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Abstract. To improve confounder adjustments, observational studies
are often matched on potential confounders. While matched case-control
studies are common and well covered in the literature, our focus here
is on matched cohort studies, which are less common and sparsely dis-
cussed in the literature. Matched data also arise naturally in twin stud-
ies, as a cohort of exposure–discordant twins can be viewed as being
matched on a large number of potential confounders. The analysis of
twin studies will be given special attention. We give an overview of vari-
ous analysis methods for matched cohort studies with binary exposures
and binary outcomes. In particular, our aim is to answer the following
questions: (1) What are the target parameters in the common analysis
methods? (2) What are the underlying assumptions in these methods?
(3) How do the methods compare in terms of statistical power?
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1. INTRODUCTION

A common goal of epidemiological research is to
estimate the causal effect of a particular exposure
on a particular outcome. The common tool is an
observational study, utilizing, for example, hospital
data, cohort data or health register data. In observa-
tional studies, the exposure-outcome association is
invariably confounded by factors that induce spuri-
ous (i.e., noncausal) associations. For example, age
may confound an exposure-outcome association if
older people are more often exposed and more likely
to develop the outcome. Without adjustment for
age, that is, if the confounding influence by age is not
accounted for in the analysis, there may be an asso-
ciation of exposure and outcome, even in the absence
of a causal effect. Hence, the exposure-outcome asso-
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ciation cannot, in general, be given a causal interpre-
tation, unless all confounders are properly adjusted
for.
There are several strategies to adjust for potential

confounders in the analysis, for example, stratifica-
tion or regression modeling. Essentially, these meth-
ods solve the problem of confounding by comparing
the exposed and unexposed within levels of the con-
founders, thus balancing the confounders across lev-
els of the exposure and comparing “like with like.” If
there is a strong association between the confound-
ers and the exposure, or between the confounders
and the outcome, these strategies are often ineffi-
cient. In particular, some strata may contain few
exposed subjects or few cases (i.e., subjects that de-
veloped the outcome); the lack of balance may lead
to unstable estimates for these strata.
One common method to increase the efficiency is

to match the study on potential confounders. For ex-
ample, matched case-control studies are constructed
so that for each case, a fixed number of controls
are selected, having the same confounder levels as
the case. When each case is matched to one con-
trol, we say that the study is 1:1 matched. In case-
control studies, matching forces the ratio of cases
to controls to be constant across all strata of the
matched factors, which implies that the association
between the confounders and the outcome is broken.
Matched case-control studies are commonplace, and
well covered in the literature (e.g., Breslow and Day,
1980; Jewell, 2004; Woodward, 2005). A matched
cohort study can be constructed in a similar fash-
ion; for each exposed subject, a fixed number of
unexposed subjects are selected, having the same
confounder levels as the exposed. In cohort studies,
matching forces the ratio of exposed to unexposed
to be constant across all strata of the matched fac-
tors, which implies that the association between the
confounders and the exposure is broken. Matched
cohort studies are relatively rare, and the literature
is sparse and typically rather brief (e.g., Cummings
et al., 2003). The reason, we believe, is mainly due to
available data sources. Matched cohort studies are
suitable for situations where a researcher has access
to large population data sources with exposure in-
formation.
Matched data also arise naturally in twin studies.

By nature, a large number of potential confounders
are shared (i.e., having constant levels) within each
twin pair, for example, genetic factors, maternal uter-
ine environment, gestational age, etc. It follows that
a cohort of exposure–discordant twin pairs (i.e., pairs

in which one of the twins is exposed, and the other
twin is unexposed) can be viewed as being 1:1 matched
on all shared confounders. In such a cohort there is
no association between the shared confounders and
the exposure. An attractive feature of twin studies
is that the shared confounders often include factors
which are normally very difficult to match on, or
even to measure. For example, monozygotic twins
have identical genes and can thus can be viewed as
being matched on the whole genome. However, a twin
study is not simply a special case of a regular 1:1
matched cohort study; whereas the latter only con-
tains exposure–discordant pairs, the former also con-
tains pairs which are concordant in the exposure. Be-
cause of their unique and attractive properties, twin
studies will be given special attention in this paper.
The aim of this paper is to give a detailed overview

of different analysis methods for matched cohort
studies with binary exposures and binary outcomes.
In particular, our aim is to answer the following
questions: (1) What are the target parameters in the
common analysis methods? (2) What are the under-
lying assumptions in these methods? (3) How do the
methods compare in terms of statistical power?
We illustrate the methods with two examples. The

first example is a register-based study on the ef-
fect of hysterectomy on the risk for cardiovascular
disease (CVD) in Swedish women (Ingelsson et al.,
2010). The study is matched on birth year, year of
hysterectomy and county of residence at year of hys-
terectomy, so that for each hysterectomized woman
(exposed), three nonhysterectomized women at same
age and year were selected from the general popu-
lation. The second study is a population-based twin
study of the association between fetal growth and
childhood asthma (Örtqvist et al., 2009).
The paper is organized as follows. In Section 2

we review the concepts of marginalization, condi-
tioning and standardization. In Section 3 we define
a matched cohort study. In Section 4 we describe
the most common analysis methods for matched co-
horts. These methods can also be used to analyze
the exposure–discordant pairs in twin studies. In
Section 5 we demonstrate how these methods can
be adapted for inclusion of the exposure–concordant
pairs in twin studies as well. In Section 6 we carry
out a simulation study. In Section 7 we provide the
two illustrating examples. We will restrict our atten-
tion to 1:1 matching, and we will not consider ad-
ditional covariate adjustments. Extensions to other
matching schemes and adjustments for additional
covariates are discussed in Section 8.
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2. MARGINALIZATION, CONDITIONING

AND STANDARDIZATION

We first establish the notations and briefly review
the concepts of marginalization, conditioning and
standardization, which are crucial for the under-
standing of matching and confounder adjustment.
More thorough discussions can be found in standard
epidemiological textbooks (e.g., Rothman et al.,
2008). Let X denote the binary exposure of interest
(0/1), let Y denote the binary outcome of interest
(0/1) and let Z denote a set of potential confounders
for the association between X and Y . We use Pr(·)
generically for both probabilities (population pro-
portions) and densities, and we use E(·) for expected
value (population average). We use V1 ⊥ V2|V3 as
shorthand for “V1 and V2 conditionally independent,
given V3.” We use (log) odds ratios to quantify the
X–Y association. Other possible options would be
risk differences or risk ratios. There are two reasons
for focusing on odds ratios. First, regression mod-
els for odds ratios can be conveniently fitted with-
out restrictions; see Section 4.1.1. Second, in applied
scenarios, it is often desirable to make results com-
parable with case control studies, in which only odds
ratios are estimable.
An unadjusted analysis targets the marginal

(over Z) association between X and Y , for exam-
ple, through the marginal odds ratio

ORm =
Pr(Y = 1|X = 1)Pr(Y = 0|X = 0)

Pr(Y = 0|X = 1)Pr(Y = 1|X = 0)
.

We define ψm = log(ORm). In the presence of con-
founders Z, ORm fails to have a causal interpreta-
tion. In particular, it may differ from 1 in the ab-
sence of a causal effect.
The influence of Z can be eliminated by condi-

tioning on Z, as in the conditional odds ratio

ORc(Z) =
Pr(Y = 1|X = 1,Z)Pr(Y = 0|X = 0,Z)

Pr(Y = 0|X = 1,Z)Pr(Y = 1|X = 0,Z)
.

The conditional odds ratio ORc(Z) depends, in gen-
eral, on Z. If Z is the only confounder for the X–Y
association, then ORc(Z) can be interpreted as the
conditional causal effect of X on Y , given Z, on the
odds ratio scale. If there are additional confounders,
then ORc(Z) has no causal interpretation.
ORc(Z) is a subpopulation (i.e., Z-specific) effect.

