable returns to scale data envelopment analysis (DEA) model is developed with a main-

tained hypothesis of convexity in input-output space. This hypothesis is not consistent with standard

microeconomic production theory that posits an S-shape for the production frontier, i.e. for production

technologies that obey the Regular Ultra Passum Law. Consequently, measures of technical efficiency

assuming convexity are biased downward. In this paper, we provide a more general DEA model that

allows the S-shape.

1 Introduction

The non-parametric data envelopment analysis (DEA) approach envelops observed data with a piecewise

linear frontier. The characteristics of a DEA model are derived from a number of maintained assumptions

imposed on the technology. A typical estimator used in DEA is the BCC-estimator(Banker, Charnes and

Cooper 1984), which assumes the estimated production possibility set is a polyhedral that allows variable

returns to scale. As a consequence, the BCC-estimator assumes that marginal product is non-increasing,

which violates standard microeconomic theory where marginal product initially increases but diminishing

returns eventually set in. In particular, if data reflects the Regular Ultra Passum (RUP) law ((Frisch 1965),

Chapter 8), the BCC-estimator will be biased downward.
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Definition 1 The RUP law. Let a single output y be produced from a vector of m inputs x according to a

production function F (x, y) = 0. This production function obeys the RUP law if ∂ε(x,y)
∂xi

< 0, i = 1, · · · ,m

where the function ε (x, y) is the scale elasticity, and for some point (x1, y1) we have ε (x1, y1) > 1, and for

some point (x2, y2), where x2 > x1, y2 > y1, we have ε (x2, y2) < 1.

The problem with the BCC-estimator is that the supporting hyperplanes for envelopment can overesti-

mate inefficiency for points that should be projected to the local non-convex segments of the true frontier

characterized by increasing returns to scale. In this paper, we are concerned with production technologies

satisfying the RUP condition where the BCC-estimator is biased because such technologies are not convex

in input-output space. Furthermore, existing measures of scale efficiency will be biased due to the improper

projection to production impossibilities. The main contribution of this paper is the development of an ap-

proach that is capable of measuring inefficiencies for production possibilities in a non-convex homothetic and

S-shaped technology. A non-convex S-shaped technology is characterized as follows: along any expansion

path an expanding DMU with low activity will have a high scale elasticity greater than one. As the unit

expands its activity the scale elasticity will decrease and will approach optimal scale size with an elastic-

ity equal to one. Further expansion will imply decreasing returns with a scale elasticity less than one and

approaching zero.

Several non-convex models exist in the literature (e.g., the FDH-mode of Deprins et al. (1984) and the

Petersen-Bogetoft approach (Petersen 1990),(Bogetoft 1996)) but these models are not well-suited to estimate

an S-shaped production structure because any non-convex shape can result from these estimation procedures.

In other words, we are looking for an estimation procedure that allows ONLY non-convexities that are

reflected in an S-shaped production structure. For simplicity, we focus on production technologies that are

homothetic. The concept of a homothetic production function was first introduced in ((Shephard 1953),

page 30) as a monotonic transformation of a linear homogenous production function. With a homothetic

production structure we can smooth the obtained structure of the estimated isoquant because homotheticity

implies that the shape of the isoquants are identical. This allows us to maintain convexity in input (and

output space) and to allow non-convexities in input-output space.

In order to move between input space and output space, we propose estimating individual isoquants

assuming selective input convexity using a simplified order-m estimation procedure (Cazals, Florens and

Simar 2002) where we avoid replications. The order-m estimation procedures include a conditional estimation

model maintaining selective convexity of the input sets as proposed and formalized in (Daraio and Simar

2005)1. Under the assumption of homotheticity, we can aggregate inputs (and outputs) allowing us to move

1See also (Ruggiero 1996) and (Podinovski 2005).
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to aggregate input-output space where we can impose an S-Shape.

The rest of the paper is organized as follows. In section 2 we define the production technology, from

an input orientation using an input distance function. The assumption of homotheticity is presented and

the implication for input aggregation is discussed. Notably, the assumption of homotheticity allows us to

generate any isoquant from a base isoquant and hence, derive a well-defined index of aggregate input. Section

3 is devoted to the estimation of the base isoquant using a conditional estimator. We also discuss criteria for

selecting a well-estimated isoquant among all possible base isoquants to aggregate inputs. This isoquant is

used for the aggregation of inputs. In section 4, we develop a model to estimate a piecewise linear S-shaped

frontier. Using simulated data in section 5, we show that our method overcomes the inherent problems of

standard DEA and provides better estimates of inefficiency when the true technology obeys the Regular

Ultra Passum Law. The last section concludes with directions for future research.

2 Production Technology

Let us consider a production environment where a vector of s inputs X = (x1, . . . , xs) is used in the

production of one output Y . We represent the production technology with the input set L(Y ) = {X ∈ Rs+ : X

can produce Y } which has isoquant

IsoqL(Y ) = {X : X ∈ L(Y ), λX /∈ L(Y ), λ ∈ [0, 1)}. (1)

Since we assume that only one output is produced, we can define a production function as

φ (X) = max {Y : X ∈ L(Y )} (2)

The input distance function is then defined as

DI(Y,X) = max {γ : X/γ ∈ L(Y )} , (3)

which provides an alternative characterization of the technology since DI(Y,X) ≥ 1 ⇔ X ∈ L(Y ). Finally,

the index of technical efficiency proposed by Debreu (1951) and Farrell (1957) that serves as basis for DEA

is given as

FI(Y,X) = min {γ : γX ∈ L(Y )} , (4)

where FI(y, x) = DI(y, x)
−1.
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In this paper, we seek to place additional structure on the production technology. In particular, we

assume that production is homothetic.

