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Abstract

We simulate a standard Dynamic Stochastic General Equilibrium

model to analyze the sensibility of market crashes to the anticipations

of endowment drops. Contrary to the commonly accepted view that

market crashes are solely driven by large drops in aggregate endow-

ments, we observe in complete markets that: 1- a large and subjective

anticipation of an endowment drop amplifies the magnitude of the

crash regardless of the level of risk-aversion, and 2- there always ex-

ists an upper-bound on the maximal anticipation of the drop so that

the crash magnitude remains constant regardless of the drop level. We

thus establish that the occurrence and magnitude of a crash in com-

plete markets depend on the anticipation level of the drop, regardless

of how the anticipation is formed.

JEL codes: G12, G14.

Keywords: Market crashes, Investors’ psychology,

Market anticipation.
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1 Introduction

Sudden crashes are common features of financial markets. For instance, most

of the world’ leading market indices lost in 2008 in average 25% of their value

in less than a month, whereas the their growth rate was steady since 2003.

Another typical example is the 1994 Peso crisis in Mexico, where lending

rates rose by four hundred percent over four months. Psychological factors

are believed to play an important role in such situations, for instance the

2008 historical crash can be largely imputed to the fear of bankruptcy of

some large banks despite the actual economic recession that was about to

occur. The actual mechanisms linking such factors and market volatility are

not yet fully explored, and this paper par addresses this issue by analyzing

the sensibility of market crashes to the subjective anticipation of endowment

drops in a standard Dynamic Stochastic General Equilibrium model.

This paper thus investigates the link between market volatility and in-

vestors’ psychology in a standard general equilibrium with complete markets

(see Leoni [7] for a similar analysis and more restrictive results with in-

complete markets). Contrary to the commonly accepted view that market

crashes are solely driven by large drops in aggregate endowments, we show

in a numerical simulation that: 1- a large and subjective anticipation of an

endowment drop amplifies the magnitude of the crash regardless of the level

of risk-aversion, and 2- there always exists an upper-bound on the maxi-

mal anticipation of the drop so that the crash magnitude remains constant

regardless of the drop level. We thus establish that the occurrence and mag-
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nitude of a crash in complete markets depend on the anticipation level of the

drop, regardless of how the anticipation is formed.

Anticipations of changes in fundamentals, driven by psychological factors

as described later, are shown here to be a key explanatory factor of market

volatility. Our point here is to show that, in a general equilibrium framework,

belief-driven variations in demand are a necessary condition for crashes to

occur, and that the origins of market crashes stem both from psychological

factors and economic factors and not from variations in fundamentals only.

The basic insight of our results is that, when anticipating a future albeit

uncertain drop in aggregate endowments, traders take immediate financial

positions to hedge against this event. The hedging can only be achieved by

purchasing assets paying off positive dividends in this event, thus current

purchasing prices are high and in turn returns are low at the time dividends

are paid.

In more details, we carry out a set of numerical simulations in the well-

known framework of Mehra and Prescott (1985) to make explicit the direct

relationship between the actual drop in endowments, the anticipation level

of this drop, and the occurrence and magnitude of a market crash. We define

an ε−crash (for ε > 0) to be an event where the return of every traded asset

paying off positive dividends in this event is below ε. In this setting, we

show that for commonly observed levels of endowment drops, the higher the

level of anticipation the higher the magnitude of the crash. Highest crash

magnitudes are associated with the highest levels of anticipations, and high

anticipations significantly intensify the crash magnitudes regardless of the
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drop level. We also show that, for those same realistic drop levels, there is

always an upper-bound on the maximal anticipation of the drop so that the

crash magnitude remains constant. This result implicitly shows that a crash

of a given magnitude may not occur when its anticipation is low enough, or

at least that an otherwise significant market crash may have a significantly

lower magnitude when its anticipation is small enough.