The effect for the whole population can be obtained
through standardization. The standardized proba-
bility of Y = 1 given X = x, is given by

EZ{Pr(Y = 1|X = x,Z)},(1)

where we have used subindex Z to highlight that
the expectation is taken over the marginal distri-
bution Pr(Z). We emphasize that the expression
in (1) is not, in general, equal to EZ|X=x{Pr(Y =
1|X = x,Z)|X = x} = Pr(Y = 1|X = x), which is
the marginal (unadjusted) probability of Y = 1, given
X = x. If Z is the only confounder, then EZ{Pr(Y =
1|X = x,Z)} can be interpreted as the hypotheti-
cal (counterfactual) probability of Y = 1, had every-
body attained level X = x in the source population
(Hernán and Robins, 2006). Pr(Y = 1|X = x,Z) can
be standardized to any proper distribution Pr∗(Z),
not necessarily equal to Pr(Z). We let E∗

Z(V ) denote
the expected value of V , where the expectation is
taken over Pr∗(Z). If Z is the only confounder, then
E∗
Z{Pr(Y = 1|X = x,Z)} can be interpreted as the

hypothetical (counterfactual) probability of Y = 1,
had everybody attained level X = x in the fictitious
population where Z follows the distribution Pr∗(Z).
A standardized odds ratio is constructed as

ORs

=
E{Pr(Y = 1|X = 1,Z)}E{Pr(Y = 0|X = 0,Z)}
E{Pr(Y = 0|X = 1,Z)}E{Pr(Y = 1|X = 0,Z)} .

We define ψs = log(ORs). In (1), Pr(Y = 1|X = x,Z)
is standardized to Pr(Z), that is, the distribution
of Z in the source population. In order to keep the
notation simple, we use ORs and ψs, even if Pr(Z)
is replaced by Pr∗(Z), and we let it be clear from
the context which distribution of Z these parame-
ters are standardized to. If Z is the only confounder,
then ORs can be interpreted as the causal effect ofX
on Y in the source/fictitious population, on the odds
ratio scale. We emphasize that although the numer-
ical values of ORs and ψs may depend heavily on
which distribution of Z they are standardized to,
they are always, by construction, adjusted for Z.
In general, there is no ordering in the magnitudes

of ORc(Z), and ORs. An interesting special case
occurs when ORc(Z) is constant across levels of Z,
that is,

log{ORc(Z)}= ψc.(2)

It can be shown (Neuhaus et al., 1991) that |ψc| ≥
|ψs|.
In general, there is no ordering in the magnitudes

of ORm and ORc(Z), or of ORm and ORs; con-
founding by Z can both inflate or deflate the associa-
tion between X and Y . There are a few special cases
though. If Y ⊥ Z|X , then Pr(Y = 1|X,Z) = Pr(Y =
1|X) which implies that ORm =ORc(Z) =ORs for
all Z and all standardization distributions Pr∗(Z).
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Fig. 1. A causal structure for which Y ⊥Z|X.

Fig. 2. A causal structure for which X ⊥Z.

This would happen if the true causal structure be-
tween X , Y and Z is as in Figure 1. If X ⊥ Z, then
Pr(Z|X) = Pr(Z) which implies that ORm = ORs

for the particular distribution Pr(Z), that is, the dis-
tribution of Z in the source population. This would
happen if the true causal structure is as in Figure 2.
We note that in Figures 1 and 2, Z is not a con-

founder, and ORm can be given a causal interpreta-
tion. Thus, for these scenarios, adjusting for Z is not
necessary for causal inference. We further note that
the structure in Figure 2 does not render ORm equal
to ORc(Z), even if ORc(Z) is constant across levels
of Z. This is a consequence of the noncollapsibility
of the odds ratio. For a more thorough discussion on
(non)collapsibility and the special properties of odds
ratios, we refer the reader to Greenland et al. (1999).

3. MATCHED COHORT STUDIES

3.1 Design

A cohort study that is 1:1 matched on Z con-
sists of n pairs of observations, each pair consisting
of one exposed subject (X = 1) and one unexposed
subject (X = 0). The pairs are constructed so that
the two subjects within each pair have the same level

of confounder Z; that is, Z may vary between pairs,
but not within pairs. Thus, Z is equally distributed
among exposed and unexposed in the matched co-
hort. The outcome Y is assumed to be recorded for
each subject. Ignoring Z, the paired data can be
conveniently represented as in Table 1. In practice,
1:1 matched pairs are typically constructed by first
drawing an exposed person from the whole popu-
lation, then drawing an unexposed person with an
equal or similar level of confounder Z; we refer to
this sampling scheme as exposure-driven matching.
We note that in twin studies Z is not directly

observed, but should be interpreted as all the unob-
served factors that are common within a twin pair.

3.2 Likelihood Construction

Before discussing the various analysis methods,
we construct the likelihood for the observed data.
Let Zi denote the common value of Z for pair i,
i ∈ {1,2, . . . , n}. Let Y 0

i and Y 1
i denote the out-

come Y for the unexposed (X = 0) and the exposed
(X = 1) subject in pair i, respectively. The matched
data consists of n i.i.d. observations (Y 0

i , Y
1
i ,Zi). We

suppress the index i when not needed, so that Y x de-
notes Y for the subject withX = x, x ∈ (0,1), within
an arbitrary pair. We use Pr(Y = y,X = x,Z = z) to
denote the population probability of (Y = y,X = x,
Z = z), and we will use Pr∗(Y 0 = y0, Y 1 = y1,Z = z)
to denote the probability for (Y 0 = y0, Y 1 = y1,Z = z)
induced by the matched sampling scheme. Under
exposure-driven matching, the design implies that

Pr∗(Y x = yx|Z) = Pr(Y = yx|X = x,Z)(3a)

and

Pr∗(Y 0 = y0, Y 1 = y1|Z)
(3b)

= Pr∗(Y 0 = y0|Z)Pr∗(Y 1 = y1|Z).
Equation (3a) “ties” the induced distribution to the
source population distribution, thus allowing for sam-
ples from the former to be used for inference on

Table 1

Crude summary of matched 1:1 cohort data

Unexposed pair member (X = 0) Totals
Event (Y = 1) No event (Y = 0)

Exposed pair member (X = 1)
Event (Y = 1) T U T +U

No event (Y = 0) V W V +W

Totals T + V U +W n
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the latter. Equation (3b) determines the correlation
structure of the data, which is crucial for correct
standard error computations. In twin studies, (3a)
and (3b) do not necessarily hold (see Section 5), but
are assumed throughout the paper.
The induced marginal distribution of Z is deter-

mined by the type of matching. Under exposure-
driven matching, the induced marginal distribution
of Z equals the source population distribution of Z
among the exposed, that is, Pr∗(Z) = Pr(Z|X = 1).
In twin studies restricted to the exposure–discordant
pairs, we have that Pr∗(Z) = Pr(Z|discordant in X).
When Z is observed (as in regular matched stud-

ies), the likelihood contribution for pair i is

Pr∗(Y 0
i = y0i , Y

1
i = y1i ,Zi)

=
1
∏

x=0

Pr(Y = yxi |X = x,Zi)Pr
∗(Zi),

so that the likelihood for the whole data set becomes
equal to

n
∏

i=1

1
∏

x=0

Pr(Y = yxi |X = x,Zi)Pr
∗(Zi).

When Z is unobserved (as in twin studies), the like-
lihood contribution for pair i is

E∗
Zi
{Pr∗(Y 0

i = y0i , Y
1
i = y1i |Zi)}

=E∗
Zi

{

1
∏

x=0

Pr(Y = yxi |X = x,Zi)

}

,

so that the the likelihood for the whole data set
becomes equal to

n
∏

i=1

E∗
Zi

{

1
∏

x=0

Pr(Y = yxi |X = x,Zi)

}

.

We note that marginally (over Z), Y 0 and Y 1 are as-
sociated through the common value of Z; the strong-
er conditional association between Y and Z, giv-
en X , the stronger marginal association between Y 0

and Y 1.

