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Spurious Spatial Regression, Spatial Cointegration and Heteroscedasticity 

 

ABSTRACT 

A test strategy consisting of a two-step application of a Lagrange Multiplier test was recently 

suggested as a device to reveal spatial nonstationarity, spurious spatial regression and spatial 

cointegration. The present paper generalises the test procedure by incorporating control for biased 

test values emerging from unobserved heteroscedasticity. Using Monte Carlo simulation, the 

behaviour of several relevant tests for nonstationarity and/or heteroscedasticity are investigated. 

The two-step test for spatial nonstationarity turns out to be robust towards heteroscedasticity. 

While several tests for heteroscedasticity prove to be inconclusive under certain circumstances, a 

Lagrange Multiplier test for heteroscedasticity based on spatially differenced variables serves well 

as an indication of heteroscedasticity irrespective of stationarity status. 

 

JEL Classifications: C21; C40; C51; J60. 

 

Keywords: Spatial autocorrelation; spatial autoregression; spatial nonstationarity, spatial 

cointegration, spurious regression, unobserved heteroscedasticity. 
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1. INTRODUCTION 

 

Spatial regression has been discussed widely in books dedicated to developments in spatial 

econometrics, notably by Anselin (1988a), and Anselin and Florax (1995). The consequenses for 

estimation and inference in the presence of stable spatial processes have been extensively 

investigated (Haining 1990; Anselin 1988a; Bivand 1980; Richardson 1990; Richardson and 

Hèmon 1981;  Clifford and  Richardson 1985; Clifford, Richardson and Hèmon 1989). The study 

of Fingleton (1999) took the first steps into analyses of implications of spatial unit roots, spatial 

cointegration and spatial error correction models. A follow-up to this study is found in Mur and 

Trívez (2003), where the concept of spurious spatial regression was established in a framework of 

spatial trend (non)stationarity. In Lauridsen (2006) estimation of spatial error-correction models 

using an IV approach was investigated, while Lauridsen and Kosfeld (2006) suggested an LM test 

procedure to test for spatial nonstationarity, spurious spatial regression and spatial cointegration. 

A study of Kosfeld and Lauridsen (2004) applied this methodology to a model for regional 

convergence across German labour market regions. Lauridsen and Kosfeld (2004) established a 

Wald post-test for spatial nonstationarity. 

 

Fingleton (1999) suggested that “very high” values of Moran’s I test for spatial residual 

autocorrelation indicate spatial nonstationarity and spurious regression. It was, however, left as an 

open question how to distinguish between stationary positive autocorrelation and nonstationarity. 

Lauridsen and Kosfeld (2006) showed that a two-step LM error test can provide a better founded 

basis to separate these two cases. It was further shown that the same procedure works as a 

diagnostic for spurious regression. Next, it was suggested that the test procedure works well as a 

test for spatial cointegration, using a specific two-variable data generating process. In all cases, 
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the small-sample properties of the suggested procedures were derived using Monte Carlo 

simulation. It was concluded that the procedure works well in all cases, especially for medium 

and large sample sizes. 

 

The purpose of the present paper is to extend the two-step LM test procedure established by 

Lauridsen and Kosfeld (2006) to account for unobserved heteroscedasticity. Specifically, this will 

be obtained by incorporating the suggested modifications in Anselin (1988b) into the two-step 

LM test procedure suggested by Lauridsen and Kosfeld (2006). It is concluded that the unadjusted 

tests for spatial nonstationarity are not biased by presence of heteroscedasticity. While several 

tests for heteroscedasticity are partly flawed by nonstationarity, it is found that an LM test for 

heteroscedasticity based on spatially differenced variables is robust toward spatial nonstationarity 

or spurious regression. Thus, a modified procedure applies well, so that inference can be based on 

three LM tests. 

 

2. MODELS WITH SPATIAL DYNAMICS 

 

2.1. The regressive, spatially autoregressive model. 

 

The first order spatially autoregressive model (SAR(1) model) was initially studied by Whittle 

(1954) and has been used extensively in works by Ord (1975), Cliff and Ord (1981), Ripley 

(1981), Upton and Fingleton (1985), Anselin (1988a), Haining (1990), Griffith (1992), Anselin et 

al. (1996), Florax et al. (2003), Lauridsen (2006). For applied research the SAR(1) model is 

extended by explanatory variables (see Upton and Fingleton, 1985; Anselin, 1988a; Haining, 

1990; Anselin et al. (1996); Florax et al. (2003); Lauridsen, 2006). The regressive, spatially 
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autoregressive model (SARX(1) model) is established as 

