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Abstract

The modiclus, a relative of the prenucleolus, assigns a singleton to any cooper-
ative TU game. We show that the modiclus selects a member of the core for any
exact orthogonal game and for any assignment game that has a stable core. More-
over, by means of an example we show that there is an exact TU game with a stable
core that does not contain the modiclus.

1 Introduction

The prenucleolus and the core are widely accepted solutions for cooperative transferable

utility games. The prenucleolus selects a unique member of the core, whenever the core

is nonempty. A further interesting solution, the modiclus, is a relative of the prenucle-

olus. The prenucleolus of a game is obtained by lexicographically minimizing the non-

increasingly ordered vector of excesses of the coalitions within the set of Pareto optimal
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payoff vectors. Analogously, the modiclus is obtained by lexicographically minimizing the

non-increasingly ordered vector of differences of excesses. When comparing the defini-

tions of the prenucleolus and the nucleolus, the excesses, i.e., the “dissatisfactions”, of the

coalitions are replaced by the bi-excesses (differences of excesses) of the pairs of coalitions.

The bi-excess between two coalitions S and T may be regarded as the envy of S against

T . For the precise definition see Section 2.

The modiclus has many properties in common with the prenucleolus. For its nice behavior

on the class of weighted majority games see Sudhölter (1996). Different from the prenu-

cleolus the modiclus may not select a core element, even if the core is nonempty. E.g.,

the modiclus does not select a core member in the case of any asymmetric glove game.

Instead it assigns the same amount to both the left-hand glove owners and the right-hand

glove owners (see Sudhölter (2001)). Due to this kind of “equal treatment property” of

groups of players the modiclus has an advantage over any selection of the core like the

prenucleolus.

Glove games are assignment games as well as orthogonal games, which also allow for a

canonical partition of the players into groups (see Section 4). In the present paper we

shall show that the modiclus, when restricted to orthogonal games or assignment games,

is a selection of the core, if the core is a (the unique) von Neumann-Morgenstern set.

We now briefly review the contents of the paper. Section 2 recalls definitions of some

relevant solutions and of stability. In Section 3 we show that the modified least core

(containing the modiclus) is a subset of the core of any assignment game whose core is

stable. Section 4 is devoted to the discussion of orthogonal games. It is shown that any

orthogonal game with a stable core is exact. Moreover, we deduce that the modified least

core is contained in the core of any exact orthogonal game. Finally, Section 5 presents an

example of an exact TU game that has a stable core - in fact, it has a large core - and

that does not contain the modiclus.

2 Notation and Definitions

A (cooperative TU) game is a pair (N, v) such that ∅ �= N is finite and v : 2N → R, v(∅) =

0. For any game (N, v) let X(N, v) = {x ∈ R
N | x(N) = v(N)} denote the set of Pareto

optimal allocations (preimputations). We use x(S) =
∑

i∈S xi (x(∅) = 0) for every S ∈ 2N

and every x ∈ R
N as a convention. Additionally, xS denotes the restriction of x to S,

i.e. xS = (xi)i∈S. For disjoint coalitions S, T ∈ 2N let (xS, xT ) = xS∪T . For x ∈ R
N and

S ⊆ N let e(S, x, v) = v(S)−x(S) denote the excess of S at x with respect to (N, v). For

X ⊆ R
N let N ((N, v); X) denote the nucleolus of (N, v) with respect to X, i.e. the set

of members of X that lexicographically minimize the non-increasingly ordered vector of

2



excesses of the coalitions (see Schmeidler (1969)). It is well known that the nucleolus with

respect to X(N, v) is a singleton, the unique element of which is called the prenucleolus of

(N, v) and is denoted by ν(N, v). In order to define the modiclus of (N, v), let, for every

pair (S, T ) ∈ 2N × 2N , the bi-excesses of (S, T ) at x, eb(S, T, x, v), be given by

eb(S, T, x, v) = e(S, x, v) − e(T, x, v).

The modiclus of (N, v) is the set of members of X(N, v) that lexicographically minimize

the non-increasingly ordered vector of bi-excesses of the pairs of coalitions. It is well known

that the modiclus is a singleton, the unique element of which is called the modiclus of

(N, v) and is denoted by ψ(N, v) (see Sudhölter (1996)).