Definition 2 A production function φ(X) is homothetic

Y = φ(X) = F (g(X))

where F () : R+ → R+ is monotonic and g(λX) = λg(X) i.e. g() is positive homogeneous of degree one and

continuously differentiable (see (Shephard 1970)). g() is denoted the kernel function.

From the definition, we see that a homothetic production function can be represented as a production

process whereby the input vector X can be aggregated into a one dimensional input index g(X), i.e. output

is determined from the level of aggregate input (see (Färe and Lovell 1988) for a more general result).

Proposition 3 Assume a homothetic technology with one output. The distance function evaluated at (1,X)

is equal to aggregate input defined from the core function in the homothetic production function multiplied

by a constant, i.e.

DI(1,X) = k × g(X), k ∈ R+

Proof. Let φ(X) = F (g(X)) with F−1 = f . We know that

L(y) = {X : F (g(X)) ≥ y}

= {X : g(X) ≥ f (y)}

Furthermore,

DI(1,X) = max {γ : X/γ ∈ L(1)}

= max {γ : X/γ ∈ {X : g(X) ≥ f (1)}}

= max {γ : g(X/γ) ≥ f (1)}

= max

½
γ :

1

γ
g(X) ≥ f (1)

¾
= max {γ : g(X) ≥ γf (1)}

= {γ : g(X) = γf (1)}

= (f(1))−1 × g(X)
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Proposition 3 establishes that the dimensionality of DEA models can be reduced under the assumption

of homotheticity. In addition, homotheticity allows us to span the production technology from L(1) (see

(Shephard 1970), page 34).

L(Y ) = H(Y )L(1), (5)

where L(1) is the input set associated with the unit isoquant and H(Y ) is the scaling function. Input sets

can be theoretically generated from a base input set by the scaling function that depends only on the level

of output and not the input mix. From (5), we also have

IsoqL(Y ) = H(Y )IsoqL(1). (6)

This shows that we can generate any isoquant from the unit isoquant. More generally, we could choose

any output level and its associated isoquant to serve as the base. Here, we choose the unit isoquant for

expositional convenience only. In the next section, we consider the estimation of a base isoquant and provide

guidance on selecting a well-estimated base for aggregation purposes.

3 Estimating the Base Isoquant

One useful method for estimating any isoquant is the order-m estimation procedure (Daraio and Simar 2005).

The input distance function DI(y, x), defined in (3) is expressed relative to the input set L(y) and the basic

idea in the order-m procedure is to regard this input set L(y) as the support of a conditional density function

L(y) =
©
x : FX|Y (x|y) > 0

ª
. The corresponding support for the joint input output density HX,Y (x, y) is

the production possibility set T , i.e. T = {(x, y) : HX,Y (x, y) > 0} ,HX,Y (x, y) = Pr(X ≤ x, Y ≥ y) =

Pr(X ≤ x|Y ≥ y) Pr (Y ≥ y) = FX|Y (x|y)SY (y), where SY (y) = Pr(Y ≥ y). For a fixed level of output

yo let X1, . . . ,Xm be m i.d.d. random input vectors generated from FX|Y (.|yo), i.e. all input vectors

Xi, i = 1, . . . ,m are random variables that can produce yo with a strict positive probability. Assuming

selective (local) convexity of the input sets, the random input set of order-m2 for units producing yo, LCm(yo)

is defined as:

LCm(yo) = Conv [{x|x ≥ Xi, i = 1, . . . ,m}] (7)

2 (Daraio and Simar 2005) use the phrase "random producton set of order-m for units producing more than y: TCm(yo) =

Conv (x, y) ∈ Rm+1+ |x ≥ Xi, y ≥ y0, i = 1, . . . ,m

However, this set is not a production set since it is unbounded in the output dimensions. We use the related input set LCm(yo).
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The locally convex order-m input efficiency θLCm (x, y) is defined as ((Daraio and Simar 2005), p 17, (3.2.))

θLCm (x, y) = EX|Y

h
(eθLCm (x, y) |Y ≥ y

i

where eθLCm (x, y) = inf
©
θ|θx ∈ LCm(y)

ª
To obtain the estimator bθLCm (x, y) = bEX|Y

h
(eθLCm (x, y) |Y ≥ y

i
based on a sample of n observations

we plug in the empirical version of FX|Y (.|yo) as bFX|Y,n(x|y) = n
i=1 1(Xi≤x,Yi≥y)

n
i=1 1(Yi≥y)

,where 1() is the indicator

function. bθLCm (x, y) can be approximated by a Monte-Carlo procedure: Samplem observationsX1,b, . . . ,Xm,b

conditional on output being greater than yo = 1 with replacement. For each of the n observations find the

inverse distance function value eθLC,bm (Xl, 1) relative to an input set Conv [{x|x ≥ Xi,b, i = 1, . . . ,m}]. Redo

this estimation b = 1, . . . , B and take the average of the obtained scores as the estimator, i.e. bθLCm (Xl, 1) ≈

B−1
P

b
eθLC,bm (Xl, 1). From these scores we obtain an estimated input set bLLC(1) as

bLLCm (1) = Conv
hbθLCm (X1, 1)×X1, . . . ,bθLCm (Xn, 1)×Xn

i
+Rm+ . (8)

A simplification of the order-m estimator is the conditional estimator of the base isoquant, which avoids

the replications by choosing m = n.

