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Abstract
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1. Introduction

Money market funds (MMF) issue liabilities which are redeemable on demand and promise a high

degree of principal stability, providing investors with an alternative to traditional bank deposits.

The financial crisis of 2007/08 highlighted that this issuance of ‘money-like’ (or ‘bank deposit-

like’) liabilities outside the regulatory safety net provided to traditional banks makes money market

funds susceptible to runs.1 After the financial crisis, reforms were adopted in both the United

States and the European Union with the goal of making money market funds less run-prone. A key

element of these reforms is that money market funds can/ought to take various measures if they run

low on liquid assets. Specifically, money market funds can suspend convertibility (also referred to

as ‘gates’) and charge fees on withdrawals.2

In this paper, I study whether fees and gates are effective tools to eliminate the first-mover ad-

vantage in redemptions, thus fulfilling the goal of making money market funds less susceptible to

runs.3 I put particular emphasis on the possibility of deposit-access panics à-la Engineer (1989)

which are run equilibria where depositors (MMF investors) withdraw preemptively even though

they know that they will never incur credit losses on their deposits (MMF shares). Depositors run

because they correctly anticipate that, if many others withdraw, they might not be able to access

their deposits in the future at the specific point in time when they need to, or they may only be

able to withdraw if they pay a redemption fee. Both gates and redemption fees can give rise to

deposit-access panics.

I study runs on a single intermediary (MMF) which acts as a social planner (or mechanism de-

signer) distributing asset returns to a continuum of depositors. Depositors experience idiosyncratic,

privately observed liquidity shocks. They arrive at the MMF sequentially and need to be served on

the spot. The setting is a simplified version of the Engineer (1989) model, which is essentially a Di-
1In the days after the Lehman bankruptcy in September 2008, money market mutual funds in the United States expe-
rienced a modern-day bank run. See Schmidt et al. (2016) for a detailed account of the episode.

2SEC (2014) provide a detailed description of the US regulation, adopted in 2014. Gesley (2018) provides a useful
summary of the EU regulation, adopted in 2017. With regard to fees and gates, the two regulations are similar in
spirit but there are also important differences. For instance, in the US, it is never mandatory for money market
mutual funds to impose fees or gates. In the EU, money market funds are obliged to impose fees or gates under
certain conditions.

3The regulator clearly seems to believe that this is the case. For instance, recital 48 of the EU regulation (Regulation
(EU) No 1131/2017) states that "[..] MMFs should have in place provisions for liquidity fees and redemption gates
to ensure investor protection and prevent a ‘first mover advantage’".
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amond and Dybvig (1983) model with one additional period. The model-intermediary resembles a

money market fund with stable net asset value (NAV) shares although the analysis should also have

relevance for flexible NAV funds.4 The focus of this paper is on unique implementation of the first

best allocation. I study whether the fund can augment its demandable debt contracts with fees and

gates- clauses in such a way as to implement first best without admitting for other (run-) equilibria.

Runs are modelled as purely self-fulfilling events (‘panics’) in the absence of any fundamental risk.

The MMF’s investments are riskfree and aggregate liquidity needs of depositors are known.5

Since the fund is modelled as a social planner, the interests of the fund do not deviate from the

interests of the depositors or of society at large. The question whether MMFs should be obliged

to impose fees or gates is therefore outside the scope of this paper. In any case, before studying

whether the regulator should mandate the use of gates or redemption fees, it is important to know

if and how a benevolent money market fund can prevent runs with these tools.

It is useful to frame the analysis in terms of two types of run equilibria that can occur in an Engi-

neer setting without fundamental risk. The first type of run equilibrium is the classical Diamond-

Dybvig type panic which can occur if the MMF pays out redeeming depositors by liquidating assets

while imposing the liquidation losses on depositors who remain in the fund. Restrictingwithdrawals

if the fund runs low on liquid assets (e.g. by imposing fees or gates) can help to prevent Diamond-

Dybvig type runs. For the model-fund studied in this paper, imposing such restrictions if liquid

assets are exhausted will be necessary to eliminate Diamond-Dybvig type run equilibria. The other

type of run equilibrium that can occur in the Engineer setting are deposit-access panics, which are

unrelated to liquidation losses or indeed any credit losses incurred by depositors. The difficulty is

that the restrictions on withdrawals that help to eliminate Diamond-Dybvig type panics can give

rise to deposit-access panics. The question is then whether a MMF can use fees and gates in such

a way as to eliminate both types of run equilibria simultaneously.

4An important part of both the US and EU regulation is that the use of stable net asset value (NAV) shares has been
restricted (in the US more so than in the EU). This paper focuses on the ‘fees and gates’ part of the regulations and
does not address the difference between flexible and stable NAV funds. In the EU, the ‘fees and gates’ provisions
apply only to stable NAV and low volatility NAV funds (a hybrid between stable and flexible NAV). In the US, they
apply to flexible NAV (prime-) funds while stable NAV (government-) funds can opt into them.

5Abstracting from fundamental risk is a simplification that helps to focus on the aspects most relevant for this paper.
Empirically it is hard to disentangle the effect of fundamental risk from coordination failure in financial crises (see
for instance the survey in Goldstein (2013)).
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The results in this paper suggest that fees and gates of the sort introduced into the US and EU

regulations are effective in eliminating run equilibria if either the fund’s assets are relatively liquid

or if depositors’ liquidity preference is not very strong. The results also suggest that, if used in the

way intended in the US and EU regulations, fees and gates will not be effective in preventing runs

on all funds, notably on funds whose assets are relatively illiquid.

Regulators in both the US and the EU prescribe a narrow role for redemption fees as a means

to ensure that depositors who redeem from a fund internalize the liquidation losses which the fund

incurs by paying them out.6 The results in this paper suggest that redemption fees used in this

manner can only prevent runs if the fund’s assets are relatively liquid. If a fund keeps paying

out depositors even though liquid assets are depleted, a necessary condition to prevent Diamond-

Dybvig type runs is that the fund charge redemption fees which are high enough to ensure that

redeeming depositors internalize liquidation losses. If the fund’s assets are relatively illiquid, the

fee required to prevent Diamond-Dybvig type runs is so high that even depositors who experience

a liquidity shock in the given period are not willing to pay it. Such a prohibitively high fee will then

give rise to deposit-access panics.

On the positive side I show that, independent of asset liquidity, funds can always eliminate run

equilibria in the present setting by using fees and gates in the right manner. I show how redemption

fees can be combined with gates to implement a redistribution among depositors that incentivizes

depositors (off the equilibrium path) to remain in the fund if others run. Used in this manner, fees

and gates can prevent run equilibria without ever resorting to asset liquidations. In sum, the results

suggest that fees and gates are powerful tools to prevent runs but it may be necessary to give MMFs

more flexibility in how they can use them.7

Related Literature This paper is most closely related to a recent theoretical literature ex-

amining the effect of redemption fees and/or gates on investors’ propensity to run on a bank or a

fund. Cipriani et al. (2014) and Lenkey and Song (2016) study settings in which the fundamental
6Both the US and the EU regulation allow MMFs to charge redemption fees if (and only if) their liquid assets drop
below a certain threshold. In the US, the redemption fee is limited to 2%. In the EU there is no explicit ceiling
on the redemption fee but the fee should "[..] adequately reflect the cost to the MMF of achieving liquidity and
ensure that investors who remain in the fund are not unfairly disadvantaged when other investors redeem their units
or shares during the period." (See article 34(1) of Regulation (EU) No 1131/2017).

7For instance, the wording in recital 48 of Regulation (EU) No 1131/2017 seems to rule out explicitly the use redemp-
tion fees as a means to implement a redistribution among depositors.
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return to the bank’s investment is uncertain, with some depositors being better informed about the

true return than others. In Cipriani et al. (2014) granting a bank the possibility to impose fees or

gates can increase informed investors’ propensity to withdraw preemptively once they learn that

uncertainty about asset returns has increased. In Lenkey and Song (2016) redemption fees af-

fect uninformed investors’ signal extraction problem in which they try to infer the success of the

bank’s investment by observing withdrawals of other (informed) investors. Whether redemptions

fees increase or decrease the propensity to run is ambiguous. Zeng (2017) studies runs on a fund

that invests in illiquid but fundamentally riskfree assets and that issues shares with a flexible NAV.

Early redemptions require the fund to rebuild its cash-buffer in the future, leading to predictable

liquidation losses in the future caused by redemptions today. Despite the flexible NAV, withdrawal

decisions can therefore be strategic complements. Fees and gates reduce (but not eliminate) run

risk by making early redemptions more costly (fees) or more difficult (gates). Finally, Ennis and

Keister (2009a, 2010) show that imposing gates may not be optimal ex-post and the effectiveness of

gates in preventing runs is severely limited if the bank or the regulatory authority cannot credibly

commit to take measures that hurt depositors ex-post.