Our results rely on the Inada conditions to obtain, as implicitly assumed

in the Mehra-Prescott framework, although those conditions alone cannot

lead to a crash unless traders largely agree upon a variation in fundamentals.

The intuition is that the marginal disutility of a low consumption level on a

particular history, typical of Inada conditions, can be compensated in terms

of ex-ante utility by a low probability assigned to this history by every agent.

Thus in this situation, a low contingent consumption need not be largely

hedged against and a crash may not occur.

Our findings are consistent with the commonly observed episodes of mar-

ket crashes, although our theoretical explanation differs from that in Lee

(1998) for instance. Lee justifies crashes by information flows varying with

private information, and crashes occur as an informational cascade when

enough signals of bad times are released by traders. In contrast, we argue

that psychological factors triggering above large anticipations and thus large

crashes may also stem from other sources such as herding, market rumors,

fear of contagion or panic (or possibly all those issues together, see Shiller,

2000). We point out that all of those factors are all relevant because they

may lead to the same phenomenon: a crash anticipation. In this respect, we

5



present a general theory of market crashes where the driving factor of the

occurrence and the magnitude of a crash is its anticipation, regardless of how

the anticipation is formed. The coordination among many traders needed to

form a large enough anticipation may thus stem from many other sources

such as rational expectations and erratic beliefs (a point thus consistent with

Allen et al. (2005) for instance), although it contains as a particular case the

situation raised in Lee (1998) above and Ho and Stein (2003).

2 The model

In this section, a formal description of the model is given. Time is discrete

and continues forever. In every period t ∈ N+, a state is drawn by nature

from a set S = {1, ..., L}, where L is strictly greater than 1. Before defining

how nature draws the states, we first need to introduce some notations.

Denote by St (t ∈ N ∪ {∞}) the t−Cartesian product of S. For every

history st ∈ St (t ∈ N), a cylinder with base on st is defined to be the

set C(st) = {s ∈ S∞| s = (st, ...)} of all infinite histories whose t initial

elements coincide with st. Define the set Γt (t ∈ N) to be the σ−algebra

which consists of all finite unions of cylinders with base on St.1 The sequence

(Γt)t∈N generates a filtration, and define Γ to be the σ−algebra generated

by ∪t∈NΓt. Given an arbitrary probability measure Q on (S∞, Γ), we define

dQ0 ≡ 1 and dQt to be the Γt−measurable function defined for every st ∈ St

1The set Γ0 is defined to be the trivial σ−algebra, and Γ−1 = Γ0.
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(t ∈ N+) as

dQt(s) = Q(C(st)) where s = (st, ...).

Given data up to and at period t− 1 (t ∈ N), the probability according

to Q of a state of nature at period t, denoted by Qt, is

Qt(s) =
dQt(s)

dQt−1(s)
for every s ∈ S∞,

with the convention that if dQt−1(s)=0 then Qt(s) is defined arbitrarily.

In every period and for every finite history, nature draws a state of nature

according to an arbitrary probability distribution P on (S∞, Γ). To simplify

the analysis, we assume that Pst > 0 for every history st.

To conclude this section, we define the operators EQ to be the expectation

operator associated with Q. Finally, we say that a finite history st+p ∈ St+p

follows a finite history st ∈ St (t, p ∈ N), denoted by st+p ↪→ st, if there

exists s ∈ Sp such that st+p = (st, s).

2.1 The agents

In this section, economic agents are described. There is a finite number I ≥ 1

of infinitely-lived agents behaving competitively.

There is a single consumption good available in every period t (t ∈ N+).

Denote by ci
st

the consumption of an agent i (i = 1, ..., I) in history st ∈ St

(t ∈ N+). In every period t (t ∈ N+) and in every history st ∈ St, every

agent i (i = 1, ..., I) is endowed with wi
st

> 0 units of consumption goods.
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In every period t ∈ N , and after the realization of the history st ∈ St, the

agents trade L ≥ 1 infinitely-lived assets, or Lucas’ trees as in Lucas (1978).