In the simulations presented later in the paper, we use this conditional estimator instead of the order-m

estimator. The base isoquant can be estimated using this conditional model solving the following linear

programs

bθLCC (Xl, Ybase) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min θ − ε (1, . . . , 1) s

s.t. θXl −
Pm1

j=1 λjXj − s = 0Pm1

j=1 λj = 1

λj = 0 if Yj < Ybase

λ ∈ Rm1
+ , s ∈ Rs+

(9)

l = 1, ..., n, where Ybase = 1 in this section and where again the estimator bLLCC (1) of the input set is derived

as bLLCC (1) = Conv
hbθLCC (X1, 1)×X1, . . . ,bθLCC (Xn, 1)×Xn

i
+Rm+ . (10)

This model appears in the efficiency literature to control for exogenous inputs (Ruggiero 1996), selective

convexity (Podinovski 2005) and as the condition estimator (Daraio and Simar 2005). In this formulation,
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units that are not observed producing at least the base amount (in this case, one) are not allowed in the

solution space. Hence, we simply envelop all input vectors with observed output at least equal to one.

Notably, we replace the standard assumption of convexity with selective input convexity of the input sets:

Axiom: Selective input convexity: If (X 0, Y 0) ∈ T, (X 00, Y 00) ∈ T, Y 00 > Y 0 ⇒ λ (X 0, Y 0)+(1− λ) (X 00, Y 0) ∈

T, λ ∈ [0, 1]

Our primary reason for using the conditional model is NOT to estimate efficiencies but to exploit homo-

theticity to aggregate multiple inputs into a one-dimensional input index. Hence, we estimate each isoquant

using the conditional estimator and choose the "best" isoquant that has good coverage in the sense that i)

we want as many observations playing an active role of spanning the frontier, ii) we want the cone spanned

by these observation to be as large as possible and iii) we want the observations to be spread out across the

cone as uniformly as possible. After choosing the isoquant that best meets the desirable criteria, we then

estimate the distance of each observation to this isoquant as an index of aggregated input.

To ease the presentation of the proposed methodology, we chose the unit isoquant as the base in our

discussion above. We now provide guidelines for how to choose the output level with the most useful

information. Using the conditional estimator relative to a given output level y we only include input vectors

from observations with an output level at least equal to this y. We would like to have as many observations as

possible available for spanning the isoquant, which tends to suggest a low output level. However, observations

producing output much larger than y may not provide any additional information. If we knew the positions

and the shapes of the true isoquants we would look for a specific isoquants (a y level) where i) we have

many observed points on or just above the isoquant and ii) where the points are spread out evenly along

the full isoquants. Unfortunately, we do not know the locations and the shape of the true isoquants. Hence,

we have to rely on an estimator, and in this case we will use the conditional estimator defined above. For

each observed output level Yj , j = 1, . . . , n, we use the conditional estimators bθLCC (Xl, Yj) , l = 1, . . . , n

which provides us with the estimators bLLCC (Yj) of all n input sets corresponding to all n outputs. As base

isoquant we now choose the specific output level which performs reasonably well according to the following

two criterias3 :

1. A distribution of the angle coordinates of the observed data points on the conditional piecewise linear

estimator of the isoquant, which mimics the uniform distribution on the empirical support of the

angle coordinates for the whole data set. As a measure of the amount of deviation of the empirical

distribution from the uniform distribution we suggest the area between the two distribution functions.

2. A large number of observed data points is located on the conditional piecewise linear estimator of the

3Of course, other criteria may be relevant. We leave for future research the evaluation of isoquant coverage.
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isoquant4.

The selection process for choosing the "best" base isoquant is implemented as follows. Estimate all n×n

conditional scores providing bθLCC (Xl, Yj) , j, l = 1, . . . , n, where this score is missing, if Yl < Yj . For a given

observed output level Yjo keep the input vectors Xl if bθLCC (Xl, Yjo) is non-missing and if bθLCC (Xl, Yjo) = 1.

Let the number of input vectors that satisfy these two conditions be nYjo and let the different angles-vectors in

the polar representation of these input vectors be ηl, l = 1, . . . , nYjo . The resulting set of angles corresponds

to observations on the estimated isoquant at output level Yjo . For the case of two inputs (this is the case

covered in the included simulations) we only have one angle in the polar representation of the input vectors.

Hence, we sort the angles and plot the points
³
ηj−SL
SR−SL ,

j
nYjo

´
, j = 1, . . . , nYjo , where SL, SR are the left and

right endpoint of the support of the angle distribution (empirical estimates), see Figure 1. The deviation of

this empirical distribution from the uniform distribution is measured as the area between the 45 degree line

and the piecewise linear curve going through these nYjo points, starting at the origin and ending at (1, 1)
5.

