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Denmark has a long-term objective of being free of fossil fuels by 2050, with the energy supply mix
for buildings being fossil-free by 2035. Energy consumption for existing buildings needs to be decreased
concurrent with the conversion from fossil-fuel supply to renewable-energy (RE) supply. When end-use
savings are implemented in buildings concurrent with the application of low-temperature district heating
(LTDH), the heat profiles of the buildings will change. Reducing peak loads is important, since this is
the dimensioning foundation for future district heating systems. To avoid oversized RE-based capacity,
a long-term perspective needs to be taken. Applying LTDH in existing buildings without changing the
heating system implies reduced radiator performance, so it is of great importance that acceptable comfort
temperatures can still be provided. The results indicate that it is possible to apply LTDH most of the year
without compromising on thermal comfort if energy renovation is also implemented.

Keywords: energy renovation; end-use savings; space-heating demand; peak load; heat load profile; low-
temperature district heating

1. Introduction

Europe has a vision of reducing energy consumption significantly. In Denmark, the government
has a long-term objective of being completely independent of fossil fuels by the year 2050, with
the energy supply mix for buildings already being free of fossil fuels by 2035 (Danish Minister
of Climate 2011; Danish Energy Agency 2010). Urgent action is, therefore, needed to meet
the requirements for the future energy system. The solution is to combine energy savings and
renewable-energy (RE) supply in an optimal way. The building stock accounts for about 40%
of overall energy use in Europe (Lechtenböhmer and Schüring 2011). This energy consumption
needs to be reduced by carrying out energy renovations and increasing energy efficiency, and the
present heat supply needs to be converted into RE sources.

The design of new low-energy buildings has been in focus in recent years and much research has
been carried out to design buildings optimised from an energy perspective (Abel 1994; Chwieduk
2001; Karlsson and Moshfegh 2007; Thyholt and Hestnes 2008; Zhu et al. 2009). However, on
average less than 1% of the building stock is replaced per year with new low-energy buildings
in Europe (Hartless 2003), which underlines the importance of looking at the existing building
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stock, which will be around for many years. The potential for energy savings is large (Kragh 2010;
Kragh and Wittchen 2010; Weiss, Dunkelberg, and Vogelpohl 2012) and several studies (Kragh
2010; Kragh and Wittchen 2010; Lund et al. 2010; Rasmussen 2010; Tommerup 2010) show that
reductions on the scale of approximately 50–75% can be achieved.

One common way of providing space heating (SH) and domestic hot water (DHW) to buildings
in densely populated areas is by using district heating (DH) (Reidhav and Werner 2008). In
Denmark, about 60% of the total heat demand today is provided by DH (Grontmij 2013), and
according to Dyrelund et al. (2010) that share will need to be increased to 70% by 2035. DH
systems can be designed on the basis of the heat supply from RE sources, so DH is a very
important technology for realising the strategy of heating all buildings without using fossil fuels.

Future DH systems using RE need to be planned on the basis of a long-term strategy to
avoid oversized heating plants (Harrestrup and Svendsen 2012; Plan 2013). Reducing the heating
demand of existing buildings before investing in changes in supply can save half the initial capital
investment, which indicates the importance of carrying out energy savings now (Harrestrup and
Svendsen 2012; Plan 2013). The marginal cost of saving one unit of energy by carrying out a
renovation is about 45 ¤/MWh (Plan 2013), while the cost of supplying one unit of energy from
DH in 2013 is 60 ¤/MWh (without taxes) and 93 ¤/MWh (with taxes) (Hofor 2013). According
to Plan (2013), the cost of supplying one unit of energy based on geothermal heat could be around
69 ¤/MWh (without taxes) if accelerated energy renovations are carried out from today. This
emphasises the importance of carrying out energy savings in buildings now and designing the
district heat production based on a long-term perspective.