Compared to the papers mentioned above the present paper highlights that fees and gates can be

useful to eliminate Diamond-Dybvig type panic equilibria but, by compromising depositors’ ability

to withdraw their deposits at the specific point in time when they need to, they can lead to deposit-

access panics. This paper abstracts from many other aspects that are relevant when studying the

effectiveness of fees and gates to prevent runs and, in this sense, should be seen as complementary

to the papers listed above.

More broadly, this paper is part of a literature that studies panic equilibria in settings with risk-

free investment returns where the bank is required to follow sequential service when paying out

depositors. This literature has largely focused on the case with two types of depositors (‘patient’

and ‘impatient’) and with uncertainty regarding aggregate liquidity needs. Good summaries can

be found in Ennis and Keister (2009b) and Andolfatto et al. (2017). In models with sequential ser-

vice and unknown aggregate liquidity needs, the efficient payout schedule may feature decreasing
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payouts.8 One way to implement the efficient payout schedule would be to charge progressively

increasing redemption fees. The role of the decreasing payout schedule in this class of models is

fundamentally different than in the present model however; in the present model, redemption fees

are a means to prevent multiple equilibria and, in the efficient allocation, are only charged off the

equilibrium path.9

2. The Model

The economy lasts for three periods t � 1, 2, 3 and is endowed with three (infinitely divisible)

assets: a ‘1-asset’ that pays out an amount 1
3
of the consumption good at date 1, a ‘2-asset’ that

pays out 1
3
at date 2, and a ‘3-asset’ that pays out 1

3
at date 3. There is a unit measure of ex-ante

identical depositors. Ex post, each depositor turns out to be of type 1,2 or 3 with probability 1
3

each. A depositor of type t wants to consume most at date t. Payoffs equal c1 � δc2 � δ2c3 for

type 1 depositors, c2 � δc3 for type 2 depositors and c3 for type 3 depositors, where ct denotes

consumption in period t and δ P p0, 1q represents liquidity preference. The lower δ, the higher

liquidity preference. At date 1, depositors privately learn whether they are type 1 or not. At date

2, depositors who are not type 1 privately learn whether they are of type 2 or 3. Denote by Θt the

collection of information sets with regard to the own type at date t. We have Θ1 � t1, not1u and

Θ2 � Θ3 � t1, 2, 3u. In the aggregate, by a law of large numbers, 1
3
of depositors will be of type

1, 1
3
of type 2 and 1

3
of type 3.10

There is an intermediary (‘fund’) that acts as a social planner (or mechanism designer) distribut-

ing asset returns to depositors. Depositors can only communicate with the fund; they cannot com-

municate or trade with each other and they do not observe any actions taken by other depositors.

When distributing asset returns to depositors, the fund is restricted to follow sequential service, as

will be described in detail below. The fund can liquidate assets prematurely, which yields a fraction

λ P p0, 1q of the final return of the asset. For simplicity, I assume that (i) the liquidation return is

8See for instance Green and Lin (2003) and Peck and Shell (2003). Offering lower payouts for depositors who show
up late in the queue has sometimes been referred to as partial suspension, a term coined by Wallace (1990).

9I thank an anonymous referee for pointing out this difference.
10There are well known technical problems with the law of large numbers in continuum economies. See Al-Najjar

(2008) for a discussion of measurability issues in continuum-player games.
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the same whether an asset is liquidated one or two periods before maturity and (ii) whenever the

fund liquidates assets at date 1, it liquidates the 2- and 3-asset in equal amounts.11 The fund can

store the consumption good across periods at no cost. Depositors can store the consumption good

across periods as well but they incur a one-time fixed cost κ ¡ 0 of accessing the storage facility.12

First-best First-best is defined as the allocation that maximizes the expected payoff of depos-

itors subject to the economy’s resource constraint, under the restriction that all depositors of the

same type must get the same payoff. It is not hard to see that the first-best allocation is to give each

depositor of type t one unit at date t and nothing in other periods. This implies that in first-best, the

entire date 1 return (or ‘cash-flow’) is paid to type 1 depositors, the entire date 2 cash-flow is paid

to type 2 depositors, and the entire date 3 cash-flow to type 3 depositors.

Sequential Service Sequential service is modelled in a similar fashion as in Ennis and Keister

(2010), with some adaptations. In each period, the depositors who choose to withdraw from the

fund arrive at the fund sequentially and the fund needs to pay them out on the spot. Depositors

who choose not to withdraw from the fund stay at home in the given period and do not contact the

fund. Showing up at the fund is therefore equivalent to withdrawing from the fund. Since payments

need to be made on the spot, the payment to a depositor that shows up at the fund can only be made

contingent on the number of depositors that showed up at the fund so far (within the same period

and in previous periods) but not on withdrawal orders of depositors who arrive later in the queue.

The payout policy specifies for date 1 a function f1 : r0, 1s ÞÑ R�YtSu, where f1pzq is the payment

to the zth depositor to show up at the fund in period 1. Setting fp�q � S means that convertibility

is suspended. A depositor who shows up at the fund at date 1 with arrival point z receives f1pzq

and cannot show up again in future periods. The depositor then either consumes f1pzq or stores the

good for future consumption, incurring the storage fixed cost κ. The only exception is if the fund

has suspended convertibility: if a depositor arrives at the fund with arrival point ẑ and the payout

policy is such that f1pẑq � S, then the depositor receives nothing and can show up again in future

periods.
11Alternatively one could assume that the liquidation returns of the 2-asset and the 3-asset at date 1 are different, with

an average liquidation return of λ, and the fund can choose which asset to liquidate. This would slightly complicate
the analysis without affecting any of the main results.

12The fixed cost κ captures the cost of withdrawing ‘too early’ from the fund. This may stand for transaction- or search
costs of changing to a different fund or bank, foregone return if deposits are withdrawn early, etc.
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Denote z1 as the total number (measure) of depositors that withdraw at date 1. The number of

depositors left in the fund at date 2 equals 1� z1. Analogous to date 1, the payout policy specifies

for date 2 a function f2pz; z1q which maps r0, 1 � z1s into R� Y tSu. As before, f2pz; z1q is the

payment made to the zth depositor to show up in period 2. The date 2 payment schedule f2pzq

can be made contingent on total date 1 withdrawals z1. Denoting z2 as total withdrawals at date

2, the payout policy finally specifies a function f3pz; z1, z2q, where f3pzq is the payment to the zth

depositor to show up in period 3. The date 3 payment schedule f3pzq can bemade contingent on total

withdrawals at dates 1 and 2 (z1 and z2). The entire payout policy is then given by f � pf1, f2, f3q.

The payout policy can in principle be such that the fund’s resource constraint is violated if too

many depositors show up. If a depositor shows up at the fund and the fund does not have the

resources necessary to make the payment specified in the payout policy, then the fund defaults and

all depositors which are still in the fund receive nothing.13 Depositors know the structure of the

game and are thus aware of the fund’s resource constraint.

Withdrawal Game and Equilibrium Given the payout policy f � pf1, f2, f3q, depositors

choose their withdrawal strategy in a non-cooperative game. At the beginning of each period, the

depositors who are still in the fund (those who did not withdraw in previous periods) wake up in

a random order. The wake-up-order at date t is captured by an index it that is randomly allocated

to all depositors who are still in the fund at date t. The date 1 indices are given by i1 P r0, 1s,

date 2 indices by i2 P r0, 1 � z1s and date 3 indices by i3 P r0, 1 � z1 � z2s. Each depositor who

is still in the fund at date t is allocated each position in the corresponding interval with identical

probability, independent of the depositor’s type and independent of the indices in previous periods.

Depositors do not observe their own index it or any indices allocated to other depositors.14 Upon

waking up, a depositor sees how much she can withdraw from the fund, and she has two actions

available: ‘withdraw’ (which is equivalent to ‘go to fund’) or ‘not withdraw’ (which is equivalent

to ‘stay at home’). Hence in any given period t, the depositors with the lowest indices it are first

to decide whether to withdraw, after which those with higher indices follow, etc. This implies that,

in every period, the arrival point z of a depositor will be weakly lower than her index it. If some
13Conversely, if the fund has consumption good left after everybody withdrew, the leftover amount is lost.
14It is possible that the fund could set its payout policy such that the indices are revealed to depositors. This will not

play a role in the following analysis however.
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depositors with lower indices decide not to withdraw, the arrival point will be strictly lower than

the index.

The position in the wake-up-order is similar to the ‘position in the queue’ common in bank run

models. Indeed, the setting here is isomorphic to a setting where (i) depositors first decide whether

or not to go the fund; (ii) the depositors who go to the fund arrive at the fund in a random order and

(iii) once a depositor arrives at the fund and sees how much she can withdraw, she decides whether

or not to withdraw.