Figure 1 illustrates this deviation for isoquant 750 used as the best base isoquant in the simulation study

presented below in Section 5.

4An order m estimation of the base isoquant would allow us to expand the relevant angles ηl, of the input vectors Xl,

where θ
LC
m1

(Xl, Yjo) is non-missing and where θ
LC
m1

(Xl, Yjo)
−1 < 1 + δ, for some small δ ∈ R+, and where θ

LC
m1

(Xl, Yjo) is the
corresponding order m estimator

5The area under the piecewise linear curve determined from the absolute deviation between the two curves can be determined
as a sum of areas of a combined rectangle and a triangle. Consider three point in this deviation space (ηj , zj), j = 1, 2, 3 where
ηj+1 > ηj and let z2 > z1 and z3 < z2. The area spanned by (ηj , zj), j = 1, 2 is

1
2
(z2 − z1) + z1 (η2−η1) = 1

2
(z2+z1)(η2−η1).

The area spanned by (ηj , zj), j = 2, 3 is 1
2
(z2 − z3) + z3 (η3 − η2) =

1
2
(z3 + z2)(η3 − η2). Hence, the areas, except for the

first and the last traingle are determined as

nYo

j=2

1
2
(zj + zj−1)(ηj − ηj−1). Similarities to the Gini coefficient are apparent.
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Figure 1. An empirical angle distribution and a uniform distribution.

Suppose we have identified Y ∗ = Yk as the output level associated with our chosen base isoquant. Then,

an index measure of aggregate6 input is bx (Xl, Yl) =
³
θLCc (Xl, Y

∗)
´−1

for l = 1, . . . , n where θLCc (Xl, Y
∗)

is determined as the solution to the following linear program:

θLCc (Xl, Y
∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min θ − ε (1, . . . , 1) s

s.t. θXl −
Pm1

j=1 λjXj − s = 0Pm1

j=1 λj = 1

λj = 0 if Yj < Y ∗

λ ∈ Rm1
+ , s ∈ Rs+, θ ∈ R

(11)

, l = 1, ..., n.

4 An estimator of a piecewise linear S-shaped frontier and the

inflection point.

Our estimate of aggregate input (11) allows us to analyze an estimator of the S-shaped technology in the

single (aggregate) input single output case.7 With homothetic production, of course, we can also aggregate

6We distinguish between an index of aggregated inputs from (11) with or without non-zero slacks present in the optimal
solution. As we will see in Section 5 we can nicely recover the true efficiency for data points without non-zero slacks present.

7Maintaining the RUP law requires that the scale elasticity is monotonically decreasing for increasing production. However,
it is well known that along any facet below mpss we will have constant marginal product and decreasing average product
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multiple outputs into a single output aggregate. Let the true production possibility set (PPS) be denoted TS ,

and we will assume that the boundary of TS is S-shaped in the sense that we can divide the input axis into

two parts [0, x∗] and [x∗,∞) where the production function is convex (concave) on the first (second) interval.

Hence, the marginal product is monotonically non-decreasing in [0, x∗] and monotonically non-increasing in

[x∗,∞). (see (Ginsberg 1974) for an example of such a convex-concave production function). We know of

course that the convex hull estimator bTBCC (Banker et al. 1984) of the PPS is too large below x∗, but we

also know that for input and output above the inflection point x∗ this estimator works well, because of the

true concave shape of the production function. Hence, in the following we will remove or "dig out" the part

of the estimator bTBCC , that violates the S-shape. To be more precise, we will dig out a certain convex hull

of observed data point that satisfies the following:

• the convex hull is spanned by points below (and on) the inflection point, i.e. points that are supposed

to reflect the convex IRS part of the technology

• the convex hull is constructed such that no point is located above the frontier (or equivalently, no

points are located in the interior of this hull)

Figure 2 illustrates this idea using 6 input output observations generated from an "S-shaped" data

generating process (DGP). Observations, A,E and F are BCC-efficient and observation E is most productive

scale size (mpss). In this small illustrative example we use the mpss as an estimator of the inflection point8.

In other words we assume that the production function is convex up to data point E and concave to the right

of this point. The basic idea behind the digging approach is to determine a subset of all FDH-efficient DMUs

"below" mpss which determines a convex hull bTDig, where none of these DMUs belongs to the interior of

this hull. An estimator bTSof the PPS with an S-shape with an efficient boundary being piecewise linear is

now available as bTBCC\bTDig ≡ bTS , i.e. the convex hull BCC estimator of the PPS minus the convex hullbTDig. In Figure 2 the estimated bTBCC is the convex hull of observations A,E, F set added to R+ × R−

(strong input and output disposability). bTS is estimated as bTBCC\bTDig, where bTDig is the convex hull of

the observations A,B,C,D,E.

(Førsund and Hjalmarsson 2004), which seems to imply that the RUP-law is violated. However, this violation disappears
asymptotically, see (Olesen and Petersen 2011).

8 In section 5 below we will propose a more general estimator of the inflection point.
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Figure 2. Illustration of the BCC- and the S-shaped frontier

The piecewise linear strongly efficient frontier in Figure 2 of bTS is ABCDEF . In Figure 3 the FDH step

function is included. Since only FDH efficient points are allowed to influences the estimation we may have

data points present only within the four triangles bounded by the FDH-steps and the frontier ABCDE.

