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Abstract 

Sample selection and endogeneity are frequent causes of biases in non-experimental empirical 

studies. In binary models a standard solution involves complex multivariate models. A simple 

approximation has been shown to work well in bivariate models. This paper extends the 

approximation to a trivariate model. Simulations show that the approximation outperforms full 

maximum likelihood, while a least squares approximation may be severely biased. The 

methods are used to estimate the influence of trust in the parliament and politicians on voting 

propensity. No previous studies have allowed for endogeneity of trust on voting and it is shown 

to severely affect the results. 
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1. Introduction 

In this paper we consider how to estimate the effect of endogenous binary variables in a binary 

response model. This problem is of tremendous importance in most social science disciplines, 

since these frequently rely on non-experimental data. It is well-known from especially linear 

models that failing to take endogeneity into account may result in substantially biased results. 

It is natural to assume that such bias extends to non-linear models (Yatchew and Griliches, 

1985, derive the approximate bias in a probit model with continuous endogenous regressors). 

We focus on models with qualititative variables for several reasons: 1) Less attention has been 

paid to these models than to models where either dependent or independent endogenous 

variables are continuous, 2) one frequently encounters qualitative variables in social science 

applications, and 3) when both dependent and independent variables are qualitative, correct 

modelling requires more complex models than if either is continuous. Specifically, simple two-

stage methods exist which account for endogeneity in models where either the dependent or the 

independent endogenous variable is continuous (see e.g. Alvarez and Glasgow, 2000, for a 

comparison of methods in the latter case), whereas such procedures are generally not consistent 

with qualitative endogenous variables. Although consistent estimates can be obtained by 

multivariate modelling, this gives rise to several difficulties both with respect to estimation and 

with respect to making such models readily understandable to a wider audience. Consequently, 

we think that it is of great value to consider simpler models that approximate the true effects. 

We consider two types of approximations: a heckit type and a least-squares type. These are 

defined below.  

 

For illustration we start by considering a binomial model with one endogenous binomial 

explanatory variable and present the approximations to the full bivariate model. Nicoletti and 
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Perracchi (2001) consider how the heckit approximation performs in a very similar case: a 

binomial model with sample selection. The main contribution in this paper is to extend the 

heckit approximation to the case with two endogenous binomial explanatory variables. 

Needless to say that the higher the dimension of the model, the more fruitful a simple 

approximation may be.  We provide simulation results that illustrate the bias of this 

approximation as well as of a simpler least-squares-based approximation in different settings. 

We find that the heckit approximation works well and that it even outperforms full maximum 

likelihood estimation under serious endogeneity in small samples. The least squares 

approximation works well under mild form for endogeneity but may provide seriously biased 

estimates when there is a strong form for endogeneity. To illustrate empirically how the 

approximation works we apply the heckit approximation for estimation of the effect of political 

trust on voting behaviour. There is a substantial literature in political sciences on this issue. 

Nevertheless, according to our knowledge, no previous studies account for the potential 

endogeneity of trust on voting. We show that taking endogeneity into account has important 

consequences for the estimated effect of trust on voting.  

 

The paper is organized as follows: the next section presents the case with one endogenous 

regressor. Section three extends the model to more endogenous or multinomial outcomes. In 

section four, simulation evidence for the estimators is presented. Section five presents the 

empirical application on voting behaviour and section six provides some concluding remarks.  

 

2. A model with one endogenous regression variable 

In this section we present the case with two binary variables, 1y  and 2y , where 2y may have a 

causal effects on 1y , but where the variables are spuriously related due to observed as well as 
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unobserved independent variables. This situation is illustrated in the following fully parametric 

model: 

 

(1)  
1 2 1 1 1

2 2 2 2

1 2 1 2

1( 0),

1( 0),

( , | , ) ~ (0,0,1,1, ),

y y x

y x

x x N

α β ε
β ε

ε ε ρ

= + + >
= + >  

where1(.) is the indicator function taking the value one if the statement in the brackets is true 

and zero otherwise. 1 2, ,α β β are regression coefficients, and (.,.,.,., )N ρ indicates the standard 

bivariate normal distribution with correlation coefficients ρ . When ρ  is zero the model for y1 

is the standard probit model.1  

 

Basically, the model states three reasons why we might observe 1y  and 2y to be correlated: 1) a 

causal relation due to the influence of 2y  on 1y through the parameterα , 2) 2y  and 1y may 

depend on correlated observed variables (the x’s) and 3) 2y  and 1y may depend on correlated 

unobserved variables (the ε’s).  

