

An Integer Cutting-Plane Procedure for the

Dantzig-Wolfe Decomposition: Theory

by

Troels Martin Range

Discussion Papers on Business and Economics
No. 10/2006

FURTHER INFORMATION
Department of Business and Economics

Faculty of Social Sciences
University of Southern Denmark

Campusvej 55
DK-5230 Odense M

Denmark

Tel.: +45 6550 3271
Fax: +45 6615 8790

E-mail: lho@sam.sdu.dk
ISBN 87-91657-09-1 http://www.sam.sdu.dk/depts/virkl/about.shtml

http://www.sam.sdu.dk/depts/virkl/about.shtml

An Integer Cutting-Plane Procedure for the Dantzig-Wolfe

Decomposition: Theory

Troels Martin Range∗

July 21, 2006

Abstract

The Dantzig-Wolfe decomposition has been extended to Integer Linear Programming
(ILP) and Mixed Integer Linear Programming (MILP). Dynamic Column Generation is
usually applied to construct an LP-optimal solution for the LP relaxation of the master
problem. Polyhedral cuts or branching are the common methods for recovering from a
fractional solution. This paper introduces a new procedure to generate violated valid
integer inequalities to the master problem of the integer Dantzig-Wolfe decomposition.
This procedure uses an auxiliary LP in which standard Gomory Fundamental Cuts can
be applied. The approach is generic in the sense that any valid integer Cutting-Plane can
be used, i.e. the approach can be extended to other classes of inequalities, even though
we limit our attention to Gomory Fundamental Cuts. Using such inequalities will add to
the variety of inequalities used in collaboration with Dynamic Column Generation and
will therefore improve the bound obtained by the LP relaxation of the master problem.

1 Introduction

Many optimization problems1 can be formulated as Integer Linear Programs (ILP) or as
Mixed Integer Linear Programs (MILP). This is often convenient because a general-purpose
ILP or MILP solver can be used to identify an optimal solution. This can, however, be
problematic as solving ILP or MILP in general is NP-hard. A widely used method is to relax
the integrality of the variables and then solve the LP relaxation to obtain a lower bound on
the optimal-solution value. The LP-optimal solution may have fractional components and
may therefore be infeasible for the ILP or MILP. Two basic approaches are used to recover
from the infeasible solution. The first is to identify violated valid inequalities and add these
to the LP relaxation. This is usually referred to as a Cutting-Plane algorithm. The second
approach is to embed the LP relaxation in a Branch-and-Bound algorithm and then solve
a series of LP problems with a smaller set of LP-feasible solutions. The combination of
these two approaches is usually referred to as Branch-and-Cut. See Jünger et al. (1995) for
a detailed description of Branch-and-Cut and Cornuéjols (2006) for a detailed description
of valid inequalities for MILP. The reader is also referred to Nemhauser & Wolsey (1988)
who give an elaborate treatment of integer programming. Another approach is to utilize

∗Department of Business and Economics, Faculty of Social Sciences, University of Southern Denmark,
Campusvej 55, DK-5230 Odense M, Denmark. E-mail: tra@sam.sdu.dk

1We will limit our attention to the case of minimization problems, as maximization problems can easily be
transformed into minimization problems.

1

the Dantzig-Wolfe decomposition for integer programs, where the original problem is divided
into a master problem and a set of pricing problems. It was introduced by Dantzig & Wolfe
(1960) for Linear Programming (LP), i.e. it did not handle integer variables, but Vanderbeck
(1995) and Barnhart et al. (1998) extended the theory of the Dantzig-Wolfe decomposition
to ILP. The integrality of the master problem is relaxed, whereas the pricing problems are
not necessarily relaxed. This yields a tighter lower bound for the original problem than the
ordinary LP relaxation. The number of variables in the master problem will be exponential
in size and they are therefore generated dynamically. The process of generating variables
is usually referred to as Column Generation and is described in detail by Desaulniers et al.
(2005). The solution of the LP-relaxed master problem may yield a fractional solution which
is infeasible for the original problem. In order to identify a feasible solution it is necessary
to recover from this infeasible solution. As for the ordinary LP relaxation we can do this
by adding further valid inequalities or by performing branching. Both of these methods
are, however, more complex than in the case of Branch-and-Cut. The issue of branching
is treated by Vanderbeck (2000) and Vanderbeck (2005a), and we will not investigate the
subject further in this paper. When the integer Dantzig-Wolfe decomposition is embedded in
a Branch-and-Bound, it is referred to as Branch-and-Price. Using cuts in the master problem
is difficult, because the coefficients of each cut have to be available for the pricing problems
in order to generate columns. This difficulty usually prohibits the use of integer cutting
planes generated directly from the master problem. Instead, it has become common practice
to use problem-specific cutting planes, which can be stated with coefficients of the original
ILP or MILP. Ralphs & Galati (2006) give an interesting description of different approaches
to generate cuts dynamically for Column Generation. The combination of a Cutting-Plane
algorithm and Column Generation is referred to as Price-and-Cut and when embedding a
Price-and-Cut into a Branch-and-Bound it is referred to as Branch-Price-and-Cut.

The purpose of this paper is to describe a general integer Cutting-Plane procedure, which
can be applied to the integer Dantzig-Wolfe decomposition. This procedure will use the
Gomory Fundamental Cuts, but is not limited to these cuts. A general integer Cutting-Plane
algorithm for the Dantzig-Wolfe decomposition is of interest for two main reasons. First,
by developing a general integer Cutting-Plane framework we have a way of tightening the
lower bound of the LP relaxation of the Dantzig-Wolfe master problem. It can be applied to
a wide variety of problems as we only assume that the variables are integer and we do not
assume special structures of the constraints. The use of cutting planes is usually restricted to
problem-specific inequalities derived from specific information about the problem. These are
not always sufficient to tighten the LP relaxation and therefore branching is usually applied
to obtain an integer solution. If we have an integer Cutting-Plane algorithm, we may tighten
the LP relaxation further and we limit the use of branching. Second, it is often a good idea
to apply different classes of inequalities as they will tend to have a combined effect on the LP
relaxation. Valid inequalities derived only by the fact that the solution has to be integer will
add to the variety of these classes. We are currently initializing a computational study and
the results from this study will be the subject of a future paper.

The rest of the paper is organized as follows. In section 2 we will describe the Dantzig-
Wolfe decomposition further as well as the problem of constructing integer cutting planes in
this decomposition. Then, in section 3, we introduce the new approach for generating integer
cutting planes for the integer Dantzig-Wolfe decomposition. Next, in section 4, we extend
the integer Cutting-Plane approach to three specific structures of the Dantzig-Wolfe decom-
position. We finish the paper with directions for future research (section 5) and concluding

2

remarks (section 6).

