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Prologue
Welcome!

Analysis of Twin Data in Health Science:

@ The Course homepage - click here
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Familial risk
(95% Cl) — DZ tw

Cancer site Cumulative N Twin pairs concordant/ Familial risk’

risk’ (%) discordant (95% Cl) — MZ twins
DZ

Overall cancer 32.4% 1383/5887 1933/11461 45.9% (44.1%-47.7%)

Head and neck’ 0.8% 5/191 6/361 6.0% (2.4-14.4%)

Esophagus 0.4% 0/87 0183 - B

Stomach 1.6% 14/338 15/648 6.8% (3.9-11.4%) 4.4% (2.

Small intestine 0.1% 0/32 0/59 -

Colon 2.9% 30/577 31/1156 10.9% (7.4-15.8%)

Rectum and anus 1.9% 14/440 13/771 6.6% (3.7-11.4%)

Liver 0.5% 0/124 2/208 -

Gallbladder, extrahepatic 0.5% 1110 1/187 0.5% (0-4.7%)

bile duct

Pancreas 1.1% 4/234 6/508 4.3% (1.5-11.6%)

Nose, sinuses 0.1% 0/21 0/36 -

Larynx 0.2% 2/53 1113 8.4% (2.3-26.4%)

Lung, tracheaand 3.2% 50/682 74/1366 17.5% (13.4-22.5%)

bronchus

Pleura 0.1% 1/22 0/38 -

Bone 0.1% 0/20 0/35 -

Melanoma of skin 1.2% 11/342 6/585 19.6% (11.5-31.3%)

Skin, non-melanoma 3.0% 16/395 10/618 14.5% (7.5-26.2%)

Connective and soft 0.2% 0/57 0/110 -

tissues

Breast 9.4% 124/1175 141/2223 28.1% (23.9-32.8%)

Cervix uteri 1.0% 0 31324 -

Corpus uteri 2.2% 91272 6/481 7.0% (3.4-14.0%)

Uterus, other 0.1% 0/24 0/36 -

Ovary 1.6% 6/234 41427 8.7% (4.0-17.9%)

Other female genital 0.4% 0/47 1/84 -

organs

Penis and other genital 0.1% 0/15 0/34 -

organs

Prostate 10.5% 197/807 148/1719 38.0% (33.9-42.2%)

Testis 0.5% 5/90 3/123 13.8% (5.7-29.6%)

Kidney 0.8% 5/196 21374 6.7% (2.8-15.1%)

Bladder, other 22% 18/471 13/870 9.9% (6.2-15.5%)

urinary organs

Eye 0.1% 2/30 0/64 -

Brain, central 0.9% 1/343 3/522 1.7% (0.5-6.2%)

nervous system

Thyroid 0.2% 0/85 1/132 -

Hodgkin's disease 0.1% 0557 0/69 -

Multiple myeloma 0.4% 0/114 0174 -

Non-Hodgkin lymphoma 0.7% 1/254 3/466 -

Leukemia, acute 0.3% o7 0/139 -

Leukemia, other 0.6% 5/128 31259 15.2% (6.1-33.2%)
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Lichtenstein 2000

Heritability
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33% (30-37%)
9% (0-60%)
22% (0-55%)
15% (0-45%)
14% (0-50%)
18% (0-42%)

58% (43-73%)

43% (26-59%)

31% (11-51%)

27% (11-43%)

39% (23-55%)
57% (51-63%)
37% (0-93%)
38% (21-55%)
30% (0-67%)

57% (0-100%)

0%
26% (0-65%)
6% (0-31%)
16% (0-38%)
10% (0-38%)
24% (7-40%)

0%

0%

16% (0-31%)
0%
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0%
24% (0-70%)
0%
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0%

N/A
N/A
28%
35%*
35%*
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N/A
N/A
27%
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N/A
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* Lichtenstein et al presented data for colon and rectum combined
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History: Statistical genetics

| How is variation at phenotypic level governed by variation at genetic level? |

@ R.A. Fisher (1918): Two landmark papers.

Biometrical Genetics

XY.—The Correlation between Relatives on the Supposition of Mendelian Inherit-
ance.” By R A Fisher, BA,  Communicated by Professor J. Awrnus
Twoxso. (With Four Figures in Text.)
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Prologue

Effect?
Exposure—Outcome

@ Outcome: Continuous variable (eg. time to event, BMI, .. .).

@ What is the contribution of genetic and environmental factors to the
variation in outcome?