4. ANALYSIS METHODS

In this section we describe and compare the most
common analysis methods for matched cohorts. We
emphasize that all these methods can in principle
be used to analyze the exposure–discordant pairs in
twin studies as well. However, the explicit regression
model (Section 4.1) requires Z to be observed, which
is typically not the case in twin studies.

4.1 Regression Model Explicitly Involving Z

A straightforward way to adjust for Z is to fit a re-
gression model for Y , given X and Z, for example,

logit{Pr(Y = 1|X,Z;ψc, γ)}= b(Z;γ) +ψcX,(4)

where b(Z;γ) is an explicitly specified parametric
function of Z, typically a linear function γTZ for
continuous Z. We refer to a regression model for Y ,
given X and Z, as “explicit.” Under model (4),
log{ORc(Z)} = ψc, so that the condition in (2) is
met. This restriction is not crucial though; in prin-
ciple we can add arbitrary interaction terms be-
tween X and any of the components of Z. Maximum
likelihood estimates (MLEs) of (ψc, γ) are obtained
by maximizing the conditional (given Z) likelihood

n
∏

i=1

Pr∗(Y 0
i = y0i , Y

1
i = y1i |Zi)

(5)

=

n
∏

i=1

1
∏

x=0

Pr(Y = yxi |X = x,Zi;ψc, γ),

where the equality follows from (3a) and (3b). If (3b)
is violated, then Y 1 and Y 0 are not conditionally
independent, given Z, and the right-hand side of (5)
is not a proper likelihood. However, if (3a) holds
(and model (4) is correct), then each separate term
Pr(Y = yxi |X = x,Zi;ψc, γ) in (5) equals the true
marginal (over Y 1−x

i ) likelihood Pr(Y x
i = yxi |Zi). It

follows that the obtained estimate of ψc is consistent
under (3a), regardless of whether (3b) holds or not.

4.1.1 Disadvantages

(1) If Z is high dimensional, it may be difficult
to well specify the function b(Z;γ).

(2) If Z is not directly observed, as in twin stud-
ies, explicit specification of b(Z;γ) is not possible.

(3) In principle, explicit regression models can be
adapted for risk differences and risk ratios, by using
identity links or the log links, respectively. However,
absolute risks and logarithms thereof are, unlike log
odds, restricted to ranges (0,1) and (0,∞), respec-
tively. Thus, models utilizing identity links or log
links have to be fitted under these restrictions, which
can be rather inconvenient, or they may produce es-
timates which are outside the supported ranges.

4.2 Conditional Logistic Regression

Conditional logistic regression mitigates the prob-
lems with an explicit specification of b(Z;γ). In con-
ditional logistic regression, the function b(Z;γ) in (4)
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is replaced with a scalar pair-specific parameter b:

logit{Pr(Y = 1|X,Z)}= b+ ψcX.(6)

Nothing is assumed about b, and thus the risk for
model misspecification in b(Z;γ) is avoided. A MLE
of ψc is obtained by conditioning on Y 0

i + Y 1
i , for

each pair i, and maximizing the resulting condi-
tional likelihood, which under (3a) and (3b) is given
by

∏

i:y0
i
6=y1

i

eψcy1i

1 + eψc

.(7)

Since the conditional likelihood (7) does not involve b
(or Z), it can be used, even if Z is not directly ob-
served, as in twin studies. The MLE of ψc obtained
by maximizing (7) is given by

ψ̂c.clr = log(U/V ),(8)

with standard error s.e.{ψ̂c.clr}=
√
U−1 + V −1.

4.2.1 Disadvantages

(1) The constant odds ratio assumption (2) is
crucial in conditional logistic regression. If an inter-
action term is included between b andX in model (6),
then b cannot be eliminated by conditioning argu-
ments. If (2) is violated, then ψ̂c.clr converges to
a weighted average of the Z-specific odds ratios; see
Section 4.4.

(2) ψ̂c.clr is generally inconsistent if (3b) is vio-
lated. There is an important exception. Define the
null hypothesis

H0 : (2) holds, with ψc = 0.(9)

In Appendix B we show that ψ̂c.clr converges to 0
under H0 and (3a), regardless of whether (3b) holds
or not.

(3) Conditional logistic regression cannot be used
for other measures of association than the log odds
ratio, since for other links than the logit link, b can-
not be eliminated by conditioning arguments.

4.3 Mixed Model

In the mixed model approach, b is assumed to
be random, with a specified parametric distribution
Pr∗(b; θ). The MLE of (ψc, θ) is obtained by maxi-
mizing the marginal (over b) likelihood

n
∏

i=1

E∗
Zi
{Pr∗(Y 0

i = y0i , Y
1
i = y1i |Zi)}

(10)

=

n
∏

i=1

E∗
bi

[{

1
∏

x=0

Pr(Y = yxi |X = x, bi;ψc)

}

; θ

]

,

where the equality follows from (3a) and (3b), and
the expectation on the right-hand side is taken over
Pr∗(b; θ). Neuhaus et al. (1994) showed that the

mixed model estimate of ψc is identical to ψ̂c.clr , un-
der mild conditions. This implies that the two meth-
ods are equally efficient, and that the mixed model
is robust against misspecification of Pr∗(b; θ).

4.3.1 Disadvantages

(1) The constant odds ratio assumption (2) is
crucial in the mixed model. Neuhaus et al. (1994)
showed that the mixed model is saturated, under
mild conditions, so that an interaction term be-
tween b andX would lead to identifiability problems.

(2) The mixed model estimate of ψc is generally
inconsistent if (3b) is violated.

(3) In principle, the mixed model can be adapted
for risk differences and risk ratios, by using identity
links or the log links, respectively. In practice, these
adaptations require that the model is fitted under
restrictions, or it may produce estimates outside the
supported ranges.

(4) Explicit maximization of the likelihood in (10)
requires numerical techniques. This makes the meth-
od less transparent and relatively computer-intensive.

4.4 Exposure–Discordant Crude Analysis

The methods described in Sections 4.1–4.3 all tar-
get the conditional odds ratio, ORc(Z). Matched da-
ta can also be used to estimate a standardized odds
ratio. Let nyx denote the number of subjects in the
sample with Y = y and X = x, so that n00 = U+W ,
n01 = V +W , n10 = V + T and n11 = U + T . Un-
der (3a) we have that Pr∗(Y x = yx) = E∗

Z{Pr(Y =
yx|X = x,Z)}, that is, Pr∗(Y x = yx) equals the prob-
ability of Y = yx givenX = x, standardized to Pr∗(Z).
Thus, under (3a) a consistent estimate of ψs is given
by the crude log odds ratio

ψ̂s.crude = log

(

n11n00
n01n10

)

.(11)

The standard error of ψ̂s.crude (see Appendix A)
is given by

√

n−1
11 + n−1

01 + n−1
10 + n−1

00 − 2n
nT − n11n10
n11n00n01n10

.(12)

The first four terms under the square root sign can
be recognized from the usual standard error formula
for a log odds ratio, and the fifth term is an adjust-
ment for non-i.i.d. observations.
We remind the reader that the interpretation of ψs

depends on what distribution of Z that ψs is stan-
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dardized to. Under exposure-driven matching,
Pr∗(Z) = Pr(Z|X = 1) so that ψs is standardized to
the distribution of Z among the exposed. In a twin
study, Pr∗(Z) = Pr(Z|discordant in X) so that ψs
is standardized to the distribution of Z among the
exposure–discordant pairs.

4.4.1 Advantages One potential disadvantage of
the exposure–discordant crude analysis is that it es-
timates a parameter that is rather nonstandard. In
the simple scenario that we consider (i.e., 1:1 match-
ing and no additional covariate adjustments) the
exposure–discordant crude analysis does not suffer
from any of the other disadvantages listed in Sec-
tions 4.1–4.3. The relative advantages of the expo-
sure–discordant crude analysis are threefold:

(1) The exposure–discordant crude analysis re-
lies on fewer assumptions than the other methods.
Specifically, it does not rely on assumptions (2)
and (3b).