The preventive power of a coalition S ⊆ N may be measured by v∗(S) = v(N)−v(N \S).

The game (N, v∗) is the dual game of (N, v). For any x ∈ X(N, v) and any pair (S, T ) of

coalitions,

e(N \ T, x, v∗) = v(N) − v(T ) − x(N) + x(T ) = −e(T, x, v).

Hence eb(S, T, x, v) = e(S, x, v) + e(N \ T, x, v∗). Thus, the modiclus lexicographically

minimizes the vector of sums of excesses with respect to the game and its dual. We

conclude that ψ(N, v) = ψ(N, v∗). The following notation is useful. For x ∈ R
N denote

µ(x, v) = max{e(S, x, v) | S ⊆ N}. The modified least core of (N, v), MLC(N, v), is

defined by

MLC(N, v) = {x ∈ X(N, v) | µ(x, v) + µ(x, v∗) ≤ µ(y, v) + µ(y, v∗) for all y ∈ X(N, v)}.
(2.1)

Hence, ψ(N, v) ∈ MLC(N, v) by definition.

The modiclus has some desirable properties (see Sudhölter (1996, 1997)). E.g., it selects a

member of the core if the game is convex. Also, ψ satisfies the strong null player property,

that is, if (N ′, v′) and (N, v) are games such that N ⊆ N ′ and v′(S) = v(S∩N) (the players

of N ′ \ N are null players), then ψ(N ′, v′)N = ψ(N, v) and ψ(N ′, v′)N ′\N = 0 ∈ R
N ′\N .

The core of (N, v), C(N, v), is defined by

C(N, v) = {x ∈ X(N, v) | x(S) ≥ v(S) for all S ⊆ N}.

A game is balanced if its core is nonempty (see Bondareva (1963) and Shapley (1967)). A

game (N, v) is totally balanced if all subgames (S, v), ∅ �= S ⊆ N , are balanced.

A game (N, v) is exact if for any S ⊆ N there exists x ∈ C(N, v) such that v(S) = x(S).

Finally, we recall the definition of core stability. Let x, y ∈ X(N, v) and ∅ �= S ⊆ N .

Then x dominates y via S if x(S) ≤ v(S) and xi > yi for all i ∈ S. Moreover, x dominates

y if x dominates v via some coalition ∅ �= S ⊆ N . The core of (N, v) is stable if for

3



any y ∈ X(N, v) such that yi ≥ v({i}) (y is an imputation) for all i ∈ N there exists

x ∈ C(N, v) that dominates y. Note that core stability is invariant under adding null

players.

3 The Modiclus for Assignment Games with a Stable

Core

Shapley and Shubik (1972) introduced assignment games. For finite sets S and T an

assignment of (S, T ) is a bijection b : S ′ → T ′ such that S ′ ⊆ S, T ′ ⊆ T , and |S ′| = |T ′| =

min{|S|, |T |}. We shall identify b with {(i, b(i)) | i ∈ S ′}. Let B(S, T ) denote the set of

assignments. A game (N, v) is an assignment game if there exist a partition {P,Q} of N

and a nonnegative real matrix A = (aij)i∈P,j∈Q such that

v(S) = max
b∈B(S∩P,S∩Q)

∑
(i,j)∈b

aij.

Let (N, v) be an assignment game defined by the matrix A on P × Q. As ψ satisfies the

strong null player property and as core stability is invariant under adding null players, we

shall assume in the sequel that |P | = |Q| = p. Also, we shall assume that P = {1, . . . , p}
and Q = {1′, . . . , p′}. Finally, we shall assume that v(N) =

∑
i∈P aii′ .

We say that A has a dominant diagonal if

aii′ = max
j′∈Q

aij′ = max
j∈P

aji′ for all i ∈ P.

According to Theorem 1 of Solymosi and Raghavan (2001) the assignment game (N, v)

has a stable core if and only if A has a dominant diagonal.