Y = Genes + Environment
zY = zGenes + zEnvironment

@ What kind of genetic and environmental influences to expect?
@ Example: SNPedia.com - click here

Biostatistics (Institute of Public Health) Analysis of continuous twin data


http://snpedia.com/index.php/Heritability

Overview

@ Case study: Genetic influence on Body Mass Index
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Case study: Body Mass Index

Longitudinal BMI
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Case study: Background

@ Body Mass Index defined as weight (kg) per squared height (m?) is a
complex trait related to several health related factors (eg. obesity,
diabetes, aging).

@ The index may allow for comparison among individuals with different
height, but is not regarded invariant between different sexes.

@ Estimated heritability of 0.60-0.70 in BMI has been reported from ‘The
GenomeEUtwin Study’ using 8 cohorts (Schousboe et al. 2003)) with the
remaining 30-40% due to a unique environmental variance component.

@ The genetic influence is a complex action of several genes. Only few
genetic variants identified so far.

@ The interplay with environmental factors is under intense investigation.

Biostatistics (Institute of Public Health) Analysis of continuous twin data



The Methodology

@ Genetic influence on continuous trait
@ Correlation: measure of similarity to be compared for MZ and DZ pairs

@ The polygenic model allows for modelling type and magnitude of genetic
influence on BMI by decomposing the variance in BMI into genetic and
environmental components.
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The Material

Lexis diagram for longitudinal Finnish twin cohort
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The Data

e
| id tvparnr nr bmi sex age zygocity
| ________________________________________________________________

1. | 1000011 100001 1 26.33289 male 57.57974 DZ

2. | 1000012 100001 2 25.46939 male 57.57974 DZ

3. | 1000021 100002 1 28.65014 male 57.0486 MZ

4. | 1000031 100003 1 28.40909 male 57.6783 DZ

5. | 1000041 100004 1 27.25089 male 53.51677 DZ

Histogram of InBMI
Quantile-quantile plot of INnBMI of females
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The Data

@ How about marginal effects of eg. age and gender?



The Data

@ How about marginal effects of eg. age and gender?
@ Regression model for the response of i'th individual in j'th pair:

Vi = Bo + Bragej + PBasexjj + PzageXsex; + Uj + €jj,

where u; is a term that varies in pairs - a random intercept that models
the within pair covariance.



The Data

@ How about marginal effects of eg. age and gender?
@ Regression model for the response of i'th individual in j'th pair:

Vi = Bo + Brage; + Basex; + BzageXsex; + Uj + €j,
where u; is a term that varies in pairs - a random intercept that models
the within pair covariance.

@ Why complicate matter?

@ For inference, ie., konfidence and tests, independent observations are
needed and u; models the dependence in twin pairs giving adjusted

inference.
@ In Stata (see accompanying script for model diagnostics etc.):

> xi: xtmixed 1lnbmi i.sexxage || tvparnr: , var mle
Log likelihood = 7214.1296 Prob > chi2 = 0.0000
Inbmi | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_Isex_2 | -.1619652 .0166531 -9.73 0.000 -.1946047 -.1293257
age | .0035526 .0002722 13.05 0.000 .0030191 .0040861
_IsexXage_2 | .0022916 .0003692 6.21 0.000 .001568 .0030153
_cons | 3.065863 .0123446 248.36 0.000 3.041668 3.090058



The Data

@ We consider the logarithm of BMI, in notation ‘InBMI’.

@ The outcome is associated with gender and age.
@ Lets load the data into R and head for descriptives:

Use R

Start R and open the R-script 'twinbmi.R’.
Run lines in script till Section Pairs begins.

@ We then go on considering the paired structure.

. N




BMI of twin versus BMI of cotwin

InBMI by zygocity
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BMI of twin versus BMI of cotwin
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Genetic Influence on InBMI

Polygenic model
Number of pairs  Correlation (95% Cl)  Heritability (95% ClI)

MZ pairs 1483 ?(?7,7 ?(?,7)
DZ pairs 2788 ?(?7,7 Biometric model
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Overview

Q Correlations and assumptions
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Statistical genetics
‘ How is variation at phenotypic level governed by variation at genetic level?

@ Two structures for modelling: mean and variance-covariance.

@ R.A. Fisher (1918): The variance-covariance matrix varies by type of twin
pairs.
_( variance of first twin  covariance of twins
a ( covariance of twins  variance of second twin )

@ We begin seeking a measure of twin similarity: p

Biometrical Genetics




SEM - Correlation Path Diagram representation



Within pair intraclass correlation

What's on?
@ How to measure twin similarity ?