(1) y = ρWy +  Xβ + v , 

in which y is an n×1 vector, X an n×K matrix of explanatory variables, ρ the autoregressive 

parameter, I the n×n identity matrix and v an n×1 vector of independently normally distributed 

errors with zero expectation and variances σ2, i.e. v ~N(0,σ2I), W denotes an n×n spatial weight 

matrix. It is obtained by row-standardisation of the n×n contiguity matrix W* which is defined  by 

W*ij = 1 if observation j is assumed to impact observation i, and W*ij = 0 otherwise, i.e. Wij = W*ij 

/ Σj=1..n W*ij. For alternative specifications of the spatial weight matrix, see e.g. Cliff and Ord 

(1981) and Anselin (1988a). W may be multidirectional, which is not the case for the time-series 

case where Wij = 1 if j = i-1, for i = 2,3,..,n. For the general spatial case, W is generally 

multidirectional. As proved by Anselin (1988a), multidirectionality of W renders OLS estimation 

of the parameters inconsistent. Finally, for the general case, ρ is restricted to the interval between 

-1 and +1 and thus may assume positive as well as negative values. Although meriting interest in 

itself, the negative case is conceptually different from the usual positive case. We thus narrow our 

focus in the present investigation to the common case where ρ is positive. 

 

2.2. Spurious regression and spatial nonstationarity. 

If y and one or more of the x variables are generated according to SAR schemes with positive 

autoregressive parameters and y is regressed on X, i.e. 

(2) y = Xβ + ε, 

with ε as the error term, a risk of spurious regression occurs. Especially, in the case of spatial 

nonstationarity, where y and one or more of the x variables have autoregressive parameters close 

to 1, the risk of spurious regression is alarmingly high. It manifests in the OLS residuals e of the 

regression tending to be highly spatially autocorrelated. This is demonstrated in Fingleton (1999) 
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where extremely high values of the test statistics of the Moran test for spatial autocorrelation 

(Whittle, 1954; Anselin, 1988a) have been found. In this setting high values of Moran’s I can be 

viewed as the counterpart of low values of the Durbin-Watson statistic having been established in 

spurious time-series regression. In both cases the behaviour of the test statistics is used as an 

indication of nonstationarity. 

 

The stochastic process the OLS residuals e of the regression (2) are generated from usually has to 

be inferred by inspecting their behaviour. Fingleton (1999)  leaves it as an open question how to 

separate the case of stationary positive autocorrelation (0<ρ<1) from the nonstationarity case 

(ρ=1). This means that the implicitly assumed error process 

(3) ε = ρεWε + µ,  µ~N(0,σ2I), 

is considered with ρε = 0 under the null hypothesis of independently and identically distributed 

(i.i.d.) disturbances and with ρε > 0 under the alternative hypothesis of spatially autocorrelated 

errors. The error process (3) is exactly the spatial analogue of the Markov process underlying the 

Durbin-Watson test taking only first order error correlation into account as a possible alternative. 

Note that spatial autocorrelation can be caused by both a SAR(1) and SMA(1), see e.g. Kelejian 

and Robinson (1995), Hepple (1995a, 1995b). However, manifestation of spatial nonstationarity 

can only be attributed to a SAR process. Moreover, Fingleton (1999) does not address the well-

known power of the Moran I test towards misspecifications in the form of e.g. spatial 

heterogeneity (Anselin, 1988a). Being an advantage in some circumstances, this feature of the 

Moran I is not necessarily an advantage when investigating specific features of the data generating 

processes  underlying the model in consideration. 

 

Lauridsen and Kosfeld (2006) suggested a two-step application of a Lagrange Multiplier test for 
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spatially autocorrelated errors. The LM error statistic (LME) developed in Anselin (1988a, 

1988b), 

(4) LME = (e’We / σ2)2 / tr(W2 + W’W) . 

is asymptotical χ2 distributed with 1 degree of freedom under H0: ρe = 0. Therefore, a large LME 

value indicates either spatial nonstationarity or stationary, spatial error autocorrelation. This result 

corresponds to the suggestions of Fingleton (1999) with the Moran I test replacing the LM test. 