When making the withdrawal decision, a depositor’s information set consists of four elements:

(i) the time period; (ii) the information about the own type; (iii) the amount that can be withdrawn

from the fund and (iv) the observed history of events up to this point. Depositors do not observe any

actions taken by other depositors. The observed history is the history of amounts which a depositor

could have withdrawn in previous periods. For instance, a depositor who is still in the fund at date

2 knows how much she could have withdrawn at date 1. The observed history may in principle

give depositors information about how many other depositors withdrew from the fund in previous

periods, as well as information about their own indices it in previous periods.15

A depositor’s behavior strategy maps her information sets into probability distributions over the

two possible actions ‘withdraw’ and ‘not withdraw’. To streamline notation, I denote by stpx, yq a

depositor’s withdrawal strategy given that she finds herself in period t, the information about her

own type is x, and the fund pays an amount y if she withdraws. The function st then prescribes

behavior at date t for any observed history up to point t, given (x, y). As we shall see, this is without

loss of generality (see also footnote 15). Denote Rpftq as the range of ft, that is, Rpftq is the set

of payments which the fund may potentially offer to a depositor at date t. The date t strategy st is

then given by

st :

information
about the
own typehkkikkj

Θt �

amount that
can be withdrawn

from fundhkkikkj
Rpftq ÞÑ ∆t‘withdraw’, ‘not withdraw’u (1)

15Note however that there is no risk on the aggregate level so that play on the aggregate level proceeds in a deterministic
fashion for any strategy profile. The only information depositors effectively learn from the observed history relates
to the indices it they were allocated in previous periods. This is unrelated to future indices and thus does not convey
any payoff-relevant information.
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where ∆ is the simplex of the pure strategy set. A depositor’s (behavior) strategy is given by

s � ps1, s2, s3q. Note that payoffs depend only on the aggregate behavior of other depositors,

not on actions by individual other depositors. Since there is no risk on the aggregate level, play

proceeds in a deterministic fashion on the aggregate level for any strategy profile s. Each player

thus essentially plays against a deterministic continuum.

Throughout the paper I will limit attention to symmetric equilibria in which all depositors choose

the same strategy s. An equilibrium is defined to be a strategy s� such that (i) s�maximizes each de-

positor’s expected payoff given that all others play s� and (ii) s� is sequentially rational in the sense

that depositors do not play strategies that are strictly dominated conditional on their information

set having been reached. The equilibrium refinement in (ii) concerns behavior in information sets

off the equilibrium path and corresponds to the restriction on off-equilibrium behavior imposed by

the weak perfect Bayesian equilibrium concept. I will sometimes be a bit loose in the terminology

and say that a strategy is ‘strictly dominated’ if it violates requirement (ii).

The remainder of the paper will be concerned with finding payout policies f that uniquely im-

plement first-best; more precisely, payout policies f which are such that all equilibria s� of the

withdrawal game under payout policy f implement first-best. Implementing first best requires that

depositors withdraw from the fund only at the date that corresponds to their type. A run equilibrium

denotes an equilibrium of the withdrawal game in which a strictly positive measure of depositors

withdraw from the fund at a date that does not correspond to their type.

Implementing first-best requires that the fund pay one unit to the type 1 depositors who show

up at date 1. Consider now a payout policy where the fund pays out one unit to everybody who

shows up at the fund at date 1, that is, the fund sets f1pzq � 1 for all z ¤ 1. If all depositors play

‘withdraw’ at date 1 irrespective of their type, the fund defaults during date 1 and depositors who

do not withdraw at date 1 receive nothing. Given that all other depositors play ‘withdraw’ at date

1 irrespective of their type, doing the same is the best response and the withdrawal game exhibits

a run equilibrium. Put differently, if the fund never imposes restrictions on withdrawals, it will be

susceptible to runs. In the remainder of the paper, I examine if and how fees and gates -clauses can

be used to implement first-best as the unique equilibrium of the withdrawal game.
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3. Gates and Fees

The new regulatory provisions in the US and the EU allow/mandate MMFs to impose fees or gates

if (and only if) liquid assets fall below some threshold.16 In this section, I first study payout policies

that capture gates (section 3.1) and fees (section 3.2) as they are available to MMFs in the new

regulatory framework. I show under which circumstances such payout policies can eliminate run

equilibria. I then derive a relatively simple payout policy involving both fees and gates that can

always eliminate run equilibria in the current setting(section refsubsectioncombinedpolicy).

3.1. Gates (Suspension of Convertibility)

Consider the following payout policy (dubbed suspension policy) in which the fund suspends con-

vertibility until the next period once liquid assets are depleted:17

ft
�
z; pztq

t�1
j�1

�
�

$'''&
'''%

1 if z ¤ 1
3 t�

t�1°

j�1

zj

S otherwise

for t � 1, 2, 3 (2)

The suspension policy (2) satisfies the fund’s resource constraint for all profiles of withdrawal strate-

gies. Furthermore, the policy implements the first-best allocation if all depositors withdraw at the

date that corresponds to their type. It is not hard to see that there are equilibria of the withdrawal

game that implement first-best. In particular, type 2 and 3 depositors have no incentive to withdraw

early if no other type 2- and 3 depositors do so.

As shown by Engineer (1989), the withdrawal game under suspension policy (2) can exhibit run

equilibria. To see why, consider a scenario where all depositors try to withdraw from the fund at

date 1 independent of their type (that is, all depositors play s1p�, 1q �‘withdraw’). In this scenario,

only the depositors with indices i1 ¤ 1
3
can actually withdraw from the fund at date 1. Hence a

measure 2
3
of depositors will be left in the fund at date 2. Since the position in the line at date 1

(the index i1) is independent of depositors’ types, 1
3
of the depositors left in the fund at date 2 will

16In both the US and the EU, liquid assets are (roughly speaking) defined as assets maturing within one week, with
special provisions for government assets. The EU regulation additionally requires that net daily redemptions from
the fund be above a certain threshold for fees/gates to be activated.

17In the US, funds can impose gates for up to 10 working days, in the EU for up to 15 working days.
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be of type 1, 1
3
of type 2 and 1

3
of type 3. Both type 1 and 2 depositors value consumption at date

2 higher than consumption at date 1 and will therefore again play ‘withdraw’ at date 2. (Playing

s2p1, 1q � s2p2, 1q �‘withdraw’ is strictly dominant.) This means that the measure of depositors

that try to withdraw at date 2 equals 2
3

�
1
3
� 1

3

�
� 4

9
. Since the fund suspends convertibility after a

measure 1
3
of depositors have shown up at date 2, only a fraction 1

3

�
4
9

��1
� 3

4
of the type 1 and 2

depositors left in the fund at date 2 can withdraw at date 2. Figure (1) illustrates a run on the fund

at date 1 under the suspension policy. A run at date 1 leads to a backlog of type 1 depositors left in

the fund at date 2 which implies that too many depositors will try to withdraw at date 2 relative to

the fund’s date 2 cash-inflow. The fund will therefore again have to suspend convertibility at date

2. As a result, some of the type 1 and 2 depositors left in the fund at date 2 will not be able to

withdraw at date 2.

Figure 1: Runs under a suspension policy

Consider now the decision of an individual non-type 1 depositor whether or not to participate in

the run at date 1, given that all others run. If the depositor remains in the fund, she will turn out

to be of type 3 with probability 1
2
. All type 3 depositors can withdraw 1 unit at date 3 and hence

get a payoff of 1. With probability 1
2
she will turn out to be type 2. In this case, she will be able to

withdraw 1 unit at date 2 with probability 3
4
. With probability 1

4
, she can only withdraw at date 3,

in which case she receives a payoff of δ. The expected payoff for a type 2 depositor left in the fund

at date 2 thus equals 3
4
� 1

4
δ. Putting this all together, the expected payoff of not participating in

the run at date 1 (i.e. staying in the fund until date 2 if all others run) for a non-type 1 depositor
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equals:

1

2

expected
payoff type 2hkkkkkikkkkkj�
3

4
�

1

4
δ



�

1

2

payoff
type 3hkkikkj

1 �
7

8
�

1

8
δ

Consumption of a non-type 1 depositor who withdraws 1 unit at date 1 equals 1�κ. It follows that

participating in the run is the best response iff:

payoff of
withdrawing

earlyhkkikkj
1� κ ¥

expected payoff of
staying in fundhkkikkj

7

8
�

1

8
δ (3)

Rewriting condition (3) yields δ ¤ 1 � 8κ. If this condition is fulfilled, then payout policy (2)

does not implement first-best as the unique equilibrium of the withdrawal game since the withdrawal

game exhibits a run equilibrium where all depositors play ‘withdraw’ at date 1 irrespective of their

type. It is not difficult to show that the converse is also true: if 1�8κ   δ, then the withdrawal game

does not exhibit a run equilibrium and first-best is uniquely implemented. We get the following

proposition whose full proof is given in appendix A:

Proposition 3.1. The suspension policy (2) uniquely implements first-best if and only if δ ¡ 1�8κ.