Within pair intraclass correlation

What's on?

@ How to measure twin similarity?

@ Given pairs (y1j, y»;) of observations of a continuous trait the correlation
within pairs is the usual (product-moment) correlation assuming equal
mean and variance for twin 1 and twin 2.
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within pairs is the usual (product-moment) correlation assuming equal
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@ Twin 1 and twin 2 can be interchanged when there is no ordering of twin
and co-twin.
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@ This is the amount of variance between pairs of the total variance in the
trait.
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Within pair intraclass correlation

What's on?
@ How to measure twin similarity?

@ Given pairs (y1j, y»;) of observations of a continuous trait the correlation
within pairs is the usual (product-moment) correlation assuming equal
mean and variance for twin 1 and twin 2.

@ Why assume equal mean and variance for twin 1 and twin 2?

@ Twin 1 and twin 2 can be interchanged when there is no ordering of twin
and co-twin.

@ What is the interpretation of the within pair correlation?

@ This is the amount of variance between pairs of the total variance in the
trait.

@ What is the purpose?

@ Higher correlation in MZ than in DZ pairs indicate genetic influence on
the trait.



Within pair intraclass correlation
What'’s on?

How to measure twin similarity?

Given pairs ()1, y2;) of observations of a continuous trait the correlation
within pairs is the usual (product-moment) correlation assuming equal
mean and variance for twin 1 and twin 2.

Why assume equal mean and variance for twin 1 and twin 2?

Twin 1 and twin 2 can be interchanged when there is no ordering of twin
and co-twin.

What is the interpretation of the within pair correlation?

This is the amount of variance between pairs of the total variance in the
trait.

What is the purpose?

Higher correlation in MZ than in DZ pairs indicate genetic influence on
the trait.

But for this comparison you should assume equal mean and variance for
MZ and DZ twins!

Yes! MZ and DZ twins do not differ (on average) as singletons.



Correlation in twins

Assumptions
@ A measure of twin similarity: p
@ Given pairs of observations of a continuous trait,

{Wj,¥2))} j=1...n (pairs)
the correlation is defined by

cov(y1, y2)
var(y1)+/var(y2)

p(V1,y2) =

@ Assumption: Equal mean and variance for twin 1 and twin 2.
@ Assumption: Equal mean and variance for MZ and DZ twins.

@ Estimation: By maximum likelihood assuming bivariate normal
distribution.




BMI of twin versus BMI of cotwin

InBMI by zygocity
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Graphs by zygocity



Bivarite normal distribution plot




Correlation in twins

@ The pair (Y, Y2) is bivariate normal distributed with mean (1, u2) and
variance-covariance matrix given by

Yy — 0'12 po102
pPoO102 0%
@ NB! Variance in diagonal and covariance in off-diagonal.
@ The variance in Y is denoted by o2.
@ The covariance between twin 1 and twin 2 known as cov( Y1, Y2) is poioz.

@ How likely are observed data given parameters?

@ Principle: We choose parameters that make our observations most
likely.



Correlation in twins - practicals

Estimation
@ We will estimate twin correlations and test assumptions.
@ We start using Mets and then try out OpenMx.

Practicals
@ Carry on executing lines from the R-script "twinbmi.R":
@ -try to obtain a twin-twin plot.
@ -run the saturated model.

@ A successful estimation is when parameters maximizes the log-likelihood
function of data.

@ -a criteria is that the score-command evaluates to very low values
(typically below 10~5). See script.

mean : What is the effect of sex and age for twin 1 and twin 2, mz and dz type?

covariance : What is the correlation in pairs?

@ The log likelihood function of these parameters is termed ’log Lik.. It’s
value together with the degrees of freedom is a measure of goodness of
fit to data.




Correlation in twins - practicals

Practicals

We go on looking for correlations and their inference in model that meets
the assumptions 1 = pup and o2 = o3 for twin 1 and twin 2 in MZ and DZ
pairs.

The assumptions induce submodels of the saturated model - you may
find these specified in the script.

What is the outcome of the submodel obtained by constraining equal
regressions, intercepts and residual variances for twin 1 and twin 2 in the
saturated model?

What is the fit of the submodel and how does it compare to that of the
saturated model in terms of a x? test of the difference

—2(log(L1) — log(Lz)) on the difference in degrees of freedom?