Traditional DH systems operate with a supply temperature of approximately 70◦C and a return
temperature of 40◦C. Applying low-temperature DH, with a supply temperature of 55◦C and a
return temperature of 25◦C, will give us an opportunity to exploit the low-temperature RE heat
sources, i.e. geothermal heat, solar heat, etc. With lower operational temperatures in the DH
net, the heat losses from the distribution pipes will decrease. These changes will increase the
efficiency of DH systems. The study made by Dalla Rosa and Christensen (2011) explains the
design concept of low-temperature district heating (LTDH). Theoretical investigations on low-
temperature operation have been carried out in EFP (2007) and Olsen et al. (2008), and applied
in Brand, Dalla Rosa, and Svendsen (2010) and EUDP (2008).

Low-temperature DH operates with a temperature of 55◦C, which means that the legionella
problems that can occur in DHW systems need to be considered. According to the German Stan-
dard (DVGW 1993) and research done in Germany (Rühling and Rothmann 2013), the risk of
legionella growth is small as long as the water volume is less than 3 l and the temperatures
are above 50◦C or below 20–25◦C. If each home uses a local substation that contains small
amounts of water and is able to boost the water temperature this problem will be avoided. More-
over, recent research in Sweden has shown good results using UV-disinfection (Efsen 2012;
Teknikmarknad 2011).

When end-use savings are implemented in buildings connected to a DH system, the heat demand
profiles for the individual buildings will change, which will affect the heat profile for the entire
DH system. Researchers in Sweden looked into how the end-use heat savings in buildings will
affect DH production, including costs and primary energy savings (Gustavsson et al. 2011). They
found that a significant amount of the primary energy savings was in the peak load units. In their
study, the peak loads were supplied by light fuel oil boilers, but in the future, such peak loads
will have to be covered by RE systems, which will be expensive. Therefore, after implementing
energy-saving measures, the heat load duration profiles for the buildings are important, since
they are the dimensioning foundation for the future DH systems. To avoid oversized RE-based
capacity, a long-term perspective needs to be taken.

Studies (Tol and Svendsen 2012a, 2012b) have investigated low-temperature DH for buildings
with existing radiators, focusing on the relationship between supply temperature, mass flow rate
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234 M. Harrestrup and S. Svendsen

and the dimensioning of the pipe distribution system based on future and current situations. One
study (Brand et al. 2012) focused on finding the best heating system solution, while achieving good
thermal indoor comfort, for new low-energy single-family houses based on LTDH. However, we
found no research on LTDH for existing multi-storey buildings using the existing radiator system,
which focuses on achieving good indoor thermal comfort as well as implementing end-use savings.

This study describes a method for supplying LTDH to existing multi-storey buildings, focusing
on the implementation of various levels of energy renovation and achieving good thermal indoor
comfort. Furthermore, it describes a dynamic dimensioning method for the future DH capacity
based on the RE supply. The study investigates to what extent it is possible to reduce the peak loads
when supplying low-temperature DH, without compromising on the indoor thermal comfort of the
renovated building. We examined the relationship between the reduction in annual heat savings
and changes in heat load profiles.

Two building blocks from the early 1900s located in typical urban areas in Denmark were inves-
tigated, and end-use savings were carried out concurrently with conversion to low-temperature
DH supply.

2. Methods

Two building blocks, one in Aarhus and the other in Copenhagen, were used as case studies for
this investigation. They are both located in typical urban areas and are from 1910 and 1906,
respectively. Both of them are typical for a large share of the existing buildings in urban areas,
which have large energy-saving potential. The existing state of the buildings was analysed, after
which energy-saving measures were implemented to decrease energy consumption. Three levels
of energy renovation were investigated (Table 1).

Three different energy renovation strategies were investigated, since it might be too optimistic
a goal to carry out extensive energy renovations on all buildings within a short period. So it was
important to investigate various levels of renovation in order to find out whether low-temperature
DH can provide acceptable comfort temperatures with a small degree of energy-saving renovation.
It might also be too expensive to carry out extensive energy renovation on all buildings now. It
might be more reasonable to build new, instead of carrying out relatively expensive renovation
measures. Simply replacing windows is a relatively cheap and easy way of obtaining some savings
now. Furthermore, a number of buildings are protected, so the external façade must be preserved.
The Internal façade insulation needs to be applied, which is costly and takes up the inside space,
and can lead to problems with moisture and fungi (BYG-ERFA 2013; Morelli et al. 2012).