2 Notation and Theory

Let xt = [x1, . . . , xn] be a vector of variables and I = {1, . . . , n} be the index set of variables.
We let c = [c1, . . . , cn] be an integer cost vector. Let Ai be an mi × n matrix with integer
elements for i = 0, 1 and let bi be an mi vector integer vector for each i = 0, 1. Then we can
define the Integer Linear Program (ILP)

min cx

s.t A0x = b0

A1x = b1

x ≥ 0

x ∈ Zn

(1)

We will refer to (1) as the original problem. To ease the notation we define

Xi = {x ∈ Qn|Aix = bi,x ≥ 0}, i = 0, 1 (2)

which is a rational polytope. As described in the previous section we can solve the original
problem by relaxing it and then tighten the relaxation either by generating valid inequalities
or by performing branching. In this section we first describe the Cutting-Plane approach, then
we describe the Dantzig-Wolfe decomposition for integer programs and, finally, we discuss the
difficulty of combining the Cutting-Plane approach with the Dantzig-Wolfe decomposition.

The Cutting-Plane algorithm relaxes the integrality of (1) and then tries to estimate the
integer hull by adding further valid inequalities. An inequality fx ≥ f0 is valid if X0∩X1∩Zn ⊆
{x ∈ Qn|fx ≥ f0}. Given a solution x to the LP relaxation of (1), we say that fx ≥ f0 is
violated by x if fx < f0. A classical example of valid inequalities for integer programs is
given by Gomory (1963a) and Gomory (1963b) who provide an algorithm for identifying such
violated integer inequalities for ILP. The Gomory Fundamental Cut is further described by
Garfinkel & Nemhauser (1972) and is derived from the simplex tableau. Let B be the index
set of the basic variables and let N be the index set of the non-basic variables. Let B and
N be the matrices containing the coefficients of the basic variables and non-basic variables,
respectively. The values of the basic variables are calculated as xB = B−1b−B−1NxN . The
i’th row of the column vector B−1b is denoted αi0, whereas the element in the i’th row and
j’th column is denoted αij . Then the fundamental cut is defined as

∑

j∈N

(⌊h⌋αij − ⌊hαij⌋)xj ≥ ⌊h⌋αi0 − ⌊hαi0⌋ (3)

where N is the index set of non-basic variables and h is some non-zero scalar. A typical
selection of h is to put h = 1, but other values may yield stronger inequalities (see Garfinkel
& Nemhauser (1972)). A cut can be identified by investigating the right-hand side of (3), i.e.
if ⌊h⌋αi0 − ⌊hαi0⌋ > 0, then at least one of the non-basic variables has to be increased from
zero. Note that when h = 1 and the i’th element of xB is fractional, then αi0 − ⌊αi0⌋ > 0.
Hence, for each fractional basic variable a violated fundamental cut exists. In this paper, we
are interested in valid inequalities generated from the simplex tableau, because they provide
local information about the solution x, and different classes of inequalities have been derived

3

from this information. Cornuéjols (2006) gives a review of state-of-the-art (mixed) integer
valid inequalities.

The Cutting-Plane algorithm can tighten the lower bound of the LP relaxation. Another
approach to tighten the lower bound is the Dantzig-Wolfe decomposition for integer programs.
It can be derived from the following observation. Nemhauser & Wolsey (1988) argue that we
can write any point from x ∈ X1 ∩ Zn as

x =
∑

p∈P

λpxp +
∑

r∈R

δryr,

∑

p∈P

λp = 1,

λp ≥ 0, λp ∈ Z, p ∈ P,

δr ≥ 0, δr ∈ Z, r ∈ R

(4)

where P is the finite index set of integer points within conv{X1 ∩ Zn}, and R is the finite
index set of integer rays within cone{X1 ∩ Zn}. It is convenient to assume that p < r for all
p ∈ P and all r ∈ R. Each of the points in conv{X1 ∩Zn} is denoted xp, and each of the rays
of cone{X1 ∩ Zn} is denoted yr. Note that λp ∈ {0, 1} because of the convexity constraint.
Vanderbeck (1995) uses (4) to obtain the following reformulation of the original problem

z(P,R) = min
∑

p∈P

cpλp+
∑

r∈R

crδr

s.t
∑

p∈P

apλp+
∑

r∈R

arδr = b0

∑

p∈P

λp = 1

λp ∈ {0, 1}, p ∈ P
δr ∈ Z+, r ∈ R

(5)

where cp = cxp, cr = cyr, ap = A0xp and ar = A0yr. (5) corresponds to the Dantzig-Wolfe
master problem except that the variables are required to be integer. Using (4) to obtain the
Dantzig-Wolfe master problems is often referred to as discretization.

The formulation (5) has two main difficulties. First, the sizes of P and R may be (and
usually are) exponential compared to the number of constraints m1 or the number of original
variables n. Hence, solving even the LP relaxation of (5) may be impossible due to the number
of variables. The common practice is, therefore, to apply dynamic Column Generation, where
most of the variables are removed from the problem and then reinserted if they can give a
potential improvement in the objective value. We denote P ⊆ P and R ⊆ R the restricted
index sets of points and rays. If we replace the index sets P and R with their restrictions
P and R in (5), we obtain the so-called Restricted Master Problem (RMP). (5) can then be
solved by modifying the sets P and R and proving that no better sets exist.

The second problem is that (5) is an ILP and is therefore considered hard to solve. Instead
of solving the ILP directly, the requirement of the variables being integer is relaxed and the
LP relaxation is solved instead. Throughout this paper we let zlb be the value of the LP
relaxation of (5) by dynamic Column Generation. Let π0 be the dual variable vector of
the first set of constraints of (5) and π1 be the dual variable for the convexity constraint
of (5). Then dynamic Column Generation identifies negative, reduced cost columns for the

4

LP-relaxed RMP by solving the pricing problem
(

min (c − π0A0)x
s.t x ∈ X1 ∩ Zn

)

< π1 (6)

If the left-hand side is strictly less than π1, then a negative, reduced cost column has been
identified and can be inserted into the LP relaxation. The problem is that the LP relaxation
of (5) may yield a fractional solution, which needs to be integerized. This integerization can
be obtained by performing branching or by applying further valid inequalities. Branching can
be performed in the master problem by applying a set of partitioning constraints in which the
current fractional solution is excluded. These partitioning constraints are usually constructed
in terms of the original x-variables, such that it is easy to calculate the coefficients of the
variables in extremal form (5). Range (2006) briefly discusses problems of using branching
in Branch-and-Price and Vanderbeck (2000) provides several types of branching in a general
Branch-and-Price. We will not elaborate further on the topic of branching in this paper as
we are mainly interested in a general Price-and-Cut procedure. Instead we will turn to the
generation of valid inequalities. If we did not utilize dynamic Column Generation, it would
be possible to utilize standard integer cuts such as Gomory Fractional Cuts or Rounding in
the master problem. The dynamic Column Generation makes this difficult, however. Suppose
that we can find a violated valid inequality in terms of the restricted variable sets λp with
p ∈ P and δr with r ∈ R

