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Abstract

We prove that the Shapley value of every two-sided exact assignment game lies in the
core of the game.

1 Introduction

The Shapley value and the core are widely accepted and frequently applied solutions for coop-

erative transferable utility games. The Shapley value of a coalitional game is a singleton and

it may be interpreted as an a priori evaluation of the game. Each element of the core of a

coalitional game is stable in the sense that no coalition can improve upon this element. In view

of these interpretations (see Section 2 for the formal definitions) it is not surprising that the

Shapley value may not select a core element, even if the core is nonempty.

Indeed, for asymmetric glove games, the Shapley value does not select the unique element of

the core (the unique competitive allocation). Though there exists a convergence theorem (see

Shapley and Shubik (1969)), our approach is rather inspired by the well-known fact that the

Shapley value selects an element of the core of any convex game. In general, the Shapley value
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is the barycenter of the marginal contribution vectors. Now, convex games are characterized by

the property that all marginal contribution vectors are elements of the core (see Shapley (1971)).

Within the present paper we consider (two-sided) assignment games as introduced by Shapley

and Shubik (1972). As glove games are assignment games, further conditions are needed in

order to guarantee that the Shapley value is in the core of an assignment game. Two properties

of a convex game are interesting: (1) The core is its unique von Neumann-Morgenstern stable

set. (2) It is exact. Solymosi and Raghavan (2001) showed that every exact assignment game

has a stable core. We prove that the Shapley value of an exact assignment game is in its core.

Moreover, by means of an example, we show that the Shapley value may not be a member of

the core of an assignment game with a stable core. For a discussion of the relation of some other

solutions and the core of assignment games see Raghavan and Sudhölter (2005).

We now briefly review the contents of the paper. Section 2 recalls the definitions of the Shapley

value, of assignment games, of exact games, and of the core. In Section 3 the main theorem,

saying that the Shapley value of an assignment game is in its core, is formulated. We explain

why it is possible in our context to directly apply Theorem 2 of Solymosi and Raghavan (2001)

that describes simple properties of a square matrix that are necessary and sufficient to generate

an exact assignment game. We use this result to derive a useful further characterization of

exactness. Moreover, we present the aforementioned example. Section 4 is devoted to the proof

of the main result. Finally, in Section 5 we present an example showing that the main theorem

cannot be generalized to arbitrary exact games with large cores.

2 Notation and Definitions

A (cooperative TU) game is a pair (N, v) such that ∅ 6= N is finite and v : 2N → R, v(∅) = 0.

Let (N, v) be a game and n = |N |. Then the core of (N, v), C(N, v), is given by

C(N, v) = {x ∈ R
N | x(N) = v(N) and x(S) ≥ v(S) ∀S ⊆ N},
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where x(S) =
∑

i∈S xi (x(∅) = 0) for every S ∈ 2N and every x ∈ R
N . In order to recall the

definition of the Shapley value (see Shapley (1953)), for each s = 0, . . . , n − 1, define γ(s) =

s!(n−s−1)!
n! . Then the Shapley value of (N, v), φ(N, v), is given by

φi(N, v) =
∑

S⊆N\{i}

γ(s)(v(S ∪ {i}) − v(S)) for all i ∈ N, (2.1)

where s = |S|. Note that

∑

S⊆N\{i}

γ(s) = 1. (2.2)

The game (N, v) is exact if for any S ⊆ N there exists x ∈ C(N, v) with v(S) = x(S). Exact

games were introduced by Shapley (1971) (see also Schmeidler (1972)).

In order to recall the definition of an assignment game, we say that, for finite sets S and T ,

an assignment of (S, T ) is a bijection b : S′ → T ′ such that S′ ⊆ S, T ′ ⊆ T , and |S′| =

|T ′| = min{|S|, |T |}. We shall identify b with {(i, b(i)) | i ∈ S′}. Let B(S, T ) denote the set of

assignments. A game (N, v) is an assignment game if there exist a partition {P, Q} of N and a

nonnegative real matrix A = (aij)i∈P,j∈Q such that

v(S) = max
b∈B(S∩P,S∩Q)

∑

(i,j)∈b

aij for all S ⊆ N. (2.3)

Conversely, if P and Q are disjoint finite nonempty sets and if A = (aij)i∈P,j∈Q is a nonnegative

real matrix, then let (P ∪ Q, vA) be the assignment game associated with A, that is, v = vA is

defined by (2.3). We conclude this section by recalling a result of Shapley and Shubik (1972).