The building energy simulation software IDA-ICE 4 (EQUA 2013) was used for numerical
simulations to determine the energy consumption before and after the implementation of energy-
saving measures. The DRY weather file for Denmark was used for the simulations. According to
the Köppen–Geiger Climate Classification, Denmark is indexed as belonging to the category Cfb
(C: warm temperature, f: fully humid, b: warm summer) (Kottek et al. 2006), and according to the
heating degree day (HDD) method, Denmark has an index of 3479 HDD (European Commission
2008).

Table 1. Energy renovation levels.

Mechanical ventilation
New windows (heat recovery = 85%, Basement Roof Façade

(with solar shading) minimum air change 0.5 h−1) insulation insulation insulation

Extensive renovation X X X X X
Intermediate renovation X X X X
Window renovation X X
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International Journal of Sustainable Energy 235

Figure 1. (a) 3D-models of the buildings in Aarhus and (b) 3D-models of the buildings in Copenhagen.

2.1. Description of the buildings

2.1.1. The building in Aarhus

The building consists of five floors for residential living plus an unheated attic and basement. The
overall heated area is 850 m2. The load-bearing construction is made of wooden beams and brick
walls. There is no façade insulation, but the building went through a renovation in 1989 upgrading
some parts of the building envelope, so the roof is insulated with 200 mm stone wool. However, the
horizontal division between the ground floor and the basement has no insulation. The windows
were replaced with double-glazing. The ventilation is natural, coming from opening windows
and leaks. Only extensive and intermediate renovation was carried out, because the windows had
already been changed in 1989 and the energy-saving potential in simply replacing the windows
would be rather small compared with a building that has not yet been renovated. Only one floor
was modelled in IDA-ICE as representative for the entire building (Figure 1).

2.1.2. The building in Copenhagen

The building in Copenhagen also consists of five floors for residential living, plus an unheated attic
and basement. The overall heated area is 3409 m2, spread out over 43 apartments. The bearing
construction is made of wooden beams and brick walls. There is no insulation in the façade,
roof or the horizontal division between the ground floor and the basement. The windows are old
one-layer inefficient windows. Fresh air is provided by natural ventilation from opening windows
and leaks. All three levels of energy renovation were carried out – the extensive, intermediate and
window renovation. Three apartments were modelled in IDA-ICE as representative for the entire
building (Figure 1).

The U-values and infiltration for both buildings before and after the various renovation measures
are presented in Table 2. To include the heat loss from the roof and to the basement, the extra
heat losses from here have been included in the models as a weighted average in the U-value for
the façade. The thickness of the façade varies, with smallest thicknesses at the top and under the
windows, so the façade U-value was based on a weighted average, representing the entire building
façade. The radiators were dimensioned based on the heat losses from the zones in the existing
building using an annual simulation with IDA-ICE. The radiators were dimensioned based on a
supply temperature of 70◦C and a return temperature of 40◦C (Korado 2013).

2.2. Annual heat demand and heat load profile

The savings in annual heat demand were studied and compared with the savings at peak load. Since
peak load production is very costly, it is desirable to reduce the peak load as much as possible. So
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236 M. Harrestrup and S. Svendsen

Table 2. U-values for the buildings before and after renovation.

Copenhagen Aarhus

U-values and infiltration Existing Renovated Existing Renovated

Façade (W/m2 K) 1.34 0.16 1.34 0.16
Windows (W/m2 K) 4.50 0.97 2.90 1.28
Roof (W/m2 K) 1.20 0.11 0.20 0.13
Horizontal division between ground floor and basement (W/m2 K) 1.20 0.16 1.50 0.30
Infiltration (h−1) 0.5 0.05 0.5 0.05

Figure 2. Sketch of duration curve for SH – daily average.

we investigated the lower limit to which it is possible to dimension peak load production and still
provide an acceptable indoor thermal comfort when the building has been renovated. The savings
and indoor comfort were studied for dimensioning peak load production based on daily average
values. Furthermore, we investigated whether it is possible to go one step further and dimension
peak load production based on an average of the five days with the highest daily average values
without compromising on indoor thermal comfort (Figure 2).