∑

p∈P

dpλp +
∑

r∈R

drδr ≥ et (7)

and we insert it into the restricted master problem. As the inequality was violated it may
have a dual price, π 6= 0, different from zero. Hence, π has to be included into the pricing
problem such that it calculates a correct reduced cost coefficient for the columns generated.
This involves two problems. First, we have to be able to calculate the coefficients dp for
p ∈ P \ P and dr for r ∈ R \ R. Such a coefficient is clearly dependent on the column
generated, and we will just assume that we have some oracle d(x) : Qn → Qn which can be
used to calculate the coefficient correctly. Hence, whenever we have a solution x we have to
call the oracle d(x) to calculate the correct coefficient and this can usually not be handled
by exact integer optimization algorithms. The second problem we are faced with is that we
have to include this function of x into the objective of the pricing problem as follows

(

min (c − π0A0)x − πd(x)x
s.t x ∈ X1 ∩ Zn

)

< π1 (8)

We observe that d(x)x is a non-linear term (unless d(x) is constant) and the pricing problem
will therefore be difficult to solve. When d(x) is not constant, the approach is called Non-
Robust Branch-Price-and-Cut. It seems reasonable that using the solution information from
the LP-basis of the master problem to construct valid inequalities directly will yield other
types of inequalities than using hand-crafted valid inequalities. The problem is that cuts gen-
erated from the information of the LP-basis usually require information about the coefficient
of all non-basic columns too. This information is not directly available when using Column
Generation, because of the exponential size of P ∪ R. Hence, the term d(x) becomes non-
constant, when utilizing classical integer cuts directly in the master problem. Non-Robust
Branch-Price-and-Cut has only received little attention, because it usually involves altering
the pricing problem to a more difficult problem, but Nemhauser & Park (1991) and Jepsen

5

et al. (2006) have used this approach, where they modify the pricing problems such that they
can handle certain problem-specific valid inequalities.

We will turn to robust Branch-Price-and-Cut, where d(x) is constant because it has no
requirement of altering the pricing problem. Hence, if we can construct a robust integer
Cutting-Plane method which can eliminate fractional solution in the master problem, then it
is straightforward to extend the Branch-Price-and-Cut with this method.

3 Generating Integer Cuts

Suppose that we have found a lower-bound solution for (5) with value zlb, i.e. we have solved
the LP relaxation of (5) and obtained (λ, δ), where λ = (λ1, . . . , λ|P|) and δ = (δ1, . . . , δ|R|).
If this lower-bound solution is integer, then the solution is feasible and we therefore have an
optimal solution of (5). On the other hand, if the solution is fractional, it is infeasible for
(5). We can transform the solution (λ, δ) into a solution x for the original problem by the
transformation (4), i.e. we can write

x =
∑

p∈P

λpxp +
∑

r∈R

δryr

and we have that cx = zlb. Note that if c is integer, then any integer feasible solution will
have to have an integer objective value. Hence, if zlb is fractional, we can reset zlb := ⌈zlb⌉ to
the smallest integer which is at least as large as zlb. In the following we will assume that zlb

has an integer value.
Now suppose that x has at least one fractional component. We are interested in a cut

which separates x from the set of optimal integer solutions. Hence, we seek an inequality that
removes x from the set of LP-feasible solutions which may cut away integer points, but never
cuts away the optimal integer point. Hence, we are interested in constructing an automated
integer Cutting-Plane algorithm. The Gomory Fractional Cutting-Plane is such a procedure.
The problem is that we have to have an LP basis (and non-basis) such that we can write
x = [xB,xN] and x is a vertex of the polytope X0 ∩ X1. But we know that x is a vertex of
the polytope (conv{X1 ∩ Zn} + cone{X1 ∩ Zn}) ∩ X0. Hence, x may be an interior point of
a face of X0 ∩ X1, and therefore it may not be possible to identify a usable LP basis. The
following example illustrates this problem.

Example: Suppose that we have an two structural integer variables x1 and x2, and we have
to solve the following optimization problem

min −2x1 +x2

s.t −5x1 +8x2 ≥ 0
−5x1 +3x2 ≤ 0
10x1 +x2 ≥ 10
−x1 +8x2 ≥ 4
10x1 +8x2 ≤ 45

x1, x2 ≥ 0
x1, x2 ∈ Z

(9)

which has optimal solution (x∗
1, x

∗
2) = (2, 2) with value z∗ = −2. If we solve the LP relaxation

of (9), then we obtain the LP-optimal solution (x1, x2) = (3, 17
8) having value zlb = −41

8 .

6

0 1 2 3 4 5
0

1

2

3

4

5

x1

x2

Figure 1: Example of an integer Dantzig-Wolfe decomposition

Instead we use a Dantzig-Wolfe decomposition with the first two constraints in the master
problem and the three last constraints in the pricing problem. This is illustrated in figure
1. The bold lines correspond to the boundary of the constraints from the master problem,
whereas the dashed lines are the constraints from the pricing problem. The gray area corre-
sponds to the convex hull of the feasible integer points of the pricing problem, and the hatched
area is the convex hull of the feasible integer solutions of the full problem. It is interesting
to observe that two of the four extreme points of the convex hull of integer points for the
pricing problem are not included in the cone generated by constraints of the master problem.
Now suppose that we can identify feasible integer points from the pricing problem using some
algorithm and we have obtained x1 = [3, 1]t and x2 = [2, 3]t. We obtain the LP-optimal
solution of the master problem as (λ1, λ2) = (2

3 , 1
3), which yields the solution x = (22

3 , 12
3)

with value −32
3 . It can be seen in figure 1 that x is not a vertex of the polytope formed

by the five constraints of (9). This can also be seen by observing that four of the slack and
surplus variables are lifted from their lower bounds and we therefore have one too many basic
variables for a basic solution.