Next, under the null of nonstationarity, H0:ρε=1, 

 ∆ε =  µ ⇔ ε = ∆+ µ 

follows from the spatial error process (3) with ∆ = I - W as the spatial difference operator. ∆+ 

denotes the Moore-Penrose generalised inverse which satisfies the conditions ∆+∆∆+ = ∆+ and  

∆∆+∆ = ∆. By employing the spatial difference operator ∆ to (2) the transformed regression 

equation 

(5) ∆y = ∆Xβ + µ  

is obtained. Equation (5) implies that a regression of ∆y on ∆X provides i.i.d. errors, so that the 

LM error test statistic for this spatially differenced model (DLME) will be close to zero. On the 

other hand, if the null of nonstationarity, H0: ρε = 1, does not hold, then the spatial differencing 

will bring about an error term of the form  

 ∆ε = (I-W)(I-ρεW)-1µ ⇔ µ = (I-ρεW)ε. 

The spatially autocorrelated errors resulting from spatial “overdifferencing” are expected to go 

along with a positive DLME value. Concluding, the test strategy consists of calculating and 

inspecting the LME and the DLME values, leading to one of four conclusions as shown in Table 1 

(where the test result is designated “positive” if the LM test statistic differs significantly from 

zero and “zero” otherwise). 
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(Table 1 around here) 

 

A further advantage of the LM test strategy is that it is quite flexible. Thus, it is possible to 

control for omitted inference inflating features insofar that these can be incorporated as part of the 

likelihood function. Especially, it is important to account for unobserved heteroscedasticity as 

demonstrated by Anselin (1988b). The remainder of the present paper consists of a generalisation 

of the above LM test strategy by incorporating control for unobserved heteroscedasticity along the 

lines of Anselin (1988b). 

 

2.3. Spurious regression and heteroscedasticity. 

In case of heteroscedasticity the disturbance variance is allowed to vary across the observations. 

Here we consider the case where the error variance is functionally related to a set of variables via 

some positive function. Denoting by Ω the covariance matrix of ε, absense of heteroscedasticity 

implies Ω = σ2I, while presense of heteroscedasticity implies that Ω = diag(σ1
2, σ2

2, .., σn
2), where 

σi
2 = f+(zi, αZ), with zi being a P by 1 vector of observations of exogenous variables for region i 

which are positively related to σi
2 via the P by 1 parameter vector αZ. A basin of econometric 

literature discusses the nature and implications of heteroscedasticity (Prais and Houthakker 1955; 

Eicker 1967; Horn, Horn and Duncan 1975; Taylor 1977; White 1980; Cragg 1982; Engle 1982, 

1983; Messer and White 1984; MacKinnon and White 1985) as well as tests for heteroscedasticity 

(Harvey 1976; Breusch and Pagan 1979, 1980; Koenker 1981; Koenker and Bassett 1982; Ohtani 

and Toyoda 1980; Ali and Giacotto 1984). One seminal result is that unbiasedness and 

consistency of estimation procedures for linear regression are unaffected by heteroscedasticity, 

but that the covariance matrix for these parameters is inconsistently estimated, and that this bias 

may be severe, but that the inconsistency matters only marginally in cases where zi consists of 
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variables that are not parts of the design, i.e. the X matrix (White 1980; Messer and White 1984; 

MacKinnon and White 1985)). Thus, consideration of heteroscedasticity can be restricted to the 

case where zi is a subset of xi . 

 

Anselin (1988a, 1988b) developed a Lagrange Multiplier test for spatially autocorrelated errors, 

adjusted for unobserved heteroscedasticity. This test reads as 

(6) LMEH = (e’We/σ2)2 / tr(W2 + W’W) + f’Z(Z’Z)-1Z’f/2 , 

with f = (e#e/σ2 - i), where # denotes the Hadamard product, and is asymptotically χ2 distributed 

with P+1 degrees of freedom under H0 : ρe = 0, αZ = 0. It should be noticed that the first part of 

the sum in (6) is equal to the simple LME test statistic for residual autocorrelation, while the 

second part is equal to a standard Breusch-Pagan test for heteroscedasticity, the latter denoted by 

LMH. 

 

The suggestion of the present study is to provide a test strategy for nonstationarity by supplying 

the LME statistic (4) with the LMH statistic derived from (6), and the DLME statistic calculated 

according to (4) with a DLMH statistic derived from (6). These are inspected together with the 

LMEH and DLMEH tests. 