Every tree j (j = 1, ..., L) yields a dividend dj
st

> 0 of units of consumption

good in history st. Let dst denote the vector (d1
st
, ..., dL

st
) for every st. The

supply of every tree is assumed to be 1 in every history.

The aggregate endowment wst , in every history st (st ∈ St and t ∈ N+),

is given by

wst =
∑

i

wi
st

+
∑

j

dj
st
.

The price in history st of one share of the tree j (1 ≤ j ≤ L) is denoted

by qj
st
, for every st ∈ St and t ∈ N+. Let qst denote the vector (q1

st
, ..., qL

st
)

for every history st.

A portfolio θi for every agent i is a vector (θst)st∈St,t∈N+
of shares held

of the J trees in every history st, where θst = (θj
st
)j is the vector of holdings

in history st and θj
st

is the holding of j in this same history st. Every agent

i has an initial portfolio θi
0 at date 0.

Every agent i does not have any information about P , the true probability

measure from nature draws the states; however agent i has a subjective

belief about nature represented by a probability measure P i on (S∞, Γ). We

assume that dP i
t (s) > 0 for every infinite history s and every period t, to

avoid problems of existence as pointed in Araujo and Sandroni (1999). This

assumption is not restrictive in practice, since even highly unlikely events can

always be regarded as assigned arbitrarily low but positive by every agent.

Every agent derives some utility in any history from consuming the only
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consumption good present in the economy. We assume that agent i ranks

all the possible future consumption sequences c = (cst)st∈St,t∈N+ according to

the utility function

U i(c) = EP i


 ∑

t∈N+

(βi)
tui(ct)


 , (1)

where βi ∈ (0, 1) is the intertemporal discount factor, ui is a strictly increas-

ing, strictly concave and continuously differentiable function. We assume

that ui satisfies the Inada condition, namely (ui)
′(c) 7→ ∞ as c 7→ 0.

The budget constraint faced in every history st by agent i is

cst +
∑

j

qj
st
θj

st
≤ wi

st
+

∑
j

dj
st
θj

st−1
+

∑
j

qj
st
θj

st−1
(2)

cst ≥ 0, (3)

where st ↪→ st−1. The left-hand side of (2) represents the purchase of con-

sumption good at price normalized to 1 plus the purchase of new shares of

trees at current prices, and the right-hand side is the endowment plus the

dividends payments from previous holdings plus the proceeds from selling

the current holdings of trees at current prices.

Given the constraints faced by the traders, we also need to rule out the

possibility of rolling over any debt through excessive future borrowing, also

known as Ponzi’s scheme. Consider any vector of prices that is arbitrage-

free. As argued in Hernandez and Santos (1996), when a vector of prices q

is arbitrage-free there exists a sequence of positive numbers {πst}st∈St,t∈N+
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with πs0 = 1 such that

πstq
j
st

=
∑
s↪→st

πsd
j
s,

for every j (j = 1, ..., J) and st (st ∈ St and t ∈ N+). We now assume

that every agent cannot borrow more than the present value of her current

endowment at such prices. Formally, we assume that for any vector of prices q

that is arbitrage-free, every portfolio strategy satisfies the wealth constraints

qstθst ≥ − 1

πst

∑

sτ∈C(st)

πsτ w
i
sτ

for every st. (4)

This constraint naturally rules out Ponzi’s scheme, and it is chosen ar-

bitrarily among many others. Hernandez and Santos (1996) gives six other

constraints ruling out Ponzi’s schemes and shows that they are all equiva-

lent when markets are complete. Markets will be assumed to be complete

throughout this paper, thus any of the constraints given in this last reference

can be used in our setting (see Leoni [7] for a similar analysis where markets

are incomplete).

For every i, we define the budget set Bi(q) faced by agent i at prices q

as follows. If q is arbitrage-free, the budget set Bi(q) is the set of sequences

(c, θ) that satisfy conditions (2)-(4) above. If now the vector of prices has an

arbitrage opportunity, define Bi(q) as the set of sequences (c, θ) that satisfy

conditions (2)-(3) only.