 

                                                 
1 We stress an important difference between the multivariate probit model and log-linear models. The latter were 

considered by Nerlove and Press (1976) and discussed by Heckman (1978) among others. In these models, the 

bivariate probability of y1 and y2 can be defined as: 1 2 0 1 1 2 2 12 1 2( , ) exp( ) /P y y y y y y Dα α α α= + + + , where D is the 

appropriate weight. In this model, y1 and y2 are independent if and only if α12 is zero. Therefore, it only has one 

parameter describing the relation between y1 and y2 in contrast to the multivariate probit model, which has two 

types of relations, structural ( 0α ≠ ) and spurious ( 0ρ ≠ ), and therefore allows for causal interpretations. 
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Consistent and asymptotically efficient parameter estimates are obtained by maximum 

likelihood estimation of the bivariate probit model. This is based on a likelihood function 

consisting of a product of individual contributions of the type: 

(2) 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2( , , | , , , ) ( , | , ) ( | , ) ( | ).i i i i i i i i i i i i i iL y y x x P y y x x P y y x P y xα β β = =  

The second part of the likelihood is simply a probit for y2. The first part of the individual 

likelihood contributions is given as (see e.g. Wooldridge, 2002, p. 478): 

(3) 

2 2

1 2 1 2 1 1 1 2 2 2

2 1 1 2 2
22

2 2

( 1| 1, ) ( 0 | )

( )
.

( )1
i

i i i i i i i i

i i i
i

ix

P y y x P y x x

y x
d

xβ

α β ε ε β

α β ρε φ ε ε
βρ

∞

−

= = = + + > > −

 + +
 = Φ
 Φ− 

∫
 

 
Even though rather precise procedures for evaluation of (2) exist, they are often time-

consuming in an iterative optimization context. Furthermore, when ρ  approaches one it can be 

seen from (3) that the integral numerically blows up and estimation becomes imprecise. Both 

drawbacks are circumvented with an approximation of the following type: 

(4) 2 2
2 1 1 1 2 2 2 2 1 1

2 2

( )
( 0 | ) .

( )
i

i i i i i i i
i

x
P y x x y x

x

φ βα β ε ε β α β ρ
β

 
+ + > > − ≈ Φ + + Φ 

 

The ratio φ /Φ is the inverse Mill’s ratio. Of course, 1 2 1( 0 | 1, )i i iP y y x= = can be approximated 

by one minus this expression. When conditioning on 2 0iy = , a similar approximation holds, 

replacing φ /Φ by -φ /(1-Φ). 

  

The approximation in (4) is based on the following properties of the normal model: 

(5) 
( )* * 2 2

1 2 2 1 1 2 2 2 2 2 1 1
2 2

* *
1 2 1 1 1 2 2 2 2

( )
( | 0) |

( )

, .

i
i i i i i

i

i i i i i

x
E y y y x E x y x

x

y y x y x

φ βα β ρ ε ε β α β ρ
β

α β ε β ε

> = + + > − = + +
Φ

= + + = +
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Note that the latter pertains to the latent variable *
1y . Within the economic literature this is often 

called the heckit correction because it was first applied by Heckman (see e.g. Heckman, 1976) 

in cases where *
1y  is observed (i.e. when 1y  is continuous). Replacing the probabilities given in 

(3) in the likelihood function by the approximated probabilities, estimates of the parameters of 

interest can be obtained by the following two-stage procedure: first estimate β 2 in a probit 

model for 2y . Then calculate the correction factors and estimate (α, β1, ρ) in a probit model 

with the correction factor as additional explanatory variables.  

 

Note that the reason why the correction is an approximation when applied to binomial 

variables is that it changes mean and indicator functions:  

 

(6) * * * * * *
1 2 1 2 1 2 1 2( | 0) (1( 0) | 0) ( | 0) ( 1| 0).E y y E y y E y y P y y> ≠ > > = > = = >  

 
Therefore, this two-stage estimator does not provide consistent estimates, but the 

approximation of the probability on which it is based on (that is, (4)) is exact for 0ρ =  (where 

both are equal to the simple probit), and has been shown to be rather precise for values of 

ρ even as high as 0.82. Nicoletti and Perracchi (2001) show that the heckit correction works 

well in a binomial model with sample selection. The likelihood of this model is of a similar 

bivariate nature as that in (2). The heckit correction works particularly well if the 

heteroscedasticity inherent in the correction is taken into account.  

                                                 
2 Nicoletti and Perracci (2001) show via a Taylor approximation of (3) and (4) around 0ρ = that they are very 

close for ρ close to zero and that they are equal for 0ρ = . They perform a simulation exercise showing that the 

performance of a similar two-step estimator for a sample selection model is close to that of the bivariate MLE and 

better than the simple probit for ρ as high as 0.8. 
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A least squares approximation  

An even simpler approximation than the heckit correction would be to use simple least squares 

residuals as corrections rather than inverse Mill’s ratios. This corresponds to assuming that the 

qualitative endogenous variable 2y can be modelled linearly as a function of explanatory 

variables (i.e. with the linear probability model): 

(7) ( )2 2 2 2 1 2 2 1 1 2, ( 1| ) .i i i i i i i iy x P y y y xβ ε α β ρε= + = ≈ Φ + +  

The linear probability model may often give good estimates of underlying non-linear models. 

The main problem in this model is that the marginal effect is kept constant. This yields 

nonsense predictions when the latent variable *
2iy  is close to zero or one. Indeed, the predicted 

probability that 2iy  will be one, l
2ix β , may be outside the [0,1]-interval. However, in many 

applications the predicted probabilities are not near the unit-interval boundaries.  