 

2.4. Spatial cointegration and heteroscedasticity. 

Spatial cointegration denotes the case where two or more variables in a regression are 

nonstationary, while the errors are stationary (Lauridsen and Kosfeld, 2006). A simple data 

generating process which generates two nonstationary but possibly cointegrating series with 

heteroscedastic regression disturbances is the following system: 

(7) x + βy = u , u = Wu + e1 , e1 = Ω1/2 v1 
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(8) x + αy = e2 , e2 = Ω1/2 v2 

where v1 and v2 are white noise processes, and Ω = diag(exp(αzv2)). From these definitions, a 

simple rearrangement gives 

 x = α(α-β)-1u - β(α-β)-1e2 

 y = -(α-β)-1u + (α-β)-1e2 

from which it is clear that x and y are SI(1) but that they cointegrate for any α different from 0 and 

certain β values, because (x+αy) is I(0). Specifically, the relation will be non-integrated if (i) α=0 

or (ii) α>0 and β>α. The latter case defines a grey zone between cointegration and non-

integration, which we will denote as near-integration. 

 

The system defined by (7) and (8) is a general version of the homoscedastic system suggested in 

Lauridsen and Kosfeld (2006), which can be obtained as a special case by setting αz  = 0. 

 

We suggest that the above LM strategy may apply to this situation. Specifically, a regression of y 

on X represents a cointegrating relation (if LME and LMEH are zero, and DLME and DLMEH 

are positive) or a non-integrating relation (if LME and LMEH are positive, and DLME and 

DLMEH are zero). The limiting case of “near integration” (α>0, β>α) will also be revealed (if 

LME and LMEH as well as DLME and DLMEH are positive). Further, discrepancies between 

LME and LMEH and/or between DLME and DLMEH will be ascribed to as a consequence of 

unobserved heteroscedasticity, and observed using the LMH and DLMH values. 

 

3. Monte Carlo simulation studies: Designs and results. 

In this section, the small-sample properties of the above suggested test strategies will be 

investigated using Monte Carlo simulation studies. The chosen Monte Carlo designs are outlined 
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together with the results. All calculations are done using SAS/IML, including the software’s 

standard routines for random number generation. 

 

3.1. Spurious regression and heteroscedasticity. 

To investigate the finite sample properties of the suggested LM test strategy for spurious 

regression adjusted for heteroscedasticity, the following Monte Carlo design were investigated:  

 

For specific sample size n: Perform 10,000 iterations: 

 Generate vx and vy as independent N(0,1) series. 

 Let α = 0 or 1. 

 Let σi
2 = exp(αvxi). 

 Let Ω = diag(σ1
2 , .. , σn

2 ). 

 Let ex = Ω1/2 vx and ey = Ω1/2 vy. 

 Let x = (I-ρxW)-1ex. 

 Let y = (I-ρyW)-1ey. 

 Regress y on X = [i x] and ∆y on ∆X. 

 Obtain LME, LMH, LMEH, DLME, DLMH, and DLMEH. 

Report the percentage of cases out of 10,000 where each test exceeds the 5 per cent critical value 

of χ2(1) and χ2(2) 

 

To investigate the impact of contiguity matrix type, we make use of the rook and queen type of 

regular contiguity matrices based on an r×r board (so that n = r2) with r assumed to take the 

values 5, 10, 15, and 20. The rook matrix represents a square tesselation with a connectivity of 4 

for the inner fields on the chessboard and 1 and 2 for the corner - and border fields, respectively. 
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The queen matrix represents an octogonal tesselation with a connectivity of 8 for the inner fields 

and 3 and 5 for the corner and border fields. Thus, these tesselations represent extremes for a 

number of patterns, including the hexagonal tesselation, which is of importance due to its 

application for empirical maps in vector and raster based GIS (Boots and Tiefelsdorf, 2000; 

Tiefelsdorf, 2000). Actually, the hexagonal tesselation can be constructed from the queen 

tesselation by deleting connections from any field to the fields vertically above and below this. 

Moreover, most empirically observed regional structures in spatial econometrics are made up of 

regions with a connectivity within the range of the rook and queen tesselations. Further, irregular 

matrices based on the 275 Danish municipalities are applied: An n=36 matrix based on the 

municipalities located on the island of Funen, an n=97 matrix made up of the municipalities 

located on Seeland together with the adjacent islands Lolland and Falster, an n=141 matrix 

created from the municipalities located on the peninsula of Jutland, and the full matrix of n=275 

Danish municipalities, which consists of the above municipalities plus 5 municipalities located on 

the island of Bornholm. The map of the 275 municipalities, together with the above partitioning, 

is shown in Appendix Figure A.1.  

 

The behaviour of the strategy under H0 : nonstationarity as well as H1 : stationarity (including the 

case of near nonstationarity) is investigated by assuming ρy to take the values (0.0, 0.1, 0.2, ..., 

0.8, 0.9, 0.99, 1.00). For each of these, ρx is assumed to take the values  (0.0, 0.1, 0.2, ..., 0.8, 0.9, 

0.99, 1.00). For the cases of nonstationarity, we use the Moore-Penrose generalised inverse (I-

W)+ instead of (I-W)-1. The results are provided in Figures 1-8. 