Let N = P ∪ Q. Then

C(N, vA) = {x ∈ R
N
+ | x(N) = vA(N) and xi + xj ≥ aij ∀(i, j) ∈ P × Q}. (2.4)

3 Core membership of the Shapley Value

Our main result is the following theorem.

Theorem 3.1 If (N, v) is an exact assignment game, then φ(N, v) ∈ C(N, v).

3



We postpone the proof of the foregoing theorem to Section 4. This section serves to prepare

the proof and to show that if exactness is relaxed, then the statement of our result is no longer

valid.

Let (N, v) be an exact assignment game and let P and Q be finite nonempty sets, and let A

be a nonnegative real P × Q matrix such that N = P ∪ Q and v = vA. In order to prove that

φ(N, v) ∈ C(N, v), we may always assume that A is a square matrix, that is, p = |P | = |Q|.

Indeed, we may add zero columns or zero rows if necessary, because the Shapley value and the

core both satisfy the strong null player property. Also, by anonymity of the Shapley value and

the core, we shall assume that

P = {1, . . . , p}, Q = {1′, . . . , p′}, and v(N) =
∑

i∈P

aii′ . (3.1)

If S ⊆ N , then we define

S∗ = {i′ ∈ Q | i ∈ S} ∪ {i ∈ P | i′ ∈ S}. (3.2)

So, S∗ is the set of all partners of players in S according to the optimal diagonal assignment

of N . Note that |S∗| = |S| and that (S∗)∗ = S for all S ⊆ N . In order to prove the following

useful lemma, we first recall the following necessary and sufficient condition for the exactness of

an assignment games. The matrix A has a

• dominant diagonal if aii′ ≥ aij′ and aii′ ≥ aji′ for all i, j ∈ P ;

• doubly dominant diagonal if aii′ + ajk′ ≥ aik′ + aji′ for all i, j, k ∈ P .

Theorem 3.2 (Solymosi and Raghavan (2001)) The assignment game associated with A

is exact if and only if A has a dominant and a doubly dominant diagonal.

Moreover, Solymosi and Raghavan (2001) show in their Theorem 1 that an assignment game

associated with A has a stable core if and only if A has a dominant diagonal. The following

example shows that Theorem 3.1 fails if the condition of exactness is replaced by core stability.
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Example 3.3 Let (N, v) be the assignment game associated with the matrix

A =




8 4 8

4 4 1

8 1 8


 .

As A has a dominant diagonal, the core of (N, v) is stable. Also, (N, v) is not exact, because

a11 + a23 = 8 + 1 < 8 + 4 = a13 + a21. Applying (2.1) yields φ(N, v) = 1
20(82, 39, 79, 82, 39, 79),

where the first three components refer to the “row players”. As 1
20(39 + 39) < 4, φ(N, v) /∈

C(N, v).

Note that the foregoing example is minimal in the following sense. For every assignment game

with a stable core and with less than 6 players, the Shapley value is in the core. Indeed, if

there are 5 or less players, then we may assume that |P | ≤ |Q|, that is |P | ≤ 2. By adding

zero rows, if necessary, and renaming the players in such a way that the diagonal is an optimal

matching, we receive a square matrix with at most 2 nonzero rows. So the matrix may only

have a dominant diagonal if it has at most 2 nonzero columns as well. However, in this case the

diagonal is automatically doubly dominant, because every 2 × 2 matrix has a doubly dominant

diagonal.

Note that, by (2.3) and (3.1),

vA(S ∩ S∗) =
∑

i∈P∩S∩S∗

aii′ for all S ⊆ N. (3.3)

Lemma 3.4 The assignment game (N, v) associated with A is exact if and only if

v(S) = v(S ∩ S∗) + v(S \ S∗) for all S ⊆ N. (3.4)

Proof: Assume that (3.4) is satisfied. Let i ∈ P and j, k ∈ P \ {i}. By (2.3),

aii′ + ajk′ = v({i, j, i′, k′}) ≥ aik′ + aji′ , aii′ = v({i, j, i′}) ≥ aji′ , and aii′ = v({i, i′, k′}) ≥ aik′ .