 

3. A model with two endogenous qualitative regression variables  

The heckit approximation presented in the previous section has been shown to perform well 

(Nicoletti and Perracchi, 2001) in a very similar model. Therefore, we do not consider this 

model any further. Instead, we explore situations where an approximation may be even more 

fruitful, namely when the dimension of the endogeneity problem increases. We focus on the 

case of a binary response model with two endogenous qualitative variables. A simple extension 

of the model in the previous section that includes one more endogenous discrete regressor 

would be: 

(8) 

1 2 2 3 3 1 1 1

2 2 2 2

3 3 3 3

1 2 3 1 2 3 12 13 23

1( 0),

1( 0),

1( 0),

( , , | , , ) ~ (0,0,0,1,1,1, , , ).

y y y x

y x

y x

x x x N

α α β ε
β ε
β ε

ε ε ε ρ ρ ρ

= + + + >
= + >
= + >
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Related models arise when we observe 1iy  under two sample selections restrictions described 

by 2 3 and i iy y  or if we have one qualitative endogenous variable with three unordered 

outcomes (e.g. z = yes, no, no response. Then, for instance, y2 =1(z=no) and y3 =1(z=no 

response))3. Full maximum likelihood estimation requires estimation of a trivariate probit 

model, which is consistent and asymptotically efficient. The likelihood function in this case 

would contain trivariate joint probabilities similar to the bivariate in (3), but now with two 

outer integrals. The trivariate probit estimates can be obtained using numerical integration or 

simulation techniques. The most common simulation estimator is probably the GHK simulated 

maximum likelihood estimator of Geweke (1991), Hajivassiliou (1990), and Keane (1994), 

which is available e.g. in the statistical program packages STATA (mvprobit, see Cappellari 

and Jenkins, 2003) and LIMDEP. However, just as in the bivariate case, we may encounter 

several practical problems with the trivariate probit model.  

 

Another alternative may again be to use a multivariate heckit type of approximation:  

(9) ( )
2 2 3 3 1 1 1 2 2 2 3 3 2

2 2 3 3 1 1 1 2 2 2 3 3 2

( 0 | , )

( | , ) .
i i i i i i i i

i i i i i i i i

P y y x x x

y y x E x x

α α β ε ε β ε β
α α β ε ε β ε β

+ + + > > − > −
≈ Φ + + + > − > −

 

 

                                                 
3 If the outcomes are ordered, the same correction can still be used. We could make use of the ordering and hence 

increase efficiency by specifying: )
J

*
2 2 j

j=1

y 1(y c= >∑ where cj are unobserved thresholds.  

The Heckman correction in this case is:   

1
1 2 12 2 1 2 2 2 2 2

1

( ) ( )
( | ) ( | ) ,

( ) ( )
j j

j j j j
j j

E y j E c x c c x
φ µ φ µ

ε ρ ε β ε µ β
µ µ

−
−

−

−
= = < + < = = −

Φ − Φ
 . 
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To obtain this approximation we need the first moment in a trivariate truncated normal 

distribution. It simplifies greatly if we assume 23 0ρ = . Then we just get a double heckman 

correction:  

(10) ( ) 3 32 2
1 2 2 2 3 3 3 12 13

2 2 3 3

( )( )
| , .

( ) ( )i i

xx
E x x

x x

φ βφ βε ε β ε β ρ ρ
β β

> − > − = +
Φ Φ

 

In the general case, where 23 0ρ ≠ , the correction terms become more complicated. They were 

applied by Fishe et al. (1981) in a model where y1 is continuous and are found e.g. in Maddala 

(1983), p. 282: 

(11) 
( ) 2 1

1 2 3 12 23 13 32 23 23

2 3

| , ; (1 ) ( ),

( | , ), 2,3.
ij i j

i i

E h k M M M P P

P E h k i

ε ε ε ρ ρ ρ ρ
ε ε ε

−< < = + = − −

= < < =
 

We refer to this as the trivariate heckit correction. Fishe et al. (1981) evaluated these using 

numerical approximations. They can however be simplified using results found in Maddala 

(1983), p. 368: 

(12) 

* *

* *

2 2

( , ) ( | , ) ( ) 1 ( ) ( ) 1 ( )

, , cov( , ) .
1 1

P x h y k E x x h y k h k k h

h k k h
h k x y

φ ρφ

ρ ρ ρ
ρ ρ

   > > > > = − Φ + − Φ   
− −= = =
− −

 

The formulas for the correction terms in the four cases of combinations of Y2 and Y3 being 0 or 

1 are presented in the appendix. In order to calculate the two correction terms, M23 and M32, we 

need initial estimates ofβ2 and β3 and ρ23. This can be obtained from a bivariate probit for Y2 

and Y3. Alternatively we may use two linear probability models (LP) for Y2 and Y3
4. The model 

therefore involves several steps:  

                                                 
4 Using the LP estimates of β2 and β3 as initial estimates, we need to rescale them as β2 and β3 estimates are not 

from the normal model. The scaling of linear probability coefficients by 2.5 (subtracting 1.25 from the constant) 

has shown to work well (Maddala, 1983, p. 23). The initial estimate of ρ23 is obtained from the LP model as the 

correlation between the residuals. 
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1. Perform estimations for Y2 and Y3 and calculate the correlation between errors (using 

bivariate probit or linear probability models).   