 

For the homoscedastic case the results from Lauridsen and Kosfeld (2006) regarding the LME and 

DLME tests are confirmed. It is found that the procedure performs well, and that the performance 
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of the procedure is acceptable, even for small sample sizes. That the case of near nonstationarity 

causes problems in identifying the “true” data generating process is well-known from time series 

analysis. However, contrary to time series analysis, spatial dependence of moderate size (i.e. 

values of about 0.5) in economic systems seems to be much more reasonable than the case of 

near-nonstationarity (see e.g. Rey and Montouri, 1999; Kosfeld, Eckey and Dreger, 2002). For the 

heteroscedastic case, it is observed that the LME and DLME tests are robust toward 

heteroscedasticity. Thus, a large LME value together with a small DLME value indicate spurious 

regression irrespective of whether heteroscadasticity is present or not.  

 

Opposed to these, the LMH test is not robust towards spurious regression. According to the 

curves under homoscedasticity, the size of the LMH test is found to increase for increasing 

spurious regression, while the curves under heteroscedasticity shows that the power drops for 

increasing spuriousity under heteroscedasticity. This anomality is not shared by the DLMH test, 

which is found to have a size close to 0.05 and a power around 0.95. Thus, the DLMH test can be 

used as a proper indicator of heteroscedasticity irrespective of whether nonstationarity, stationary 

spatial autocorrelation or absense of spatial autocorrelation is present. 

 

From the curves for the LMEH and the DLMEH tests, it is seen that these tests combine the 

properties of the LME and LMH tests and the DLME and DLMH tests, respectively. Although the 

joint tests could be applied as indications of spurious regression and/or heteroscedasticity, they 

convey no information that is not already provided by the simple LM tests. 

 

Thus, combining the evidence for the LME, DLME and DLMH tests, a precise diagnosis on 

spurious regression and heteroscedasticity can be concluded. It is noticed that this diagnosis 
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works well for medium (n=100 for the rook matrix and n=97 for the empirical matrix) to large 

sample sizes. For small samples (n=25 for the rook matrix and n=36 for the empirical matrix), the 

powers of the tests are seen to be considerably smaller. The diagnosis strategy for medium to 

large samples is outlined in Table 2. 

(table 2 around here) 

 

3.2. Spatial cointegration and heteroscedasticity. 

 

To investigate the finite sample properties of the suggested test strategy for cointegration using 

the suggested example, the following Monte Carlo design was investigated: 

 

For specific sample size n: Perform 10,000 iterations: 

 Generate v1, v2 as independent N(0,1) series. 

 Let Ω = diag(exp(αzv2)). 

 Let ei = Ω1/2 vi, i=1,2 

 Let u = (I-W)-1 e1. 

 Let x = α(α-β)-1u - β(α-β)-1 e2 and y = -(α-β)-1u + (α-β)-1 e2. 

 Regress y on x and ∆y on ∆x. 

 Report LME, LMH, LMEH and DLME, DLMH, DLMEH. 

Report the percentage of cases out of 10,000 where each test exceeds the 5 per cent critical value 

of χ2(1) and χ2(2). 

 

To investigate the impact of contiguity matrix type, we again use the regular rook and queen type 

contiguity matrices based on an r×r board with r assumed to take the values 5, 10, 15, and 20 and 
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the irregular matrices based on the Danish case. Further, the behaviour of the strategy under H0: 

nonstationarity as well as H1: stationarity (including the case of near nonstationarity) is 

investigated for varying α and β. Specifically, α was varied across the values (0, 0.1, 0.2, ..., 0.8, 

0.9, 1.0). For each of these, β was varied across the same values, with an exception for the cases 

when α=β. For these, β was set to (α+0.01), except for the α=1.0 cases, where β was set to 0.99. 

The results are shown in Figures 9-16. 

 

For the case of homoscedasticity, the results are in agreement with results from Lauridsen and 

Kosfeld (2006): The procedure performs well, especially for fairly large n, and the performance of 

the procedure is acceptable, even for fairly small sample sizes. Especially, in the case of 

cointegration (α=1) and non-integration (α=0), the procedure works excellently, while the 

greyzone case of near-integration (0<α<1, β>α) is characterized by inconclusive test sizes. For the 

heteroscedastic case, the LME and DLME tests are found to be robust toward heteroscedasticity, 

with only a slight drop in power for α and β close to 1. Thus, they can be used as indication of 

non-integration problems irrespective of whether heteroscedasticity is present or not. 