2.3. Return temperature from building to DH network with low-temperature DH

With low-temperature DH, it is crucial to have the same cooling of the DH water in the system.
Traditional DH systems have a �T = 30 K (70–40◦C), so the return temperature should be 25◦C
if the supply is 55◦C. If �T is decreased, the mass flow rate needs to be increased to achieve the
same power output. If the existing distribution pipes in the DH network are to be used, the mass
flow rate cannot be increased, which implies that �T in the system needs to stay at 30 K. The
return water from the building to the DH network was logged and analysed.

3. Results

3.1. Annual energy consumption

3.1.1. The building in Aarhus

As a result of the energy-saving measures, the total energy consumption decreased as shown in
Table 3. If the building undergoes an extensive renovation, it is possible to achieve an annual heat
reduction of about 70–80% and a total energy reduction of about 60–70%, which is in accordance
with the findings in Kragh (2010), Kragh and Wittchen (2010), Lund et al. (2010), Rasmussen
(2010) and Tommerup (2010). The differences in the reduction in annual energy and annual
SH are due to the extra energy used for mechanical ventilation. A consumption of 4–5 kWh/m2
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Table 3. Annual energy demand and reduction compared with existing building.

Existing Extensive renovationa Intermediate renovationa

SH set SH set SH set SH set SH set
point = 20◦C point = 20◦C point = 22◦C point = 20◦C point = 22◦C

CAV VAV CAV VAV CAV VAV CAV VAV

SH (kWh/m2) 133 38 29 55 43 106 95 136 124
DHW (kWh/m2) 13 13 13 13 13 13 13 13 13
Mechanical ventilation (kWh/m2) – 5 5 5 4 5 4 5 4
Total (kWh/m2) 146 56 47 72 61 124 112 154 141
SH reductionb (%) – 71 78 59 68 20 28 −3 6
Total energy reductionb (%) – 62 68 51 58 15 23 −5 3

aSupply temperature: 55◦C year round.
bCompared with existing building.

for mechanical ventilation is in accordance with the findings and suggestions in Tommerup and
Svendsen (2006). When a building undergoes a renovation, it is often observed that the occupants
discover an increased comfort level and, therefore, increase the room temperature from 20◦C to
22◦C. The increase of 2◦C results in an increased SH demand of about 30%, which indicates the
importance of user behaviour for the energy savings achieved. If an intermediate renovation is
carried out, it is possible to achieve a reduction in SH demand of 20–30% if the set point for the
room is kept at 20◦C. If this is increased to 22◦C, the energy savings are negligible, so in this case,
user behaviour is crucial for achieving savings. Low-temperature DH with a supply temperature
of 55◦C was applied in both renovation levels, and it was possible to reach a minimum comfort
temperature of 20◦C in both cases without having to increase the supply temperature in cold
periods.

Furthermore, Table 3 shows that the use of variable air volume (VAV) ventilation pro-
vides lower total energy consumption than constant air volume (CAV) ventilation. This is
due to extra heat losses in cold periods with CAV. The Danish Building Regulations 2010
(Danish Energy Agency 2013) set a maximum energy consumption for residential buildings at
(52.5 + 1650/A) kWh/m2 = 62 kWh/m2 including SH, DHW and energy for ventilation, with
A being the heated area. An extensive renovation makes it possible to obtain an energy level in
accordance with these requirements.

3.1.2. The building in Copenhagen

For the building in Copenhagen, Table 4 shows that an annual heat reduction of about 70–80% and
a total energy reduction of about 60–70% can be achieved if the building undergoes an extensive

Table 4. Annual energy demand and reduction compared with existing building.