Carry on constraining marginals for MZ and DZ twins and consider the
same issues as above.




WARNING! Busy slides coming up

Biostatistics (Institute of Public Health) Analysis of continuous twin data



> lnbmi.sat

Group 1: MZ (n=1483)

Estimate Std. Error Z value

Regressions:

logbmi.l~age.l 0.00596 0.00058 10.22059

logbmi.l~gendermale.1 0.16464 0.04180 3.93862

logbmi.l~age:gendermale.l -0.00247 0.00092 -2.67792

logbmi.2~age.1l 0.00626 0.00057 11.06885

logbmi.2~gendermale.l 0.18606 0.04052 4.59192

logbmi.2~age:gendermale.l -0.00274 0.00089 -3.06415
Intercepts:

logbmi.l 2.88926 0.02611 110.66670

logbmi.2 2.87071 0.02531 113.42068
Additional Parameters:

log(var(Mz)) .1 -4.00912 0.03681 -108.91220

log(var(MZ)) .2 -4.07144 0.03682 -110.58848

atanh (rhoMz) 0.76958 0.02609 29.49281
Group 2: DZ (n=2788)

Estimate Std. Error Z value

Regressions:

logbmi.l~age.l 0.00565 0.00043 13.11664

logbmi.l~gendermale.l 0.15530 0.03004 5.16951

logbmi.l~age:gendermale.l -0.00198 0.00066 -3.00731

logbmi.2~age.l 0.00571 0.00043 13.26981

logbmi.2~gendermale.1l 0.16833 0.03001 5.60935

logbmi.2~age:gendermale.1l -0.00254 0.00066 -3.86482
Intercepts:

logbmi.1l 2.91365 0.01943 149.92756

logbmi.2 2.91383 0.01941 150.09632
Additional Parameters:

log(var(Dz)) .1 -4.02373 0.02685 -149.86729

log(var(Dz)) .2 -4.02586 0.02685 -149.94604

atanh (rhoDZ) 0.31399 0.01894 16.57373

Estimate 2.5% 97.5%

Correlation within MZ: 0.64669 0.61594 0.67546
Correlation within DZ: 0.30406 0.26999 0.33737

“log Lik.’ 5629.137 (df=22)
-11214.27
BIC: -11074.36

Pr(>lz])

<le-12
8.195e-05
0.007408
<le-12
4.392e-06
0.002183

<le-12
<le-12

<le-12
<le-12
<le-12

Pr(>lzl)

<le-12
2.347e-07
0.002636
<le-12
2.031e-08
0.0001112

<le-12
<le-12

<le-12
<le-12
<le-12



> lnbmi.flex

Group 1: MZ (n=1483)

Estimate Std. Error Z

Regressions:

logbmi.l~age.l 0.00611 0.00052 11.

logbmi.l~gendermale.1 0.17535 0.03735 4

logbmi.l~age:gendermale.l -0.00260 0.00082 -3
Intercepts:

logbmi.1 2.87999 0.02319 124.
Additional Parameters:

log (var (MZ)) —-4.03940 0.03100 -130.

atanh (rhoMz) 0.76793 0.02600 29.
Group 2: DZ (n=2788)

Estimate Std. Error Z

Regressions:

logbmi.l~age.l 0.00568 0.00035 16.

logbmi.l~gendermale.1 0.16182 0.02425 6

logbmi.l~age:gendermale.l -0.00226 0.00053 -4
Intercepts:

logbmi.l 2.91374 0.01569 185.
Additional Parameters:

log(var(DZ)) —-4.02407 0.01985 -202.

atanh (rhoDZ) 0.31296 0.01897 16.

Estimate 2.5% 97.5%

Correlation within MZ: 0.64572 0.61503 0.67447
Correlation within DZ: 0.30312 0.26898 0.33650

“log Lik.’ 5623.369 (df=1
AIC: -11222.74
BIC: -11146.42

> compare (lnbmi.sat, lnbmi
- Likelihood ratio test -

data:

chisq = 11.537, df = 10,

sample estimates:

log likelihood (model 1)
5629.137

2)

value

79643

.69507

16076

19495

31863

53193

value

33574

.67419

25499

74505

75292
49464

Pr(>|z|)
<le-12
2.665e-06
0.001574
<le-12
<le-12
<le-12
Pr(>lzl)
<le-12
2.486e-11
2.091e-05

<le-12

<le-12
<le-12

.flex) > #comparison with saturated model

p-value = 0.3172

log likelihood

(model 2)
5623.369



> lnbmi.u

Group 1: MZ (n=1483)
Estimate Std. Error

Regressions:
logbmi.l~age.l 0.00583 0.00029
logbmi.l~gendermale.1 0.16606 0.02036
logbmi.l~age:gendermale.l -0.00236 0.00045

Intercepts:
logbmi.1 2.90261 0.01302

Additional Parameters:
log(var) -4.02560 0.01673
atanh (rhoMz) 0.77529 0.02313

]

20.
.15634
-5.