Observations H, I, J, and K are indicated below facet CD. Observation I is consistent with the frontier

ABCDE in the sense that if I is present then we simply "dig" a deeper hole into bTBCC providing the

efficient frontier as ABCIDE. This is possible without changing the rest of the hull because observation I

is above the extension of both facet BC and facet DE. Hence, including I on the frontier still gives us a

monotonic non-decreasing marginal product moving from C to I to D. Notice however, that neither H nor

J,K are consistent with the frontier BCDE. These three additional observations share the characteristic of

being either below the extension of facet BC or below the extension of facet DE, or both.

The determination of this inverted convex hull is unfortunately not unique. This is illustrated in Figure

3 by the point L being below the extension of the facet CD. Hence, we cannot include L on the S-shaped

frontier and at the same time maintain that A,B,C,D and E all are on the frontier. However, we may

include L as being on the frontier if we remove C from the frontier, as indicated by the dashed convex

hull. Hence, we have a choice. Either C or L is efficient, but not both. Below we will partly resolve this

non-uniqueness of the solutions by searching for the solution that maximizes the number of FDH-efficient
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points on the frontier9 .

Figure 3. Illustration of the BCC- and the S-shaped frontier

Assuming that we know the position of the inflection point a simple procedure to determine an arbitrary

inverted convex hull is as follows:

Step 1. Generate the FDH efficiency scores for all units below the inflection point. Remove all FDH-

inefficient point.

Step 2. W.l.o.g. let (Xj, Yj) , j = 1, . . . , n0 be the FDH-efficient point and project each of these point

towards higher input levels within the convex hull of these DMUs, using the following program

max
Pn0

k=1 θk

s.t.
Pn0

j=1 λj,kXj − θkXk = 0 k = 1, . . . , n0Pn0

j=1 λj,kYjθk − Yk = 0 k = 1, . . . , n0Pn0

j=1 λj,k = 1 k = 1, . . . , n0

λ ∈ Rm×n+ , θk ∈ R,∀k

(12)

9 In the case of a tie between several alternative solutions we suggest that each alternative solution is used to provide an
efficiency evaluation of the observed points.
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Step 3. For each optimal θ∗k > 1, we know that under mild regularity conditions at most two components

among λ1,k, . . . , λn0,k are strictly positive. Remove one of these two FDH-efficient DMUs from the sample,

but never remove the two DMUs with the largest and the smallest input value

Step 4. Do step 2-3 until θ∗k = 1, for all index k in the remaining set of DMUs.

We denote this approach the filling approach, because after "digging" an inverted convex hull including

all FDH-efficient DMU, we modify the hull by making the hull smaller by removing FDH-efficient DMUs

that force some other FDH efficient DMUs to be located in the interior of the hull.

Assuming that we know the position of the inflection point this approach will provide us with an inverted

hull bTDig and will thereby provide a piecewise linear estimator of the S-shaped technology given as bTS ≡bTBCC\bTDig. However, since the estimator is not unique the determination of which FDH-efficient points to

include on the increasing returns to scale part will depend on the which point we choose to delete in step 3

above and in what sequence such points are removed.

We now consider an alternative procedure that provides a piecewise linear estimator of the S-shaped

technology using the inverted convex hull that maximizes the number of FDH efficient points on the S-

shaped frontier, i.e that maximizes the number of "S-shaped efficient" points. An integral part of this

procedure is an estimation of the inflection point; we seek as an inflection point below mpss one that allows

for an estimated S-shaped frontier with a maximum number of FDH efficient points on the frontier. Testing

a given point as a candidate for the inflection point involves several conditions: i) the marginal products

along the facets from the origin to the inflection point must be increasing, ii) the marginal products must be

non-increasing on facets above the inflection point and iii) all the points have to be on or below the frontier.

Let us consider FDH-efficient points below an inflection point candidate (Xn, Yn). (Xj , Yj) ∈ R2+, j =

2, . . . , n + 1, (X1, Y1) = (0, 0) and Yj+1
Xj+1

>
Yj
Xj

, j = 1, . . . , n − 1, Yn+1Xn+1
< Yn

Xn
. We are looking for a convex

shape as a graph through a subset of the points (Xj , Yj), j = 1, 2, . . . , n + 1, starting at (X1, Y1) = (0, 0)

and ending at the estimator of the inflection point (Xn, Yn). This problem resembles the so-called traveling

salesman problem (TSP)(Dantzig, Fulkerson and Johnson 1954), which consists of finding the shortest path

through a set of points, never visiting a point more than once and returning to the starting point. In our

problem the length of the path does not matter and it is not required that we return to the starting point.

But it is required that we start at point 1 and end at point n. Secondly, we do not require that the path

covers all points. In fact, we expect only a subset of points to be covered, but we maximizes the number

of points visited upto and including the inflection point. Thirdly, the (i + 1)0th edge is required to have a

larger marginal product compared to the i0th. Finally, all points have to be on or below the frontier.