Instead, we try to identify another LP solution which resembles x as much as possible and
then cut this solution away. Thus, we are interested in constructing a solution x∗ which has
the same objective value as x and has as many components equal to x as possible. Define the
set X0 = {j ∈ I|xj = 0} as the index set of all the variables having value zero in the solution
x. This index set will contain the indices of all the variables in the non-basis of the vertex
we seek. Hence, we try to retain these variables at a zero value. We also know that zlb is a
lower bound value for the original problem, and we therefore require that cx∗ ≥ zlb. Thus to

7

obtain a solution with these properties we solve the problem

z∗ = min
∑

j∈X0

xj +slb

s.t. ctx −slb = zlb

A0x = b0

A1x = b1

x ≥ 0, slb ≥ 0

(10)

which yields a solution (x∗, s∗lb). We say that xj = 0 for j ∈ X0 and slb = 0 are invariant if
we have to identify the solution (x, slb). We are interested in identifying a cut, which makes
it impossible to obtain the invariant parts of (x, slb). In the following we will show that such
a cut will separate the solution (x, slb) from the set of feasible solutions. First, we show that
a solution to (10) exists.

Proposition 3.1 A solution (x∗, s∗lb) with x∗
j = 0, j ∈ X0, s∗lb = 0 and z∗ = 0 to problem (10)

exists and is optimal.

Proof: First note that z∗ ≥ 0 because all variables are non-negative. The solution x is an
LP-feasible solution with value zlb to (10) with xj = 0 for j ∈ X0 and slb = 0. Hence, by
putting (x∗, s∗lb) = (x, slb), we obtain a solution value z∗ = 0.

From Proposition 3.1 we have that the two solutions x and x∗ can only be distinguished in
the variables xj with j ∈ I \ X0. Therefore, we can say that the two solutions resemble each
other. We have just shown that the solution x will yield an optimal solution for (10), but
we have not shown that (x, slb) is an extreme point. Indeed, it may be that (x, slb) is not an
extreme point, but rather an interior point of a face of the polyhedron

P (X0, zlb) =

x ∈ Qn
+

∣

∣

∣

∣

∣

∣

∣

∣

cx − slb = zlb

Aix = bi, i = 0, 1
xj = 0, j ∈ X0

slb = 0

in which case an alternative solution (x∗, s∗lb) with some elements x∗
j 6= xj for j ∈ I \ X0 will

be found.

Example: (Continued from above). Let I be the index set of the structural variables as well
as the slack and surplus variables of (9). Then we have that |I| = 7. Now, using the solution
(x1, x2) = (22

3 , 12
3) obtained from the master problem we have that only the first constraint

of (9) is binding, and all structural variables have values larger than zero i.e |X0| = 1. Thus
we have |I \ X0| = 6 > 5 = m1 + m2 which indicates that one more variable than needed for
a basis is positive. We already have a lower bound of −32

3 , and we know that the objective
value has to be an integer, i.e. we put zlb = ⌈−32

3⌉ = −3 and add the lower bound constraint
−2x1+x2−slb = −3 with slb ≥ 0 to the master problem. Resolving the master problem yields
the solution (λ1, λ2) = (1

2 , 1
2), which can be transformed into the new solution x = (21

2 , 2).
We continue from this solution. Note that only slb has a value of zero and we have that
X0 = ∅. We have, however, added the additional constraint cx − slb = zlb. Hence, we still
have one too many positive variables to construct a basic solution. Now, solving the problem
(10) we obtain the solution (x∗

1, x
∗
2, s

∗
1, s

∗
2, s

∗
3, s

∗
4, s

∗
5, s

∗
lb) = (2 2

11 , 1 4
11 , 0, 6 9

11 , 13 2
11 , 4 8

11 , 12 3
11 , 0).

Hence, we have constructed a basic vector xB = [x1, x2, s2, s3, s4, s5]
t and a non-basic vector

xN = [s1, slb]
t. This solution is within P (∅,−3), but it is clearly fractional.

8

Note that P (X0, zlb) contains (x, slb) and is therefore non-empty. We are now interested in
either identifying an integer feasible point from P (X0, zlb) or proving that no feasible integer
points exist in P (X0, zlb). This is, clearly, a separation problem where we try to separate the
infeasible solutions in P (X0, zlb) from the set of feasible solutions. The following proposition
states an interesting property of an integer solution from P (X0, zlb).

Proposition 3.2 An integer optimal solution (x∗, s∗lb) to problem (10) will yield an upper
bound solution to the original formulation (1). Furthermore, if s∗lb = 0, then x∗ is an optimal
feasible solution to the original problem (1).

Proof: Suppose that (x∗, s∗lb) is an integer optimal solution to problem (10). Then we have
that x∗ ∈ ({x ∈ Rn|cx ≥ zlb} ∩ X0 ∩ X1 ∩ Zn) ⊆ X0 ∩ X1 ∩ Zn. Hence, x∗ lies in the set of
feasible solution of the original problem (1). Therefore, we have that cx∗ = zub is an upper
bound for (1). If the surplus variable slb = 0, then we know that cx∗ = zlb. But then we have
zub = zlb, which proves the optimality of x∗ for problem (1).

Proposition 3.2 gives an alternative optimality criterion for the integer Dantzig-Wolfe decom-
position and is in that sense an interesting theoretical observation.

A feasible solution to (10) is not necessarily integer, but we know that only integer solu-
tions are valid for (1). Therefore, we initialize a Cutting-Plane procedure to integerize the
solution of (10). Here we have the advantage that we know a solution corresponding to a
vertex of the feasible set of solutions of (10), and we can therefore use the Gomory Integer
Cutting-Plane procedure to obtain an integer cut. We define the Auxiliary Separation Linear
Program (ASLP) as

z∗(T) = min
∑

j∈X0

xj +slb

s.t. ctx −slb = zlb

A0x = b0

A1x = b1

dtx +dt
lbslb ≥ dt

0, t ∈ T
x ≥ 0, slb ≥ 0

(11)

where T is the index set of integer cuts generated. Clearly, (11) is equivalent to (10) if T = ∅,
and we have that z∗(T1) ≤ z∗(T2) for T1 ⊆ T2. If the inequalities with indices in T are integer
cutting planes, then no integer solution from (10) will be removed from (11).

Proposition 3.3 A valid inequality for the problem (10) with integer variables x and slb will
never remove the optimal integer solution to (1).

Proof: As zlb is a valid lower bound for the original problem (1), we know that adding the
constraint cx ≥ zlb to (1) will never change the optimal solution value. Hence, estimating the
integer hull of {x ∈ Rn|cx ≥ zlb} ∩ X0 ∩ X1 ∩ Zn will never cut away the optimal solution.
This is exactly what (11) does.

Now, by adding valid integer cutting planes we try to eliminate the possibility of having all
xj-variables with j ∈ X0 at zero and at the same time have slb = 0. Hence, we try to eliminate
the possibility of using points in the polyhedron P (X0, zlb).

9

Proposition 3.4 If problem (11) has z∗(T) > 0 for some T , then the solution x can never
be LP-feasible in the original problem (1), when adding the cuts identified in T .