2. Calculate the correction terms  

3. Perform a probit estimation for Y1 adding the correction terms as additional covariates. 

We have considered whether the performance of the heckit approximation would improve if 

we take into account that it is heteroscedastic. Recall that Nicoletti and Perracchi (2001) found 

this to be useful in the case with one endogenous regressor. However, as opposed to Nicoletti 

and Perracchi (2001) we did not find much gain from heteroscedasticity corrections. The 

formula needed for the heteroscedasticity correction is available from the authors upon request. 

 

Like Nicoletti and Perracchi (2001) we evaluated initially how good an approximation the 

trivariate heckit gives to the trivariate normal probabilities using graphical illustrations and 

Taylor expansions around 12 13( , ) (0,0)ρ ρ = . Both the bivariate heckit correction and the 

trivariate normal probability have the same first-order Taylor approximations if 23 0ρ = : 

(13) 3 32 2
1 2 3 1 1 12 1 1 13 1 1

2 2 3 3

( )( )
( 1| 0, 0) ( ) ( ) ( ).

( ) ( )

xx
P Y Y Y x x x

x x

φ βφ ββ ρ φ β ρ φ β
β β

= = = ≈ Φ + +
Φ Φ

 

The trivariate heckit (with 23 0ρ ≠ ) has a similar first-order Taylor expansion where one 

replaces the inverse of the Mill’s ratios by M23 and M32 found in (10) and (11). By simulation it 

is found that especially the trivariate heckit approximates the true normal probability rather 

well even for high correlation coefficients, whereas the bivariate heckit is often badly behaved 

(when 23 0ρ ≠ ). However, over some ranges of outcomes and with some correlation 

coefficients the approximation of the trivariate heckit also performs poorly. The Taylor 

expansion and graphs (figure 1-3) that illustrate how the Taylor expansions compare to the true 

trivariate probabilities are found in the appendix. 
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4. Simulations 

In this section we report simulation results demonstrating the performance of the trivariate 

heckit approximation and least squares approximation described above. The model consists of 

the following three endogenous variables: 

(14) 

*
1 10 11 11 12 12 1 2 2 3 1
*
2 20 21 21 22 22 2
*
3 30 31 31 32 32 3

,

,

.

y x x y y e

y x x e

y x x e

β β β γ γ
β β β
β β β

= + + + + +
= + + +
= + + +

 

with 0 1 2 1 2( , , ) (0,0.5, 0.5), 1, 2,3,  ( , ) (0.5,0.5)j j j jβ β β γ γ= − = =  and: 

(15) 
1 12 13 *

2 12 23

3 13 23

0 1
1 if 0

0 , 1 ,     , 1,2,3,
0 otherwise

0 1

j
j

e
y

e N y j

e

σ σ
σ σ
σ σ

      
 ≥       = =                   

∼  

where 2 3 and y y  are endogenous to 1y  if the e2 or e3 are correlated with e1. Furthermore, if e2 

and e3 are correlated a full trivariate model is required. This is where the trivariate heckit 

approximation is expected to be most relevant. The regressors are drawn as independent 

standard normal variables with 500 independent draws in each simulation. The trivariate heckit 

is based on initial scaled (see footnote 3) OLS estimates of parameters in the equations for 

2 3 and y y and so is the estimate of 23σ . For comparison we have also simulated the trivariate 

probit using the GHK simulated MLE5. We apply the rule-of-thumb (see Cappellari and 

Jenkins, 2003) that the number of draws made by the GHK estimator for each simulation is the 

square root of the number of observations, here 23. Experimenting with the number of 

                                                 
5 This is done using STATA vrs. 9.0 and the mvprobit procedure written by Cappellari and Jenkins. The other 

simulations are conducted in GAUSS. The trivariate heckit correction is available upon request from the authors 

in both GAUSS and STATA code.  
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simulations shows that results do not change when altering the number of Monte Carlo 

simulations from 200 to 1000, hence 200 is used. 

 

In table 1a-c we show average estimation results with various combinations of values of 

correlations between the three error terms. In table 1a we show results when all correlations are 

zero. To save space, we mainly comment on results for effects of 2 3 and y y  in the 1y equation 

along with the correlation coefficients.  