Hence, A has a doubly dominant and a dominant diagonal.

Now assume that A has a dominant and doubly dominant diagonal and let S ⊆ N and let

T = S ∩S∗. We shall prove (3.4) by induction on |T | = t. Indeed, if t = 0, then T = ∅ and (3.4)
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is true. Assume now that t > 0. Let b be an optimal assignment for S, that is, b ∈ B(S∩P, S∩Q)

and v(S) =
∑

(i,j′)∈b aij′ . Let i ∈ T ∩ P . By the inductive hypothesis and (3.3) it remains to

show that

v(S) ≤ aii′ + v(S \ {i, i′}).

If (i, i′) ∈ b, then the proof is complete. Hence, we may assume that (i, i′) /∈ b. The following

three cases may occur.

(1) There exists j′ ∈ S ∩ Q, j 6= i, such that (i, j′) ∈ b and i′ is not matched in b, that is,

{(j, i′) | j ∈ P} ∩ b = ∅. As A has a dominant diagonal,

v(S) = v(S \ {i, i′, j′}) + aij′ ≤ v(S \ {i, i′, j′}) + aii′ ≤ v(S \ {i, i′}) + aii′ .

(2) The case that there exists j ∈ S ∩ P, j 6= i, such that (j, i′) ∈ b and i is not matched in b,

that is, {(i, j′) | j ∈ P} ∩ b = ∅, may be treated analogously to (1).

(3) If (i, k′), (j, i′) ∈ b for some j, k ∈ P \ {i}, then

v(S) = v(S \ {i, i′, j, k′}) + aik′ + aji′ ≤ v(S \ {i, i′, j, k′}) + aii′ + ajk′ ≤ v(S \ {i, i′}) + aii′ ,

because A has a doubly dominant diagonal. q.e.d.

4 Proof of Theorem 3.1

Let (N, v) be the assignment game associated with the P×Q matrix A such that (3.1) is satisfied.

Let x = φ(N, v). By (2.1), x ≥ 0. In view of (2.4) and (3.1) it suffices to show that

xi + xi′ = aii′ for all i ∈ P, (4.1)

xi + xj′ ≥ aij′ for all i, j ∈ P. (4.2)

Note that (4.1) implies the well-known Pareto efficiency of x, that is, x(N) = v(N). Let i ∈ P .

Step 1: We shall show that xi + xi′ = aii′ . Let n = |N | and note that, by the definition of γ(·),

γ(s) = γ(n − s − 1) for all s = 0, . . . , n − 1. (4.3)
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By (4.3) and (2.1) it suffices to find a bijection f : 2N\{i} → 2N\{i′} such that, for all S ⊆ N \{i},

n − 1 = |S| + |f(S)|, (4.4)

aii′ = (v(S ∪ {i}) − v(S)) + (v(f(S) ∪ {i′}) − v(f(S))). (4.5)

For each S ⊆ N \ {i} let f(S) = N \ (S∗ ∪ {i′}) (see (3.2) for the definition of S∗). We shall

now verify that f has the desired properties. Let S ⊆ N \ {i}. By definition i′ /∈ f(S) and

f(S)∗ = N \ (S ∪ {i}). (4.6)

Hence, S = N \ (f(S)∗ ∪ {i}). So, f is a bijection with the desired range. As |S| = |S∗| and

i′ /∈ S∗, (4.4) is satisfied. In order to show (4.5), we distinguish two cases.

(1) i′ ∈ S (that is, i /∈ f(S)). By Lemma 3.4 and (3.3),

v(S ∪ {i}) − v(S) = aii′ + v((S \ {i′}) \ S∗) − v(S \ S∗),

v(f(S) ∪ {i′}) − v(f(S)) = v((f(S) ∪ {i′}) \ f(S)∗) − v(f(S) \ f(S)∗).

Now, (4.5) follows, because, by (4.6),

f(S) \ f(S)∗ = (S ∪ {i}) \ (S∗ ∪ {i′}) =︸︷︷︸
i∈S∗

(S \ {i′}) \ S∗,

(f(S) ∪ {i′}) \ f(S)∗ = (S ∪ {i}) \ S∗ ︷︸︸︷
= S \ S∗.