As in the TSP we use binary variables bij , where bij = 1 if the edge from point i to j is used, otherwise

bij = 0, i, j ∈ {1, . . . , n}. We only consider a bij = 1 as feasible if j > i, since data are sorted and a feasible

13



convex path never will go from i to j, where j < i. A requirement of at most one path into the k0th point

and at most one path out of the l’th point is modelled with slightly modified assignment constraints:

nX
k=1

bkl + sIntoNode
l = 1, l = 2, . . . n (13)

nX
l=1

bkl + sOutOfNode
k = 1, k = 1, . . . n− 1 (14)

where sIntoNode
l ≥ 0,∀l, sOutOfNode

k ≥ 0,∀k. If sIntoNode
l = 1 or sOutOfNode

l = 1 then the l’th point is not

on the "path" that constitutes the convex part of the S-shaped estimator of the production function10.

If bkl = 1,∀k, l, k < l, k 6= 1, l 6= n then an edge out of k and into l is used and we require that an edge

into k and an edge out of l must be used, i.e.
Pn

i=1 bik = 1,
Pn

j=1 blj = 1 =⇒ sIntoNode
k = sOutOfNode

l = 0,

or

sIntoNode
k + sOutOfNode

l ≤ (1− bkl)M2,∀k, l, k < l, k 6= 1, l 6= n (15)

where M2 is a large number (here M2 must be greater than 2). If b1l = 1 then an edge into point l is used

and we require that an edge out of l must be used, i.e.
Pn

j=1 blj = 1 implying that s
OutOfNode
l = 0 or

sOutOfNode
l ≤ (1− b1l)M2, l ∈ {2, . . . , n− 1} (16)

If bkn = 1 then an edge out of k is used, and we require that an edge into k must be used, i.e.
Pn

i=1 bik =

1 =⇒ sIntoNode
k = 0, or

sIntoNode
k ≤ (1− bkn)M2, l ∈ {2, . . . , n− 1} (17)

We prefer an estimator of the convex part of the frontier with as many points on the frontier as possible.

Hence, we maximize the sum of the binary variables bij . Model (18) presents the full optimization problem:

10Notice that if sIntoNode
l = sOutOfNode

l = 0,∀l these constraints are the well known assignment constraints from the
LP-formulation of the TSP-problem making sure that one arc into and out of every node are used in a feasible solution.
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max
Pn

i=1

Pn
j=1 bij

s.t.

Yk−Yj
Xk−Xj

− Yj−Yi
Xj−Xi

− sijk = 0 i, j, k ∈ {1, . . . , n} , i < j, j < k (18.1)

sijk + (2− bij − bjk)M1 ≥ 0 i, j, k ∈ {1, . . . , n} , i < j, j < k (18.2)

(18.3)Pn
k=1 bkl + sIntoNode

l = 1 l ∈ {2, . . . , n} (18.4)

into l if sIntol = 0Pn
l=1 bkl + sOutOfNode

k = 1 k ∈ {1, . . . , n− 1} (18.5)

out of k if sOutOfk = 0

sIntoNode
k + sOutOfNode

l

− (1− bkl)M2 ≤ 0 ∀k, l, k < l, k 6= 1, l 6= n (18.6)

sOutOfNode
l − (1− b1l)M2 ≤ 0 l ∈ {2, . . . , n} (only b1l) (18.7)

sIntoNode
k − (1− bkn)M2 ≤ 0 k ∈ {1, . . . , n− 1} (only bkn) (18.8)

Yt−Yn
Xt−Xn

− Yn−Yk
Xn−Xk

+ dtermk = 0 k ∈ {1, . . . , n− 1} (18.9)

dtermk + (1− bkn)M1 ≥ 0 k ∈ {1, . . . , n− 1} (18.10)

bij = 0 i, j ∈ {1, . . . , n} , i ≥ j

bij ∈ {0, 1}∀, i, j

sIntoNode
l ≥ 0, sOutOfNode

k ≥ 0

dtermk ∈ Rn−1

(18)

The constraints (18.1-2) are included to only allow a sequence of edges with increasing marginal product

as feasible, where M1 is a large number. The constraints (18.9-10) are included to require that the marginal

product starts to decrease when passing through the inflection point, i.e. when moving from the convex part

to the concave part of the S-shaped frontier. The structure in (18.8) allows only one edge into point n. Let

us denote the starting point of this edge into point n as ko, i.e. bkon = 1. For all k 6= ko (18.9) implies

redundant constraints, dtermk ≥ −M1. Given the inflection point, the "termination" point of the convex part

denoted (Xt, Yt) is determined as the point with the maximal rate of transformation relative to the estimator

of the inflection point, i.e.

(Xt, Yt) = argmax
j>n

µ
Yj − Yn
Xj −Xn

¶
.

Unfortunately, (18) does not provide a path from the origin to the inflection point with no uncovered

point above the path. Hence we have to supplement (18) with the following cutting procedure.

1. Solve (18).
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2. For each bij = 1 loop through all points with the input component larger than Xi and smaller than

Xj and check if any such point is located "above" the facet spanned by [(Xi, Yi) , (Xj , Yj)] .

3. If any such observation is above this facet then add the constraint bij = 0 to (18) and goto step 1.

This procedure will either terminate with a feasible solution providing a convex part from origin to the

inflection point with all points on or below the path, or with a status being integer infeasible, in which case

no path exists with the required characteristics.