222.

-240.
33.

Group 2: DZ (n=2788)
Estimate Std. Error

Regressions:
logbmi.l~age.l 0.00583 0.00029
logbmi.l~gendermale.1 0.16606 0.02036
logbmi.l~age:gendermale.l -0.00236 0.00045

Intercepts:
logbmi.l 2.90261 0.01302

Additional Parameters:
log(var) -4.02560 0.01673
atanh (rhoDZ) 0.31314 0.01870

Estimate 2.5% 97.5%

Correlation within MZ: 0.65000 0.62304 0.67541
Correlation within DZ: 0.30329 0.26965 0.33618

’log Lik.’ 5614.387 (df=7)
AIC: -11214.77

BIC: -11170.26

>

> compare (1nbmi.u, lnbmi.flex)

- Likelihood ratio test -

data:

chisq = 17.962, df = 5, p-value = 0.002994

sample estimates:

log likelihood (model 1) log likelihood (model 2)
5614.387 5623.369

S|

20.
.15634
-5.

222.

-240.
16.

value

15100

27784

92574

67809

52059

value

15100

27784

92574

67809
74748

Pr(>|z|)
<le-12
<le-12

1.307e-07
<le-12
<le-12
<le-12

Pr(>lzl)
<le-12
<le-12

1.307e-07

<le-12

<le-12
<le-12



Saturated model - model selection

Submodels of saturated model

Submodel ‘log Lik. df  —2AX2 Adf p AIC
Saturated 5629.137 22 -11214.27
"equal 1 and 2" 5623.369 12 11537 10 0.3172 -11222.74

"equal MZ and DZ" 5614.387 7 17962 5 0.002994 -11214.77

@ Saturated model: No constraints on mean and variance structures.
@ Note that the mean, p, is actually the mean of residuals
Yij — Brsexjj — Boagej — Pasexjage;.

@ We insist on natural assumptions although data may not greatly support
these.

%
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Genetic Influence on InBMI

Saturated model w. constraints
Number of pairs  Correlation (95% Cl)  Heritability (95% ClI)

MZ pairs 1483 0.65 (0.62,0.68) ?(?,7)
DZ pairs 2788 0.30 (0.27,0.34) biometric model

@ Correlations are adjusted for effects of sex (Bsex = 0.17 coded females
zero and males one) and age (by an increment of 0.0058 in InBMI for
each year, slightly lower if male (see interaction term)).
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Overview

° Biometric modelling
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Aims

@ Difference in correlations between MZ and DZ twins suggests genetic
influence on trait.

o What type and magnitude of genetic and environmental influences to
expect?

@ We consider classical twin analysis using the polygenic model, known as
the ADCE-model, in which the individual outcome, Y; decomposes into

Y;=A+ D+ C; + Ej,

where

A: Additive genetic effects of alleles
D: Dominant genetic effects

C: Shared environmental effects

E: Unique environmental effects

vVvyVvVvyy
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Biometric analyses - polygenic model

@ Contributing factors to the variation in outcome:
2 2 2 2 2 2 2
- 0% Zoi op Uoh oz 0g og O
(0 ) (i ) (%) (T 2
where z = u = 1 for MZ pairs, z = } and u = } for DZ pairs.

In particular, we obtain
@ Heritability:
Ui T J%
Uf‘ T+ 0‘% = 0‘% T+ 0‘%

=

@ Shared environmental effect:

2
= 58
04+ 05+ 05 + 0%
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SEM - ACE Path Diagram representation
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Biometric analyses - polygenic model

Main assumptions

Equal environments assumption for MZ and DZ twins.

No gene-environment interaction and correlation.

No gene-gene interaction (link: epistasis).

Equal mean and variance of twin 1 and twin 2, MZ and DZ.

Estimation and inference by maximum likelihood principle assuming
bivariate normality of paired observations (as before).