 
Table 1a. Simulation results with no endogeneity .  
 True Single equation 

probit 
Bivariate heckit Trivariate heckit Least squares 

correction 
Trivariate probit 

  Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

1γ  0.5 0.015   0.015   0.024   0.105   0.024 0.104   0.025   0.076   -0.018 0.079 

2γ  0.5 0.009   0.015   0.015   0.113   0.016   0.113   0.017   0.084   0.001 0.075 

12σ  0.0   -0.005   0.049   -0.006   0.048   -0.010   0.097   0.015 0.031 

13σ  0.0   0.0009   0.050   0.0005   0.050   -0.003   0.103   0.009 0.005 

23σ  0.0       -0.004   0.002   0.010 0.035 
Note: Each simulation consists of 500 draws from the data generating process. Estimates and standard deviations 
reported in the table are based on 200 simulations. 
 

From the table we find that all estimators are unbiased. The multivariate methods however 

have a larger mean squared error (MSE) than the simple probit estimator. The MSEs of the 

multivariate approaches are reasonably close, OLS and trivariate probit performing slightly 

better than the two heckit approaches which show similar performance. The higher MSE is the 

cost of using a multivariate procedure when it is not needed. The gain of this is that one has an 

assessment of the degree of endogeneity in the form of estimates of 12 13 and σ σ , and the test 

that these parameters are zero is a test of exogeneity of 2 3 and y y . As one can see the estimated 

correlations are fairly close to zero, although the approximations are somewhat less precise 

than the trivariate probit.   
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In table 1b we show results when there is a moderate degree of endogeneity as well as 

correlation between the two endogenous explanatory variables. 

Table 1b. Simulation results with moderate degree of endogeneity and correlation 
between endogenous explanatory variables. 
 True Single equation 

probit 
Bivariate heckit Trivariate heckit Least squares 

correction 
Trivariate probit 

  Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

1γ  0.5 0.355   0.140   -0.081   0.113   -0.082   0.113   0.006   0.070   0.068 0.081 

2γ  0.5 0.354   0.145   -0.071   0.134   -0.070   0.135   0.023   0.086   0.054 0.071 

12σ  0.3   0.006   0.053   0.054   0.056   0.123   0.111   -0.030 0.041 

13σ  0.3   -0.002   0.064   0.047   0.067   0.098   0.123   -0.032 0.036 
2 3σ  0.5       -0.230   0.055   0.050 0.011 

Note: See table 1a. Three of the trivariate probit estimations failed to converge. 
 

From the table we see that the single equation probit that completely ignores endogeneity has a 

large positive bias. From the table it is also clear that even though the approximations are far 

better than the single equation probit, they are not able to completely recover the true values. 

But neither is the trivariate probit. In fact, the trivariate probit does not outperform the least 

squares correction neither in terms of bias or MSE. Moreover, the two heckit approximations 

have only a slightly higher bias and MSE than trivariate probit.  

 

In table 1c we show simulation results when there is a high correlation between the error terms 

in the two equations for y2 and y3 in addition to a high correlation between the error terms in 

the equations of y2 and y3 and the error term in the equation for y1.  

Table 1c. Simulation results with strong degree of endogeneity and and strong positive correlation between 
endogenous explanatory variables. 
 True Single equation 

probit 
Bivariate heckit Trivariate heckit Least squares 

correction 
Trivariate probit 

  Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

1γ  0.5 1.017   1.056   -0.180   0.077   -0.051   0.039   0.282   0.102   0.149 0.099 

2γ  0.5 0.999   1.022   -0.199   0.076   -0.070   0.036   0.263   0.093   0.167 0.088 

12σ  0.75   0.203   0.052   0.221 0.055   0.239   0.059   0.098 0.062 

13σ  0.75   0.203   0.053   0.221   0.056   0.238   0.060   0.080 0.039 

23σ  0.50       -0.230   0.055   0.061 0.011 
 Note: See table 1a. Four of the trivariate probit estimations failed to converge. 
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From the table we again find a large bias for the two endogenous explanatory variables in the 

single equation probit model. The bias of the trivariate heckit is relatively low, whereas all the 

three other multivariate methods have a non-negligible bias, including the trivariate probit and 

the least squares correction. The trivariate heckit also outperforms the other estimators in terms 

of MSE. The correlation coefficients are however biased for the approximations while being 

far closer to the true values for the trivariate probit. 

 

We have made simulations for a model with very similar true values as in table 1c, except that 

the correlations of the error term in the equation of y3 and the two other error terms are 

negative. The findings from this exercise are similar to findings in table 1c. The caveat in this 

simulation is that under certain parameterizations the probit does not even get the sign right for 

the coefficient for y3.  

 

Finally, it is worth noting that in all simulations the estimated coefficients for the exogenous 

explanatory variables (except the constant term) seem to be well-estimated in the single 

equation probit model, irrespective of the severity of the endogeneity of y2 and y3. This is 

surprising and may be due to the fact that all regressors are assumed different and uncorrelated.  

 

An application of voting and trust 

In this section we use an empirical application to illustrate how endogeneity of binomial 

indicators in binomial models may affect the estimated effects. The empirical example is a 

study of the effect of trust on voting behaviour.  
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There are several examples in the literature of attempts to estimate the effect of trust on voting 

behaviour. In Pattie and Johnston (2001), voting in the 1997 election in the UK is analysed 

using both trust indices and previous voting behaviour as explanatory variables. In Peterson 

and Wrighton (1998) voting in the four previous US presidential elections is analysed also 

using trust, through the trust in government index from Miller (1974) on voting behaviour at 

the US presidential elections. Cox (2003) analyses voter turnout at European parliament 

elections using a variety of trust measures. All these studies treat trust as exogenous. However, 

one can imagine several reasons why this assumption may fail.  