3.2. Fees

Consider now the following payout policy (dubbed fee policy) in which the fund charges a fee τ

(modelled as a haircut) on withdrawals after liquid assets are depleted:

ft
�
z; pztq

t�1
j�1

�
�

$'''&
'''%

1 if z ¤ 1
3 t�

t�1°

j�1

zj

1� τ otherwise

for t � 1, 2, 3 (4)

As with the suspension policy, it is straightforward that the fee policy (4) does implement first-best

as an equilibrium of the withdrawal game, for any fee τ . In particular, if none of the other depositors

withdraw from the fund earlier than the date that corresponds to their type, then doing the same is

the best response.
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Note next that the fee policy (4) satisfies the fund’s budget constraint for all profiles of withdrawal

strategies if and only if the fee satisfies τ ¥ 1�λ. If this condition is fulfilled, then depositors who

withdraw from the fund at a time when the fund has depleted its period cash-inflow receive at most

the liquidation return λ. A fee policy as in (4) can only prevent run equilibria if τ ¥ 1� λ. To see

this, suppose the fund sets τ   1�λ and consider a hypothetical scenario where all depositors play

‘withdraw’ at date 1, irrespective of their type and irrespective of howmuch they can withdraw (that

is, all depositors play s1p�, �q �‘withdraw’). The fund will then run out of assets before everybody

could withdraw at date 1. A depositor who does not withdraw at date 1 consumes zero, implying

that participating in the run is the best response. For unique implementation of first-best, we thus

need to restrict attention to policies (4) where the fee satisfies τ ¥ 1� λ.

The previous paragraph shows that a fee policy (4) can only prevent runs if the fee τ is set high

enough. However, if the fee is set very high, then incentive compatibility will be violated in the

sense that depositors of type t will not be willing to pay the fee on date t withdrawals. For instance,

if τ is very high, a type 1 depositor will prefer waiting until date 2 instead of withdrawing 1 � τ

units at date 1. If the fee is so high that depositors never actually pay the fee in equilibrium, then the

fee policy (4) becomes equivalent to the suspension policy (2). As a result, if the fee is prohibitively

high, there may be a run equilibrium at date 1 for the same reason as with the suspension policy.

The discussion above shows that, in order to prevent runs (and to improve over the suspension

policy), the fee τ should not be too high and not too low. Suppose now the fund sets the fee τ within

τ P r1�λ, 1�δs, which is a non-empty interval iff parameters satisfy λ ¥ δ. If the fee is set within

this interval, it satisfies two criteria: (i) the fee is high enough such that any liquidation losses which

the fund incurs are borne by the depositors who withdraw and (ii) the fee is low enough such that,

if given the choice, type 1 depositors prefer to withdraw at date 1 and pay the fee to waiting until

date 2. The latter is the case since 1� τ ¥ δ, which means that type 1 depositors prefer consuming

1 � τ units at date 1 to consuming 1 unit at date 2. It follows that, in a hypothetical situation

where some of the non-type 1 depositors withdraw at date 1, all type 1 depositors arriving late in

line (those with indices i1 ¡ 1
3
) will pay the fee on date 1 withdrawals and leave the fund at date

14



1.18 Furthermore, the type 1 depositors who leave the fund at date 1 do not impose any liquidation

losses on the depositors who remain fund. Hence even if a run occurs at date 1, the fund will start

‘unharmed’ at date 2 - the run does not impose liquidation losses on the depositors who are left in

the fund and neither does the run cause a backlog of type 1 depositors left in the fund at date 2. It

follows that, no matter how many non-type 1 depositors run at date 1, all type 2 depositors left in

the fund at date 2 will be able to withdraw 1 unit at date 2 and all type 3 depositors left in the fund

will be able to withdraw 1 unit at date 3. This takes away any incentive for non-type 1 depositors

to participate in a run at date 1 in the first place, so that the withdrawal game does not exhibit a run

equilibrium. Figure 2 provides a graphical illustration.

Figure 2: Run under a fee policy (off the equilibrium path)

Consider now the situation where λ   δ, in which case the interval r1�λ, 1�δs is empty. In this

case, asset liquidity λ is relatively low, which calls for a high fee to make sure that liquidation losses

are internalized by redeeming depositors. At the same time, liquidity preference is also low (δ is

high) which means that depositors have a low willingness to pay a fee on withdrawals. To study

whether a fee policy (4) can prevent runs if λ   δ I will again play through a scenario where all

depositors run at date 1. Whether participating in the run at date 1 is the best response for non-type

1 depositors depends on the backlog of type 1 depositors left in the fund at date 2 after the run

occurred at date 1. The more type 1 depositors are left in the fund at date 2, the larger the number

18This is obvious if 1� τ ¡ λ since paying the fee is a strictly dominant strategy for type 1 depositors. In equilibrium,
it must also be the case if 1� τ � λ. See appendix B for the details.
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of depositors that will rush to the fund at date 2 and hence the lower the probability that a depositor

who turns out to be of type 2 will be able to withdraw from the fund at date 2 without paying a

fee. As with the suspension policy, non-type 1 depositors’ incentive to withdraw at date 1 is thus

increasing in the number of type 1 depositors that will be left in the fund at date 2.

The backlog of type 1 depositors left in the fund at date 2 depends on the behavior of type 1

depositors that arrive late in line in the run at date 1. The more of the late-arriving type 1 depositors

are willing to pay the fee on date 1 withdrawals, the smaller the number of type 1 depositors left

in the fund at date 2. Suppose the fund sets the fee to τ � 1 � λ, which is the lowest fee that

may potentially prevent a run (see above) and consider the best response of type 1 depositors that

arrive late in line in a run at date 1. Type 1 depositors arriving late in line face a trade-off between

(i) withdrawing at date 1 and paying the fee τ and (ii) waiting until date 2, thereby incurring the

discount cost 1� δ but (possibly) escaping the fee τ .

Since 1 � τ � λ   δ, type 1 depositors arriving late in line will prefer to wait until date 2 if

they can escape the fee at date 2 for sure. The probability that they can escape the fee at date 2 is

decreasing in the number of (type 1 and 2-) depositors that will try to withdraw at date 2. If no type

1 depositors are left in the fund at date 2, then the fee can be escaped for sure. This implies that,

with λ   δ and a fee τ � 1� λ, there will always be some type 1 depositors left in the fund at date

2 after a run occurred at date 1. How many of the type 1 depositors remain in the fund until date 2

depends on the distance between λ and δ: the lower λ, the higher the fee and (keeping δ fixed) the

smaller the proportion of type 1 depositors (among those late in line) that will pay the fee at date

1. We get the following proposition, whose proof is given in appendix B:

Proposition 3.2.

(1) There exists a fee policy (4) that uniquely implements first-best only if a fee policy with τ �

1� λ uniquely implements first-best.

(2) A fee policy (4) with a fee τ � 1� λ uniquely implements first-best if and only if:

(i)
λ

δ
¥ 1 or

(ii)
λ

δ
P

�
3

4
�

1

4
δ , 1



and 1� 2κ  

λ

δ
or
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(iii)
λ

δ
¤

3

4
�

1

4
δ and 1� 8κ   δ

Condition (i) in item (2) deals with the case where λ ¥ δ on which I have elaborated above.

Conditions (ii) and (iii) deal with the more difficult case where λ   δ. If λ is significantly below

δ, then type 1 depositors will never pay the fee on date 1 withdrawals in equilibrium. As shown

appendix B, the exact condition for this is λ ¤
3

4
δ � 1

4
δ2. If this condition is fulfilled, then no

depositor ever pays the fee in equilibrium, neither at date 1 nor at date 2. The fee policy (4) then

becomes equivalent to the suspension policy (2) and it therefore prevents a run at date 1 if and

only if the suspension policy prevents a run. Together with the result of proposition 3.1 this leads

to condition (iii). Finally, condition (ii) deals with the case where λ is within the (narrow) range

λ P p3
4
δ � 1

4
δ2, δq. In this case, some fraction of type 1 depositors arriving late in a run at date 1

will pay the fee on date 1 withdrawals. The lower the value of λ within this interval, the smaller

the fraction of late-arriving type 1 depositors that pay the fee at date 1, and hence the higher the

incentive to run for non-type 1 depositors.

Note that, different to the suspension policy (2), liquidity preference δ has a non-monotonic effect

on the propensity to run under the fee policy (4). On the one hand, higher liquidity preference (lower

δ) makes fee policies more effective since it is easier to induce type 1 depositors to actually pay the

fee if a run occurs at date 1. On the other hand, within the subset of the parameter space with δ ¡ λ,

higher liquidity preference makes it less likely that fee policies can prevent runs. The fee which the

fund needs to charge in order to make sure that those who pay the fee internalize liquidation losses

is then so high that (at least some) depositors avoid paying the fee, even at the date that corresponds

to their type. If liquidity preference is high, then depositors run for the same reason as with the

suspension policy: if others run, non-type 1 depositors correctly anticipate that they may not be

able to withdraw the next period if they need to. More precisely, they may only be able to withdraw

at date 2 by paying a fee which they are not willing to pay. The higher liquidity preference, the

larger is the loss in payoff for type 2 depositors if they consume only at date 3 and hence the higher

the propensity to run at date 1.