Proof: Suppose that z∗(T) =
∑

j∈D0
x∗

j + s∗lb > 0, where (x∗, s∗lb) is the optimal solution
to (11). Then either x∗

j > 0 for some j ∈ D0 or s∗lb > 0 because x ≥ 0 and slb ≥ 0. As
(x∗, s∗lb) is the closest we can get to the invariant values of (x, slb) without being equal to
these values, then the solution (x, slb) will be infeasible for the original problem. As we know
that z∗(∅) = 0, then there exists at least one cut with index in T , which separates (x, slb)
from the set of feasible solutions. We can then add the cuts with indices in T to problem (1)
to remove the possibility of using (x, slb).

Now, what we try to identify is a set T such that z∗(T) > 0 and thereby prove that at
least one of the valid inequalities with indices in T is violated by the solution (x, slb). As
such a valid inequality will add at most a slack variable or surplus variable we can rewrite
the inequalities in terms of the original x-variables. The inequality, written in terms of the
original variables, can again be transformed into terms of the (λ, δ)-variables and then be
added to the LP relaxation of (5). Hence, we have a robust integer Cutting-Plane algorithm
for the integer Dantzig-Wolfe decomposition.

Example: (Continued from above). Now we use the basic vector xB = [x1, x2, s2, s3, s4, s5]
and the nonbasic vector xN = [s1, slb] to obtain the Gomory Fundamental Cut (with h = 1)
1
11slb ≥

3
11 , which can be transformed into the constraint −2x1 +x2 ≥ −2 (note that it is par-

allel with the objective function and we can therefore put zlb = −2). Inserting this cut into the
ASLP yields the solution (x∗

1, x
∗
2, s

∗
1, s

∗
2, s

∗
3, s

∗
4, s

∗
5, s

∗
6, s

∗
lb) = (1 5

11 , 10
11 , 0, 4 6

11 , 5 5
11 , 1 9

11 , 23 2
11 , 0, 0),

where s6 is the surplus variable of the new constraint and z∗ = 0 (if we did not reset zlb to −2
then we would have z∗ = 1, and we would have proved that the current solution for the master
problem was infeasible). We generate a new Gomory Fundamental Cut 1

11s1 + 3
11slb ≥ 6

11
which can be transformed into the constraint −x1 + x2 ≥ 0. Inserting this constraint
into the ASLP and resolving yields the integer solution (x∗

1, x
∗
2, s

∗
1, s

∗
2, s

∗
3, s

∗
4, s

∗
5, s

∗
6, s

∗
7, s

∗
lb) =

(2, 2, 6, 4, 12, 10, 9, 0, 0, 0) with solution value z∗ = −2. As s∗lb = 0 we have by proposition 3.2
that the solution is optimal. Note that X1 is bounded, whereas X0 is unbounded. It is inter-
esting to observe that the cuts generated are not valid integer cuts (conv{X0} + cone{X0})
or conv{X1}, but are valid for conv{X0 ∩X1 ∩ {x ∈ Rn|cx ≥ zlb}}. This suggests that there
is unused information, which can be used to generate integer cuts.

Several observations can be made for the approach that we suggest. We summarize these in
the following remarks.

Remark: Note the resemblance to the initialization of the Simplex algorithm Phase 0, where
we try to identify a basic feasible solution with all artificial variables at zero. This is exactly
what we are doing after adding cuts to (11) and if we cannot identify a solution with all
invariant variables equal to zero, then we have proved that a solution which has all of these
variables at zero is infeasible.

Remark: Our approach will implicitly force variables at their upper bounds to remain at
these upper bounds. This can be realized as follows. Let 0 ≤ xj ≤ uj and add the upper
bound as an explicit constraint, i.e. xj + sj = uj , where sj ≥ 0. When xj = uj , then sj will
be zero and its index is added to X0. This observation is especially important in the case

10

where the xj variables are required to be binary, i.e. an upper bound uj = 1 is imposed on the
binary variables. Binary variables are used in many models involving networks2, where they
indicate whether or not a connection is used. A significant portion of the binary variables will
be on their upper bound in such models, and we can therefore significantly limit the degree
of freedom in the corresponding ASLP. This will lead to faster identification of cuts or even
stronger cuts.

Remark: It will be easier to identify violated integer inequalities in problems, where the x

is degenerate (i.e. having basic variables equal to zero). This is due to our definition of X0,
where all indices of variables equal to zero are included. The more elements of x equal to
zero, the more indices are added to X0, and therefore we will have less variables with indices
in I \ X0.

Remark: In proposition 3.4 we argued that whenever z∗(T) > 0, then at least one of the
cuts with indices in T is violated. In that case, we can just add the cut to the master problem.
It may, however, be prudent to identify additional valid inequalities. We know that for T ⊆ S
we have that z∗(T) ≤ z∗(S). As long as we have a fractional solution to (11), we may be able
to identify additional valid inequalities from S \ T which may move the invariant elements
of (x, slb) further away from the corresponding elements of (x∗, s∗lb). This is indicated in the
objective of the ASLP by z∗(T) < z∗(S).

In figure 2 we have illustrated the Price-and-Cut using the integer Cutting-Plane method.
This method should be embedded into each node in a Branch-and-Bound tree to obtain a
Branch-Price-and-Cut using integer cuts, i.e. when the method terminates then we either have
a fractional solution for which branching is needed or we have an integer solution. The gray
box corresponds to a standard Column Generation, which usually terminates when no columns
can be found. If the solution is fractional, the standard Column Generation would normally
terminate. Instead we initialize an integer Cutting-Plane algorithm, which constructs an
ASLP (11) to identify a feasible LP basis. If the LP solution to the ASLP is fractional, we try
to identify violated integer cuts and resolve the ASLP. On the other hand, if the LP solution
is integer, we have from proposition 3.2 that the LP solution is an upper-bound solution.
In that case, we update the upper-bound value and transform any violated cut found into a
master form such that it can be inserted into the RMP. We have not specified which integer
cuts should be generated as a range of different cuts exist which can be utilized. Identifying
which cuts should be used will be a subject of a future paper describing the computation.
Furthermore, we have not specified how many violated cuts that are sufficient to terminate the
integer Cutting-Plane algorithm. Clearly, one can terminate the Cutting-Plane algorithm if
z∗(T) > 0, but as noted above, it may be worthwhile to continue the Cutting-Plane algorithm
to obtain a larger violation. Finally, we have not included bound checking in the diagram, i.e.
if we identify an integer solution in the ASLP and we have zlb = zub, then we can terminate
the overall algorithm.