InBMI by zygocity

3.6
L

3.4
L

InBMI of twin
3.2

2.8
L

28 5 32 34 36 28 3 32 34 36
InBMI of cotwin


http://hmg.oxfordjournals.org/cgi/reprint/11/20/2463

Biometric analyses - practicals

Estimation

@ We will fit appropriate polygenic model to data, estimate heritability and
test assumptions.

@ NB! Only three of four variance-components are estimable in same model
since only three equations in model.

Practicals - Use R
@ Carry on estimating the ACE model and its submodels (AE, CE and E).

@ Try to estimate the ADE model as well and compare it to ACE wrt. AIC
(lowest is most parsimoniuos).

@ Which model and hence which results to report?




> lnbmi.ace

Estimate
logbmi 2.9025e+00
sd (A) 1.0743e-01
sd (C) 1.1059e-07
sd (E) 7.9726e-02
logbmi~age 5.8343e-03
logbmi~gendermale 1.6611e-01

logbmi~age:gendermale -2.3563e-03

MZ-pairs DZ-pairs
1483 2788

Variance decomposition:
Estimate 2.5% 97.5%
A 0.64486 0.61920 0.67053
C 0.00000 0.00000 0.00000
E 0.35514 0.32947 0.38080

Estimate
Broad-sense heritability 0.64486

Estimate 2.5% 97.5%
Correlation within MZ: 0.64486 0.61847 0.66981
Correlation within DZ: 0.32243 0.30954 0.33520

“log Lik.’ 5613.624 (df=7)
AIC: -11213.25
BIC: -11168.73

Std. Error Z value
1.3088e-02 221.7584
1.6632e-03 64.5951
1.5885e-02 0.0000
1.3531e-03 58.9208
2.9099e-04 20.0498
2.0481e-02 8.1105
4.4889e-04 -5.2492
2.5% 97.5%

0.61920 0.67053

<

oA A

Pr(>lzl)
2.2e-16
2.2e-16

1
2.2e-16
2.2e-16
.04le-16
.528e-07



> lnbmi.ade

logbmi
sd (R)
sd (D)
sd(E)
logbmi~age
logbmi~gen:

logbmi~age:gendermale —

MZ-pairs D!
1483

Variance decomposition:

Estimate
A 0.56315
D 0.08684
E 0.35000

dermale

Z-pairs
2788

2.5% 97.
0.43372 0.
-0.04772 0.
0.32387 0.

Estimate
2.90261390
0.10026867
0.03937491
0.07904756
0.00583261
0.16606029
0.00235505

5%

69258
22141
37614

Estimate

Broad-sense heritability 0.65000

Correlatio:
Correlatio:

’log Lik.’
AL -1121
BIC: -1117
>

> #comparison of non-nested models

n within MZ:
n within DZ:

Estimate 2.
0.65000 0.
0.30329 0.

5614.387 (df=7)

4.77
0.26

> AIC(lnbmi.ace, lnbmi.ade

1nbmi.ace
1nbmi.ade

df AIC
7 -11213.25
7 -11214.77

Std. Error
0.01302012 2
0.00609022
0.01553051
0.00142834
0.00028944
0.02035965
0.00044622

2.5% 97.5%
0.62386 0.676

5% 97.5%
62309 0.67537
27058 0.33530

Z value
22.9330
16.4639
2.5353
55.3424
20.1515
8.1563
-5.2778

13

Pr(>lzl)
< 2.2e-16
< 2.2e-16

0.01123
< 2.2e-16
< 2.2e-16
3.453e-16
1.307e-07



> lnbmi.ae

Estimate
logbmi 2.90248121
sd (R) 0.10743239
sd (E) 0.07972558
logbmi~age 0.00583434
logbmi~gendermale 0.16611110
logbmi~age:gendermale -0.00235629

MZ-pairs DZ-pairs
1483 2788

Variance decomposition:
Estimate 2.5% 97.5%
A 0.64486 0.61920 0.67053
E 0.35514 0.32947 0.38080

Estimate 2.5%

Broad-sense heritability 0.64486

Std. Error
0.01308848
0.00166316
0.00135310
0.00029099
0.02048100
0.00044889

Estimate 2.5% 97.5%
Correlation within MZ: 0.64486 0.61847 0.66981
Correlation within DZ: 0.32243 0.30954 0.33520

“log Lik.’ 5613.624 (df=6)
AIC: -11215.25

BIC: -11177.09

>

> compare (1lnbmi.ade, lnbmi.ae)

- Likelihood ratio test -

data:

chisq = 1.5276, df = 1, p-value = 0.2165

sample estimates:

log likelihood (model 1) log likelihood

5614.387

Z value
221.7584
64.5953
58.9208
20.0498

8.1105
-5.2492

97.5%
0.61920 0.67053

(model 2)
5613.