Definition 1 An equilibrium is a sequence (c̄i, θ̄
i
)i and a system of prices q̄

such that
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1. taking prices q̄ as given, for every i the vector (c̄i, θ̄
i
) is solution to the

program consisting of maximizing (1) subject to (c, θ) ∈ Bi(q̄), and

2. for every history st we have that
∑

i c̄
i
st

= wst and
∑

i θ̄
i
st

= 1.

The above definition requires that, taking prices as given, every agent

sequentially chooses consumption plans and portfolio holdings so as to max-

imize her expected utility, and markets for consumption good and trees all

clear in every history. It is also straightforward to see that the equilibrium

prices are arbitrage-free. Indeed, if otherwise then every agent will have an

infinite demand for at least one tree in at least one history, and Condition 2

in the above definition will always be violated. By a similar reasoning, it is

easy to check that equilibrium prices must be strictly positive.

2.2 Market crashes

We next describe the notion of market crashes occurring in financial markets.

This notion focuses on arbitrarily low returns on traded trees. For every

system of asset prices q, define first the return of tree j (j = 1, ..., J) in

history st+1, when purchased in history st, as

Rj
st+1

=
qj
st+1

+ dj
st+1

qj
st

(5)

if qj
st

> 0, and arbitrarily otherwise. With this notion, we can describe our

notion of market crash.

Definition 2 For every ε > 0, an ε-crash occurs in history st if Rj
st

< ε for

every asset j such that dj
st

> 0.
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A market crash in a given history is thus defined as an arbitrarily low

return on every asset paying off strictly positive dividend in this history. In

the remainder of the paper, we are primarily interested in finding conditions

leading to arbitrarily low market crashes. In particular, we analyze how

individual anticipations of variations in market fundamentals can generate

crashes as described above.

3 Amplification of crashes

We now carry out some numerical simulations to find anticipation levels

sustaining arbitrary levels of crashes. We narrow down our model to that

in Mehra and Prescott (1985), with the difference that we do not assume

any condition on the endowment process and we allow for arbitrary beliefs.

Our first simulation gives a region for the parameters δ and γ sustaining a

given crash magnitude for various levels of risk-aversion. The second simu-

lation shows that, for a given level of endowment drop this time, the higher

the anticipation the higher the crash magnitude. The third simulation is

a 3D-representation of crash magnitudes as a function of both drops and

anticipations, illustrating the intuitions given in the Introduction.

We now assume, following Mehra and Prescott (1985), that in every pe-

riod two states only can occur. We also assume that there is one agent only

within the economy (a representative agent) forming subjective belief about

economic uncertainty. Even if strong in appearance, this last assumption

has already been largely justified in terms of macroeconomic analysis. The
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representative agent has a utility function of the form

U(c) = EP


 ∑

t∈N+

βtu(ct)


 ,

where P is an arbitrary belief process, where β ∈ (0, 1) is a constant, and

where the function u is defined as

u(x) =
x1−α − 1

1− α
,

for some α > 0 (this parameter is the coefficient of risk-aversion of the agent).

Fix now any history st−1, let s̄t ↪→ st−1 be the history following st−1 where

the crash is expected and let st ↪→ st−1 be the other history following st−1.

In Appendix A, we show that

Rj
s̄t
≤ 1

β
· 1

Ps̄t

·
(

ws̄t

wst−1

)α

(6)

for every security j as before, and regardless of the asset structure provided

that the agent is not constraint in borrowing in equilibrium. In particular,

Inequality (6) shows that the upper-bound on equilibrium returns depends

only the parameters γ, δ, α and β. The following numerical simulations are

generated directly from this last inequality.

From now on, we fix β = 0.9 since this parameter does not a critical role

in our analysis. Our first simulation provides a parameters region sustaining

a .85-crash, which corresponds to a drop of 15% in price of all assets traded

(assuming no dividend is paid).