(2) The exposure–discordant crude analysis is
computationally simple.

(3) In the exposure–discordant crude analysis,
the standardized probabilities Pr∗(Y 0 = 1) and
Pr∗(Y 1 = 1) can be estimated separately, and can
subsequently be used to construct any standardized
measure of the X–Y association, for example, risk
difference or risk ratio. For this reason, the exposure–
discordant crude analysis easily extends to nonbina-
ry outcomes as well. For survival outcomes, for in-
stance, an exposure–discordant crude analysis can be
used to produce standardized Kaplan–Meier curves.

4.4.2 A closer comparison with conditional logis-

tic regression Because ψs and ψc are different pa-
rameters, it is not meaningful to compare the meth-
ods in Sections 4.1–4.3 with the exposure–discordant
crude analysis in terms of efficiency of estimates.
However, we can make a meaningful comparison in
terms of statistical power. Define the null hypothesis

H∗
0 : ψs = 0.(13)

It is easy to show that H0 in (9) implies H∗
0, re-

gardless of whether (3a) and (3b) hold or not. If
both (3a) and (3b) hold, then a Wald test of H0 is

based on the statistic Tc = ψ̂c.clr/s.e.(ψ̂c.clr ). If (3a)
holds, then a Wald test of H∗

0 is based on the statistic

Ts = ψ̂s.crude/s.e.(ψ̂s.crude ). In Appendix B we show
that Tc and Ts are asymptotically equal. It immedi-
ately follows that the two Wald tests have the same
asymptotic power, for any fixed alternative.

One potential argument against the exposure–
discordant crude analysis is that it does not inform
us about the exposure effect in the source popula-
tion. Under exposure-driven matching (and no con-
founders apart from Z), ψs is a causal effect in a fic-
titious population where Z is distributed as among
the exposed. In a twin study restricted to the expo-
sure–discordant pairs (and no confounders apart
from Z), ψs is a causal effect in a fictitious popula-
tion where Z is distributed as among the exposure–
discordant pairs. The effect in these fictitious popu-
lations may differ from the effect in the source pop-
ulation, and it is not always obvious whether these
fictitious population effects are relevant targets for
inference. However, a closer examination shows that
a similar argument can be used against the meth-
ods that target ψc as well, and in particular against
conditional logistic regression. Conditional logistic
regression relies on the constant odds ratio assump-
tion (2). This is a very strong assumption, which in
any real scenario is most likely violated, to some ex-
tent. Regardless of whether (2) holds or not, ψ̂c.clr

converges to

log

{

Pr∗(Y 1 = 1, Y 0 = 0)

Pr∗(Y 0 = 1, Y 1 = 0)

}

= log

[

E∗

Z{Pr
∗(Y 1 = 1, Y 0 = 0|Z)}

E∗

Z
{Pr∗(Y 0 = 1, Y 1 = 0|Z)}

]

(3a),(3b)
= log

[

E∗

Z{Pr(Y = 1|X = 1,Z)Pr(Y = 0|X = 0,Z)}

E∗

Z
{Pr(Y = 1|X = 0,Z)Pr(Y = 0|X = 1,Z)}

]

= log[E∗

Z{W (Z)ORc(Z)}],

(14)

where

W (Z)

=
Pr(Y = 1|X = 0,Z)Pr(Y = 0|X = 1,Z)

E∗
Z{Pr(Y = 1|X = 0,Z)Pr(Y = 0|X = 1,Z)} .

In (14), the average is taken over Pr∗(Z), that is,
the same distribution of Z as being standardized
to in the exposure–discordant crude analysis. Thus,
if (2) is violated, then conditional logistic regres-
sion does not inform the analyst about exposure ef-
fects outside the fictitious population characterized
by Pr∗(Z), to any wider extent than the exposure–
discordant crude analysis. Furthermore, whereas ψs
has a clear interpretation as a population causal ef-
fect (when there are no confounders except Z), the
weighted average in (14) does not have any such
simple interpretation.
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An analyst is always at the liberty to assume a pri-
ori that (2) holds. But equally well, the analyst may
assume that the effect in the fictitious population,
characterized by Pr∗(Z), is equal to the effect in the
source population, characterized by Pr(Z). Neither
of these assumptions is stronger than the other, since
neither of them implies the other. Furthermore, with
paired data and Z being unobserved (as in twin
studies), these assumptions are both untestable.
Although our focus is on cohort studies, we end

this section by making a comparison with case con-
trol studies. A matched case control study is de-
signed analogously to a matched cohort study, but
the roles of exposure and outcome are “switched” in
the sampling scheme; see Section 1. Thus, in a match-
ed case control study the crude sample log odds ra-
tio consistently estimates the standardized log odds
ratio

log

[

E∗

Z{Pr(X = 1|Y = 1, Z)}E∗

Z{Pr(X = 0|Y = 0, Z)}
E∗

Z{Pr(X = 0|Y = 1, Z)}E∗

Z{Pr(X = 1|Y = 0, Z)}

]

,

(15)

where Pr∗(Z) = Pr(Z|Y = 1). In contrast to condi-
tional odds ratios, standardized odds ratios are not
symmetrical. That is, the log odds ratio in (15), in
which X appears to the left of the conditioning sign,
cannot be written as ψs, in which X appears to the
right of the conditioning sign. Hence, the log odds
ratio in (15) has no simple interpretation as a causal
effect of X on Y on the log odds ratio scale, even if
there are no confounders apart from Z.

5. ANALYSIS OF TWIN DATA

In contrast to a regular 1:1 matched cohort study,
a twin cohort also contains pairs that are concordant
in the exposure. In this section we describe three
common methods to incorporate the exposure–con-
cordant pairs in the analysis.
To deal with twin studies we extend the notation

slightly. Let Xij and Yij denote X and Y for twin j
in pair i, j ∈ (1,2). We suppress the index i when not
needed, so that Xj and Yj denote X and Y for twin
j, j ∈ (1,2), within an arbitrary pair i. As before, Zi
represents all the unobserved factors that are com-
mon within a twin pair. As discussed in Section 1,
the exposure–discordant pairs in a twin cohort can
be viewed as a 1:1 matched cohort. However, some
care must be taken. All methods discussed in Sec-
tion 4 rely on assumption (3a), and conditional logis-
tic regression (Section 4.2) and mixed models (Sec-

tion 4.3) rely in addition on assumption (3b). For
an exposure–discordant twin pair we have that

Pr∗(Y 0 = y0, Y 1 = y1|Z)
(16)

= Pr(Yj = y0, Yj′ = y1|Xj = 0,Xj′ = 1,Z).

The right-hand side of (16) can be factorized into
Pr(Yj = y0|Xj = 0,Z)Pr(Yj′ = y1|Xj′ = 1,Z) if

Yj ⊥Xj′ |(Xj ,Z)(17a)

and

Y1 ⊥ Y2|(X1,X2,Z).(17b)

Thus, the analogs to (3a) and (3b) for twin data are
given by (17a) and (17b), respectively. Under (17a),
(3a) holds, so that the explicit model (Section 4.1)
and the exposure–discordant crude analysis (4.4)
are valid when applied to the exposure–discordant
pairs. We note though that it is typically not pos-
sible to fit an explicit model to twin data, since Z
is typically unobserved. If, in addition, (17b) holds,
then (3b) holds as well, and all methods in Section 4
are valid when applied to the exposure–discordant
pairs.
Potentially, (17a) could be violated if Xj′ has

a causal effect on Yj , that is, if the exposure for one
twin affects the outcome for the other twin. Simi-
larly, (17b) could be violated if Yj′ has a causal ef-
fect on Yj , that is, if the outcome of one twin affects
the outcome for the other twin.