Figure 3 depicts the set of parameters (shaded area) for which gates and fees prevent runs, given

κ � 0.03. (Changing the cost of withdrawing early κ will make the shaded areas uniformly bigger
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(increase in κ) or smaller (decreasing in κ) without changing their basic shape.) The set of param-

eters for which fees prevent runs is a superset of the set of parameters for which gates prevent runs.

This is not very surprising - instead of imposing a gate, the fund can always charge a prohibitively

high redemption fee that depositors are never willing to pay. In this sense, gates are a redundant

tool. However, things are different if the regulator imposes a ceiling on the redemption fee that

funds are allowed to charge (which is the case in the US but not the EU). Suppose the regulator

imposes an upper bound τ on the fee. For the reasons discussed further above, a fee policy (4) then

cannot prevent runs for any λ   1� τ . If there is a regulatory upper bound on the fee, suspension

therefore has a role in preventing runs in cases where asset liquidity is low and liquidity preference

is not very strong. The results suggests that, in the US, funds with relatively liquid assets will use

fees while funds with relatively illiquid assets will use gates. In the EU regulatory framework where

there is no ceiling on the redemption fee, the independent role of gates in preventing runs is unclear.

The present model does not give a rational why EU MMFs should ever use gates instead of fees.

Figure 3: Set of parameters (shaded area) for which gates and fees prevent runs (κ � 0.03)

Gates and fees as in (2) and (4) that capture the tools currently available to MMFs in the US

and the EU cannot prevent runs if asset liquidity λ is relatively low and liquidity preference δ is

within an intermediate region. In general, the lower asset liquidity, the more difficult it becomes to

prevent runs with these tools. Redemption fees whose purpose it is to make sure that redeeming

depositors internalize liquidation losses run into an irresolvable conflict if asset liquidity is low. On

the one hand, the fee must be relatively high to ensure that liquidation losses are fully internalized by

those who withdraw in order to prevent Diamond-Dybvig type panic equilibria. On the other hand,
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unless liquidity preference is very strong, depositors are not willing to pay such a high redemption

fee, which then gives rise to deposit-access panics. In the next subsection, I show how this conflict

can be resolved by combining redemption fees with gates in a way that does not rely on asset

liquidations.

3.3. Combining Gates and Fees

In this subsection, I show that a payout policy that combines suspension with fees (dubbed the

combined policy) can always prevent runs. The payout policy has two key elements: first, the fund

always suspends convertibility if liquid assets are exhausted and second, redemption fees are used

as a means to implement a redistribution among depositors in a way that incentivizes depositors

to remain in the fund if others run. If the fund needs to activate suspension at date 1, then (and

only then) it will charge a fee on all withdrawals at date 2. The fund pays any fee revenue raised at

date 2 to those who withdraw at date 3. Importantly, the fee on date 2 withdrawals is not related to

asset liquidations. The fund never liquidates assets, so that the effectiveness of the policy does not

depend on asset liquidity λ.

Abusing notation a bit, z1 � 1
3
� S ¡ 1

3
means that a measure 1

3
of depositors withdrew at date

1 and the bank had to suspend convertibility (that is, a measure of depositors larger than 1
3
tried to

withdraw). As long as z1 ¤ 1
3
, the payout schedule is the same as the standard suspension policy

(2). If the fund had to suspend convertibility at date 1 it charges a fee pτ on all date 2 withdrawals.

Once the date 2 cash inflow is exhausted, the fund suspends convertibility:19

f2
�
z; 1

3
� S

�
�

$''&
''%

1� pτ if z ¤
1

3

1

1� pτ
S otherwise

with pτ ¥ 0 (5)

19If a measure z of depositors withdraw, the fund pays out an amount zp1 � pτq of cash. The fund receives a date 2
cash inflow of 1

3 . Hence the date 2 cash flow is exhausted if zp1� pτq � 1
3 or z � 1

3
1

1�pτ .
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After suspending convertibility at date 1 and charging a fee on date 2 withdrawals, the fund pays

everything that is left in the fund to those withdrawing at date 3:

f3pz,
1
3
� S, z2q � 1�

total fee revenue
raised at date 2hkkikkj
z2 pτ

2
3
� z2loomoon

number of depositors left
in fund at date 3

(6)

Expression (6) shows that, if the fund suspended convertibility at date 1, then it can pay out more

than 1 unit per depositor left in the fund at date 3 whenever a non-zero measure of depositors

withdrew at date 2 (z2 ¡ 0). The reason is that the fund paid out less than 1 unit for each depositor

that withdrew at date 2 and the fund did not incur any liquidation losses at date 2.

It is easy to see that the combined policy satisfies the fund’s resource constraint for all profiles of

withdrawal strategies. Furthermore, as with the previous payout policies, it is straightforward that

first-best is implemented as an equilibrium of the withdrawal game. The question is whether the

withdrawal game under the combined policy exhibits run equilibria, specifically equilibria where

non-type 1 depositors run at date 1. We can start with the observation that the combined policy will

not be able to prevent run equilibria for the entire parameter space if the fee on date 2 withdrawals

pτ is either very high or very low.

Suppose first the fee pτ is set very high. Then none of the depositors are willing to pay the fee

on date 2 withdrawals if the fund had to activate suspension at date 1. Instead, all depositors who

are left in the fund at date 2 will wait to withdraw until date 3. In this case, the combined policy

would increase the propensity to run at date 1 relative to the standard suspension policy (2). If a

run occurs at date 1, then all of the type 2 depositors left in the fund at date 2 will consume only

at date 3 as a result of the prohibitively high fee charged on date 2 withdrawals. As a result, the

expected payoff of a non-type 1 depositor who does not participate in a run (if others run at date

1) would be lower compared to the suspension policy (2). Furthermore, if the fee pτ is prohibitively
high, no fee revenue is generated at date 2 which can be paid to those withdrawing at date 3.

Consider next the opposite situation where the fee pτ is set very low. In this case, the number of

(type 1 and 2-) depositors who try to withdraw at date 2 after a run occurred at date 1 will be such
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that the fund needs to suspend convertibility at date again. This can be seen most easily for the case

where the fee on date 2 withdrawals is set arbitrarily small (pτ Ñ 0) in which case the combined

policy becomes equivalent to the standard suspension policy (2). As with the suspension policy,

non-type 1 depositors’ incentive to participate in a run at date 1 results from the prospect of turning

out to be a type 2 depositor who arrives late in line at date 2 and can only withdraw at date 3.

The main result of this subsection is that, as long as the contingent fee on date 2 withdrawals pτ
is set within some (non-empty) interval, it is possible to prevent runs with the combined policy:

Proposition 3.3. The combined policy with a redemption fee pτ P �1� δ

2
,

1

1� δ



uniquely imple-

ments first-best.

The proof of proposition 3.3 is given in appendix C. Note that the interval
�

1� δ

2
,

1

1� δ



is

non-empty for any δ P p0, 1q. Intuitively, if the fee pτ is set within the interval given in proposition

3.3, it satisfies two criteria:

(i) The fee is not ‘too low’ in the sense that the number of depositors who want to withdraw at

date 2 is never so high that the fund needs to suspend convertibility at date 2.

(ii) The fee is not ‘too high’ in the sense that sufficiently many type 1 and 2 depositors left in

the fund at date 2 will pay the fee on date 2 withdrawals instead of waiting until date 3. This

means that enough fee revenue is generated that can be paid to those who withdraw at date 3.

To gain more intuition about the result of proposition 3.3, consider the best response of a non-type

1 depositor in a hypothetical situation where other non-type 1 depositors run at date 1. If others

run, the fund suspends convertibility at date 1 and charges a fee pτ on date 2 withdrawals. The

depositor knows that, if she remains in the bank and turns out to be of type 3, she will profit from

the fee revenue raised at date 2. Furthermore, if she turns out to be of type 2, she will be able

to withdraw at date 2 as long as she pays the fee.20 Intuitively, the prospect of profiting from fee

revenue raised by the bank together with the fact that funds can be accessed at date 2 (against a
20To be precise, it may well be the case that not all type 1 and 2 depositors left in the fund at date 2 will withdraw at date

2 after (off the equilibrium path) a run occurred at date 1. In this case, the number z2 of depositors who withdraw
at date 2 will be such that type 2 depositors are just indifferent between withdrawing at date 2 and withdrawing at
date 3. Hence all type 2 depositors receive a payoff equal to 1 � pτ , even if not all of them withdraw at date 2. In
contrast, if the fund needed to suspend convertibility at date 2, this would imply that type 1 and 2 depositors strictly
prefer withdrawing 1� pτ units at date 2 to waiting until date 3.
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fee) when needed takes away the incentive to participate in the run. Since an individual non-type 1

depositor is strictly better of not running when others run, there is no equilibrium of the withdrawal

game where non-type 1 depositors run on the fund at date 1.