Theorem 3.1 If (N, v) is an assignment game with a stable core, then MLC(N, v) ⊆
C(N, v).

Proof: Let (N, v) be an assignment game defined by the P × Q matrix A and let x ∈
X(N, v). Then µ(x, v) ≥ 0. Moreover,

e(P, x, v∗)+e(Q, x, v∗) = v(N)−v(Q)−x(P )+v(N)−v(P )−x(Q) = 2v(N)−x(N) = v(N),

hence µ(x, v∗) ≥ v(N)/2. Now, let A have a dominant diagonal. The proof is complete

as soon as we have shown the following claim:

MLC(N, v) = {x ∈ C(N, v) | µ(x, v∗) = v(N)/2}.
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In order to prove our claim it suffices to find a single preimputation x̃ ∈ C(N, v) that

satisfies µ(x̃, v∗) = v(N)/2. Let x̃ ∈ R
N be defined by x̃i = aii′/2 = xi′ for all i ∈ N .

Then x̃ ∈ X(N, v). Let S ⊆ N . Then

v(S) ≤ min

{ ∑
i∈S∩P

aii′ ,
∑

i′∈S∩Q

aii′

}
,

because A has a dominant diagonal. Hence v(S) ≤ x̃(S) and x̃ ∈ C(N, v). In order to

show that e(S, x̃, v∗) ≥ −v(N)/2 we do not need the property that A has a dominant

diagonal. Let T = {i ∈ S ∩ P | i′ ∈ S} ∪ {i′ ∈ S ∩ Q | i ∈ S}. Then

v(S) ≥ v(S \ T ) + v(T ) ≥ v(S \ T ) +
∑

i∈T∩P

aii′

and hence,

e(S, x̃, v) ≥ e(S \ T, x̃, v) ≥ −x̃(S \ T ) ≥ −
∑
i∈P

aii′

2
= −v(N)

2
.

q.e.d.

Theorem 3.1 shows that the modiclus of an assignment game is a member of the core

provided the game has a stable core.

Note that core stability was not used to prove that µ(x̃, v∗) = v(N)/2. In fact Sudhölter

(2001) shows that µ(x, v∗) = v(N)/2 for any member of the modified least core of an

arbitrary assignment game.

4 The Modiclus for Exact Orthogonal Games

Let (N, v) be a game. Kalai and Zemel (1982) showed that (N, v) is totally balanced if

and only if it is a minimum of finitely many additive games, that is, there exist a finite

sequence (λρ)ρ=1,...,r such that λρ ∈ R
N , ρ = 1, . . . , r, and v(S) = minρ=1,...,r λρ(S) for

all S ⊆ N . In view of the fact that all of our solutions are covariant under strategic

equivalence, we may assume that minρ=1,...,r λρ
i = 0 for all i ∈ N , that is, (N, v) is 0-

normalized. A normalized totally balanced game (N, v) is orthogonal if there is a partition

{Nρ | ρ = 1, . . . , r} of N and λ ∈ R
N
+ such that v(S) = minρ=1,...,r λ(S ∩ Nρ). In this

case we shall assume that λ(N1) ≤ · · · ≤ λ(N r). Also, we shall assume without loss

of generality that λi ≤ λ(N1) = v(N). The pair ({Nρ | ρ = 1, . . . r}, λ) is called a

representation of (N, v). A representation of an orthogonal game is “almost” unique.

Indeed, λ is uniquely determined. Moreover, if (N, v) is not the flat game (that is v(S) = 0

for all S ⊆ N), then the partition is uniquely determined except that a null player may

be a member of any element of the partition.
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Let (N, v) be an orthogonal game and let ({Nρ | ρ = 1, . . . , r}, λ) be a representation of

(N, v).

Remark 4.1 The orthogonal game (N, v) is exact if and only if λ(Nρ) = v(N) for every

ρ = 1, . . . , r. Indeed, if λ(Nρ) = v(N) for all ρ = 1, . . . , r, then (N, v) is exact. In order

to show the opposite direction let (N, v) be exact and let ρ ∈ {1, . . . , r}. Then there exists

x ∈ C(N, v) such that x(N \ Nρ) = v(N \ Nρ) = 0. Hence xi = 0 for all i ∈ N \ Nρ and

xj = λj for all j ∈ Nρ.