5.1 All-Pair Crude Analysis

Let ryx denote the number of subjects in the full
(i.e., both exposure–concordant and exposure–dis-
cordant pairs) sample with Y = y and X = x. One
simple way to make use of all twin pairs in the anal-
ysis is to compute the crude sample log odds ratio

ψ̂m.crude = log

(

r11r00
r01r10

)

,(18)

which consistently estimates the marginal log odds
ratio ψm. Thus, unlike the exposure–discordant crude
analysis (Section 4.4), the all-pair crude analysis
does not adjust for confounding by Z. The standard
error of ψ̂m.crude is rather complicated, due to the
paired nature of the data. In Appendix A we pro-
vide an analytic expression for the standard error.
We note that the standard error can also be com-
puted numerically, through Generalized Estimating
Equation (GEE) procedures, which are implemented
in most common statistical softwares.
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5.2 Decomposition into Within- and

Between-Effects

In twin studies with continuous exposures and
outcomes, a popular regression model is

E(Yj |Xj ,Xj′) = β0 + βW(Xj − X̄) + βBX̄
(19)

= β0 + βWXj + β′BX̄,

with X̄ = X1+X2
2 and β′B = βB − βW (Carlin et al.,

2005). In (19), the pair-specific mean X̄ is thought of
as conveying information about the confounders Z,
which are not observed, but constant within each
pair. Thus, the parameter βB is thought of as quan-
tifying the strength of confounding, a “between ef-
fect,” and the parameter βW is thought of as quan-
tifying the adjusted X–Y association, a “within ef-
fect.” When X and Y are binary, a natural analog
to (19) is

logit{Pr(Yj = 1|Xj ,Xj′)}
(20)

= β0 + βWXj + β′BX̄.

To see the connection with the methods described
in this paper, note that

βW = logit{Pr(Yj = 1|Xj = 1,Xj′ = 0)}
− logit{Pr(Yj = 1|Xj = 0,Xj′ = 1)}

= logit[E{Pr(Yj = 1|Xj = 1,Xj′ = 0,Z)|
Xj = 1,Xj′ = 0}]

− logit[E{Pr(Yj = 1|Xj = 0,Xj′ = 1,Z)|
Xj = 0,Xj′ = 1}]

= logit[E∗{Pr(Yj = 1|Xj = 1,Z)}]
− logit[E∗{Pr(Yj = 1|Xj = 0,Z)}]

= ψs,

where Pr∗(Z) = Pr(Z|X1 6=X2), and the third equal-
ity follows from assumption (17a). Thus, the within-
effect βW is identical to the log odds ratio standard-
ized to the distribution of Z among the exposure–
discordant pairs. This argument shows that the de-
composition into within- and between-effects is a le-
gitimate method for binary exposures, which was
questioned by Carlin et al. (2005).
When X is binary, X̄ can only take values 0, 0.5

and 1. Thus, it is feasible to replace the linear term
β0 + β′BX̄ in (20) with one parameter for each level
of X̄ , that is,

logit{Pr(Yj = 1|Xj ,Xj′)}= βWXj +m(X̄),(21)

with

m(X̄) = β01(X̄ = 0)
(22)

+ β0.51(X̄ = 0.5) + β11(X̄ = 1).

It is easy to show that the model in (21) is satu-
rated (i.e., imposes no restrictions on Pr(Yj |X1,X2),
which implies that the MLE of βW based on (21) is
identical to the crude sample log odds ratio in (11).

5.3 Mixed Model

The model in (6) can be fitted to all pairs, assum-
ing a parametric distribution of b indexed with θ.
Parameter estimates are obtained by maximizing
the marginal (over b) likelihood

n
∏

i=1

E∗
Zi|Xi1,Xi2

{Pr(Yi1 = yi1, Yi2 = yi2|Xi1,Xi2,Zi)|

Xi1,Xi2}
(23)

=

n
∏

i=1

E∗
bi|Xi1,Xi2

[{

2
∏

j=1

Pr(Yij = yij|Xij , bi;ψc)

}

∣

∣

∣

Xi1,Xi2; θ

]

.

This approach, however, is associated with a se-
vere problem which is often overlooked. Typically,
the distribution of b is specified to not depend on
(X1,X2), for example, a normal distribution with
fixed but unspecified mean and variance. However,
from the expression in (23) it is clear that this proce-
dure only produces a proper likelihood under the ad-
ditional assumption that b ⊥ (X1,X2). In standard
textbooks, this assumption is often stated without
justification or interpretation (e.g., Fitzmaurice et
al., 2004, page 329). Since b is supposed to repre-
sent the potential confounders Z, we would not gen-
erally expect that b ⊥ (X1,X2). Indeed, if Z (and
thus b) is independent of (X1,X2), it cannot be
a confounder, and there is no need to adjust for Z in
the first place. We note that in matched cohort stud-
ies, (X1,X2) is constant and equal to (0,1) for all
pairs, so that an association between b and (X1,X2)
is ruled out by design. When b is associated with
(X1,X2), the aforementioned procedure can yield
severely biased estimates (Neuhaus and Kalbfleisch,
1998; Neuhaus and McCulloch, 2006). In general, the
proper marginal likelihood is obtained by averaging
over a specified distribution Pr(b|X1,X2) for each
pair. This procedure can be very computer intensive,
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and cannot be carried out with standard software.
As noted by Neuhaus and Kalbfleisch (1998) and
Neuhaus and McCulloch (2006), there is a simple so-
lution to this problem. Suppose that given (X1,X2),
b has a normal distribution where the mean, but not
the variance, depends on (X1,X2). Without loss of
generality, we can formulate this as

b= d+m(X̄),(24)

where m(X̄) is defined in (22) and d|X1,X2 ∼
N(0, σ2). Under (24), model (6) translates to

logit{Pr(Yj = 1|Xj ,Z)}= d+ ψcXj +m(X̄),(25)

where d ⊥ (X1,X2) by construction. The model
in (25) can be fitted with standard mixed model
software. By comparing the model in (25) with the
model in (21), we see that the solution proposed by
Neuhaus and Kalbfleisch (1998) and Neuhaus and
McCulloch (2006) can be thought of as combining a
mixed model with a within-between decomposition.
Neuhaus and Kalbfleisch (1998) and Neuhaus and

McCulloch (2006) observed that for various scenar-
ios, the estimate of ψc obtained by combining a mixed
model with a within-between decomposition is nearly
identical to ψ̂c.clr . Neuhaus and McCulloch (2006)
gave a theoretical motivation for this observation.
We note that there are situations when the two es-
timates may differ; see Brumback et al. (2010) for
an example.

6. SIMULATIONS

6.1 Part I: Efficiency and Power

In this section we compare the performance of the
methods described in Sections 4 and 5, in terms of
efficiency and power. To enable a fair comparison,
we analyze the simulated data so that all assump-
tions hold, for each method respectively. In these
simulations, twin pairs were generated. We empha-
size that this simulation scheme covers matched data
as well, since the exposure–discordant twin pairs can
be viewed as a matched cohort. For each twin pair,
the random variables (X1,X2, b, Y1, Y2) were gener-
ated from the model































































Pr(X1 = 1|X2 = 0)

Pr(X1 = 0|X2 = 0)
=

Pr(X2 = 1|X1 = 0)

Pr(X2 = 0|X1 = 0)

= ρ=
1

2
,

Pr(X1 = 1,X2 = 1)Pr(X1 = 0,X2 = 0)

Pr(X1 = 1,X2 = 0)Pr(X1 = 1,X2 = 0)
= φ,

b|X1,X2 ∼N{θX̄,1},
Y1 ⊥ Y2|(X1,X2, b),

Yj ⊥Xj′ |(Xj , b),

logit{Pr(Yj |Xj, b)}= b+ ψcXj .

(26)

We highlight a few aspects of the model in (26):

(1) Under model (26), assumptions (2), (17a),
(17b) and (24) all hold.

(2) The restriction Pr(X1 = 1|X2 = 0) = Pr(X2 =
1|X1 = 0) in the first row of (26) follows by symme-
try.