 

The LMH test, on the other hand, is found to be sensitive to non-integration, as the size of the test 

rises for the non-integrated case, while the the power is low under co-integration as well as under 

strong non-integration. The size of the DLMH test, on the other hand, is close to the desired value 

of 0.05 irrespective of integration status, but the power of the test is reduced under cointegration, 

so that the test works properly only in the case of non-integration. Thus, a low DLMH test value 

safely indicates homoscedasticity, while a medium to high DLMH value indicates 

heteroscedasticity. 
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Finally, the LMEH and DLMEH tests generally reflect a combination of the properties of the 

LME and LMH, and DLME and DLMH, respectively. It is especially noticed that the LMEH test 

uniformly has a size close to the expected 0.05 under cointegration and homoscedasticity, while 

the power towards heteroscedasticity is flawed under cointegration.  

 

Thus, a test strategy may be summarized as follows: Decide, based on the LME and DLME 

whether cointegration or non-integration is present. In any case, a low DLMH test is a safe 

indication of homoscedasticity. In the case of near-integration or non-integration, a high DLMH  

test indicates heteroscedasticity. This is also partly the reflected for the case of cointegration, 

where a medium to high value of DLMH should be seen as an indication of  heteroscedasticity. 

These guidelines are summarised in Table 3. 

(table 3 around here) 

 

These features are observed to hold well for medium sized (n=100 for the regular matrix and 

n=97 for the empirical matrix) to large samples. For small samples (n=25 for the regular matrix 

and n=36 for the empirical matrix), the powers of the tests are considerably flawed. 

 

4. EMPIRICAL ILLUSTRATIONS 

 

4.1. A commuting model 

We elaborate on an empirical example  investigated in Lauridsen and Nahrstedt (1999) and 

Lauridsen (2006). The model is concerned with determination of a regression model for 

outcommuting ratios as a function of unemployment, participation rate, density of working places 

and average household size. Data were from a 1994 census for 275 Danish municipalities. See 
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Table 4 for a description of the data. 

(table 4 around here) 

Table 5 presents the estimated model. In Lauridsen (2006) it was left as an open question whether 

 the unexpected negative sign for the UNEMP coefficient was caused by spuriosity due to spatial 

nonstationarity. The LM tests clearly point to stationarity of the geo-referenced variables as well 

as of the residuals. It is concluded that the single variables as well as the entire regression are 

stationary. From this point of view, the negative sign for unemployment is rather due to structural 

properties than to spatial nonstationarity. However, estimation of the commuting model does not 

account for the unobserved heteroscedasticity that is revealed by the DLMH test. 

(table 5 around here) 

 

4.2. A growth model 

The topic of this section is a model developed in Kosfeld and Lauridsen (2004). The model is 

concerned with determination of a regression model for regional labour productivity as a function 

of population growth, growth technology, depreciation of capital and physical and human capital 

accumulation. Data were from a 2000 census for 180 German labour markets of which 133 are 

located in West Germany and 47 in East Germany. See Table 6 for a description of the data. 

(table 6 around here) 

 

Table 7 presents the estimated models. For both models the LM tests support the conclusion of 

Kosfeld and Lauridsen (2004) that the regressions are stationary. Just as with the commuting 

model, the DLMH test points to some degree of unobserved heteroscedasticity. 

(table 7 around here) 
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5. CONCLUSIONS 

Recently, it was established how to separate the case of spatial nonstationarity from the case of 

stationary positive autocorrelation, leading to reliable diagnostics for spurious spatial regression 

and for the existence of spatial cointegrating relations. The present study contributes to existing 

knowledge by showing that the strategy for detecting spatial nonstationarity is robust towards 

unobserved heteroscedasticity. It is further shown that an LM test for heteroscedasticity based on 

a regression with spatially differenced variables properly diagnoses heteroscedasticity irrespective 

of nonstationarity or cointegration status. By means of Monte Carlo simulations it is demonstrated 

that the finite sample properties of the suggested methodology are as desired. 
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_________________________________________________________________________ 
TABLE 1. OUTCOMES OF THE TWO-STAGE LM TEST 
_________________________________________________________________________ 
 
   DLME zero:  DLME positive: 
 
LME zero:  -   Absence of spatial 
      autocorrelation 
 
LME positive:  Spatial nonstationarity Stationary spatial 
   (spurious regression) autocorrelation 
 