(2) In the case that i′ /∈ S (that is, i ∈ f(S)) we may proceed analogously. Just the roles of S

and f(S) and of i and i′ have to be exchanged.

Step 2: Let j ∈ P . We shall now show that xi + xj′ ≥ aij′ . By the first step we may assume

that j 6= i. By (2.2) and (4.3),

1 =
∑

S⊆N\{i}

γ(|S|) =
∑

S⊆N\{i,i′}

(
γ(|S|) + γ(|N \ (S ∪ {i})|)

)
= 2

∑

S⊆N\{i,i′}

γ(|S|). (4.7)

Let R = 2N\{i,i′,j,j′}. By (4.3) applied to any R ∪ {i′}, R ∈ R, and by (4.7),

1 = 2
∑

R∈R

(
γ(|R|) + γ(|R∪ {i′}|) + γ(|R∪ {j}|) + γ(|R∪ {j′}|)

)
=

∑

R∈R

(
2γ(|R|) + 6γ(|R|+ 1)

)
.

(4.8)
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For R ⊆ N let r = |R|. By (4.8) it suffices to show that, for all R ∈ R, there are c(R) and d(R)

such that

xi + xj′ =
∑

R∈R(c(R)γ(r) + d(R)γ(r + 1)), (4.9)

c(R) ≥ 2aij′ and d(R) ≥ 6aij′ . (4.10)

By (2.1) and using s = |S|,

xi + xj′ =
∑

S⊆N\{i,j′} γ(s)
(
v(S ∪ {i}) + v(S ∪ {j′}) − 2v(S)

)
+

γ(s + 1)
(
2v(S ∪ {i, j′}) − v(S ∪ {j′}) − v(S ∪ {i})

)
.

(4.11)

To every R ⊆ R we assign three coalitions defined by

fj(R) = (N \ R∗) \ {j}, fi′(R) = (N \ R∗) \ {i′}, fij′(R) = (N \ R∗) \ {i, j′}.

Note that fj(·), fi′(·), and fij′(·) are injective mappings on R. Observe that for any S ⊆ N\{i, j′}

there exists a unique R ∈ R such that S coincides with one of the sets R, R ∪ {j}, R ∪ {i′}, and

fij′(R). Similarly, note that there exists a unique R ∈ R such that S ∪{i, j′} coincides with one

of the sets N \ R∗, fj(R), fi′(R), and R ∪ {i, j′}. Let R ∈ R and

c(R) = v(R ∪ {i}) + v(R ∪ {j′}) − 2v(R) + 2v(N \ R∗) − v((N \ R∗) \ {i}) − v((N \ R∗) \ {j′}),

let

dj(R) = v(R ∪ {i, j}) + v(R ∪ {j, j′}) − 2v(R ∪ {j})

+2v(fj(R)) − v(fj(R) \ {i}) − v(fj(R) \ {j′}),

di′(R) = v(R ∪ {i, i′}) + v(R ∪ {i′, j′}) − 2v(R ∪ {i′})

+2v(fi′(R)) − v(fi′(R) \ {i}) − v(fi′(R) \ {j′}),

dij′(R) = v(fij′(R) ∪ {i}) + v(fij′(R) ∪ {j′}) − 2v(fij′(R))

+2v(R ∪ {i, j′}) − v(R ∪ {j′}) − v(R ∪ {i}),

and put d(R) = dj(R) + di′(R) + dij′(R). Thus, (4.9) is implied by (4.11) and (4.3). Let

R̃ = R \ R∗. Lemma 3.4 together with (3.3) yield

c(R) = aii′ + ajj′ + v(R̃ ∪ {i}) − v(R̃ ∪ {i′}) − v(R̃ ∪ {j}) + v(R̃ ∪ {j′}),

dj(R) = aii′ + ajj′ − 2v(R̃ ∪ {j}) + 2v(R̃ ∪ {j′}) + v(R̃ ∪ {i, j}) − v(R̃ ∪ {i′, j′}),

di′(R) = aii′ + ajj′ + 2v(R̃ ∪ {i}) − 2v(R̃ ∪ {i′}) − v(R̃ ∪ {i, j}) + v(R̃ ∪ {i′, j}),

dij′(R) = aii′ + ajj′ − v(R̃ ∪ {i}) + v(R̃ ∪ {i′}) + v(R̃ ∪ {j}) − v(R̃ ∪ {j′})

+2v(R̃ ∪ {i, j′}) − 2v(R̃ ∪ {i′, j}).
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We conclude that

d(R) = 3aii′+3ajj′+v(R̃∪{i})−v(R̃∪{i′})−v(R̃∪{j})+v(R̃∪{j′})+2v(R̃∪{i, j′})−2v(R̃∪{i′, j}).