Lemma 4.2 If an orthogonal game has a stable core, then it is exact.

Proof: Let (N, v) be an orthogonal game represented by ({Nρ | ρ = 1, . . . , r}, λ). If

(N, v) is not exact, then λ(N r) > v(N). Let α = v(N)
λ(Nr)

and let y ∈ R
N be defined by

yN\Nr = 0 ∈ R
N\Nr

and yi = αλi for all i ∈ N r. Then y(N) = v(N) and yj ≥ 0 for all

j ∈ N . Hence y is an imputation. Assume, on the contrary, that y is dominated by some

x ∈ C(N, v) by some nonempty coalition S. Then λ(S ∩ Nρ) > 0 for every ρ = 1, . . . , r,

because otherwise v(S) = 0. Let Sr = S ∩ N r. Then x(Sr) > y(Sr) = αλ(Sr). Thus,

v(S) > αλ(Sr). Two cases may be distinguished. If v(N \ Sr) = v(N), then

v(N) = x(N) = x(N \ Sr) + x(Sr) > v(N) + αλ(Sr) > v(N),

which is impossible. If v(N \ Sr) < v(N), then v(N \ Sr) = λ(N r \ Sr). Thus,

v(N) = x(N) = x(N \ Sr) + x(Sr) > λ(N r \ Sr) + αλ(Sr) ≥ αλ(N r) = v(N),

which is also impossible. q.e.d.

The following example presents an orthogonal exact game that does not have a stable

core.

Example 4.3 Let N = {1, . . . , 5}, let λ = (2, 1, 1, 1, 1), let N1 = {1, 2}, let N2 = {3, 4, 5}
and let (N, v) be the orthogonal game represented by ({N1, N2}, λ). Then (N, v) is exact.

Moreover, C(N, v) = convh{(2, 1, 0, 0, 0), (0, 0, 1, 1, 1)}, where “convh” denotes “convex

hull”. Let y = (1, 1, 0, 1/2, 1/2). Then y is an imputation. Also, the e(S, y, v) > 0 just

for S = {1, 3, 4} and for S = {1, 3, 5}. Therefore, y is not dominated by any member of

the core.

It should be noted that Example 4.3 may be generalized (see Biswas, Parthasarathy, and

Potters (1999), p. 6).

Theorem 4.4 If (N, v) is an exact orthogonal game, then MLC(N, v) ⊆ C(N, v).
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Proof: Let (N, v) be represented by ({Nρ | ρ = 1, . . . , r}, λ) and let x ∈ X(N, v). Then

µ(x, v) ≥ 0. Moreover,

r∑
ρ=1

e(Nk, x, v∗) = rv(N) − v(N) = (r − 1)v(N) =: rµ∗.

Hence µ(x, v∗) ≥ µ∗. We claim that

MLC(N, v) = {x ∈ C(N, v) | µ(x, v∗) = µ∗}.

In order to prove our claim it suffices to find one x̂ ∈ C(N, v) such that µ(x̂, v∗) = µ∗.

Let x̂ = 1
r
λ. Then x̂ ∈ C(N, v). Let S ⊆ N . It remains to show that e(S, x̂, v) ≥ −µ∗.

Let ρ̂ ∈ {1, . . . , r} be such that v(S) = λ(S ∩ N ρ̂). Let T = (N \ N ρ̂) ∪ (S ∩ N ρ̂). Then

e(S, x̂, v) ≥ e(T, x̂, v), because v(T ) = v(S) and S ⊆ T . However,

e(T, x̂, v) = λ(S∩N ρ̂)−x̂(T ) = λ(S∩N ρ̂)−r − 1

r
v(N)−1

r
λ(S∩N ρ̂) ≥ −r − 1

r
v(N) = −µ∗.

q.e.d.