 

First of all, since voting behaviour is often reported as voting in the latest election (which is 

also the case in our application), there may be a problem of reverse causality. Information 

obtained since the last election about how the current politicians and parliament have 

performed may affect the responses on trust in politicians and the parliament. Second, trust is a 

subjective measure, and may thus be contaminated by substantial measurement error, which 

also makes trust an endogenous variable. Finally, spurious relations (unobserved 

heterogeneity) may in general make trust variables endogenous. For example, if people who 

have a general positive attitude are more likely to vote as well as being more likely to trust 

others, leaving attitude out of the model will induce a spurious relationship between voting and 

trust. In some studies on voting behaviour the trust variables are viewed as indicators of social 

capital (e.g. Cox, 2003). If social capital is the reason why trust and voting are related, it is 

likely that social capital is not fully described by trust, and hence a host of other indicators may 

be correlated with voting behaviour. However, if other dimensions of social capital, relevant to 

voting behaviour while not being included in the model, are also related to trust they are swept 

into the error term and will induce endogeneity of the trust variables.  
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None of the studies mentioned acknowledge the potential endogeneity of the trust variables. 

An exception is the related case studied by Alvarez and Glasgow (2000), who consider how 

voter uncertainty on the political candidate’s policy position affects voting behaviour. They 

take endogeneity into account but use a continuous measure of voter uncertainty, and thus 

consider another class of estimators than the ones described here.  

 

In our application we show that endogeneity is a serious problem, and whether it is taken into 

account or not has serious implications for the results obtained. To link our application to the 

methods of several binary endogenous variables, we use two trust variables, namely trust in 

politicians and trust in the parliament. 

 

In our example the response variable (y1 in (1)) is whether the respondent voted in the last 

national election. The endogenous variable (y2 in (1)) is whether the respondent has trust in the 

national parliament. Data come from the European social survey (ESS), see 

http://www.europeansocialsurvey.org/ for further documentation on the data. We have sampled 

3,651 cases randomly among eligible voters in all countries in the ESS. However, we exclude a 

country indicator as, in preliminary analysis, it turned out that although significant on vote, the 

exclusion of this variable did not affect the estimate of trust on voting behaviour, and hence we 

feel justified leaving it out of the model for simplicity. 

 

In table 2, we show summary statistics for our sample. 
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Table 2. Summary statistics. 
Variable Mean Standard deviation Min Max 
Vote (yes = 1/no = 0) 0.83 - 0 1 
Trust in parliament (yes/no) 0.57 - 0 1 
Trust in politicians (yes/no) 0.44 - 0 1 
Age 47.99 17.15 18 102 
Gender (female = 1/male = 0) 0.52 - 0 1 
Years of education 11.92 3.96 0 25 
Number of observations = 3651 

 

In table 3 we show estimation results for a univariate probit, the tri-heckit estimator presented 

in this paper and a full information maximum likelihood estimator, the trivariate probit. From 

the simulations we concluded that the trivariate probit was not consistently better than the tri-

variate heckit estimator but much more cumbersome from a computational perspective. 

 

Table 3. Estimation results for voting and trust behaviour.  
Model Univariate probit Tri-heckit Trivariate probit 
Eq. for vote Coefficient St error Coefficient St error Coefficient St error 
Constant -1.451 0.240 -2.018 0.238 -1.168 0.193 
Trust in parliament 0.355 0.061 2.343 0.475 0.757 0.115 
Trust in politicians 0.121 0.063 -1.027 1.377 -0.629 0.172 
Age/10 0.631 0.079 0.582 0.082 .0557 0.007 
Age squared/100 -0.050 0.008 -0.045 0.008 -4E-04 7E-5 
Years of educ./10 0.312 0.074 0.253 0.175 0.033 0.007 
Female 0.064 0.054 0.113 0.062 0.090 0.046 
Eq. for trust in parliament* 
Constant - - -0.113 0.008 -0.185 0.212 
Age/10 - - 0.125 6.9E-4 0.0156 0.007 
Age squared/100 - - -0.009 6.6E-06 -1E-04 7E-05 
Years of educ./10 - - -0.378 0.008 -0.057 0.023 
Years of educ. 
sq./100 

- - 
0.300 0.001 

 
0.004 

 
0.001 

Female - - -0.030 2.6E-4 -0.030 0.042 
Eq. for trust in politicians* 
Constant - - -0.993 0.008 -0.950 0.218 
Age/10 - - 0.086 7.0E-4 0.010 0.007 
Age squared/100 - - -5.9E-4 6.7E-06 -2E-05 7E-05 
Years of educ./10 - - 0.113 0.008 0.013 0.024 
Years of educ. 
sq./100 