This approach was applied to simulated data in the next section. In anticipation of our results see Figure

4, which shows estimate of the S-shape technology with the endogenous inflection point identified as point

66. In the next section, we analyze our approach using simulated data.

5 Simulation

We will show that our approach is capable of recovering the true S-shaped technology while simultaneously

providing better estimates of technical inefficiency. Assuming one output, two inputs and homotheticity

we generate data according to the following data generating processes (DGP). We specify a generalized

production function (Zellner and Revankar 1969)

Y = φ(X) = F (g(X))

where the scaling law is F (z) = 15
1+e−5 ln(z)

and the linear homogenous core function is CES: g (x1, x2) =³
βx

σ−1
σ

1 + (1− β)x
σ−1
σ

2

´ σ
σ−1
, with β = 0.45 and σ = 1.51. Data are generated for 1000 DMUs as follows;

inputs are generated in polar coordinates as angles η and modulus ω uniformly distributed on
£
0.05, π2 − 0.05

¤
and [0, 2.5], respectively. Output is generated from the generalized production function F (g(ω cos η, ω sin η)) .

Inefficiency is added to the input vectors with X = eθ × (ω cos η, ω sin η), where θ is a random variable from

a truncated normal distribution with standard deviation 0.2.

We sort the data on output and estimate component and estimate (11) for each of the 1000 output levels;

the solution space for each esimated isoquant is conditioned such that only DMUs with outputs greater than

or equal to the i’th DMUs output, i = 1, . . . , 1000 is included. We thus obtain 1000 input oriented scores

for each isoquant. If the input oriented score has additional slack in either input dimensions the score is

assigned the value "missing". Based on the these results, we identify for each potential base isoquant only

those points that span the conditional isoquants ( i.e. only observations with input oriented score equal

to one with no additional slack are included). For this simulation, we consider two criteria for choosing

our base isoquant. Firstly, we are looking for the particular isoquant with as many observation on the
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frontier as possible. Secondly, we search for an isoquant with an empirical distribution of the angles of these

points spanning the frontier as close as possible to a uniform distribution. Taken together, we are looking

for isoquants that have a lot of points that uniformly span the isoquant. For our simulation, we identified

numerous isosquants that performed well on both criteria. This result, while not surprising, is encouraging:

the selection of a base isoquant for our input aggregation is robust. For our analysis, we chose isoquant 750

as our base isoquant.

The inverse of the input oriented efficiency scores relative to isoquant 750,
³
θLCc (Xl, Y750)

´−1
,∀l are

now used as indexes of aggregated input. Initiating the estimation of the inflection point and the S-shaped

piecewise linear production function (one aggregated input, one output) we first remove the observations with

positive slacks present in the estimation of the aggregate input index (181 observations) and observations

that are FDH inefficient (732). That leaves us with a data set of 88 observations of which 16 (71) are above

(below) mpss. We estimate the BCC efficiency scores based on the sample of observations from 72 to 88 since

this concave part of the production function is unaffected of the exact choice of inflection point. Next, we

endogenously determine which point below mpss is the inflection point. For fixed i ∈ {1, 71} we go through

the following steps:

1. The BCC model is solved including only points above point 72 − i and on or below mpss. We count

the number of points on the frontier and estimate the termination marginal product of the facet from

point 72− i to point 72− i+ 1.

2. Focusing on 72− i as the candidate for the inflection point we solve (18) above (including the sequence

of cuts) to determine a sequence of binary variables indicating a path through a number of points

below point 72− i starting at the origin and ending at point 72− i and with a monotone non decreasing

marginal product along the path and no points above the path. The optimal solution (assuming that

one exists) will provide the count of points on this convex part of the frontier.

3. In addition we require that the marginal product on the facet from point 72− i− 1 to point 72− i is

greater than or equal to the termination marginal product estimated in step 1.

4. Finally, we add the counts of points on the frontier from step 1 and step 2.
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Table 1 summarized the results for 10 candidate points.

Inflection Point 71 70 69 68 67 66 65 64 63 62

The concave part up to mpss 2 3 2 3 4 5 6 7 6 7

The convex part 13∗ — 17 21 25 27 17 — 25 —

The frontier up til mpss — — 19 24 29 32 23 — 31 —

Notes: — indicate the (18) is integer infeasible

* indicate that the cutting procedure has stopped after 50 cuts

Table 1: The number of points one the different parts of the frontier with different choices of the inflection

point.

The results of the analysis indicate that either point 63 or point 66 is a good choice for the inflec-

tion11.Next, we solve (18) to estimate the S-shaped production frontier using point 66 as the inflection point.

As shown, we are able to obtain a good approximation of the true underlying S-shaped technology.

Figure 4. The estimated S-shape and FDH efficient points below and above mpss.

The next step is an analysis of the performance of the aggregation procedure to recover the true inef-

ficiency. For this analysis we use point 66 as the inflection point. The relationship between the distance

function and the core of the production function is expressed in proposition (3), i.e. assuming a homo-

thetic structure, DI(yo,X) = k × g(X), k ∈ R+, where k = (f(yo))−1 , f() = F−1(), and F () is the scaling

function. To compare the estimated radial input oriented efficiency scores based on the aggregated input

with the true efficiency scores based on the original two dimensional input vector we need to estimate the

11Analyzing point 71 as candidate for the inflection point was terminated after 50 cuts. At termination, only 15 points were
on this infeasible frontier, implying that point 71 is not a promising candidate for the inflection point.
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conversion factor k = (f(output750))
−1

, f(x) = F−1(x). F (x) = 15
1+e−5 log x ⇒ f(y) =

³
e−

1
5 log

15−y
y

´
, and

k =
³
e−

1
5 log

15−9.84283
9.84283

´−1
= 0.87874, where 9.84283 is the level of output of the 750’th data point.