The procedure described above can easily be used in the root node of a Branch-and-Bound,
but should be used with caution when used after branching. The main reason for this is that
the ASLP uses the lower bound constraint cx ≥ zlp to generate valid integer inequalities.

2Examples of network problems, where the Dantzig-Wolfe decomposition is used, are the Vehicle Routing
Problem with Resource Constraints (see Desrochers et al. (1992)), the Elementary Shortest Path Problem with
Resource Constraints (see Range (2006)), and Scheduling Problems (see Desaulniers et al. (1998)).

11

Generate columns

Add columns to RMP

Solve RMP

Construct ASLP

Solve ASLP

Generate integer cut

Add cuts to ASLP

and to CutList

[Columns found]

[No columns found]

Add cuts from

CutList to RMP

[Solution fractional]

[Solution Integer]

[Else]

[Cuts found]

Stop

[No new cuts found]

[Sufficient no. of cuts]

Update upper

bound

[Master solution fractional]

[Else]

[Else]

[Any violated cuts in CutList]

Figure 2: Activity Diagram of the Price-and-Cut Algorithm using integer cuts.

Suppose that we have two nodes in the Branch-and-Bound tree with the lower bounds z1
lp

and z2
lp and z1

lp > z2
lp. Then it is not valid to use integer inequalities from node 1 in node

2, because the constraint cx ≥ z1
lp is not necessarily a valid inequality of node 2. This can

be omitted by using a global lower bound zglb instead of the local lower bounds, but it will
make the generation of violated inequalities harder. Furthermore, we cannot use proposition
3.4 to identify violated cuts. Instead, each of the constraints with indices in T should be
checked directly. On the other hand, a cut identified using only the global lower bound and
no branching constraints will be valid for any node in the Branch-and-Bound tree. It may
therefore be interesting to use our approach only with the globally valid constraints instead
of utilizing the additional information obtained by branching.

In this section, we have described a procedure which can be used to generate violated valid
integer inequalities for the Dantzig-Wolfe reformulation of integer programs, where dynamic
column generation is used. As of now, we have not conducted a computational study of the
method. We are, however, currently preparing such a study.

4 Extensions

The Cutting-Plane approach that we have suggested above can be extended to several interest-
ing cases. In the following we will briefly describe these extensions. Some of these extensions
use relaxations of the original problems in order to obtain valid inequalities. Hence, we are
not guaranteed an optimality criterion, nor facet inducing valid inequalities. The aim is to
describe an ASLP for each extension such that it is possible to utilize valid integer inequalities
for these extensions.

In section 4.1, we will describe the straightforward extension to blockangular structures,

12

where one or more independent blocks of constraints are present in the original problem.
When the blocks in such a structure are identical, then the master problem is transformed in
such a way that the pricing problems are identical. This will require a similar relaxation of
the corresponding ASLP. We will discuss this extension in section 4.2. In some applications,
such as resource-constrained routing, not all variables are included in the master problem
and we therefore need to relax the ASLP to obtain valid inequalities using the same subset
of variables as the master problem. We describe this in section 4.3. The extensions can, of
course, be combined, but we limit our attention to the pure forms of the extensions.

4.1 Blockangular Structures

Many problems have structures, where only some constraints span almost all of the variables
and the rest of the constraints can be divided into small blocks, where the constraints only
span the same small subset of variables. These structures are often referred to as blockangular
or block-diagonal3. The Cutting-Plane approach can be extended to blockangular structures
in a straightforward manner. Suppose that we have an index set K of sets of variables and let
xk for k ∈ K be the vector of variables. Furthermore, we define I = ∪k∈KI(k) to be the index
set of all variables, where I(k) are disjoint sets of indices for the variables in xk. We let nk

be the length of the vector xk. For each k ∈ K we associate a cost vector ck and two matrices
A0k and Ak. Finally, we define b0 and bk as the right-hand side column vectors. We will use
Xk in the same way as defined in (2) to denote the polyhedron defined by the constraint set
Akxk = bk and the non-negativity constraints. This yields the following integer blockangular
minimization problem

min
∑

k∈K

ckxk

s.t.
∑

k∈K

A0kxk = b0

Akxk = bk, k ∈ K
xk ≥ 0, k ∈ K
xk ∈ Znk , k ∈ K

(12)

which again can be reformulated into the master problem

min
∑

k∈K

∑

p∈P(k)

cpkλpk +
∑

r∈R(k)

crkδrk

s.t.
∑

k∈K

∑

p∈P(k)

apkλpk +
∑

r∈R(k)

arkδrk

 = b0

∑

p∈P(k)

λpk = 1, k ∈ K

λpk ∈ {0, 1},
δrk ∈ Z+

(13)

3A typical example is the Heterogeneous Vehicle Routing Problem, where a set of customers has to be
visited by a heterogeneous fleet of vehicles. Each type of vehicle has its own block of constraints, and all the
vehicles are subject to the constraint that each customer has to be visited exactly once by exactly one vehicle
(see Range (2006) for an example of Heterogeneous Vehicle Routing Problem).

13

where cpk = ckxpk, crk = ckyrk, apk = A0kxpk and ark = A0kyrk. The vectors xpk and yrk are
points and rays of the polyhedron Xk for each k ∈ K. Now define X0(k) = {j ∈ I(k)|xj = 0}
The ASLP will then be

min
∑

k∈K

∑

j∈X0(k)

xj +slb

s.t.
∑

k∈K

ckxk −slb = zlb

∑

k∈K

A0kxk = b0

Akxk = bk, k ∈ K
∑

k∈K

dt
kxk +dt

lbslb ≥ dt
0, t ∈ T

xk ≥ 0, k ∈ K
slb ≥ 0

(14)

It is possible to extend propositions 3.1-3.4 in a straightforward manner, and we will omit
restating the results here.

What is interesting about this Cutting-Plane approach for blockangular structures is that
the cuts will typically span across several of the variable sets. When the constraints Akxk =
bk are different, a cut spanning several variable sets will add additional information about the
relation between these sets. The process of handcrafting problem-dependent inequalities is
often lengthy and is typically inflexible to changes in the structures of the individual blocks.
Hence, from a development point-of-view it will be of interest to have a set of problem
independent valid inequalities spanning several blocks, such that the development of problem-
dependent inequalities will be limited. On the other hand, one of the reasons for using
decomposition is that even the LP relaxation of the original problem contains too large sets
of variables and constraints. This difficulty is reflected in the ASLP of blockangular structures,
where we have almost the same number of constraints and almost the same number of variables
as in the original problem. This may be handled by removing some of the variables and some
of the constraints from the ASLP and then generating these when needed, i.e. a simple form
of Price-and-Cut where we initially keep all the variables not included in any D0(k) as well
as a small set of the zero variables. We have not investigated this approach, but it may be
interesting as it will probably speed up the cut generation process significantly.