(3) It may appear natural to first specify a mar-
ginal distribution of b, then specify a conditional dis-
tribution of (X1,X2), given b. The reason for doing
it the other way around is twofold. First, it allows us
to directly control the rate of exposure-discordance
through φ. Second, it allows us to easily formulate
the distribution of b given (X1,X2) in such a way
that (24) holds.

(4) It follows from results in Chen (2007) that
the joint distribution of (X1,X2) is completely de-
fined by ρ and φ. It also follows that ρ and φ are
variation independent (i.e., the value of ρ does not
restrict the value of φ, and vice versa).

(5) The values of φ and θ determine the degree
of conditional association of X1 and X2, given b.
It can be shown (see Appendix C) that for θ =
2
√

log(φ),X1 ⊥X2|b. For convenience, we have used
θ = 2

√

log(φ) throughout. We note though that none
of the methods presented relies on this restriction.

In the first set of simulations, we used φ = 4 and
ψc = 0, that is, the data were generated under H0

in (9). For these values, ψs = 0 and ψm = 1.28, which
implies a severe degree of confounding. Further,
Pr(X1 6= X2) = 0.33, and Pr(X1 6= X2, Y1 6= Y2) =
0.11. We generated 5000 samples, each of size n =
2000. Each sample was analyzed with 6 different
methods:

(1) Explicit regression model logit{Pr(Y = 1|
X,b)} = γ0 + γ1b + ψcX (Section 4.1). We remind
the reader that for twin data, b (or rather, Z) is
typically unobserved, which rules out the use of an
explicit model. For a regular matched cohort, the
explicit model is a viable choice. Thus, the model
was only fitted to the exposure–discordant pairs.

(2) Conditional logistic regression (Section 4.2).
(3) Mixed model fitted to the exposure–discordant

pairs (Section 4.3). We used the model Pr(Y = 1|
X,b) = b+ψcX , with b|X1 6=X2 ∼N(θ,σ2).

(4) Exposure–discordant crude analysis (Sec-
tion 4.4).

(5) All pair crude analysis (Section 5.1).
(6) Mixed model fitted to all pairs (Section 5.3).

We used the model Pr(Y = 1|X,b) = b+ ψcX , with
b|X1,X2 ∼N(θX̄, σ2).
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Table 2

Simulation results for ψc = 0, φ= 4

Analysis method Target parameter Mean est Emp s.e. Th s.e.

1. Explicit ψc = 0 0.00 0.13 0.13
2. Cond log reg ψc = 0 0.00 0.13 0.13
3. Mixed discordant ψc = 0 0.00 0.13 0.13
4. Crude discordant ψs = 0 0.00 0.11 0.11
5. Crude all ψm = 1.28 1.28 0.08 0.08
6. Mixed all ψc = 0 0.00 0.12 0.12

Table 2 displays the mean (over samples) point es-
timate, the empirical standard error and the mean
theoretical standard error for each analysis, respec-
tively. We note that all methods yield virtually un-
biased estimates of their target parameters. For all
methods the mean theoretical standard error is iden-
tical to the empirical standard error, to the second
decimal.
To compare the methods in terms of their power

to reject H0, we carried out a second set of simula-
tions. We used φ = 4 and varied ψc over the range
(0,0.6). For each value of ψc, we drew 5000 sam-
ples of 2000 pairs each. Each sample was analyzed
using methods 1, 2, 3, 4, 6. Figure 3 displays the

empirical rejection probability (i.e., the power) for
a Wald test at 5% significance level, for each method
as a function of ψc. We observe that the all meth-
ods have almost identical power, for the simulated
scenarios.
In a third set of simulations, we used ψc = 0.4 and

varied φ over the range (4,22). These values cor-
respond to the range (0.33,0.13) for Pr(X1 6=X2),
and the range (0.11,0.03) for Pr(X1 6=X2, Y1 6= Y2).
For each value of φ, we drew 5000 samples of 2000
pairs each. Each sample was analyzed using meth-
ods 1, 2, 3, 4, 6. Figure 4 displays the power for each
method as a function of φ. Again, we observe that
there is almost no difference between the methods,

Fig. 3. Simulation results for ψc ∈ (0,0.6), φ= 4.
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Fig. 4. Simulation results for ψc = 0.4, φ∈ (4,22).

in terms of power, even when the discordance rate
is very low.
Some care must be taken when interpreting power

curves. In small samples, parameter estimates can
be biased, which may lead to an increased probabil-
ity of rejection, both under the alternative hypothe-
sis and under the null hypothesis. Thus, an increased
power under the alternative hypothesis may come
at the cost of a violated significance level under the
null hypothesis. Figure 3 shows that the nominal
significance level (= 5% at ψc = 0) is preserved for
all methods when φ= 4. To confirm that the nom-
inal significance level is preserved across the range
φ ∈ (4,22), which generated the power curves in Fig-
ure 4, we carried out a fourth set of simulations,
using ψc = 0 and varying φ over the range (4,22).
For each value of φ, we drew 5000 samples of 2000
pairs each. Each sample was analyzed using methods
1, 2, 3, 4, 6. Figure 5 displays the rejection proba-
bility for each method as a function of φ. We ob-
serve that the rejection probability is close to 0.05,
for all methods and all values of φ in the simulated
range.
Table 2 and Figure 3 indicate that methods 1–4,

and 6 are unbiased under the null hypothesis. Addi-

tional simultions have confirmed that the methods
are unbiased under various alternative hypotheses
as well (data not shown).

6.2 Part II: Sensitivity to Underlying

Assumptions

In this section we demonstrate through examples
that the explicit model, conditional logistic regres-
sion and the mixed model, can yield biased esti-
mates, if their underlying assumptions are violated.
We first consider the assumption that b⊥ (X1,X2),

which is often made for mixed models; see Section 5.3.
Toward this end we reanalyzed the 5000 simulated
samples which generated Table 2, now fitting the
mixed model Pr(Y = 1|X,b) = b+ ψcX to all pairs,
with b|X1,X2 ∼N(θ,σ2). We obtained a mean esti-
mate of ψc equal to 1.32, which is indeed biased as an
estimate of the true value ψc = 0. We note that this
mean estimate is very close to the ψ̂m.crude (= 1.28)
in Table 2. This further demonstrates that ignoring
the association between b and (X1,X2) produces an
estimate which is not adjusted for Z.
Next, we consider the independence assumption

(3b)/(17b), which is a prerequisite for conditional
logistic regression and mixed models. Toward this
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Fig. 5. Simulation results for ψc = 0, φ ∈ (4,22).

end we consider a simple scenario for which

(Y1, Y2)⊥ Z|(X1,X2),(27)

so that ψc = ψs = ψm; see Section 2. We define


























Pr(Yj = 1|Yj′ = 0,Xj = 1,Xj′ = 0) = p,
Pr(Yj = 1|Yj′ = 0,Xj = 0,Xj′ = 1) = q,
Pr(Yj = 1, Yj′ = 1|Xj = 1,Xj′ = 0)

·Pr(Yj = 0, Yj′ = 0|Xj = 1,Xj′ = 0)
/(Pr(Yj = 0, Yj′ = 1|Xj = 1,Xj′ = 0)
·Pr(Yj = 1, Yj′ = 0|Xj = 1,Xj′ = 0)) = c.