Therefore, in order to verify (4.10) it suffices to prove that

aij′ ≤ aii′ + v(R̃ ∪ {j′}) − v(R̃ ∪ {i′}), (4.12)

aij′ ≤ ajj′ + v(R̃ ∪ {i}) − v(R̃ ∪ {j}), (4.13)

2aij′ ≤ aii′ + ajj′ + v(R̃ ∪ {i, j′}) − v(R̃ ∪ {j, i′}). (4.14)

In order to show (4.12) we distinguish two cases. If i′ is not matched in an optimal assignment

of R̃ ∪ {i′}, that is, if v(R̃ ∪ {i′}) = v(R̃), then the desired inequality is immediately implied,

because A has a dominant diagonal. If i′ is matched to some k ∈ P ∩R̃ in an optimal assignment,

that is, if v(R̃ ∪ {i′}) = aki′ + v(R̃ \ {k}), then v(R̃ ∪ {j′}) ≥ akj′ + v(R̃ \ {k}) implies that

aii′ + v(R̃ ∪ {j′}) − v(R̃ ∪ {i′}) ≥ aii′ + akj′ − aki′

and, so (4.12) is valid, because A has a doubly dominant diagonal. In a completely analogous

way we may show (4.13).

In order to prove (4.14), put

β = aii′ + ajj′ + v(R̃ ∪ {i, j′}) − v(R̃ ∪ {j, i′}).

Let b ∈ B(P ∩ (R̃∪{j}), Q∩ (R̃∪{i′})) be an optimal assignment for R̃∪{j, i′} (see (2.3)). Four

cases may occur.

Case 1: (j, i′) ∈ b. So, v(R̃ ∪ {j, i′}) = v(R̃) + aji′ . As v(R̃ ∪ {i, j′}) ≥ v(R̃) + aij′ , we may

conclude that β ≥ aii′ + ajj′ + aij′ − aji′ ≥ 2aij′ , because A has a dominant diagonal.

Case 2: There exists some ℓ ∈ P ∩ R̃ such that (ℓ, i′) ∈ b and j is not matched in b. Then

v(R̃ ∪ {j, i′}) = aℓi′ + v(R̃ \ {ℓ}) and v(R̃ ∪ {i, j′}) ≥ aℓj′ + v(R̃ \ {ℓ}). So,

β ≥ aii′ + ajj′ + aℓj′ − aℓi′ ≥ ajj′ + aij′ + aℓi′ − aℓi′ ≥ 2aij′ ,

where the second inequality is true, because A has a doubly dominant diagonal, and the third

inequality holds, because A has a dominant diagonal.
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Case 3: There exists k′ ∈ Q ∩ R̃ such that (j, k′) ∈ b and i′ is not matched in b. Then

v(R̃∪ {j, i′}) = ajk′ + v(R̃ \ {k′}), v(R̃∪ {i, j′}) ≥ aik′ + v(R̃ \ {k′}) and, analogously to Case 2,

β ≥ aii′ + ajj′ + aik′ − ajk′ ≥ aii′ + ajk′ + aij′ − ajk′ ≥ 2aij′ .

Case 4: There exist k′ ∈ Q∩ R̃ and ℓ ∈ P ∩ R̃ such that (j, k′), (ℓ, i′) ∈ b. Then v(R̃∪{j, i′}) =

ajk′ + aℓi′ + v(R̃ \ {ℓ, k′}) and v(R̃∪ {i, j′}) ≥ aik′ + aℓj′ + v(R̃ \ {ℓ, k′}). Applying the fact that

A has a doubly dominant diagonal twice yields,

β ≥ aii′ + ajj′ + aik′ + aℓj′ − ajk′ − aℓi′ ≥ aij′ + aℓi′ + ajk′ + aij′ − ajk′ − aℓi′ = 2aij′ .

q.e.d.

