

HUMANE Human Maritime Autonomy Enable

Margareta Lutzhoft Jonathan Earthy

specific effectively development solving automation maritime better experience important situation office build safety seafarers specialists data managing idea basic able problems ethical person learning design bridge centre vessel moving crew trying technology digitally tim support navigator sh today ontrol technical number tools $\stackrel{risk}{OD}$ training cargo^{handle} ^{pilots} human mariners change experts team culture oard adapt role_ testing response ste tand stew language course tuture^{ability} route eei thought terms emergency awareness discussion competence planning master company level software industry educational sensing monitoring knowledge teaching remote keeping dealing process getting

Routledge Human-Centred Autonomous Shipping What else was going on at the time we started?

HUMANE

Human-centred autonomy

System safety and cyber security

October 2018 in Trondheim

Training and education November 2019 in Vestfold

Forecasting workshops

Legal implications

January 2019 in Oslo

Maritime AI ecosystem – smart ships

June 2020 on Zoom

CIRM	SINTEF	Inmarsat	BIMCO
Massterly	BW Gas	BW Offshore	SeaBot XR
Rolls Royce	Bellona	MTI-NYK	BMT Global
DNV-GL	Lloyd's Register	InterManager	Wärtsilä
InterManager	ABB	Norcontrol	SIMAC
Kongsberg	Kongsberg	Maritime	University of
Maritime	Seatex	Robotics	Gothenburg
F-Secure	RISE Viktoria	EXMAR	Safe Marine
Norwegian	Norwegian	Swedish	Wilhelmsen
Maritime	Coastal	Transport	Ship
Authority	Administration	Agency	Management
European	Danish	University of	University of
Maritime Safety	Maritime	Southampton	South-Eastern
Agency	Authority		Norway
IMarEST's	The	Aboa Mare	Shanghai
Maritime	International	Maritime	Merchant
Autonomous	Transport	Academy and	Ship Design &
Surface Ships	Workers'	Training Center	Research
Special Interest	Federation		Institute
Group			(SDARI)
National	Gard	Møkster	Åbo Akademi
Maritime College			University
of Ireland			
Norwegian	International	Western	
University of	Marine	Norway	
Science and	Contractors	University of	
Technology	Association	Applied	
		Sciences	

Fireside chats

10 x 2021 on Zoom

Summary of insights and results

- The business case rules
- Human Factors is still there ... in spite of the lack of research
- Humans will be "onboard" and they will be seafarers
- Needed skills: maritime, IT, collaboration, adaptability, learning, systems & safety
- Safety needed but no baseline
- Autonomous ships will be close to shore and local, small or medium-sized
- Regulation issues are understood single code to be developed
- Cyber security is a major risk
- Communication is still not solved
- Maritime is lagging in application of AI
- Digitalisation and humans teaming

The safety set (from ISO, IMO, HCAI, HUMANE) A Maritime Autonomous Ship System shall:

1a. Be identifiable as under control of an artificial intelligence, or

1b. Be identifiable as under remote control

2. Act in a manner that is understandable by seafarers on own and other ships and shore services (e.g. pilot, VTS, owner)

3. Communicate its status and capability to crew on own and other ships and shore services

4. Be able to explain its intention

5. Be able to explain its course of action

6. Recognise when it requires assistance

7. Request assistance

8. Place itself in a state in which it does not present a hazard to the environment, other shipping, fixed structures, or those rendering assistance

9. Whilst in a safe state allow authorised personnel to operate the [systems/functions] necessary to restore, replace or supplement lacking capability (defect, failure, events that are not reasonably foreseeable)

10. Render assistance to other ships and persons in distress

11. Transfer control to authorised personnel on request

12. Protect itself from unauthorised access

13. Be sufficiently dependable to fulfil its intended purpose.

The safety set (from ISO, IMO, HCAI, HUMANE) A Maritime Autonomous Ship System shall:

1a. Be identifiable as under control of an artificial intelligence, or

1b. Be identifiable as under remote control

2. Act in a manner that is understandable by seafarers on own and other ships and shore services (e.g. pilot, VTS, owner)

3. Communicate its status and capability to crew on own and other ships and shore services

4. Be able to explain its intention

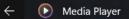
5. Be able to explain its course of action

- 6. Recognise when it requires assistance
- 7. Request assistance

8. Place itself in a state in which it does not present a hazard to the environment, other shipping, fixed structures, or those rendering assistance

9. Whilst in a safe state allow authorised personnel to operate the [systems/functions] necessary to restore, replace or supplement lacking capability (defect, failure, events that are not reasonably foreseeable)

10. Render assistance to other ships and persons in distress


11. Transfer control to authorised personnel on request

12. Protect itself from unauthorised access

13. Be sufficiently dependable to fulfil its intended purpose.

Summary

- What Rolls Royce intended
 - Integrated work system for 'assisting' unmanned ships world wide
 - Metaphor: Control room from process industry
- What HUMANE found
 - People onboard remote *control* not apparent
 - Understanding benefits of, and genuine wish for, human autonomy teaming
- What industry seem to be doing
 - Something completely different
 - [and now we have to kill you]

The human element issues to address

What makes it a nice job

- safe and comfortable, positive user experience
- job designed so that people want to do it
- skills conservation
- optimising manning
- minimising use error
- accessible work location (e.g. ship or shore)
- hybrid teaming/team working, human augmentation
- adaptive/optimised workload
- equivalent safety and usability between alternative design concepts
- able to trust systems and their behaviour

How to make it a nice job

- less unnecessary watchkeeping
- safe behaviours
- understandable explanation
- identify barriers to the job to be done
- taking account of context
- meaningful work making use of human abilities
- most cost-effective automation
- automating the boring stuff
- demonstrating that seafarers are valued
- replace dangerous, dirty jobs but keep the enjoyable one
- human-centred design