By Theorem 4.4 and Lemma 4.2, the modiclus is a member of the core of any orthogonal

game that is exact or that has a stable core. Section 7 of Rosenmüller and Sudhölter (2003)

gives some conditions on the representation which guarantee that the modiclus of an exact

orthogonal game coincides with the barycenter x̂ of the involved extreme points of the

core, as defined in the proof of Theorem 4.4. Also, it is shown that ψ(N, v) = ν(N, v) = x̂

if ν(Nρ) = v(N)/r for all ρ = 1, . . . , r.

Remark 4.5 Let (N, v) be an exact orthogonal game represented by ({N1, N2}, λ) and

let x̂ ∈ R
N be defined as in the proof of Theorem 4.4, that is, x̂ = λ/2. Let S ⊆ N . Then

minρ=1,2λ(S ∩ Nρ) + maxρ=1,2 λ(S ∩ Nρ) = λ(S). Also,

e(N \ S, x̂, v) = min
ρ=1,2

(λ(Nρ) − λ(S ∩ Nρ)) − x̂(N) + x̂(S) = x̂(S) − max
ρ=1,2

λ(S ∩ Nρ).

Hence e(S, x̂, v) − e(N \ S, x̂, v) = 2x̂(S) − λ(S) = 0. Hence, the excess of any coalition

coincides with the excess of the complement coalition. It is straightforward to deduce that

this fact implies that ν(N, v) = ψ(N, v) = x̂.

Remark 4.6 Solymosi and Raghavan (2001) show that every exact assignment game has

a stable core. Hence, for every assignment game and every orthogonal game the modiclus

selects a member of the core provided the game is exact or it has a stable core. In Section

5 it is shown that these results cannot be generalized to arbitrary exact games with a stable

core.
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5 The Modified Least Core of an Exact 16-Person

Game

By means of an example we show that there is an exact TU game with a stable core that

does not contain the modiclus.

Let N = {1, . . . , 16} and let

N1 = {1, 2, 3}, N2 = {4, 5, 6}, N3 = {7, . . . , 16},

S1 = {1, 2, 4}, S2 = {1, 3, 5}, S3 = {2, 3, 6},

T 1 = {1, 5, 6}, T 2 = {2, 4, 5}, T 3 = {3, 4, 6}.

We shall now define a nonempty compact polyhedral set C ⊆ R
N which will turn out to

be the core of an exact game: Let x ∈ R
N . Then x ∈ C iff

x(S) ≥ −27 for all S ⊆ N, (5.1)

xi ≥ −1 for all i ∈ N1, (5.2)

xj ≥ −3 for all j ∈ N2, (5.3)

x(Sk) ≥ 1 for all k ∈ N1, and (5.4)

x(N) = 0. (5.5)

Indeed, C is a closed polyhedral set. Moreover, it is compact (see (5.1) and (5.5)) and

nonempty. Let r be the number of extreme points of C and let λρ, ρ = 1, . . . , r, denote

the extreme points. Then C = convh({λρ | ρ = 1, . . . , r}). Define (N, v) by

v(S) = min
ρ=1,...,r

λρ(S) for all S ⊆ N.

Then (N, v) is exact (by (5.5)) and C(N, v) = C. In order to show that (N, v) has a stable

core it suffices to verify that C is large, that is, if y ∈ R
N satisfies y(S) ≥ v(S) for all

S ⊆ N , then there exists λ ∈ C such that λ ≤ y. Indeed, according to Sharkey (1982) the

core of a game is stable if it is large.

Lemma 5.1 The game (N, v) has a large core.

Proof: Let y ∈ R
N satisfy y(S) ≥ v(S) for all S ⊆ N . Let X denote the set of vectors

x ∈ R
N that satisfy (5.1) – (5.4), x(N) ≥ 0, and x ≤ y. Then X is nonempty (because

y ∈ X) and polyhedral. Hence X is compact. Let x̂ ∈ X be such that

x̂(N) ≤ x(N) for all x ∈ X. (5.6)
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It remains to show that x̂ ∈ C, that is, x̂(N) = 0. Assume, on the contrary, that x̂(N) > 0.