Figure 1 simultaneously displays such regions for various level of risk-

aversion. For every curve, any point of parameters above the curve sustains
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Figure 1: Parameters region sustaining a .85-crash (15% price drop)

the .85-crash. For instance, for an agent with a level of risk-aversion of 5, any

20% drop in endowment next period that is anticipated with probability of at

least .5 in the current period will trigger a .85-crash next if the drop actually

occurs. Figure 1 also shows that, for those last values, any anticipation level

below .5 may not trigger the crash, as is explained in the Introduction. This

last point implies that the crash occurs independently of the true probability

of a drop next period, showing that the anticipation (together with the drop

of course) has driven the crash.

The next figure gives us a way to visualize the effect of drop anticipations

on the magnitude of a crash, given a particular drop of endowment next

period. We fix a 20% drop in the following simulation.
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Figure 2: Crash magnitude as a function of the anticipation δ (α = 10)

Figure 2 provides the direct link between the magnitude of the crash and

the anticipation of the drop. Its main implication is that, for a fixed drop

of endowment, the higher the anticipation the higher the crash magnitude.

The intuition of this point is also given in the Introduction.

Figure 3 below maps crash magnitudes as a function of both the anticipa-

tion levels and endowments drops. Regions of relatively low endowment drops

and low anticipations leads to moderate crashes. Regions of high anticipa-

tions of drops trigger the highest levels of crash, and such high anticipations

significantly intensify the crash magnitudes regardless of the drop level. Pro-

vided that anticipations are high enough, severe drops in endowment lead

to severe crashes (as is commonly believed), but our point is to show that
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Figure 3: ε-crash as a function of the anticipation and drop (α = 10)

anticipations do intensify this phenomena. That is, psychological factors as

described here turn crashes from bad to significantly worse.

4 Occurrence of crashes

We now determine under which conditions a low enough anticipation of an

endowment drop can decrease the magnitude of the crash. To simplify mat-

ters, we narrow down without loss of generality our asset structure to Arrow

securities, defined as securities that pay off one unit of consumption good
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next period if a particular state occurs and 0 otherwise. We will consider

a set of those securities so that markets are complete; this approach is le-

gitimate and without loss of generality since as explained later the price of

any original security can be expressed as a combination of the price of those

Arrow securities when markets are complete.

In more details, we consider the following asset structure. In every period

t ∈ N , and after the realization of the history st ∈ St, the agent trades L = 2

one-period securities. Every security aj
st

(1 ≤ j ≤ L and st ∈ St) purchased

in history st payoffs aj
st
(l) unit of consumption good in period t + 1 if state

l is drawn, where aj
st
(l) = 1 if j = l and 0 otherwise. Such securities are

commonly known as Arrow securities. The choice of this asset structure

is solely meant to ensure that, for every vector of strictly positive prices,

markets are complete. Let ast denote the vector (a1
st
, ..., aL

st
) for every st.

The supply of each security is assumed to be 0 in every history.

Since we focus on this asset structure only, the price in history st of

security aj
st

(1 ≤ j ≤ L) is still denoted by qj
st
, for every st ∈ St and t ∈ N+.

Let qst denote the vector (q1
st
, ..., qL

st
) for every history st.

With this asset structure in complete markets, Huang and Werner [3]

shows that the equilibrium price of any security j as described in the previous

section can be rewritten in every history st as

qj
st

=
∑

s∈C(st)

dj
s · aj

s. (7)

It is therefore sufficient to analyze market crashes with Arrow securities, and

to recast the conditions on occurrence for our original securities following Eq.
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(7).

The simulations in this section are based on the following equality, which

is proved in Appendix B. Denote by ε > 0 the magnitude of the crash and by

γ > 0 the percentage of the endowment drop, we then have for those Arrow

securities that

Pst =
1

ε
· γ2

β
. (8)

Equality (8) explicitly gives for Arrow securities an upper-bound of the an-

ticipation level that can sustain in equilibrium a crash of magnitude ε > 0

for an endowment drop γ. Any anticipation below the right-hand side of (8),

given γ, must lead to a market crash of magnitude at most ε.