Figure 5a. Plotting the true distance function scores against the estimated scores (rescaled), only "good"

observations

Figure 5b. Plotting the true distance function scores against the estimated scores (rescaled)

Figure 5a-b illustrates the performance of the recovery of the true scores after aggregating the inputs.

In Figure 5b all 1000 observations are included, while only the 819 observations with no slacks in the score

estimation are included in Figure 5a. It is clear from the plots that the estimated scores are biased downwards

as expected for most of the observations. Especially in Figure 5a we observe that all estimated scores are

below the true scores except for one "outlier", which turns out to be the smallest observation in the sample.
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Given our data generating process, we know that the BCC model will not perform well given the assump-

tion of convexity. Nonetheless, we compared our estimates and the BCC estimates of efficiency with the true

efficiency for contextual purposes. Four measures were used for the comparisons: mean squared and mean

absolute deviations between estimated and true efficiency and the Pearson and Spearman rank correlation

coefficients. The performance of the BCC estimator was poor; the mean squared (absolute) deviation was

0.195 (0.345) and the correlation (rank correlation) between estimated and true efficiency was only 0.178

(0.197). The results for our estimator were much better. Using all observations, the mean squared (absolute)

error was 0.059 (0.093) while the correlation (rank correlation) was 0.428 (0.757). However, when we include

only those observations when the aggregate input was defined without additional slack, the results are much

better. In this case, the mean squared (absolute) error was only 0.001 (0.017) while the correlation (rank

correlation) was 0.958 (0.964). While this is not surprising given the data generating process, the results

suggest that the degree of bias assuming convexity can be very high.

6 Conclusion and further research

A maintained hypothesis of convexity in input-output space is often used in DEA estimations of efficiency

scores. However, convexity is not consistent with standard microeconomic production theory that posits an

S-shape for the production frontier. In this paper we have outlined an approach that allows for an estimation

of efficiency from an S-shaped technology for the multiple inputs and one output case. To simplify, we have

assumed that the technology is input homothetic. This assumption has allowed us to split the estimation

procedure into two parts, i) an aggregation procedure based on the structure of input homotheticity, and ii)

a joint estimation of the inflection point and a piecewise linear S-shaped structure for one aggregated input

and one output.

As an estimation procedure for individual isoquants we propose, assuming selective input convexity, the

use of a simplified order-m estimation procedure. In theory, any input isoquant can be used as the base

isoquant used to aggregate inputs utilizing the input homotheticity. Relative to this base isoquant, an index

of aggregated input can be estimated as the inverse distance function value of any observed input vector. We

have argued that in practice it is important to choose an isoquant which performs reasonably well according

to the following two criteria: i) the empirical distribution of the angle coordinates of the observed data points

should mimic a uniform distribution, and ii) a large number of observed data points should be located on the

conditional piecewise linear estimator of the isoquant. To facilitate the choice of a base isoquant with good

coverage we have proposed an estimation of all possible isoquants using a simplified version of the order-m

estimation procedure. The simplification used is a conditional estimator of the base isoquant, which avoids
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the replications.

Taking advantage of the reduced dimensionality (one aggregated input and one output) we have developed

a model to estimate a piecewise linear S-shaped frontier where the aggregate input axis is divided to allow

a production frontier that is concave and convex. In other words, we have assumed that the boundary of

the true PPS is S-shaped in the sense that we can divide the input axis into two parts, where the frontier

is convex (concave) on the first (second) part. Consequently, the convex hull estimator is too large and we

have proposed a "digging approach" where we remove the part of the PPS that violates this S-shape. This

digging approach is formulated as a joint estimation of the inflection point and the convex part of the frontier

from the origin to the inflection point.

Using simulated data in section 5, we have shown that our method overcomes the inherent problems

of standard DEA and provides better estimates of inefficiency when the true technology obeys the Regular

Ultra Passum Law. future research.

The approach proposed in this paper has two apparent shortcomings. First and foremost we have assumed

input homotheticity which may or may not be a reasonable assumption. Hence an important extension of

the approach is to allow at least for some kind of deviation from pure input homotheticity. Secondly, to

simplify the presentation we have assumed only one output. Generalizing the approach to the case of multi-

ple input multiple outputs is another important area for future research. Unfortunately, a straight forward

approach based on the joint assumption of both input and output homotheticity requires some rather re-

strictive additional assumptions. As noted in (Färe and Primont 1995) the notion of inverse homotheticity

was introduced by ((Shephard 1970), page 255-57), where it is shown that this structure is sufficient for

both input and output homotheticity. This result is generalized in (Färe and Primont 1995), where it is

shown that we have inverse homotheticity if and only if the technology exhibits simultaneous input and

output homotheticity12. Hence, extending our approach to multiple inputs and multiple outputs is straight-

forward if the technology simultaneously exhibits input and output homotheticity, i.e., inverse homotheticity

and if these "mild" additional conditions are maintained. This seems to be a natural starting point for a

generalization of the approach in this paper to the case of multiple inputs and multiple outputs.
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