- - 
0.131 0.001 

 
0.001 

 
0.001 

Female - - 0.061 2.7E-4 -2.7E-4 0.041 

12ρ  - - 
-1.000 0.440 

 
-0.048 

 
0.056 

13ρ  - - 0.289 0.780 0.277 0.084 

23ρ  - - 0.540 - 0.778 0.014 

Note: *For the trivariate heckit model these are the re-scaled OLS regression coefficients and the estimate of 

23ρ is the correlation between the OLS residuals. Number of observations = 3651. 
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From the table we find that both trust in the parliament and trust in the politicians increase the 

likelihood of voting in the univariate probit. However, both the trivariate heckit and the 

trivariate probit agree that only trust in the parliament increases the likelihood of voting, 

whereas trust in the politicians decreases the likelihood of voting. Hence, it appears that the 

univariate probit completely misses the qualitative relationship between trust in politicians and 

voting. It appears from all models, with varying effect and significance, that if the electorate 

trust the institutional setup of representative democracy, they are more likely to vote. This 

makes sense: if you believe in the system, you are more likely to use it. However, the 

univariate probit completely disagrees with the two other models on the impact of trust in 

politicians. But the negative relationship between trust in politicians and voting, predicted by 

both the trivariate heckit and the trivarite probit, also makes sense: if you have trust in the 

politicians you are likely to gain less from voting than if you do not trust them. Therefore, if 

you do not trust politicians you have a higher incentive to vote in order to change the 

composition of the parliament.  

 

From the table we find evidence of spurious correlation between trust and voting: the error 

terms between voting and trust in parliament (ρ12) are negatively correlated (only significant in 

the tri-heckit) and the error terms between trust in the politicians and voting (ρ13) are positively 

correlated (only significant in the trivariate probit). Finally, the error terms between trust in the 

parliament and politicians are positively correlated (ρ23).  

 

Ignoring these correlations, as in the single equation probit, implies that trust in parliament and 

trust in politicians captures the causal effect of the trust indicators on voting as well as a 
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spurious effect between voting and trust. For trust in politicians it turns out that the positive 

spurious relation outweighs the negative causal effect, producing a positive estimate in the 

simple probit model. For trust in the parliament the negative spurious relation with voting 

implies that the single equation probit model greatly underestimate the causal effect of trust in 

the parliament. 

 

5. Conclusion 

We have introduced an approximation of a binomial normal model with two binomial 

endogenous regressors as an alternative to the more complex trivariate probit model. We 

considered the small sample properties of the approximation and of a simple least squares 

based approximation. We showed that a standard probit model that does not account for 

endogeneity is severely biased in the presence of even moderate endogeneity. The 

approximations are less biased. This is particularly so for the heckit approximation when the 

degree of endogeneity is severe. In the latter case, the bias of both the least squares based 

approximation and the trivariate probit is not negligible and the efficiency loss of both 

approximations compared to the standard probit is small. Through our application we show the 

importance of taking endogeneity of binary variables into account and demonstrate that the 

trivarite heckit estimator is a useful tool for doing so. When ignoring endogeneity one gets 

very different estimates compared to what is obtained from models that correct for 

endogeneity. In certain cases one even gets different signs of the effects of the endogenous 

variables. 
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Appendix 1. The correction terms in the trivariate heckit 

The formulas needed for the trivariate Heckman correction are derived. Two formulas from 

Maddala (1983) are used repeatedly. They are:  

(*) 
( )1 2 3 12 23 13 32

2 1
23 23 2 3

| ,

(1 ) ( ), ( | , ), 2,3ij i j i i

E h k M M

M P P P E h k i

ε ε ε ρ ρ

ρ ρ ε ε ε−

< < = +

= − − = < < =
 

and:  

(**) 

* *

* *

2 2

( , ) ( | , ) ( ) 1 ( ) ( ) 1 ( )

, , cov( , ) .
1 1

P x h y k E x x h y k h k k h

h k k h
h k x y

φ ρφ

ρ ρ ρ
ρ ρ

   > > > > = − Φ + − Φ   
− −= = =
− −

 

There are four terms in the correction corresponding to pairs of combinations of. To derive 

these, the following change of variables is used: 2 3,z vε ε= − = − . This is simple, since the 

transformations have Jacobian equal to one. Note also that:  

1 12 1 13 23cov( , ) ,cov( , ) ,cov( , ) .z v z vε ρ ε ρ ρ= − = − =  

Starting with the first:  

1 2 3 1 2 2 2 3 3 3 1 2 2 3 3( | 1, 1) ( | , ) ( | , )E Y Y E x x E z x v xε ε ε β ε β ε β β= = = > − > − = < <  

We can now use (*) to get:  

1 2 2 3 3 12 23 13 32

2 1
23 23

2 2 2 3 3 3 2 2 3 3

( | , )

(1 ) ( )

( | , ), ( | , ).

ij i j

E z x v x M M

M P P

P E z z x v x P E v z x v x

ε β β ρ ρ
ρ ρ

β β β β

−

< < = − −

= − −

= < < = < <

 