_________________________________________________________________________ 
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_________________________________________________________________________ 
TABLE 2. A STRATEGY FOR TESTING SPURIOUS REGRESSION AND/OR 
HETEROSCEDASTICITY 
_________________________________________________________________________ 
 
    Homoscedasticity Heteroscedasticity 
 
Absence of spatial   LME low  LME low 
autocorrelation   DLME high  DLME high 
    DLMH low  DLMH high  
 
Stationary spatial   LME inconclusive LME inconclusive 
autocorrelation   DLME inconclusive DLME inconclusive 
    DLMH low  DLMH high 
 
Nonstationarity   LME high  LME high 
(spurious regression)  DLME low  DLME low 
    DLMH low  DLMH high 
_________________________________________________________________________ 
 
Note. ‘Inconclusive’ refer to cases where 0.05<power<0.95 
___________________________________________________________________________ 

 
 
 



 
 25 

___________________________________________________________________________ 

TABLE 3. A STRATEGY FOR TESTING COINTEGRATION AND/OR 

HETEROSCEDASTICITY 

___________________________________________________________________________ 

   Homoscedasticity Heteroscedasticity 

Cointegration  LME low  LME low   

(α=1; 0<α<1, β<α) DLME high  DLME high  

   DLMH low  DLMH inconclusive  

 

Non-integration  LME high  LME high   

(α=0)   DLME low  DLME low  

   DLMH low  DLMH high  

 

Near-integration  LME inconclusive LME inconclusive   

(0<α<1, β>α)  DLME inconclusive DLME inconclusive  

   DLMH low  DLMH high  

___________________________________________________________________________ 

Note. ‘Inconclusive’ refer to cases where 0.05<power<0.95 

___________________________________________________________________________ 
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___________________________________________________________________________ 

TABLE 4. VARIABLES USED FOR COMMUTING STUDY 

___________________________________________________________________________ 

 

Variable Definition     Mean S.D. Min Max 

 

OUTCOM    Number of persons with residence in the municipality  58.14 37.79 6.00 237.00 

  and workplace in another municipality in percentage   

of the number of workplaces in the municipalitya 

 

PSH1766 Population share of 17-66 year-olds (%)a  65.22 2.85 57.90 74.20 

 

WORKPL Number of workplaces per 100 inhabitantsa  43.11 11.63 21.00 100.00 

 

IPHOUS Number of inhabitants per householda   2.39 0.16 1.74 2.77 

 

UNEMP Number of unemployed per 100 17-66 year-oldsa  9.37 2.24 5.00 18.70 

Proximity matrix: 

W1 Neighbourhood matrix for N=275 Danish municipalitiesb 

 Description of number of links per municipality:  4.59 1.68 1 8 

 Density of  W1 = .017 

W Row standardization of W1 

___________________________________________________________________________ 

Data collected 1994, for N=275 Danish municipalities. 

Source: a : Statistics Denmark, Copenhagen. 

 b : Own construction. 

______________________________________________________________ 
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___________________________________________________________________________ 

TABLE 5. ESTIMATION OF THE COMMUTING MODEL 

___________________________________________________________________________ 

 

Dependent variable: OUTCOM. 

 

Variable  Parameter Standard Error T value  Probability 

 

Intercept  -264.63  33.60   -7.88  <.001 

UNEMP   -3.39   0.53   -6.46  <.001 

PSH1766   6.30   0.36   17.49  <.001 

WORKPL  -2.33   0.10  -22.99  <.001 

IPHOUS  18.79   8.08    2.32  0.021 

___________________________________________________________________________ 

Tests for nonstationarity of variables: 

Variable   LME      Probability DLME    Probability 

 

OUTCOM  38.27  <0.001  69.62  <0.001 

UNEMP  449.77  <0.001  46.53  <0.001 

PSH1766 554.34  <0.001  47.12  <0.001 

WORKPL 498.51  <0.001  69.25  <0.001 

IPHOUS 547.90  <0.001  49.53  <0.001 

Tests for residual nonstationarity and heteroscedasticity: 

  LME    DLME 

   48.49  <0.001  54.03  <0.001 

  LMH    DLMH 

  150.76  <0.001  77.17  <0.001 

___________________________________________________________________________ 
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___________________________________________________________________________ 