Existing Extensive renovation Intermediate renovation Window renovation

20◦C 20◦C 22◦C 20◦C 22◦C 20◦C 22◦C

SH (kWh/m2) 128 22 34 66 86 80 103
DHW (kWh/m2) 13 13 13 13 13 13 13
Mechanical ventilation (kWh/m2) – 8 8 8 8 8 8
Total 141 43 55 87 107 101 124
SH reductiona (%) – 82 73 48 33 38 20
Total energy reductiona (%) – 69 61 38 24 29 12

aCompared to the existing building.
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238 M. Harrestrup and S. Svendsen

renovation. This is similar to the building in Aarhus. The mechanical ventilation system in this
building is based on CAV and the consumption is slightly higher than the building in Aarhus
at 8 kWh/m2, but still in accordance with Tommerup and Svendsen (2006). If an intermediate
renovation is carried out, it is possible to reach a reduction in SH demand of 30–50%, depending on
the set-point temperature for the rooms. Occupant behaviour has proportionately greater influence
on the SH savings when fewer energy-saving measures are implemented. Window renovation on
its own provides approximately 10% less than the intermediate renovation. The old windows were
very inefficient, so a lot of the saved energy is due to the replacement of windows (20–40%).

Low-temperature DH is implemented with a building supply temperature of 55◦C. It was
possible to reach a minimum comfort temperature of 20◦C for all three renovation levels without
having to increase the supply temperature in cold periods.

As for the building in Aarhus, it is possible to obtain an energy level that complies with the
requirements for new buildings in the Danish Building Regulations 2010 (Danish Energy Agency
2013) if an extensive renovation is carried out.

3.2. Changes in heat load profile

3.2.1. The building in Aarhus

When energy-saving measures are implemented, the heat load profile for the individual building
changes. Figure 3 shows the duration curve for daily average SH loads, with the heat demand
becoming more constant over the year as a result of the energy savings. The more energy-saving
measures are implemented, the lower the duration curve becomes (less loads) and more constant
the heat demand is. This means that the DH plant will not have to invest in so much renewable
supply capacity because the peak loads are lower. Furthermore, the demand will be more constant,
which will also result in lower costs for the DH plants.

Table 5 shows the reduction in the peak load based on the hour with the highest load. As shown,
the reduction is about 40–50% for the extensive renovation and between 15% and 20% for the
intermediate renovation.

We also investigated whether it is possible to dimension the DH capacity for the renovated
building, based on an average of the five days with the highest daily average heat loads, without
compromising on indoor thermal comfort. For this investigation, one scenario for each renovation
level was chosen. For the extensive renovation, the investigation was based on a scenario with
VAV and a set-point temperature of 22◦C while, for the intermediate renovation, we chose a
scenario with VAV and a set point of 20◦C. Table 6 shows the peak loads and the peak load
reductions compared with the existing building, based on the different dimensioning scenarios for
the extensive and intermediate renovations, respectively. Table 7 shows the thermal indoor comfort
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Figure 3. Duration curve for SH – daily average.

D
ow

nl
oa

de
d 

by
 [

D
T

U
 L

ib
ra

ry
] 

at
 0

7:
07

 1
6 

D
ec

em
be

r 
20

14
 



International Journal of Sustainable Energy 239

Table 5. Reduction in peak load compared with the existing building based on hourly values.

Extensive renovation Intermediate renovation

SH set point = 20◦C SH set point = 22◦C SH set point = 20◦C SH set point = 22◦C

Percentage CAV VAV CAV VAV CAV VAV CAV VAV

Reduction in peak
load (hourly values)

43 52 42 52 14 20 15 21

Table 6. Reduction in peak load compared with the existing building.

Extensive renovation Intermediate renovation

Peak load (VAV–SH Peak load (VAV–SH
set point = 22◦C) (W) Reduction (%) set point = 20◦C) (W) Reduction (%)

Hour with the highest load 4918 52a 8127 20a

Day with the highest
average load

3361 61b 6884 21b

Average of five days
with the highest daily
average load

2853 67b 5958 31b

aReduction compared with the existing building with the highest hourly load.
bReduction compared with the existing building with the highest daily average load.

Table 7. Temperatures in the living zones and hours outside comfort limits.