Figure 4: Set of date 2 redemption fees that prevent runs

The shaded area in figure 4 depicts the interval within which the contingent fee on date 2 with-

drawals pτ eliminates run equilibria according to proposition 3.3.21 The upper bound on pτ is related
to type 1 and 2 depositors’ incentive constraint; the fee pτ must be such that a high enough num-

ber of type 1 and 2 depositors are willing to pay the fee on date 2 withdrawals, should the fee be

activated. The higher liquidity preference, the higher the willingness of type 1 and 2 depositors to

pay a fee on date 2 withdrawals instead of waiting until date 3. For this reason, the upper bound on

pτ is increasing in liquidity preference. The lower bound on pτ is related to the fact that the fund’s

date 2 cash-inflow is limited; if the fee is set below the lower bound, then the number of depositors

who wish to withdraw at date 2 after a run occurred at date 1 may be such that the fund’s date 2

cash-inflow is not sufficient to pay them all out. The higher liquidity preference, the higher is the

desire by type 1 and 2 depositors to consume at date 2 rather than date 3. Higher liquidity prefer-

ence therefore requires that the fund charge a higher fee on date 2 withdrawals to make sure that

demand for date 2 withdrawals never exceeds the fund’s date 2 cash-inflow.

21Note that interval in proposition 3.3 gives a sufficient, but not necessary condition to prevent run equilibria. Fees
which do not satisfy condition (14) may also prevent run equilibria, depending on the cost of withdrawing early κ.
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3.4. Discussion of Model Assumptions

One simplifying assumption in this paper is that depositors’ preferences are linear. In the original

Engineer (1989) model, ex-post preferences are of the type upc1�δc2�δ2c3q for type 1 depositors,

upc2 � δc3q for type 2 depositors and upc3q for type 3 depositors, where up�q is a strictly increasing

and strictly concave utility function. Preferences of this form have also been used in the setting with

two types, e.g. in Wallace (1988).22 Assuming non-linear preferences of the form above would not

change the analysis in a fundamental way, especially since the marginal rate of substitution between

consumption at different dates is still constant. However, whenever facing a choice between a de-

terministic and an uncertain payoff, depositors’ choice would be tilted towards the deterministic

option. The main effect of this is that it increases depositors’ propensity to run at date 1. The deci-

sion whether or not to run at date 1 often entails a choice between a deterministic payoff resulting

from withdrawing the deposit at date 1 and an uncertain payoff when remaining in the fund. For

instance, with the suspension policy of subsection 3.1, depositors who remain in the fund face the

risk of not being able to withdraw at date 2. With the combined policy of subsection 3.3, depositors

who remain in the fund face the risk of having to pay a fee on date 2 withdrawals. This shows (not

surprinsingly) that the thresholds for run equilibria to exist are sensitive to changes in the specifi-

cation of depositors’ preferences. The advantage of using linear preferences is that it allows for a

very tractable analysis of the main trade-offs involved, generating a number of qualitative insights

regarding depositors’ propensity to run under fees and gates -clauses.

Another simplifying assumption is that true liquidity needs at the fund level are known. It is

debatable how controversial this assumption is given the large size of most money market funds

and the fact that liquidity shocks are plausibly uncorrelated among a fund’s investors. The case

with unknown aggregate liquidity needs has been studied extensively in settings with two types

of depositors (‘patient’ and ‘impatient’).23 Assuming that aggregate liquidity needs are unknown

22In Diamond and Dybvig (1983), impatient consumers attach zero value to consumption in the last date. Jacklin
(1987) studies a Diamond-Dybvig setting with a non-constant marginal rate of substitution between consumption
at different dates.

23See Green and Lin (2003), Ennis and Keister (2009b) and Andolfatto et al. (2017) for settings with a finite number of
depositors and Sultanum (2014) for a setting with a continuum of depositors. Interestingly, Andolfatto et al. (2017)
show how a payout policy that combines suspension with a decreasing payout schedule (that could be interpreted as
charging redemption fees) uniquely implements the efficient allocation in a setting with two types and a stochastic
distribution of types.
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ex ante would change the analysis rather fundamentally, not least because the derivation of the

benchmark allocation that is to be uniquely implemented (e.g. the best implementable allocation

under a sequential service constraint) would be much more involved. An analysis of the Engineer

setting under aggregate uncertainty needs to be left for future research.

Throughout the paper, I implicitly assumed that the fund can commit to its payout policy f . This

assumption is important because policies that prevent run equilibria under commitment often entail

measures that hurt (some) depositors after (off-equilibrium) a run occurred, as highlighted by Ennis

and Keister (2009a, 2010). For instance, all payout policies studied in this paper are such that type 1

depositors who arrive late in line in a run at date 1 receive a lower payoff than the type 3 depositors

left in the fund. If the fund maximizes expected utility of all depositors left in the fund at any point

in time, such payout policies may not be time consistent. In the present setting, the issue of time

consistency is mitigated by the fact that depositors’ preferences are linear; a benevolent fund does

not care per se about redistribution between depositors of different types.

4. Conclusion

This paper derives a number of qualitative results regarding the effectiveness of fees and gates-

clauses in preventing runs. The paper also shows how the Engineer (1989) model can provide a

rich but still sufficiently simple framework for policy analysis. The results derived in the paper

suggest that the fees and gates- clauses recently added to US and EU MMF regulations will be

effective in removing the first-mover advantage at some, but not all, money market funds. The tools

available to MMFs under the current regulations are more likely to be effective in preventing runs

on funds that are invested in assets for which there are relatively deep secondary markets allowing

the fund to meet even large redemptions without having to liquidate assets at prices that are too far

below fundamental value. The paper also shows how funds that are invested in relatively illiquid

assets could use redemption fees and gates to remove the first-mover advantage without ever having

to resort to asset liquidations. Implementing this would however require to give money market

funds more flexibility how they can use fees and gates.
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The focus on unique implementation of the first-best allocation implies that all types of run

equilibria are treated as being equally bad. An interesting question is whether some types of runs

cause higher welfare losses than others, both for fund investors and for society at large. For instance,

it may be the case that Diamond-Dybvig type run equilibria that cause investors (who cannot redeem

quickly enough) to incur credit losses lead to higher expected welfare losses for fund investors

compared to deposit-access panics. Given thatMMFsmay not be able to eliminate all run equilibria

with the tools currently at their disposal, they may need to choose which types of runs they want

to avoid most. The same can be said for society at large. Current EU (but not US) regulations

oblige MMFs to impose fees or gates under certain conditions. Presumably, the rationale behind

the EU regulation is that interests of MMF owners or -investors are different from the interests of

society at large when it comes to imposing restrictions on redemptions. This is often based on

the notion that large assets liquidations cause negative externalities (‘pecuniary externalities’) that

justify government intervention. Deposit-access panics do not lead to asset liquidations and may

therefore be less of a concern from a societal perspective.
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Appendix
A. Proof of Proposition 3.1

First, it is useful to note that any strategy profile where all depositors’ strategies satisfy the following

implements first-best:

Date 1: s1p1, 1q � ‘withdraw’ s1pnot1, 1q � ‘not withdraw’

Date 2: s2p2, 1q � ‘withdraw’ s2p3, 1q � ‘not withdraw’

Date 3: s3p3, 1q � ’withdraw’

(7)

If all depositors’ strategies satisfy (7) then, at date 1, all type 1 depositors (and no other depositors)

withdraw one unit from the fund; all type 2 depositors (and no other depositors) withdraw one unit

from the fund at date 2; and finally, all type 3 depositors withdraw one unit from the fund at date

3. The following result implies that, when looking for run equilibria under suspension policy (2),

we can limit attention to equilibria in which non-type 1 depositors withdraw at date 1:

Lemma A.1. The withdrawal game under the suspension policy (2) uniquely implements first-best

if and only if the withdrawal game does not exhibit an equilibrium in which non-type 1 depositors

withdraw at date 1.