(28)

It follows from results in Chen (2007) that the joint
distribution of Yj and Yj′ among the exposure–dis-
cordant pairs, Pr(Yj , Yj′|Xj = 1,Xj′ = 0), is com-
pletely defined by the variation independent param-
eters p, q and c. c quantifies the degree of deviation
from (17b); in particular, (17b) is violated when
c 6= 1. It is easy to show that assumption (17a) is
logically compatible with all joint values of (p, q, c).
Thus, we proceed by assuming that (17a) holds, so
that the exposure–discordant crude analysis consis-
tently estimates ψs = ψc. Combining (27) and (28),

and using results in Chen (2007), gives that ψ̂c.clr

converges to

log

{

p(1− q)

q(1− p)

}

,(29)

whereas the true value of ψc(= ψs = ψm) is given by

log

{

p(1− q)

q(1− p)

}

+ log

{

1− q + qc

1− p+ pc

}

.(30)

Thus, the true value of ψc depends on the associ-
ation between Y1 and Y2 through the second term
in (30), whereas the asymptotic limit of ψ̂c.clr does
not. We used p = 0.3, q = 0.1, and c= 4. For these
values, ψc = 0.97, whereas the asymptotic limit of
ψ̂c.clr equals 1.35, for conditional logistic regression.
We generated 5000 samples, each consisting of n=
2000 exposure–discordant twin pairs. For each pair,
the random variables (Y1, Y2) were generated from
the model in (28). Each sample was analyzed with
conditional logistic regression (method 2), the mixed
model (method 3) and the exposure–discordant crude
analysis (method 4). For these methods, we obtained
an average estimate of ψc equal to 1.35, 1.26 and
0.97, respectively. Thus, both conditional logistic re-
gression and the mixed model produced biased esti-
mates, whereas the exposure–discordant crude anal-
ysis estimate was unbiased.
Next, we consider misspecification of the func-

tion b(Z;γ), in the explicit model. We generated
5000 samples, each consisting of n= 2000 twin pairs.
For each twin pair, the random variables (Z,X1,X2,
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Y1, Y2) were generated from the model

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
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


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


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Z = (V,W ),
V ⊥W,
V ∼N(0,1),
W ∼ Ber(0.5),
X1 ⊥X2|Z,
logit{Pr(Xj = 1|Z)}

= α0 +α1V +α2W +α3VW,
Y1 ⊥ Y2|(X1,X2, b),
Yj ⊥Xj′ |(Xj , b),
logit{Pr(Yj = 1|Xj ,Z)}= b(Z;γ) + ψcXj,
b(Z;γ) = γ0 + γ1V + γ2W + γ3VW,

(31)

with α0 = 2, α1 = α2 = 1, α3 =−1.5, γ0 =−2, γ1 =
γ2 = −1, γ3 = 1.5, ψc = 1.3. Each sample was ana-
lyzed with the misspecified explicit model
logit{Pr(Yj = 1|Xj ,Z)} = γ0 + γ1V + γ2W + ψcXj .
We obtained an average estimate of ψc equal to 0.69,
which is severly biased.
Finally, we consider the assumption that the ran-

dom effect b(Z;γ) is normally distributed, which
is commonly made for mixed models. Toward this
end we reanalyzed the 5000 samples generated from
model (31), now fitting the mixed model Pr(Y =
1|X,b) = b+ψcX to the exposure–discordant pairs,
with b|X1 6= X2 ∼ N(θ,σ2). Under the data gener-
ating model, the conditional distribution of b(Z;γ),
given X1 6= X2 is rather complicated, and, in par-
ticular, not normal. We obtained an average esti-
mate of ψc equal to 1.30, which is identical to the
true value, to the second decimal. This finding sup-
ports the theoretical results in Neuhaus et al. (1994),
which state that the mixed model is robust against
the normal random effect assumption.

7. REAL DATA EXAMPLES

7.1 Matched Cohort Data

The first example is taken from a matched cohort
study that aimed to investigate the effect of hys-
terectomy on risk for CVD (Ingelsson et al., 2010).
A common surgery among perimenopausal women,
hysterectomy is often performed on benign indica-
tions, but its long-term consequences are not fully
understood. The study is based on the Swedish In-
patient Register, where all women who underwent
hysterectomy between January 1973 and December
2003 (227,389 individuals) were identified. For each
hysterectomized woman, three women who never had
hysterectomy were randomly selected from the Reg-
ister of Total Population. The three unexposed wom-
en were individually matched to the exposed woman

by birth year, year of hysterectomy, and county of
residence at year of hysterectomy.
Information on CVD status was obtained from

the Inpatient Register and information of follow up
through record linkage to the Cause of Death Reg-
ister, Emigration Register and Cancer Register. To
avoid bias from CVD events occurring in relation
to the hysterectomy surgery, the exposed women
started their risk time from 30 days after hysterec-
tomy; they were then followed until CVD, heart fail-
ure, cervical, corpus or ovarian cancer, death, emi-
gration or end of study (Dec 31, 2003). Similarly, un-
exposed women started their risk time 30 days after
the date of matching, that is, the date of hysterec-
tomy of the corresponding exposed woman. For fur-
ther details on the study, see Ingelsson et al. (2010).
In the current analysis we focus on 1:1 matched

studies with binary outcomes. We constructed a bi-
nary outcome by defining Y = 1 for women who de-
veloped CVD during follow-up, and Y = 0 for the
remaining women. We constructed a 1:1 matched
sample by matching each exposed woman to one un-
exposed woman, which was randomly selected from
the three unexposed women in the same set. Af-
ter the exclusions described above, we ended up
with 52,814 1:1 matched pairs, of which 6712 were
discordant in both the exposure and the outcome.
The data were analyzed with methods 1–4 described
in Section 6. For method 1 we used the explicit
model logit{Pr(Y = 1|Z,X)}= γ0+γ1[birth year]+
γ2[year at hysterectomy] + γ3[county] + ψcX ,
where γ3 is a factor parameter with one level for
each county.
Table 3 displays the results. For all three methods,

there is a significant (at 5% level) association be-
tween hysterectomy and CVD. The point estimates
obtained by conditional logistic regression and expo-
sure–discordant crude analysis are almost identical,
whereas the point estimate obtained from the mixed
model is twice as large. According to theory (Neuhaus
et al., 1994) we would expect the mixed model esti-
mate to be identical to the estimate obtained from

Table 3

Analysis results for the 1:1 matched subset of the

hysterectomy-CVD data

Analysis method Target parameter Point est 95% CI

1. Explicit ψc 0.03 −0.02, 0.08
2. Cond log reg ψc 0.03 −0.02, 0.08
3. Mixed discordant ψc 0.03 −0.02, 0.08
4. Crude discordant ψs 0.03 −0.02, 0.07
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Table 4

Analysis results for the full 1:3 matched

hysterectomy-CVD data

Analysis method Target parameter Point est 95% CI

1. Explicit ψc 0.06 0.02, 0.09
2. Cond log reg ψc 0.06 0.02, 0.09
3. Mixed discordant ψc 0.06 0.02, 0.09
4. Crude discordant ψs 0.05 0.02, 0.09

conditional logistic regression. Indeed, methods 1–
4 all give identical estimates to the second deci-
mal.
Although our focus is on 1:1 matching, all meth-

ods in this paper generalize directly to m:n match-
ing (see Section 8). Table 4 displays the results when
the whole 1:3 matched data is analyzed, using meth-
ods 1–4 described in Section 6.

7.2 Twin Data

The second example is from a twin study of the as-
sociation between fetal growth and asthma (Örtqvist
et al., 2009). Several studies have shown that there is
an association between asthma and low birth weight.
This association could potentially be explained by
a causal effect of impaired fetal growth on asthma,
but may also be explained by confounding factors.
In particular, gestational age is correlated with both
birth weight and asthma, and may confound the
birth weight-asthma association (Örtqvist et al.,
2009). Twins provide an excellent opportunity to
separate the causal effect of birth weight from the
confounding effect of gestational age, and at the
same time adjust for other shared familial factors.
All twins born in Sweden in June 1992 to June

1998 were identified through the Swedish Twin Reg-
ister at the age of 9 or 12 years. Information on
asthma and zygosity was collected in telephone in-
terviews with their parents. Birth weight was re-
trieved from the Medical Birth Register (MFR). Of
the 15,808 eligible twins 69% (10,918 individuals)
had information on asthma and could also be se-
curely linked to the MFR. In total, there were 3107
MZ pairs. 1087 pairs were discordant in birth weight
(exposure), where discordance was defined as a dif-
ference greater than 400 grams or 15%, and 175 pairs
were discordant on both birth weight and asthma
(outcome).
The data were analyzed using methods 2–6 de-

scribed in Section 6. Table 5 displays the results.
The estimates obtained from conditional logistic re-

Table 5

Analysis results for the birth weight-asthma twin data

Analysis method Target parameter Point est 95% CI

2. Cond log reg ψc 0.29 −0.01, 0.59
3. Mixed discordant ψc 0.29 −0.01, 0.59
4. Crude discordant ψs 0.18 −0.01, 0.37
5. Crude all ψm 0.33 0.16, 0.50
6. Mixed all ψc 0.30 0.00, 0.60

gression and the exposure–discordant crude analysis
are both smaller than estimate obtained from the
all-pair crude analysis. This finding suggests that
the birth weight-asthma association is inflated by
shared confounding. Methods 2, 3 and 6 gave very
similar results, as predicted by theory (Neuhaus et al.,
1994; Neuhaus and Kalbfleisch, 1998).