Denote N− = {i ∈ N | x̂i ≤ 0}. We first claim that

N3 ⊆ N− and x̂(N−) = −27. (5.7)

Eq. (5.7) is shown by contradiction. If � ∈ N3 \ N−, then there exists ε > 0 such that

x̂ − εχ{�} ∈ X. (χS ∈ R
N denotes the indicator function of S ⊆ N .) If x̂(N−) > −27,

then there exists ε > 0 such that x̂ − εχ{�} ∈ X for every � ∈ N3. Hence, both cases are

in contrast to Eq. (5.6).

Now the proof can be completed. By Eq. (5.7) and the assumption that x̂(N) > 0 there

exists S ⊆ N1 ∪ N2 such that x̂(S) > 27. We now claim that x̂i ≤ 5 for all i ∈ N1 and

x̂j ≤ 3 for all j ∈ N2. Indeed, if x̂i > 5 for some i ∈ N1, then, in view of (5.2) – (5.4),

there exists ε > 0 such that x̂− εχ{�} ∈ X. A similar argument is valid if x̂j > 3 for some

j ∈ N2. Both cases contradict Eq. (5.6). Hence, x̂(S) ≤ 3 · 5 + 3 · 3 = 24 < 27 for all

S ⊆ N and the proof is complete. q.e.d.

It remains to verify the following result.

Lemma 5.2 0 ∈ R
N is the unique member of the modified least core of (N, v).

We postpone the proof of Lemma 5.2 and shall first, in order to determine the value of

some coalitions, define 74 vectors of C as follows. For every k ∈ N1 and � ∈ N3 let

λ0, λSk

(3 elements), λk� (30 elements), λT k� (30 elements), λ� (10 elements)

be defined by

λ0 =
(
− 1,−1,−1, 3, 3, 3,−3

5
, . . . ,−3

5︸ ︷︷ ︸
10 times

)
,

λSk

i =



2 , if i ∈ Sk ∩ N1,

−3 , if i ∈ Sk ∩ N2,

−1 , if i ∈ N1 \ S1

0 , if i ∈ (N2 \ Sk) ∪ N3,


,

e.g., λS1

= (2, 2,−1,−3, 0, 0, 0, . . . , 0︸ ︷︷ ︸
10 times

),
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λk�
i =



9 , if i ∈ {k, 7 − k},

−1 , if i ∈ (N1 ∪ N2) \ {k, 7 − k},

−23 , if i = �

1 , if i ∈ N3 \ {�},


,

e.g., λ1 7 = (9,−1,−1,−1,−1, 9,−23, 1, . . . , 1︸ ︷︷ ︸
9 times

),

λT k�
i =



6 , if i ∈ T k,

−1 , if i ∈ (N1 ∪ N2) \ T k,

−24 , if i = �

1 , if i ∈ N3 \ {�},


,

e.g., λT 17 = (6,−1,−1,−1, 6, 6,−24, 1, . . . , 1︸ ︷︷ ︸
9 times

),

λ�
i =



−1 , if i ∈ N1,

6 , if i ∈ N2,

−24 , if i = �

1 , if i ∈ N3 \ {�},


,

e.g., λ7 = (−1,−1,−1, 6, 6, 6,−24, 1, . . . , 1︸ ︷︷ ︸
9 times

).

It is straightforward to check that these 74 vectors are members of C. Also, a careful

inspection of the definitions of λ0 and λSk
shows that v(S) ≤ 1 for all S ⊆ N , that

v(Sk) = 1 for all k ∈ N1, and that

D = {S ⊆ N | v(S) ≥ v(T ) ∀ T ⊆ N}
is given by D = {S1, S2, S3}.
Let (N, v∗) be the dual game. As (N, v) is exact, v∗ is given by

v∗(S) = max
ρ=1,...,r

λρ(S) for all S ⊆ N.

We conclude that v∗(S) ≤ 27 for all S ⊆ N . Let

D(N, v∗) = {S ⊆ N | v∗(S) ≥ v∗(T ) ∀ T ⊆ N}(= {S ⊆ N | v(S) = 27}).
A careful inspection of the definitions of λk�, λT k� and λ� shows that D∗, defined by

D∗ =
{
(N3\{�})∪P

∣∣∣� ∈ N3 and
(
(P ={k, 7−k} or P =T k for some k ∈ N1) or P =N2

)}
10



satisfies D∗ ⊆ D(N, v∗).