Proof of Lemma A.1: The "only if" part in lemma A.1 follows directly from the definition of first-

best. To prove the "if"-part, we restrict attention to strategy profiles where non-type 1 depositors

play s1pnot1, 1q �‘not withdraw’ with probability one and then eliminate strictly dominated strate-

gies. First, withdrawing is the strictly dominant strategy for type 1 depositors at date 1 (playing

s1p1, 1q �‘withdraw’ is strictly dominant). Furthermore, at date 2, withdrawing is the strictly dom-

inant strategy for type 2 depositors (playing s2p2, 1q �‘withdraw’ is strictly dominant) and not

withdrawing is the strictly dominant strategy for type 3 depositors (playing s2p3, 1q �‘not with-

draw’ is strictly dominant). The reason for the latter is that type 3 depositors can always withdraw

1 unit at date 3. Finally, at date 3, withdrawing is the strictly dominant strategy for type 3 depos-

itors (playing s3p3, 1q �‘withdraw’ is strictly dominant). Given that we impose s1pnot1, 1q �‘not

withdraw’, all strategy profiles that survive elimination of strictly dominated strategies therefore
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satisfy (7) and implement first-best. �

It will be convenient to denote by b the fraction of type 1 depositors among the depositors left in

the fund at date 2. Among the non-type 1 depositors left in the fund at date 2, 1
2
will turn out to be

of type 2. Hence the fraction of type 1 and 2 depositors among the depositors in the fund at date

2 equals b � 1
2
p1 � bq � 1

2
p1 � bq. Since withdrawing at date 2 is a strictly dominant strategy for

type 1 and 2 depositors while not withdrawing at date 2 is a strictly dominant strategy for type 3

depositors, the fraction of depositors that try to withdraw at date 2 equals the fraction of type 1 and

2 depositors left in the fund. The fund receives one-half of its remaining cash-flow at date 2 and

the other half at date 3. This implies that the fund can pay out a fraction 1
2

�
1
2
p1� bq

��1
�

1

1� b

of the type 1 and 2 depositors left in the fund at date 2. Hence type 2 depositors left in the fund at

date 2 can withdraw at date 2 with probability
1

1� b
while, with probability

b

1� b
, they can only

withdraw at date 3 in which case they receive a payoff of δ.

Suppose now that all depositors (type 1 and non-type 1) try to withdraw at date 1. In this case,

only depositors with indices i1 ¤ 1
3
can withdraw at date 1 while the remaining depositors are still

left in the fund at date 2. The fraction of type 1, 2 and 3 depositors among those left in the fund at

date 2 is then 1
3
each. Hence we have b � 1

3
, which constitutes an upper bound on b in equilibrium.

Whenever non-type 1 depositors play s1pnot1, 1q=‘withdraw’ with a probability of less than one,

then more of the type 1 depositors can withdraw at date 1 and b will be lower. Denote Zpbq as the

expected payoff of a non-type 1 depositor left in the fund at date 2:

Zpbq �

probability of
being type 2hkkikkj

1

2

expected payoff
type 2hkkkkkkkkkkkikkkkkkkkkkkj�

1

1� b
1�

b

1� b
δ

�
�

probability of
being type 3hkkikkj

1

2

payoff
type 3hkkikkj

1 (8)

Playing s1pnot1, 1q �‘withdraw’ is the best response for a non-type 1 depositor iff 1 � κ ¥ Zpbq.

In a hypothetical situation where all other depositors play s1p�, 1q �‘withdraw’ doing the same

is the best response iff 1 � κ ¥ Zp1
3
q. Rewriting the previous inequality gives δ ¤ 1 � 8κ.

Hence if δ ¤ 1 � 8κ, then the withdrawal game exhibits an equilibrium where all depositors play

s1p�, 1q �‘withdraw’ and first-best is not implemented. Suppose now that δ ¡ 1 � 8κ. Then we
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have that 1 � κ   Zp1
3
q. Since Zpbq is decreasing in b, and b � 1

3
is the upper bound on b in

equilibrium withdrawing at date 1 is never the best response for non-type 1 depositors (playing

s1pnot, 1q �‘withdraw’ is never the best response), independent of how many other non-type 1

depositors withdraw at date 1. It follows that the withdrawal game does not exhibit an equilibrium

where non-type 1 depositors withdraw at date 1 and, by lemma A.1, first-best is uniquely imple-

mented.

B. Proof of Proposition 3.2

When looking for run equilibria under a fee τ ¥ 1� λ, we can again limit attention to equilibria in

which non-type 1 depositors withdraw at date 1:

Lemma B.1. Thewithdrawal game under the fee policy (4) with a fee τ ¥ 1�λ uniquely implements

first-best if and only if the withdrawal game does not exhibit an equilibrium in which non-type 1

depositors withdraw at date 1.

The proof of lemma B.1 is very similar to the proof of lemma A.1 and is left out. When looking

for fee policies (4) that prevent run equilibria, it is without loss of generality to restrict attention to

fee policies with τ � 1 � λ. For the reasons described in the main text, this is the lowest fee that

can potentially prevent runs. To see why restricting attention to a fee τ � 1 � λ entails no loss of

generality, suppose that a fee τ � 1�λ does not prevent a run equilibrium at date 1. The only effect

of increasing the fee is to decrease type 1 depositors incentive to pay the fee at date 1 in case a run

occurs. Increasing τ to a lever higher than 1� λ thus increases the number of type 1 depositors in

the fund at date 2 after a run occurred at date 1, which increases non-type 1 depositors incentive

to participate in a run at date 1 compared to a fee τ � 1 � λ. For the remainder of this section, I

assume the fee equals τ � 1� λ.

Following the notation in appendix A, I denote by b the share of type 1 depositors among the

depositors left in the fund at date 2. Furthermore, I denote by Zpbqrλ¥δs and Zpbqrλ δs the expected

payoff of not withdrawing at date 1 for a non-type 1 depositor, given that λ ¥ δ and λ   δ respec-

tively. As described in appendix A, the fraction of type 1 and 2 depositors among all depositors

left in the fund at date 2 equals 1
2
p1� bq. An individual type 1 or 2 depositor left in the fund at date
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2 can withdraw 1 unit at date 2 with probability
1

1� b
. With probability

b

1� b
, the depositor will

arrive late in line at date 2 and can either withdraw 1 � τ � λ units at date 2 or wait until date 3

and then withdraw 1 unit at date 3. If λ ¥ δ, paying the fee on date 2 withdrawals is a dominant

strategy for type 1 and 2 depositors. If λ   δ, not paying the fee on date 2 withdrawals is the strictly

dominant strategy for type 1 and 2 depositors. We thus have:24

Zpbqrλ¥δs �
1

2

expected payoff
type 2hkkkkkkkkkkkikkkkkkkkkkkj�

1

1� b
1�

b

1� b
λ

�
�

1

2

payoff
type 3hkkikkj

1

Zpbqrλ δs �
1

2

�
1

1� b
1�

b

1� b
δ

�
looooooooooomooooooooooon

expected payoff
type 2

�
1

2
1loomoon

payoff
type 3

(9)

To examine whether the withdrawal game exhibits a run equilibrium at date 1, we need to look at

best responses of non-type 1 depositors at date 1. Withdrawing at date 1 is the best response for

non-type 1 depositors iff the payoff of withdrawing 1 unit at date 1 (and incurring the storage cost

κ) is higher than the expected payoff of remaining in the fund. This is the case iff 1 � κ ¥ Zpbq.

The number of type 1 depositors left in the fund (b) is itself an equilibrium quantity. In order to

determine the values of b that can be part of an equilibrium, we need to look at best responses of

type 1 depositors at date 1. Analogous to the expected payoff Zpbq for non-type 1 depositors, it

will be useful to denote by Y pbq the expected payoff for a type 1 depositor of not withdrawing at

date 1, given that the fraction of type 1 depositors left in the fund at date 2 will be b. It is useful to

distinguish the following three cases:

Case 1: λ ¥ δ

Consider first the case with strict inequality, λ ¡ δ. In this case, type 1 depositors strictly prefer

consuming λ units at date 1 to consuming 1 unit at date 2. Hence withdrawing at date 1 (with or

without paying the fee) is a strictly dominant strategy for type 1 depositors. This implies that b � 0

in every equilibrium of the withdrawal game with λ ¡ δ. Consider next the case λ � δ. In this

24If λ � δ, then type 2 depositors are indifferent between paying the fee at date 2 (and consuming λ units at date 2) or
waiting until date 3 (and consuming 1 unit at date 3). In both cases the payoff will be equal to λ.
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case, type 1 depositors are indifferent between consuming λ units at date 1 and consuming 1 unit

at date 2. If b ¡ 0, then some of the type 1 depositors left in the fund at date 2 will not be able

to withdraw 1 unit at date 2. The expected payoff of remaining in the fund until date 2 for a type

1 depositor is thus strictly less than δ whenever b ¡ 0. It follows that, given any b ¡ 0, type 1

depositors strictly prefer to withdraw at date 1. This implies that b � 0 in every equilibrium of the

withdrawal game with λ � δ. Since Zp0qrλ¥δs ¡ 1 � κ, there is no equilibrium of the withdrawal

game where non-type 1 depositors withdraw at date 1, given λ ¥ δ. Combined with lemma B.1,

this proves item (i) in proposition B.