Remark 4.1 The foregoing proof does not use Iñarra and Usategui (1993) who presented a

condition that is equivalent to φ(N, v) ∈ C(N, v) in their Theorem 1. It can easily be verified

that an exact assignment game (N, v) is a partially average convex game as introduced in the

foregoing paper if and only if the the underlying matrix is a diagonal matrix, that is, (N, v) is

convex, provided that p ≥ 3.

5 An Exact Game with a Large Core

In this section we shall present an exact TU game (N, v) whose core (a) does not contain the

Shapley value and (b) is large, that is, if y ∈ R
N satisfies y(S) ≥ v(S) for all S ⊆ N , then

there exists x ∈ C(N, v) such that x ≤ y. (Sharkey (1982) introduced largeness of the core and

showed that this property implies core stability.) Thus, this example complements Theorem 3.1:

Indeed, according to Solymosi and Raghavan (2001), an assignment game is exact if and only if

it has a large core.

Let N = {1, . . . , 5}, let λ1, λ2, λ3 ∈ R
N be given by

λ1 = (1, 1, 1, 0, 0), λ2 = (1, 1, 0, 1, 0), λ3 = (0, 0, 1, 1, 1),

and let v be defined by

v(S) = min
r=1,2,3

λr(S) for all S ⊆ N.
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As λr(N) = 3 for all r = 1, 2, 3, the game (N, v) is exact. By (2.1),

φ(N, v) = φ =
1

60
(36, 36, 41, 41, 26).

(In order to determine φ, just φ1 and φ5 have to be computed via (2.1), because players 1 and

2 are substitutes as well as 3 and 4 are.) Hence,

v({2, 3, 4}) = 2 >
118

60
= φ({2, 3, 4}).

So, φ(N, v) /∈ C(N, v). We are left to prove the following lemma.

Lemma 5.1 The game (N, v) has a large core.

Proof: Let X = {x ∈ R
N | x(S) ≥ v(S) for all S ⊆ N}. Taking into account that v is

monotonic (v(S) ≤ v(T ) for all S ⊆ T ⊆ N), that 1 and 2 as well as 3 and 4 are substitutes,

and a careful inspection of the coalition function v yields that x ∈ X if and only if

x ≥ 0; (5.1)

x3 + x4 ≥ 1; (5.2)

xi + xj ≥ 1 for all i ∈ {1, 2} and j ∈ {3, 4, 5}; (5.3)

xi + x3 + x4 ≥ 2 for all i ∈ {1, 2}. (5.4)

Note that (5.3) and (5.4) imply x(N) ≥ 3 = v(N). Let x ∈ X and Y = {y ∈ X | y ≤ x}. Then

Y is a nonempty compact (convex polyhedral) set. As y 7→ y(N), y ∈ Y , is continuous, there

exists z ∈ Y such that z(N) ≤ y(N) for all y ∈ Y . It remains to show that z(N) = v(N) = 3.

By (5.1) one of the following 4 cases occurs.

Case 1: z1 = 0. Then, by (5.3), zi ≥ 1 for all i = 3, 4, 5, and, by (5.1), z ≥ λ3. As λ3 ∈ X,

z = λ3 and the proof is complete.

Case 2: The case z2 = 0 may be treated analogously.

Case 3: z5 = 0. Then (5.3) implies z1, z2 ≥ 1 and (5.2) implies that z3 + z4 ≥ 1. As z(N) is

minimal, z ≥ 0 implies that z3 + z4 = 1 = z1 = z2. Hence, z(N) = 3.
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Case 4: z1, z2, z5 > 0. Then z1 = z2 ≤ 2 by minimality of z(N). In view of (5.2), z1 = z2 ≤ 1.

Again minimality implies that z1 + z5 = z2 + z5 = 1. By (5.4), z3 + z4 ≥ 2 − z1. So it remains

to show that z3 + z4 = 2− z1. Assume the contrary. As 3 and 4 are substitutes, we may assume

that z3 ≥ z4. Then z3 > 1− z1

2 . As z1 ≤ 2, there exists ǫ > 0 such that z3− ǫ ≥ 0, z1 +z3− ǫ ≥ 1

and z3 +z4− ǫ ≥ 2−z1 and a contradiction to the minimality of z(N) has been obtained. q.e.d.
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