Average of five
days with the highest Living Living Living Living
daily average load room 1 room 2 room 3 room 4 Bedroom 1 Bedroom 2 Bedroom 3 Bedroom 4

Extensive renovation-SH Tset point = 22◦C
Ti−max (◦C) 26.4 26.4 26.3 26.7 26.0 25.7 26.3 26.0
Ti−min (◦C) 20.7 20.8 20.2 20.2 20.2 20.1 20.3 20.0
Ti < 20◦C 0 0 0 0 0 0 0 0
Intermediate renovation-SH Tset point = 20◦C
Ti−max (◦C) 26.3 26.3 26.2 26.6 25.9 25.5 26.2 25.9
Ti−min (◦C) 18.1 18.2 17.0 17.9 17.3 17.3 17.2 17.3
Ti < 20◦C 101 90 208 97 144 170 145 168
Ti < 19◦C 15 14 59 15 42 46 47 39
Ti < 18◦C 0 0 18 2 12 13 15 13
% Hours below 20◦C 1.2 1.0 2,4 1.1 1.6 1.9 1.7 1.9
% Hours below 19◦C 0.2 0.2 0.7 0.2 0.5 0.5 0.5 0.4
% Hours below 18◦C 0 0 0.2 0 0.1 0.1 0.2 0.1
Ti < 20◦C with SH set

point = 22◦C
14 13 54 14 32 36 44 33

Ti < 20◦C with increased
supply temperature to
70◦C in cold periods

13 10 44 13 23 26 34 25

in terms of hours outside the desired temperature range. As shown, it is possible to reach the same
reduction in the peak loads as for the annual SH reduction (Table 3) when the dimensioning of
the DH capacity is based on the average of the five days with the highest daily average loads.
With the extensive renovation, there are no hours below 20◦C. With the intermediate renovation,
a significant proportion of hours are below the limits with the lowest temperature being 17.4◦C,
which is not acceptable. If the set point for the room is raised to 22◦C during cold periods, however,
it is possible to avoid hours below 20◦C for most of the year. This will increase the annual energy
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240 M. Harrestrup and S. Svendsen

consumption, but the effect will be small, 2.4% over the year at the most. If the supply temperature
is increased to 70◦C in cold periods, the number of hours below 20◦C slightly decreases, but it is
not possible to completely avoid hours below 20◦C. However, the number of hours below 20◦C
varies between 10 and 44, which is less than two days.

3.2.2. The building in Copenhagen

The same tendency of a reduction of the peak loads and a change in the duration curve is seen with
the building in Copenhagen. Figure 4 shows the duration curve for SH based on the daily average;
the heat demand becomes more constant over the year as a result of the energy savings. The more
energy-saving measures implemented, the lower the duration curve becomes (less loads). This
is beneficial for the DH companies in terms of initial capital investment costs and the degree of
utilisation of the plants.

Table 8 shows the reduction in the peak load based on the different dimensioning scenarios. As
shown, the reduction for the extensive renovation is about 60% for the hour with the highest load,
65% for the day with the highest average load and 70% for an average of the five days with the
highest daily average loads. For the intermediate renovation, the reduction is about 30–35% for
the hour and day with the highest load, and about 40% for the average of five days. The window
renovation results in reductions of about 20–25% for the hour and day with the highest load, and
about 30% for the average of five days.

Table 9 shows the hours outside the thermal indoor comfort range for the extensive, intermediate
and window renovations. The set point is 20◦C and it was not possible to keep a minimum
temperature of 20◦C all year round. If the set-point room temperature is increased to 22◦C in very
cold periods, it is possible to avoid any hours below 20◦C for all renovation levels. Furthermore,
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Figure 4. Copenhagen: duration curve for SH – daily average values.

Table 8. Reduction in peak load compared with the existing building.

Extensive Intermediate Window
Reduction compared renovation renovation renovation
with existing building
(supply = 55◦C all year) 20◦C 22◦C 20◦C 22◦C 20◦C 22◦C

Hour with the highest loada (%) 58 57 31 30 23 21
Day with the highest average loadb (%) 67 65 34 31 25 21
Average of five days with the highest daily average loadb (%) 72 70 43 40 34 30

aReduction compared with the existing building with the highest hourly load.
bReduction compared with the existing building with the highest daily average load.
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Table 9. Temperatures in the living zones and hours outside comfort limits.