8. DISCUSSION

We have given an overview of the most common
analysis methods for matched cohort studies. We
have identified the target parameters in each method,
outlined the underlying assumptions and compared
the methods in terms of statistical power. The anal-
ysis methods that we have considered do not esti-
mate the same parameter; the exposure–discordant
crude analysis and the within–between model es-
timate a standardized odds ratio, whereas the ex-
plicit method, conditional logistic regression, and
the mixed model estimate a conditional odds ra-
tio. Thus, the choice between these methods should
primarily be guided by the research question being
asked. In addition, it is also important to consider
the statistical power, underlying assumptions, com-
puter intensity and flexibility of the methods. The-
oretical arguments suggest that when all underlying
assumptions hold, all methods that we have consid-
ered have the same statistical power. This was con-
firmed in our simulation study. In terms of under-
lying assumptions, the methods differ significantly.
The exposure–discordant crude analysis relies on few-
er assumptions than the other methods. In terms of
computer intensity, the mixed model requires nu-
merical optimization, and is far more time consum-
ing than the other methods. In terms of flexibility,
all methods, except the exposure–discordant crude
analysis, most naturally target odds ratios. The expo-
sure–discordant crude analysis however, can easily
be used to target any measure of the exposure-out-
come association.
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We have considered 1:1 matching. Frequently,m:n
matching is employed, that is, each set is constructed
by matching m exposed subjects to n unexposed
subjects. All methods in this paper generalize di-
rectly to m:n matching. Specifically, the underlying
assumptions and the interpretation of the target pa-
rameters remains the same underm:n matching. We
conjecture that many of the theoretical properties
that we have derived for 1:1 matching carry over to
m:n matching as well, for example, the asymptotic
equivalence in terms of power. However, a strin-
gent treatment of m:n matching is more difficult.
For instance, under violation of (2) the probabil-

ity limit of ψ̂c.clr has no longer an analytic expres-
sion, which hampers a theoretical comparison with
the exposure–discordant crude analysis. Comparing
the methods under m:n is a topic for future re-
search.
In practice, it is often desirable to adjust the anal-

ysis for additional covariates which are not matched
on. In the model-based methods (i.e., all methods
except the exposure–discordant crude analysis), ad-
justment for additional covariates can easily be ac-
complished by adding the covariates as a regressor
in the model. It is not obvious though, how to adjust
for additional covariates in the exposure–discordant
crude analysis. Extensions of the exposure–discordant
crude analysis for additional covariate adjustments
is a topic for future research.

APPENDIX A

Define px =Pr(Y =1|X=x), q =Pr(X=1), q00 =
Pr(X1=X2=0), q11 =Pr(X1=X2=1), qd =Pr(X1 6=
X2), c

00 = cov(Y1, Y2|X1=X2=0), c11 = cov(Y1, Y2|
X1=X2=1), cd = cov(Y1, Y2|X1 6=X2), ψ0 = logit(p0),

ψm = logit(p1)− logit(p0) and ψ = (ψ0, ψm)
T . ψ̂m.crude

in (18) can be expressed as the second element of the
solution to

∑

iUi(ψ) = 0, where

Ui(ψ)

=

{

(1−Xi1)(Yi1 − p0) + (1−Xi2)(Yi2 − p0)
Xi1(Yi1 − p1) +Xi2(Yi2 − p1)

}

.

It follows from standard theory that n1/2(ψ̂ − ψ) is
asympotically normal with mean 0 and variance
[

E

{

∂Ui(ψ)

∂ψT

}]−1

var{Ui(ψ)}
[[

E

{

∂Ui(ψ)

∂ψT

}]−1]T

,

where, after some algebra,

E

{

∂Ui(ψ)

∂ψT

}

=

(

−2p0(1− p0) 0
−2p1(1− p1) −2p1(1− p1)

)

and

var{Ui(ψ)}

=

(

2(1− q)p0(1− p0) + q00c00 qdcd

qdcd 2qp1(1− p1) + q11c11

)

.

After additional algebra, the asymptotic variance for
n1/2(ψ̂m.crude −ψm) is obtained as

1

2(1− q)p0(1− p0)
+

1

2qp1(1− p1)

+
q00c00

4{p0(1− p0)}2 +
q11c11

4{p1(1− p1)}2(32)

− qdcd

2q(1− q)p0(1− p0)p1(1− p1)
.

Replacing the population parameters in (32) with
their sample counterparts gives the standard error
for ψ̂m.crude.
To derive the standard error formula in (12) we

note that a regular 1:1 matched cohort can be ob-
tained by setting q = 0.5, q00 = q11 = 0 and qd = 1.
The expression in (32) then simplifies to

1

p0(1− p0)
+

1

p1(1− p1)
(33)

− 2cd

p0(1− p0)p1(1− p1)
.

Replacing the population parameters in (33) with
their sample counterparts gives the standard error
formula in (12).

APPENDIX B

Define ψ†
c = log{Pr∗(Y 1=1,Y 0=0)

Pr∗(Y 0=1,Y 1=0)
}, H†

c :ψ
†
c = 0, ψ†

s =

log{Pr∗(Y 1=1)Pr∗(Y 0=0)
Pr∗(Y 1=0)Pr∗(Y 0=1)

}, H†
s :ψ

†
s = 0. H†

c can be tested

using the likelihood ratio test (LRT) statistic

T †
c,LR =−2 log

{

sup
H†

c

(pW00p
U
01p

V
10p

T
11)

sup(pW00p
U
01p

V
10p

T
11)

}

,

and H†
s can be tested using the LRT statistic

T †
s,LR =−2 log

{

sup
H†

s

(pW00p
U
01p

V
10p

T
11)

sup(pW00p
U
01p

V
10p

T
11)

}

,

where py0y1 =Pr∗(Y 0= y0, Y 1 = y1), and the suprema
are taken under the restrictions 0 < py0y1 < 1 and
∑

y0y1 py0y1 = 1. Regardless of whether (2), (3a) and

(3b) hold or not, ψ̂c.clr and ψ̂s.crude are the nonpara-

metric MLEs of ψ†
c and ψ

†
s, respectively. Thus, T

†
c,LR

and Tc are asymptotically equal, and T †
s,LR and Ts
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are asymptotically equal. It is easy to show that H†
c

and H†
s are equivalent (i.e., H

†
c holds if and only if H†

s

holds), which implies that T †
c,LR and T †

s,LR are iden-
tical, which then in turn implies that Tc and Ts are
asymptotically equal.
It is easy to show that H0 and (3a) together im-

ply H†
s, and thus also H†

c. Because ψ̂c.clr converges

to ψ†
c , it then follows that ψ̂c.clr converges to 0 un-

der H0 and (3a).

APPENDIX C

Under (26), we have that

Pr(X1,X2, b)

=
1√
2π
e{b−θX̄}2/2Pr(X1,X2)

= h(X1, b)h(X2, b)e
−θ2X1X2/4Pr(X1,X2),

for some function h(·, ·). X1 ⊥X2|b now implies that

e−θ
2X1X2/4Pr(X1,X2) = k(X1)k(X2)

for some function k(·), which in turn implies that
θ = 2

√

log(φ).
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