Case 2: λ P
�
3
4
δ � 1

4
δ2, δ

�
A type 1 depositor left in the fund at date 2 is able to withdraw 1 unit at date 2 with probability

1

1� b
, in which case she receives a payoff of δ. With probability

b

1� b
, the depositor will arrive late

in line at date 2 and will not be able to withdraw 1 unit at date 2. Since λ   δ, a type 1 depositor’s

best response, should she arrive late in line at date 2, is to wait until date 3 and withdraw 1 unit at

date 3. In this case she receives a payoff of δ2. The expected payoff of a type 1 depositor in the

fund at date 2 thus equals:

Y pbq �
1

1� b
δ �

b

1� b
δ2 (10)

Note that Y pbq is strictly decreasing in b. Paying the fee on date 1 withdrawals is type 1 depositors’

best response iff λ ¥ Y pbq. Some algebra yields that:

Y p1
3
q   λ   Y p0q ô λ P

�
3

4
δ �

1

4
δ2, δ



(11)

Consider now a scenario where all non-type 1 depositors run at date 1, in which case 2
3
of type 1

depositors will be in the last 2
3
of the line and hence cannot withdraw 1 unit at date 1; if none of

them pay the fee on date 1 withdrawals (all of them remain in the fund until date 2), then we have

b � 1
3
(see the discussion in appendix A.) If all of them pay the fee and leave the fund at date 1,

then we have b � 0. Since Y pbq is strictly decreasing in b, it follows from (11) that there is a unique

b� P p0, 1
3
q such that λ � Y pb�q. Solving Y pb�q � λ for b� yields b� �

δ � λ

λ� δ2
. Note that there is
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no equilibrium of the withdrawal game with b ¡ b�; if b ¡ b�, then type 1 depositors strictly prefer

to pay the fee and leave the fund at date 1 which would imply b � 0.

Going back to best responses of non-type 1 depositors at date 1, withdrawing at date 1 is non-type

1 depositors best response iff the payoff of withdrawing 1 unit at date 1 (and incurring the storage

cost κ) is higher than the expected payoff of remaining in the fund until date 2. This is the case iff

1�κ ¥ Zrλ δspbq. Since Zrλ δspbq is strictly decreasing in b, and b ¤ b� in equilibrium, there is no

equilibrium in which non-type 1 depositors withdraw at date 1 if:

1� κ   Zrλ δspb
�q ô 1� κ  

1

2

�
1�

λ

δ



(12)

Together with lemma B.1, this means that first-best is uniquely implemented whenever condition

(12) is fulfilled. I will now show that the converse is also true: If condition (12) is not fulfilled,

then the withdrawal game exhibits a run equilibrium where all depositors (try to) withdraw at date

1. To see this, suppose that all depositors play s1p�, 1q � ‘withdraw’. Suppose further that type

1 depositors play a mixed strategy where they play s1p1, λq � ‘withdraw’ with probability p �

3δ � δ2 � 4λ

δ2 � δ � 2λ
and they play s1p1, λq � ‘not withdraw’ with probability 1 � p. Note that p P p0, 1q

if λ P p3
4
δ� 1

4
δ2, δq. Given that all depositors run, a fraction p of the type 1 depositors with indices

i1 ¡
1
3
will thus pay the fee and leave the fund at date 1. The fraction of type 1 depositors among

all depositors left in the fund at date 2 then equals b �
1
3
p1� pq

2
3
� 1

3
p1� pq

� b�.

Note first that, if condition (12) is not fulfilled, then playing s1pnot1, 1q � ‘withdraw’ is indeed a

best response for non-type 1 depositors. Second, since λ � Y pb�q, type 1 depositors are indifferent

between paying the fee at date 1 and waiting until date 2. Hence their mixing strategy constitutes a

best response as well. It follows that, if condition (12) is not fulfilled, the withdrawal game exhibits

a run equilibrium which completes the proof of condition (ii) in proposition 3.2.

Case 3: λ ¤ 3
4
δ � 1

4
δ2

From appendix A we know that, if all depositors run at date 1 (all depositors play s1p�, 1q � ‘with-

draw’), and none of the type 1 depositors with indices i1 ¡ 1
3
pay the fee at date 1 (all depositors

play s1p1, λq � ‘not withdraw’), then we have b � 1
3
which is an upper bound on b in equilibrium.
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Not paying the fee on date 1 withdrawals (playing s1p1, λq � ‘not withdraw’) is type 1 depositors’

best response iff λ   Y pbq. We have that:

λ ¤ Y
�
1
3

�
ô λ ¤

3

4
δ �

1

4
δ2 (13)

Recall that Y pbq is strictly decreasing in b. Hence for any b   1
3
we have λ   Y pbq. Whenever

some type 1 depositors pay the fee on date 1 withdrawals, then we have b   1
3
so that type 1

depositors strictly prefer not to pay the fee on date 1 withdrawals. Hence there is no equilibrium of

the withdrawal game in which type 1 depositors pay the fee on date 1 withdrawals. We have already

established that no depositor ever pays the fee on date 2 withdrawals in equilibrium if λ   δ. Hence

no depositor ever pays the fee on withdrawals, neither at date 1 nor at date 2. The policy is then

equivalent to the suspension policy in (2) and it prevents a run if and only if the suspension policy

prevents a run. Together with proposition 3.1, this proves condition (iii) in proposition 3.2.

C. Proof of Proposition 3.3

We again start with the following result which shows that, when looking for run equilibria, we can

limit attention to equilibria where non-type 1 depositors withdraw at date 1:

Lemma C.1. The withdrawal game under the combined policy with some fee pτ ¥ 0 uniquely

implements first-best if and only if the withdrawal game does not exhibit an equilibrium in which

non-type 1 depositors withdraw at date 1.

The proof of lemma C.1 is very similar to the proof of lemma A.1 and is left out. Given that the

fund suspended convertibility at date 1, date 3 payouts (6) can be expressed as a strictly increasing

function f3pz2q. Some algebra yields that:

δ f3

�
1

3



  1� pτ   δ f3

�
1

3p1� pτq



ô pτ P �1� δ

2
,

1

1� δ



(14)

To proof proposition 3.3 we can proceed in four steps. In steps 1-4, we assume the fund follows the

combined payout policy and sets the fee pτ within the interval given by (14).
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Step 1: There is no equilibrium of the withdrawal game where the fund suspends convertibility at

both dates 1 and 2.

Proof: Note first that only type 1 and 2 depositors may withdraw at date 2 in equilibrium since

not withdrawing at date 2 is the strictly dominant strategy for type 3 depositors. Suppose now the

fund suspends convertibility at date 1 and then again suspends convertibility at date 2. By (5) this

implies z2 ¥
1

3p1� pτq . Since 1� pτ   δf3

�
1

3p1� pτq


all date 1 and 2 depositors left in the fund

then strictly prefer not to withdraw at date 2. Hence z2 � 0 which leads to a contradiction.

Step 2: There is no equilibrium of the withdrawal game where the fund suspends convertibility at

date 1 and the number of depositors that withdraw at date 2 satisfies z2   1
3
.

Proof: Note first that, in equilibrium, at least half of the depositors left in the fund at date 2 will be

of either type 1 or 2, implying that the measure of type 1 and 2 depositors in the fund at date 2 is at

least 1
3
. Suppose now the fund suspends convertibility at date 1 and the number of depositors that

withdraw at date 2 satisfies z2   1
3
. Since 1� pτ ¡ δf3

�
1
3

�
, all type 1 and 2 depositors then strictly

prefer withdrawing at date 2 over withdrawing at date 3. Hence we have z2 ¥ 1
3
, which leads to a

contradiction.

Step 3: There is no equilibrium of the withdrawal game where the fund suspends convertibility at

date 1.

Proof: Suppose there is an equilibrium in which the fund suspends convertibility at date 1. This

implies that at least some non-type 1 depositors run on the fund at date 1. The expected payoff for

a non-type 1 depositor of not running at date 1 equals 1
2
p1 � pτq � 1

2
f3pz2q which is weakly larger

than 1 if z2 ¥ 1
3
. By step 2, we have z2 ¥ 1

3
which implies that non-type 1 depositors are strictly

better of not running at date 1 (for any κ ¡ 0) so that we arrive at a contradiction.

Step 4: There is no equilibrium of the withdrawal game where non-type 1 depositors withdraw from

the fund at date 1.
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Proof: Suppose there is an equilibrium where non-type 1 depositors withdraw at date 1. Then

withdrawing at date 1 is a best response for non-type 1 depositors. If withdrawing at date 1 is a best

response for non-type 1 depositors, then withdrawing at date 1 is the strictly best response for type 1

depositors. Hence the measure of depositors who try to withdraw from the fund at date 1 is strictly

higher than 1
3
which means that the fund suspends convertibility at date 1. By step 3, there is no

equilibrium in which the fund suspends convertibility at date 1, so that we arrive a contradiction.

Step 4 together with lemma C.1 completes the proof of proposition 3.3.
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