624

Pr(>|zl)
2.2e-16
2.2e-16
2.2e-16
2.2e-16

5.041e-16

1.528e-07

<
<
<
<



> lnbmi.ce
Estimate Std. Error

logbmi .90078541 0.01306870 2
sd (C) .08684814 0.00171221
sd (E) .10148741 0.00109924

2
0
0
logbmi~age 0.00585634 0.00029065
logbmi~gendermale 0.16676183 0.02048187
logbmi~age:gendermale -0.00237224 0.00044908
MZ-pairs DZ-pairs

1483 2788

Variance decomposition:
Estimate 2.5% 97.5%
C 0.42274 0.39805 0.44743
E 0.57726 0.55257 0.60195

Estimate 2.5% 97.5%
Broad-sense heritability 0 0 0

Estimate 2.5% 97.5%
Correlation within Mz: 0.42274 0.39774 0.44711
Correlation within DZ: 0.42274 0.39774 0.44711

"log Lik.’ 5495.683 (df=6)

AIC: -10979.37

BIC: -10941.21

>

> AIC(lnbmi.ae, lnbmi.ce)
df AIC

lnbmi.ae 6 -11215.25

Inbmi.ce 6 -10979.37

> #not good at all.

> #We report the AE model.

Z value
21.9643
50.7228
92.3255
20.1491
8.1419
-5.2825

Pr(>lzl)
< 2.2e-16
< 2.2e-16
< 2.2e-16
< 2.2e-16
3.890e-16
1.275e-07



Polygenic model - model selection

Biometric analyses - model selection

Models ‘log Lik. df —2AX2% Adf p AIC

Saturated 5629.137 22 -11214.27
ACE 5613.624 7 -11213.25
ADE 5614.387 7 -11214.77
AE (%) 5613.624 6 1.5276 1 0.2165f -11215.25
CE 5495.683 6 235.88 1 < 0.0001 -10979.37

@ The additive genetic effect A is significant in all models (i.e. CE and E models are

significantly worse).

@ The ADE model has a slightly better fit than the ACE model in terms of Akaike’s criterion

having lowest AIC value (given by —2In(L) — 2df).

@ The AE model is chosen by comparison with ADE being the most parsimonious model

Tthis p-value is too conservative and can be halved (Dominicus et al. 20086).

@ The C component in the ACE model vanishes at zero, otherwise we should report it.

Biostatistics (Institute of Public Health) Analysis of continuous twin data

%

Spring 2018 48/63



Genetic Influence on InBMI

Polygenic model
Number of pairs  Correlation (95% CI)  Heritability (95% ClI)

MZ pairs 1483 0.65 (0.62,0.68) 0.64 (0.62,0.67)
DZ pairs 2788 0.30 (0.27,0.34) AE model

@ The biometric polygenic model assuming additive genetic and unique
environmental components in INBMI and adjusting for effects of sex and
age gave the best fit to observations.
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Overview

° Practicals using OpenMx
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OpenMx theoretical background
@ Statistical program for Structural Equation Modelling (SEM)
@ The focus in SEM is the basically the covariance matrix, ¥ = X ().
@ Great many statistical methods can be formulated via SEM.
@ Simple linear regression, Y = 6X + ¢, corresponds in SEM to

Bok ok

@ -now, find parameters 5 € 6 minimizing the difference between the
sample covariance matrix and the one predicted by the model, the
right-side.

@ A general SEM is of form, ] n=Bn+T+¢ ‘ where n and £ denotes
endogenous and exogenous variables respectively, B and ' are matrices
of coefficients and ¢ denotes errors.

@ -this induces the covariance matrix, ¥(6), to be compared with the
observed covariance matrix.

@ -indeed the purpose of programs OpenMx, Mx, LISREL, M-Plus and
others.