4.2 Identical Subproblems

A special case of the blockangular structures is where the data for each of the blocks are
identical4. That is, for each pair i, j ∈ K we have that ni = nj , ci = cj , A0i = A0j ,
Ai = Aj and bi = bj . We put n = ni, c = ci, A0 = Ai0, A = Ai and b = bi. Hence, the
problem becomes highly symmetric. To overcome the symmetry, the convexity constraints
are typically aggregated, which allows the use of a single common pricing problem. That is,
we observe that the pricing problems are identical and therefore have the same set of points
P and rays R, and we therefore put P = P(k) and R = R(k) for all k ∈ K. Furthermore, we

4The (Homogeneous) Vehicle Routing Problem with Resource Constraints (see Desrochers et al. (1992)) and
the Cutting Stock Problem (see Amor & Carvalho (2005)) are prevalent examples of blockangular structures
with identical blocks.

14

put λp =
∑

k∈K λpk and δr =
∑

k∈K δrk. Thus the master problem becomes

min
∑

p∈P

cpλp +
∑

r∈R

crδr

s.t.
∑

p∈P

apλp +
∑

r∈R

arδp = b0

∑

p∈P

λp = |K|

λp ∈ {0, 1}, p ∈ P
δr ∈ Z+, r ∈ R

(15)

where the integrality is relaxed to obtain the LP relaxation. Then the pricing problem becomes
identical to (6), where π1 is the dual price of the second constraint in the LP relaxation of (15).
When the master problem has been aggregated, it will be difficult to differentiate between
columns arising from different pricing problems. We suggest doing the following. If we put
y =

∑

k∈K xk, then we can aggregate the blocks5 by

|K|b =
∑

k∈K

Axk = A
∑

k∈K

xk = Ay (16)

Clearly, any solution satisfying the individual blocks Axk = b will also satisfy constraint (16),
i.e. by replacing the individual blocks with a single aggregated block we obtain the following
relaxation

min cy

s.t. A0y = b0

Ay = |K|b
y ≥ 0

y ∈ Zn

(17)

which will be a significantly smaller optimization problem than the original optimization
problem. What is interesting is that an infeasible solution to (17) will also be infeasible for
the original problem. Furthermore, we can transform a solution (λ, δ) into the y-variables by
observing that

y =
∑

k∈K

xk

=
∑

k∈K

∑

p∈P(k)

λpkxp +
∑

r∈R(k)

δrkyr

=
∑

p∈P

λpxp +
∑

r∈R

δryr

(18)

5This aggregation is similar to the aggregation which is used in the (Homogeneous) Capacitated Vehicle
Routing Problem, when transforming a 3-index formulation into a 2-index formulation.

15

Hence, if we can identify a valid inequality violated by y, then we also have a cut which is
violated by (λ, δ). Now, we can define the associated SLP for identical substructures as

z∗(T) = min
∑

j∈Y0

yj +slb

s.t. cy −slb = zlb

A0y = b0

Ay = |K|b
dty +dt

lbslb ≥ dt
0, t ∈ T

y ≥ 0

(19)

where Y0 = {j|yj = 0}. It has to be noted that proposition 3.2 does not hold for (19) as it
stems from a relaxation of the full problem. Hence, we cannot use (19) to prove optimality
for problem (15).

4.3 Hidden Variables

In some cases it is possible to hide a subset of the variables in the pricing problem6. In
general, we can write a problem as

min cx

s.t. A0x = b0

A1x = b1

A2x +Bt = b2

x ∈ Zn
+

t ∈ T

(20)

where T can be the set of non-negative real vectors, the set of integer vectors, or some mix of
these. Hence, keeping only the first constraint in the master problem will hide the t-variables
in the pricing problem, i.e. the pricing problem becomes

min (c − π0A0)x
s.t. A1x = b1

A2x +Bt = b2

x ∈ Zn
+

t ∈ T

< π1 (21)

whereas the master problem is identical to (5). We cannot utilize any (mixed) integer cut
based on the t-variables in the master problem, because the t-variables are not present in the
master problem. The ASLP we can use will therefore be equivalent to the ordinary ASLP
(11). Note that (11) is a relaxation of the ASLP using A2x + Bt = b2. A consequence of
this is that we cannot use (11) directly to prove optimality.

We can improve the ASLP in the following way for the special case where B is a square
matrix. Suppose that B is invertible, then we can rewrite the constraint A2x + Bt = b2 in
terms of t as t = B−1 (b2 − A2x). Furthermore, suppose that t is bounded, i.e. α ≤ t ≤ β

6This is usual in resource constrained routing, where the pricing problems takes care of the resource con-
straints for the individual vehicles. Examples of such problems are given by Desaulniers et al. (1998) and
Range (2006).

16

for some vectors α and β. If a component ti is not lower bounded, we put αi = −∞ and if
it is not upper bounded, we put βi = ∞. Thus

α ≤ B−1 (b2 − A2x) ≤ β

⇔ B−1b2 − β ≤ B−1A2x ≤ B−1b2 − α

These additional constraints can now be added to the auxiliary SLP (11) and we obtain

z∗(T) = min
∑

j∈X0

xj +slb

s.t. ctx −slb = zlb

A0x = b0

A1x = b1

B−1A2x ≤ B−1b2 − α

B−1A2x ≥ B−1b2 − β

dtx +dt
lbslb ≥ et, t ∈ T

x ≥ 0, slb ≥ 0

(22)

The main weakness of this strengthening is that it requires a square B-matrix, which is rare
in formulations like (20). Hence other strengthenings are needed in practice.

When using (11) as ASLP, we implicitly capture some of the effects from A2x+Bt = b2.
This is due to the lower-bound constraint cx ≥ zlp, which is based on the lower bound of the
master problem. Each column in the master problem has taken the constraint A2x+Bt = b2

into account as it is a part of the pricing problem. Hence, only the combined effect of columns
is not taken into account.

5 Future Research

The method for generating valid integer inequalities for the Dantzig-Wolfe decomposition
remains to be tested in practice. We are currently initializing a computational study of our
approach and will report the results in a future paper. In the study we will be interested in
the integer inequalities generated from a basic feasible solution for an LP. We believe that the
Gomory Fundamental Cuts (described above) and the Intersection Cuts (Balas, 1971) will
enable us to tighten the lower bounds of the LP relaxation. The computational study may
also reveal technical difficulties such as tailing off and numeric instability. The study will also
show how much the lower bound is tightened by using our approach. The intuition is that
our approach will not be as strong as hand-crafted problem dependent inequalities. Hence it
should be used in combination with such inequalities (if any have been identified).