In order to obtain the latter parts, we need to rearrange (**). This is done using the same 

change of variables as above:  

( , ) ( | , ) ( , ) ( | , )P x h y k E x x h y k P z h v k E z z h v k< < < < = − > − > − > − > − . 
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Note that since the mean is taken of x, which changes sign when changing variables, we get a 

minus in front of the entire expression. We therefore get an adjusted version of (**) that can be 

used directly to obtain the Pis in (*): 

2 2
( ) 1 ( ) ( ) 1 ( )

1 1
( | , )

( , ; )

co ( , )

k h h k
h k

E x x h y k
x h y k

rr x y

ρ ρφ ρφ
ρ ρ

ρ
ρ

   − + − +− − − Φ − − − Φ   
− −      < < =
Φ < <

=

 

Therefore:  

2 2 2 3 3

3 3 23 2 2 2 2 23 3 3
2 2 23 3 32 2

23 23

2 2 3 3 23

( | , )

( ) 1 ( ) ( ) 1 ( )
1 1

.
( , ; )

P E z z x v x

x x x x
x x

x x

β β

β ρ β β ρ βφ β ρ φ β
ρ ρ

β β ρ

= < <

   − + − +
   − − − Φ − − − Φ
   − −   =

Φ

 

P3 can be obtained from this expression by interchanging 2 2 3 3 and x xβ β . 

Proceeding in the same fashion, we get:  

1 2 3 1 2 2 2 3 3

12 23 13 32

2 1
23 23
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Note that 23ρ  has also changed sign since it is the correlation between 2  and vε . Again the 

adjusted (**)-formula gives us:  
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The third correction is:  

1 2 3 1 2 2 3 3 3
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The adjusted (**)-formula now gives us:  

2 2 2 3 3 3

3 3 23 2 2 2 2 23 3 3
2 2 23 3 32 2

23 23

2 2 3 3 23

3 3 2 2 3 3 3

2 2 23 3 3
3 3 23 22

23

( | , )

( ) 1 ( ) ( ) 1 ( )
1 1

( , ; )

( | , )

( ) 1 ( ) (
1

P E z z x x

x x x x
x x

x x

P E z x x

x x
x x

β ε β

β ρ β β ρ βφ β ρ φ β
ρ ρ

β β ρ
ε β ε β

β ρ βφ β ρ φ β
ρ

= < < − =

   − − +
   − − − Φ + − Φ
   − −   

Φ − −
= < < − =

 − +
 − − Φ + −
 − 

3 3 23 2 2
2 2

23

2 2 3 3 23

) 1 ( )
1

.
( , ; )

x x

x x

β ρ β
ρ

β β ρ

 −
 − Φ
 − 

Φ − −

 

Finally, the last correction terms are:  
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where:  
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Appendix 2. Taylor expansions 

We show that the bivariate heckit correction has the same first order Taylor expansion around  

12 13( , ) (0,0)ρ ρ = as the trivariate conditional probability P(Y1=1| Y2=0,Y3=0) of the multivariate 

probit under the assumption that 23 0ρ = . We also derive the first order Taylor expansion of the 

trivariate heckit.  

 

Starting with the latter: 

12 13 12 13

1 2 3 1 1 12 23 13 32
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∂ ∂
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It is clear that if 23 0ρ =  (i.e. for the bivariate heckit correction), the same equation is obtained 

with the M-functions replaced by the standard inverse Mill’s ratios: 

1 2 3 1 1 12 2 13 3

1 1 12 2 2 1 1 13 3 3 1 1
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( ) ( ) ( ) ( ) ( ).
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Next we look at the trivariate multivariate probit probabilities. For simplicity we have only 

found the first order Taylor expansion under the assumption that 23 0ρ = . Using Bayes’ 

formula:  
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With the latent variable structure we can write these probabilities in the usual way with the 

normal cdf evaluated at appropriate indices, which we for simplicity denote by a’s here. The 

Taylor expansion of this is:  

12 13
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Noting that the derivative of the bivariate distribution function with respect to the correlation is 

just the bivariate density, we get: 

1 31 2
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i.e. the same as for the bivariate heckit. We have plotted the Taylor approximation along with 

the true trivariate probabilities and the bivariate and trivariate heckit approximations. These are 

shown in three cases in figure 1-3. In most scenarios o the trivariate heckit works well, but this 

is not the case for the bivariate heckit. Figure 1 shows a case where all are alike. Figure 2 

shows a case where the bivariate heckit does not work well whereas the trivariate does (since 

ρ23 is not zero), and finally figure 3 shows a case where the trivariate heckit does not work 

well. It is worth noticing that the Taylor expansions often work better than both of the heckit 

methods. But of course this is only selective evidence. 
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Figure 1. Example where the heckit approximations work well. 

 
 
 
Figure 2. Example where trivariate heckit works, but the bivariate heckit does not work well.  
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Figure 3. Example where the trivariate heckit does not work well.  

 
 

 

 