We first seek to identify the maximal anticipation level that can generate

at most a crash of a given magnitude, for every possible level of endow-

ment drop. The point is to find a relationship between endowment drops

and anticipation so that the magnitude of the crash remains unaffected by

psychological factors. Fig. 4 shows the results of our simulation when con-

sidering a 15% price drop or .85-crash, which corresponds to severe albeit

already observed historical events such as the Black Monday in 1987.

We observe that the maximal anticipation level is an increasing function of

the endowment drop. In other words, we have the natural property that the

higher the endowment drop, the higher the maximal anticipation to secure

a crash of at most 15%. The convexity of the functions plotted depends on

the risk aversion level. This fact is explained by the fact that the more risk-

averse the agent the lower the maximal anticipation level. In this case, risk

18



0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Endowment drop γ

M
ax

im
al

 a
nt

ic
ip

at
io

n 
le

ve
l  

α=3
α=6
α=9

Figure 4: Maximal anticipation level as function of endowment drops that

cannot generate a crash of more than 15%, for various levels of risk aversion.

aversion alone forces the agent to over-invest in the Arrow corresponding to

the future event when the crash may occur, leading in turn to a lower return,

without requiring a large anticipation of the drop.

We now turn to analyzing the maximal anticipation level that can sustain

any possible magnitude of crash, for a fixed level of endowment drop. Our

point is to find the frontier of highest anticipation for a crash magnitude,

given a shock in fundamental. Fig. 4 shows the results of our simulation when

considering an endowment drop of 5%, which corresponds also to already
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observed historical recessions.
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Figure 5: Maximal anticipation levels to generate corresponding crash magni-

tudes, for a given 5% endowment drop and for various levels of risk aversion.

The simulation shows that the maximal anticipation for this given 5%

endowment drop is a decreasing function of the crash level. In other words,

we observe that the higher the crash level the lower the maximal anticipa-

tion necessary to sustain this crash level. This result stems essentially from

the fact that a large range of beliefs can prevent low market crashes, but

to prevent large crashes from occurring it takes increasingly low anticipa-

tion beliefs. Risk-aversion plays a similar role as in the previous simulation
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in explaining the decrease in maximal anticipation as the risk aversion in-

creases. An increase in risk aversion results in increasing over-investments

in the corresponding Arrow security paying off when the drop occurs, and

therefore the attenuating effects of the maximal anticipation are decreasing

accordingly.

5 Conclusion

We have simulated a standard Dynamic Stochastic General Equilibrium

model to analyze the sensibility of market crashes to the anticipations of

endowment drops. Our main finding is that, in complete markets, a large

anticipation of an endowment drop amplifies the magnitude of the crash.

This phenomenon is present regardless of the level of risk aversion of the

agents, and it appears as a sole consequence of beliefs effects. The basic

insight is that, when expecting future low endowments, agents will increase

their demand for securities to hedge against this event. This, in turn, will

raise the purchasing price of those securities and therefore will lower their

returns.

This last intuition also explains our final findings. We have observed

that, regardless of the drop in endowments, there is always an upper-bound

on the maximal anticipation of the drop so that the crash magnitude remains

constant. In other words, the magnitude of the crash is always lowered when

the drop is not largely expected. In this case of unanticipated drop, investors

purchase few hedging products against this drop, and thus the purchasing
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prices remain low enough to control the magnitude of the crash.

The psychological factors at the very heart of those critically important

anticipations can be rather arbitrary in our study. We point out that any

factors such as for instance herding, market rumors, fear of contagion or

panic (and possibly all those issues together) may trigger the anticipation

of the drop and thus may magnify the magnitude of the crash. We do not

sort which one seems most likely, but rather we point out that they are all

relevant because they may lead to the same anticipation. In this respect,

we present a general theory of market crashes where the driven factor of the

occurrence and the magnitude of a crash is its anticipation, regardless of how

the anticipation is formed.