Practicals using OpenMx
@ SEM is implemented by specifying the mean and covariance structures.
@ SEM for twin data has the following structure in OpenMx:

Model <- mxModel ("name",
mxModel ("MzZ",

mxMatrix (),
mxAlgebral(),
mxData ( observed=mzData, type="raw" ),

mxFIMLObjective ( covariance, means)

),
mxModel ("Dz",

mxMatrix (),
mxAlgebral(),
mxData ( observed=dzData, type="raw" ),

mxFIMLObjective ( covariance, means)

),
mxAlgebraObjective (MZ.objective + DZ.objective)

ModelFit <- mxRun (Model)
—-manage output-



Biometric analyses - practicals using OpenMx

Practicals
@ To get familiar with OpenMx we carry out the analysis of BMI (omitting
covariates).
@ Using the script ‘twinbomiOpenMx.R’, let’s

-fit univariate saturated model.
-constrain to same mean for twin 1 and 2, mz and dz.
-then constrain to same mean and variance for twin 1 and 2, mz and dz.

@ The ACE, ADE and submodels AE, CE and E may then be fitted and
compared as above.




Overview

G Summary
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Remarks

@ Within pair similarity is measured by correlations.

@ Correlations are further modelled by genetic and environmental variance

components via the polygenic ADCE model.

@ For instance, the polygenic ACE model relates to correlations via
pmz = h? + ¢® and pg; = Fh? + 2.

Heuristics of MZ and DZ correlations

Interpretation

Relation Genetics Environment Examples
pmz > 4pgz Epistasis albinism
Pmz > 2pgy Genetic dominance D

Pmz = 2pgy Additive effect A (mono- or polygenic) and small D Small C BMI
2pg; > Pmz > Pgz Additive genes A Shared environment C longevity
Pmz = pgz > 0 No genetic effect

Pmz = pgz =0 No genetic effect No familial aggregation




Remarks

@ How to do ususal exposure-outcome analysis with twins treated as
singletons?

@ Regression model for the response of i'th individual in j'th pair:
Yij = Bo + B1 X+ Uj + €,

@ For inference, ie., konfidence and tests, independent observations are
needed and u; models the dependence in twin pairs giving adjusted
inference.

@ This may also be achieved by robust variance estimation using

independence between pairs or similarly by generalised estimating
equations (gee). (Implemented in standard software, eg. R and Stata).



Overview

0 Further Aims
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Aims of multivariate twin analyses

@ Outcome: There are multiple outcomes! (eg. Telomere length, HDL, and
BMI).
@ What is the contribution of genetic and environmental factors to the
variation in outcome?
Y = Genes + Environment
{ ZY = zGenes + ZEnvironmem

@ What kind of genetic and environmental influences to expect?
@ Are the same or different genes influencing the traits?

Scope of study
@ Co-occurrence or co-morbidity of different diseases.
@ Inter-relations, interactions, confounding and moderation effects.

@ Genetic or environmental overlap between traits, that is, origin of
comorbidity

pleiotropic genetic effects
environmental overlap: prevention strategies impacting on multiple diseases.

@ Developmental changes (longitudinal data).
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SEM - Path Diagram representation

re{051} 1

L

co s o




Longitudinal twin data

Longitudinal BMI

3.25
1 1

3.2

3.15
1

Mean InBMI

Females

3.1

3.05
1

T T

5 20 25 30 35 40 45 50 55 60 65
Mean age

-genetic influence on change in INBMI? (to follow later in course)



Aims in Time to Event Twin Studies

Effect? J

Exposure—Outcome

@ Outcome: Time to occuence of event. Event may not occur - can be
censored at follow-up.

@ What is the contribution of genetic and environmental factors to the
variation in risk of outcome?

Y = Genes + Environment
ZY = zGenes + zEnvironment

@ What kind of genetic and environmental influences to expect?
@ How does this influence vary with time?
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Overview

@ Appendix
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Appendix: Correlation in twins
@ Principle: We choose parameters that makes our observations most

likely.

@ First, the probability of observing the values (ys;, y2;) in j'th pair given
parameters is

1

2704 02ﬂ1 — )

1
f((y1jay2j)|u17#2;01702ap)) = eXp{2(1 )Q(y1!7y2!)}7

where
M)z B Zp(}/u — i )(YZj - uz) n (}/2/ — 2 2

g1 g1 g2 g2

Qy1), o) = (

@ Second, since pairs of observations are independent the likelihood of all
data is given by

n
L= Hf Yij, Yo |u1aﬂ27013027p)
j=1

@ Finally we maximize (the logarithm) of this function, known as the log
likelihood function to obtain the parameters, in particular the correlation,
for which our observations are most likely.
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