We shall now repeat an useful characterization of the modiclus by “balanced collections

of pairs of coalition”. Let M be a finite nonempty set. A finite nonempty set Z ⊆ R
M is

called balanced if there exist αz > 0, z ∈ Z, such that
∑

z∈Z αzz = χM .

Theorem 5.3 (Sudhölter (1997), Theorem 2.2) Let (M,w) be a game and let x ∈
X(M,w). Then x = ψ(M,w) if and only if for every β ≤ µ(x,w) + µ(x,w∗) the set

Z(β, x, w) = {χS + χT | S, T ⊆ M, eb(S, T, x, w) ≥ β} (5.8)

is balanced.

Moreover, the shall apply the following simple remark (Sudhölter (1997), Remark 2.8).

Remark 5.4 Let Z be a balanced subset of R
M and z ∈ R

M . If z is in the linear span of

Z, then Z ∪ {z} is balanced.

Proof of Lemma 5.2:

Step 1: First we shall show that ψ(N, v) = 0. Let Z = {χS + χT | S ∈ D, T ∈ D∗}.
Then Z is a subset of Z(µ(0, v) + µ(0, v∗), 0, v) defined by Eq. (5.8). In view of Theorem

5.3 and Remark 5.4 it suffices to show that

(1) Z spans R
N ;

(2) Z is balanced.

ad (1): The set

{χS1 + χT | T ∈ D∗, N3 \ T = {7}} ∪ {χS1 + χT | T ∈ D∗, N2 ⊆ T}

is a basis of R
N and it is contained in Z.

ad (2): Let π be any permutation of N such that

π(1) = 2, π(2) = 3, π(3) = 1, π(6) = 5, π(5) = 4, and π(4) = 6.

Then π is a symmetry of (N, v) and of D∗. Hence, in order to verify (2), it suffices to

show that the set Z̃ ⊆ R
3, defined by

Z̃ = {(zχN1 , zχN2 , zχN3) | z ∈ Z},

11



satisfies the following condition: There exist αz̃ > 0, z̃ ∈ Z̃, such that∑
z̃∈Z̃

αz̃ z̃ = (|N1|, |N2|, |N3|) = (3, 3, 10).

If S ∈ D, then (|S ∩ N1|, |S ∩ N2|, |S ∩ N3|) = (2, 1, 0). Moreover,

{(|T ∩ N1|, |T ∩ N2|, |T ∩ N3|) | T ∈ D∗} = {(1, 1, 9), (1, 2, 9), (0, 3, 9)}.

Hence,

Z̃ = {(3, 2, 9), (3, 3, 9), (2, 4, 9)}.
Now,

6 · (3, 2, 9) + (3, 3, 9) + 3 · (2, 4, 9) = 9 · (3, 3, 10),

hence our Claim is shown.

Step 2: Let x ∈ MLC(N, v). It remains to show that x = 0. By Eq. 2.1 and Step 1,

µ(x, v) + µ(x, v∗) = µ(0, v) + µ(0, v) = 1 + 27. Let αz > 0, z ∈ Z(28, 0, v), be such that∑
z∈Z(28,0,v) αzz = χN . Then ∑

z∈Z(28,0,v)

x · z = x(N) = 0.

Here · denotes the scalar product. Hence e(S, x, v)+e(T, x, v) = 28 for all S ∈ D, T ∈ D∗.

Consequently, x · z = 0 for all z ∈ Z(28, 0, v). By Step 1, (2), x = 0. q.e.d

We conclude that ψ = ψ(N, v) = 0 ∈ R
N . However, 0 /∈ C(N, v).

Remark 5.5 Let

x =
( 1

3
, . . . ,

1

3︸ ︷︷ ︸
6 times

,−1

5
, . . . ,−1

5︸ ︷︷ ︸
10 times

)
.

Then x ∈ C(N, v) and x(Sk) = v(Sk) = 1 for k ∈ N1. Hence x dominates ψ via any of

the coalitions Sk of positive excess.
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