Table 6. VARIABLES USED IN THE GROWTH MODEL 

___________________________________________________________________________ 

Variable  Definition    Mean S.D. Min Max 

LGDPER  Log gross domestic producta   10.72 0.16 10.29 11.12 

  per total employment 2000 

LGDPCR  Log gross domestic product    20.94 4.88 12.07 40.32 

  per capita 2000a  

EAST  East-West Dummya   0.26 0.44 0 1 

LDTW  Log (depreciation rate + rate of technical -2.89 0.12 -3.17 -2.60 

  Progress + growth rate of population) 

  (Averages resp. representative values for 90ties)a 

LHUMAN  Log proportion of highly educated people 2.55 0.28 1.98 3.41 

  per total employment 2000 

  (Secondary school + technical college  

  + university degree)a 

LNBF  Log newly founded business  1.90 0.17 1.51 2.34 

  per 1000 inhabitants 2000a 

Proximity matrix: 

W*  Neighbourhood matrix for N=180 German labour marketsb 

  Number of links per labour market  5.22 1.90 1 12 

  Density of  W* = .029 

W  Row standardization of W* 

___________________________________________________________________________ 

Data constructed for N=180 German labour markets from districtional and state data 

Source: a:  Volkswirtschaftliche Gesamtrechnung der Länder (Statistical State Office 

 Baden-Württemberg); Statistik regional, Statistisches Jahrbuch  

 (Federal Statistical Office Germany); German statistical state offices;  

 Own construction. 

 b:  University of Kassel, Department of Economics (see Eckey, 2001). 

___________________________________________________________________________ 
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___________________________________________________________________________ 

TABLE 7. ESTIMATION OF THE GROWTH MODEL 

___________________________________________________________________________ 

   Income model: LGDPCR  Productivity model: LGDPER 

Variable   Coefficient Stand. err. Coefficient Stand. err. 

Intercept   10.018**  0.445  10.613**  0.291 

EAST   -0.346**  0.037  -0.290**  0.024 

LDTW   0.317*  0.144  0.110  0.094 

LHUMAN  0.254**  0.039  0.168**  0.025 

LNFB   0.138*  0.068  0.041  0.044 

___________________________________________________________________________ 

Tests for nonstationarity of variables: 

Variable   LME  Probability DLME  Probability 

LGDPCR  148.47  <0.001  29.24  <0.001 

LGDPER  202.06  <0.001  26.11  <0.001 

LDTW   431.00  <0.001   7.94    0.005 

LHUMAN  433.28  <0.001  13.29  <0.001 

LNFB   433.34  <0.001  26.51  <0.001 

 Tests for residual nonstationarity and heteroscedasticity: 

 Income model:  LME    DLME 

   19.09  <0.001  40.60  <0.001 

   LMH    DLMH 

   22.27  <0.001  21.36  <0.001 

Productivity model: LME    DLME 

   19.48  <0.001  41.02  <0.001 

   LMH    DLMH 

   19.82  <0.001  46.87  <0.001 

___________________________________________________________________________ 
Note: **: 1% significance level; *: 5%: significance level. 

___________________________________________________________________________ 
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Figure 1. Monte Carlo results for spurious regression study: Rook matrix – n=25. 
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Figure 2. Monte Carlo results for spurious regression study: Rook matrix – n=100. 
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Figure 3. Monte Carlo results for spurious regression study: Rook matrix – n=225. 
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Figure 4. Monte Carlo results for spurious regression study: Rook matrix – n=400. 
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Figure 5. Monte Carlo results for spurious regression study: Empirical matrix – Funen 
(n=36). 
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Figure 6. Monte Carlo results for spurious regression study: Empirical matrix – Seeland 
(n=97). 
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Figure 7. Monte Carlo results for spurious regression study: Empirical matrix – Jutland 
(n=141). 
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Figure 8. Monte Carlo results for spurious regression study: Empirical matrix – 
Denmark (n=275). 
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Figure 9. Monte Carlo results for cointegration study: Rook matrix – n=25. 
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Figure 10. Monte Carlo results for cointegration study: Rook matrix – n=100. 
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Figure 11. Monte Carlo results for cointegration study: Rook matrix – n=225. 
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Figure 12. Monte Carlo results for cointegration study: Rook matrix – n=400. 
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Figure 13. Monte Carlo results for cointegration study: Empirical matrix – Funen 
(n=36). 
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Figure 14. Monte Carlo results for cointegration study: Empirical matrix – Seeland 
(n=97). 
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Figure 15. Monte Carlo results for cointegration study: Empirical matrix – Jutland 
(n=141). 
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Figure 16. Monte Carlo results for cointegration study: Empirical matrix – Denmark 
(n=275). 
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Figure A.1. The n=275 Danish municipalities 
 
 