Average of five days
with the highest Living Living Living Bedroom Bedroom Bedroom Bedroom Bedroom
daily average load room 1 room 2 room 3 1a 2a 2b 3a 3b

Extensive renovation 20◦C
Ti−max (◦C) 27.0 27.2 26.5 27.0 27.0 26.9 26.5 26.5
Ti−min (◦C) 18.8 19.3 18.8 18.9 19.4 19.2 18.7 18.2
Ti < 20◦C 35 16 35 28 13 27 41 35
Ti < 19◦C 5 0 4 4 0 0 6 4
% Hours below 20◦C 0.4 0.2 0.4 0.3 0.2 0.3 0.5 0.4
% Hours below 19◦C 0.1 0 0.1 0.1 0 0 0.1 0.1
Ti < 20◦C with SH set point

increased to 22◦C
0 0 0 0 0 0 0 0

Intermediate renovation 20◦C
Ti−max (◦C) 26.7 27.2 26.8 26.8 26.9 26.8 26.8 26.7
Ti−min (◦C) 18.3 18.6 18.3 19.0 19.2 18.8 18.3 18.6
Ti < 20◦C 56 38 55 17 23 40 55 44
Ti < 19◦C 14 9 12 1 0 5 4 8
% Hours below 20◦C 0.6 0.4 0.6 0.2 0.3 0.5 0.6 0.5
% Hours below 19◦C 0.2 0.1 0.1 0 0 0.1 0.1 0.1
Ti < 20◦C with SH Tset point

increased to 22◦C
0 0 0 0 0 0 0 0

Window renovation 20◦C
Ti−max (◦C) 26.9 27.4 27.2 26.9 27.2 27.1 27.1 27.0
Ti−min (◦C) 18.2 18.3 18.1 19.0 19.1 18.8 18.1 18.5
Ti < 20◦C 64 42 62 16 29 42 61 47
Ti < 19◦C 16 13 15 0 0 5 15 10
% Hours below 20◦C 0.7 0.5 0.7 0.2 0.3 0.5 0.7 0.5
% Hours below 19◦C 0.2 0.2 0.2 0 0 0.1 0.2 0.1
Ti < 20◦C with SH Tset point

increased to 22◦C
0 0 0 0 0 0 0 0

if the occupant wants to have an indoor room temperature of 22◦C, the supply temperature from
the DH plant can be increased from 55◦C to 70◦C in cold periods.

3.3. Return temperature from building to DH net

When low-temperature DH is applied with an unchanged flow rate, the performance of the radiators
decreases by a factor of 2.5. If the flow is increased, the performance will increase as well, but to
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Figure 5. Return temperature to DH network for building in Aarhus.
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obtain an acceptable cooling of the DH water in the radiator (30 K), the flow cannot be increased
(see Section 2.3), so the supply temperature may need to be increased in cold periods.

The return temperatures from the buildings to the DH network are presented in Figures 5
and 6 based on a supply temperature of 55◦C all through the year. The figures are based on a
set-point temperature for the room of 22◦C. The return temperature will be higher for a set-point
temperature of 22◦C than for a set-point temperature of 20◦C, and thus represents the worst-case
scenario. In general, the lower the level of energy renovation implemented, the higher the return
temperature is. �T = 30 K can only be achieved in the case of extensive renovation, whereas
with intermediate and window renovation, it cannot be achieved the entire year. The solution is
to increase the supply temperature when �T = 30 K is not achieved.

Figure 7 shows the return temperature and the �T for the building in Aarhus with intermediate
renovation when the supply temperature is increased to 60◦C in cold periods. The weather-
compensated curve related to the supply temperature is shown in Figure 8.

Figures 9 and 11 show the return temperature and the �T for the building in Copenhagen for the
intermediate and window renovations, respectively, when the supply temperature is increased to
60◦C or 70◦C in cold periods. The weather-compensated curves related to the supply temperature
are shown in Figures 10 and 12.