We have not extended our approach to MILP, but it seems to be a straightforward ex-
tension, which we leave for future research. The Dantzig-Wolfe decomposition for MILPs is
reviewed by Vanderbeck (2005b), whereas a review of valid inequalities for MILP is given by
Cornuéjols (2006). We believe that combining the Dantzig-Wolfe decomposition with gen-
eral valid inequalities for MILP in the robust fashion as described above will improve the
performance of the general purpose Column Generation.

17

6 Conclusion

In this paper, we have presented a general-purpose integer Cutting-Plane procedure for the
Dantzig-Wolfe decomposition of integer linear programs. The method can use the general-
purpose integer cutting planes which are used in State-of-the-art Branch-and-Cut solvers such
as CPLEX. We believe that the addition of general-purpose integer cutting planes to Price-
and-Cut algorithms will improve the lower bound obtained and therefore reduce the size of
the Branch-and-Bound tree when using Branch-Price-and-Cut. This will, in turn, allow us to
solve larger problem instances. We have also provided extensions to more general structures,
which are commonly used in a range of applications. These applications include the Vehicle
Routing Problem with Resource Constraints, the Elementary Shortest Path Problem with
Resource Constraints, the Cutting Stock Problem, and Scheduling Problems. Most of these
applications have a large portion of binary variables which may also be fixed on their upper
bounds. We have argued that it may be easier to generate violated cuts for binary problems
as they have a lesser degree of freedom in the ASLP.

The advantage of the procedure presented is that it can be applied in the solution of
any ILP where the Dantzig-Wolfe decomposition is utilized. It will, furthermore, combine
the information from the constraints in the master problems with the information from the
constraints in the pricing problem and thereby it may identify violated inequalities, which
are not identified by special-purpose hand-crafted inequalities. We have shown, by a small
example, how a lower bound constraint can be used to obtain a stronger set of integer cuts,
which may exclude some integer solutions, but never the optimal integer solution.

It is important to note that the Cutting-Plane procedure presented in this paper requires
no modification of the pricing algorithms. This is due to the fact that we generate the integer
cuts in terms of the original variables instead of the extremal set of variables. Hence, the
procedure can easily be added to existing applications of Branch-Price-and-Cut.

All-in-all, we have presented a general robust procedure for generating integer cutting
planes in Price-and-Cut which we believe will improve the general performance of the Branch-
Price-and-Cut approach.

References

Amor, H. B. & Carvalho, J. V. d. (2005). Cutting stock problems. In G. Desaulniers,
J. Desrosiers, & M. M. Solomon (Eds.), Column Generation, number 5 in GERAD 25th
Anniversary Series. Springer.

Balas, E. (1971). Intersection cuts - a new type of cutting planes for integer programming.
Operations Research, 19 (1), 19–39.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., & Vance, P. H.
(1998). Branch-and-price: Column generation for solving huge integer programs. Operations
Research, 46.

Cornuéjols, G. (2006). Valid inequalities for mixed integer linear programs. To
appear in Mathematical Programming, found at http://integer.tepper.cmu.edu/-
webpub/CornuejolsRioMPS.ps.

18

Dantzig, G. B. & Wolfe, P. (1960). Decomposition principle for linear programs. Operations
Research, 8, 101–111.

Desaulniers, G., Desrosiers, J., Ioachim, I., Solomon, M. M., Soumis, F., & Villeneuve, D.
(1998). A unified framework for deterministic time constrained vehicle routing and crew
scheduling problems. In T. G. Crainic & G. Laporte (Eds.), Fleet Management and Logistics
(pp. 57–93). Kuwer Academic Publishers.

Desaulniers, G., Desrosiers, J., & Solomon, M. M. (2005). Column Generation. Number 5 in
GERAD 25th Anniversary Series. Springer.

Desrochers, M., Desrosiers, J., & Solomon, M. (1992). A new optimization algorithm for the
vehicle routing problem with time windows. Operations Research, 40 (2).

Garfinkel, R. S. & Nemhauser, G. L. (1972). Integer Programming. Wiley-Interscience.

Gomory, R. E. (1963a). An algorithm for integer solutions to linear programs. In R. L.
Graves & P. Wolfe (Eds.), Recent Advances in Mathematical Programming (pp. 269–302).
McGraw-Hill.

Gomory, R. E. (1963b). An all-integer integer programming algorithm. In J. F. Muth & G. L.
Thompson (Eds.), Industrial Scheduling, Prentice-Hall International Series in Management
(pp. 193–206). Prentice-Hall.

Jepsen, M., Spoorendonk, S., Petersen, B., & Pisinger, D. (2006). A non-robust branch-
and-cut-and-price algorithm for the vehicle routing problem with time windows. Technical
Report 06/03, DIKU, Department of Computer Science, University of Copenhagen.

Jünger, M., Reinelt, G., & Thienel, S. (1995). Practical problem solving with cutting plane
algorithms in combinatorial optimization. In W. Cook, L. Lovász, & P. Seymour (Eds.),
Combinatorial optimization. Papers from the DIMACS special year. Papers from work-
shops held at DIMACS at Rutgers University, volume 20 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science (pp. 111–152).

Nemhauser, G. & Wolsey, L. (1988). Integer and Combinatorial Optimization. Wiley Inter-
science Series in Discrete Mathematics and Optimization. Wiley.

Nemhauser, G. L. & Park, S. (1991). A polyhedral approach to edge coloring. Operations
Research Letters, 10 (6), 315–322.

Ralphs, T. K. & Galati, M. V. (2006). Decomposition and dynamic cut generation in integer
linear programming. Mathematical Programming, 106 (2), 261–285.

Range, T. M. (2006). Exact Solution of Resource Constrained Routing using Branch-Price-
and-Cut. PhD thesis, University of Southern Denmark, Faculty of Social Sciences, Depart-
ment of Business & Economics.

Vanderbeck, F. (1995). Decomposition and Column Generation for Integer Programs. PhD
thesis, Universit Catholique de Louvain, Facult des Sciences Appliques, Unit de Gestion
Industrielle.

19

Vanderbeck, F. (2000). On dantzig-wolfe decomposition in integer programming and ways to
perform branching in a branch-and-price algorithm. Operations Research, 48, 111–128.

Vanderbeck, F. (2005a). Branching in branch-and-price: a generic scheme. Technical Report
U-05-14, University Bordeaux, Applied Mathematics.

Vanderbeck, F. (2005b). Implementing mixed integer column generation. In G. Desaulniers,
J. Desrosiers, & M. M. Solomon (Eds.), Column Generation, number 5 in GERAD 25th
Anniversary Series. Springer.

20