A Proof of Inequality (6)

We next prove this inequality central to our first set of numerical simulations.

Consider the original program of any agent i, consisting of maximizing (1)

subject to (c, θ) ∈ Bi(q̄) and taking as given any arbitrage-free and strictly

positive asset prices. Since we assume that Constraint (4) does not bind, and

since we know by the Inada conditions that Constraint (3) does not bind as

well, the Lagrangian to this program rewrites as

L =
∑
st

dP i
st
βt

iui(cst)+
∑
st

µst

[
wi

st
+

∑
j

dj
st−1

θj
st
− cst +

∑
j

qj
st
(θj

st
− θj

st−1
)

]
,

where for every history st the real number µst
> 0 is the Lagrange multiplier

associated with the Constraint (2). Taking the first-order conditions with
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respect to every variable yields the following relationships for every history

st−1 and asset j

dP i
st−1

· βt−1
i · u′i(cst−1) = µst−1

and (9)
∑

st↪→st−1

µst
· [dj

st
+ qj

st
] = µst−1

· qj
st−1

, (10)

Rearranging terms gives

∑
st↪→st−1

dP i
st
· βt

i · u′i(cst) · [dj
st

+ qj
st
] = dP i

st−1
· βt−1

i · u′i(cst−1) · qj
st−1

, (11)

and by (5) and some simplifications we obtain the desired relationship

∑
st↪→st−1

P i
st
· βi · u′i(cst) ·Rj

st
= u′i(cst−1). (12)

We now derive an upper-bound on equilibrium returns under the assump-

tions of Section 4. This uniform upper-bound readily allows for the numerical

simulations given in this last section.

Fix any history st−1, and let s̄t ↪→ st−1 and st ↪→ st−1 be defined as in

Section 4. Consider any security j such that Equation (12) holds for those

histories. Given the shape of our utility function, and since the consumption

of the representative agent must be the aggregate endowment in every history,

Equation (12) rewrites as

Ps̄t

(
1

ws̄t

)α

Rj
s̄t

+ (1− Ps̄t)

(
1

wst

)α

Rj
st

=
1

β

(
1

wst−1

)α

, (13)

for every security j as described above. Rearranging terms gives

Rj
s̄t

=
1

Ps̄t

(ws̄t)
α

[
1

β

(
1

wst−1

)α

− (1− Ps̄t)

(
1

wst

)α

Rj
st

]
. (14)
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Moreover, since in equilibrium it must be true that Rj
st

> 0, we obtain the

following inequality

Rj
s̄t
≤ 1

β
· 1

Ps̄t

·
(

ws̄t

wst−1

)α

(15)

for every security j as above. The right-hand side of Inequality (15) depends

on the parameters described in Proposition 3, together with the intertemporal

discount factor β and the coefficient of risk-aversion α. This last inequality

directly yields the desired inequality.

B Proof of Eq. (8)

We now turn to a setting where the only traded securities are Arrow securi-

ties, without loss of generality by Eq. (7). Given the payoff pattern of those

securities, Eq. (13) rewrites as

Ps̄t

(
1

ws̄t

)α

Rj
s̄t

=
1

β

(
1

wst−1

)α

, (16)

where s̄t = (st−1, j), thus the equality above is true only for the only Arrow

security with payment in state (st−1, j). Rearranging the previous equation

gives

Ps̄t =
1

β
· 1

Rj
s̄t

·
(

ws̄t

wst−1

)α

. (17)

Therefore in equilibrium, for a given crash level ε > 0 and a given endowment

drop γ > 0, the only anticipation level that can sustain those values is given

by

Ps̄t =
1

β
· 1

ε
· γα, (18)
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which corresponds exactly to the desired Eq. (8)
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