4. Discussion and conclusions

Energy renovations were carried out on two typical Danish building blocks from the early 1900s in
urban areas. It was found that the end-use energy consumption for both buildings can be reduced
to the level the Building Regulations 2010 (BR10) require for new buildings – approximately
50–60 kWh/m2 – when extensive energy renovation is implemented. This implies a combined
solution where the façade, the roof and the basement are insulated, the windows are replaced with
new energy-efficient windows with solar shading and mechanical ventilation with heat recovery
installed. This is in agreement with what has been found in other studies (Kragh 2010; Kragh and
Wittchen 2010; Lund et al. 2010; Rasmussen 2010; Tommerup 2010).

It was found that, if the expensive façade insulation is excluded, it is still possible to obtain
end-use energy savings of 30–50% depending on whether the set-point temperature for the rooms
is 20◦C or 22◦C. User behaviour has a significant impact on the energy savings achieved, and this
impact is proportionately greater when fewer refurbishment measures are implemented.

Moreover, we found that the heat load profiles over the year generally decrease and become
more constant as a result of the energy renovation, which is of great benefit to heating companies,
since it provides a better utilisation of the heating capacity and, therefore, reduces the costs.

The dimensioning peak load was found to be reduced by the same percentage as the reduction
in the annual SH, if the dimensioning is based on an average of the five days with the highest
daily average loads. Furthermore, we found that it was possible to achieve an acceptable indoor
thermal comfort with a minimum temperature of 20◦C for the building in Copenhagen. For the
building in Aarhus, a few hours corresponding to a total less than two days, were below 20◦C
with an intermediate renovation. This is generally not acceptable, and suggests that dimension-
ing criteria based on an average of five days with the highest daily average load might be too
much for new DH capacity if an intermediate renovation is carried out. However, there were
no problems for the building in Copenhagen or for the extensive renovation case in Aarhus.
The conclusion we draw from this is that it depends on the savings achieved in the specific
building and on the design of its existing heating systems. An average of five days with the
highest daily average loads might be slightly too high in some cases, but acceptable in other
cases.
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The reduction in peak load leads to lower costs for investment in new RE supply capacity,
which is beneficial to DH companies. Figure 13 shows our findings for possible reductions in the
annual demands and in the peak loads.

The investigation indicated that it is possible to supply buildings with LTDH for most hours of
the year without compromising on indoor thermal comfort. In cold periods, it might be necessary
to increase the supply temperature to either 60◦C or 70◦C because, with LTDH, the performance
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Figure 8. Aarhus: intermediate renovation. Supply temperature as a function of the outdoor temperature.
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Figure 10. Copenhagen: intermediate renovation. Supply temperature as a function of the outdoor temperature.
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Figure 11. Increased supply temperature, return temperature and �T for the building in Copenhagen – window
renovation.

of the radiators decreases by a factor of 2.5 with an unchanged flow rate. If the flow is increased,
the performance will increase, but to obtain an acceptable cooling of DH water in the radiator
(30 K), the flow cannot be increased. If we are to keep the existing DH distribution net, it is
crucial that the cooling of the DH water for LTDH application corresponds to a traditional system
(30 K), so the return temperature is of great importance. We found that it is possible to obtain a
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Figure 12. Copenhagen: window renovation. Supply temperature as a function of the outdoor temperature.
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return temperature of 25◦C in the case of extensive renovation, but that for the intermediate and
window renovations the supply temperature needs to be increased slightly. If the increase is to
60◦C, the period required will be longer than if the increase is to 70◦C. However, increasing the
supply temperature to 60◦C can still be considered relatively low-temperature operation, and the
supply temperature will reach a 60◦C operation only when the outdoor temperature is lower than
−10◦C. Increasing the supply temperature to 70◦C will be needed for a shorter period. In this
case, the supply temperature starts increasing when the outdoor temperature is below −5◦C and
will increase proportionally until the outdoor temperature is −10◦C. The period when the outdoor
temperature is lower than −5◦C is less than 5% of the year. This indicates that LTDH operation
for existing buildings that undergo renovation is possible most hours of the year.
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