

HABITUS

Principles

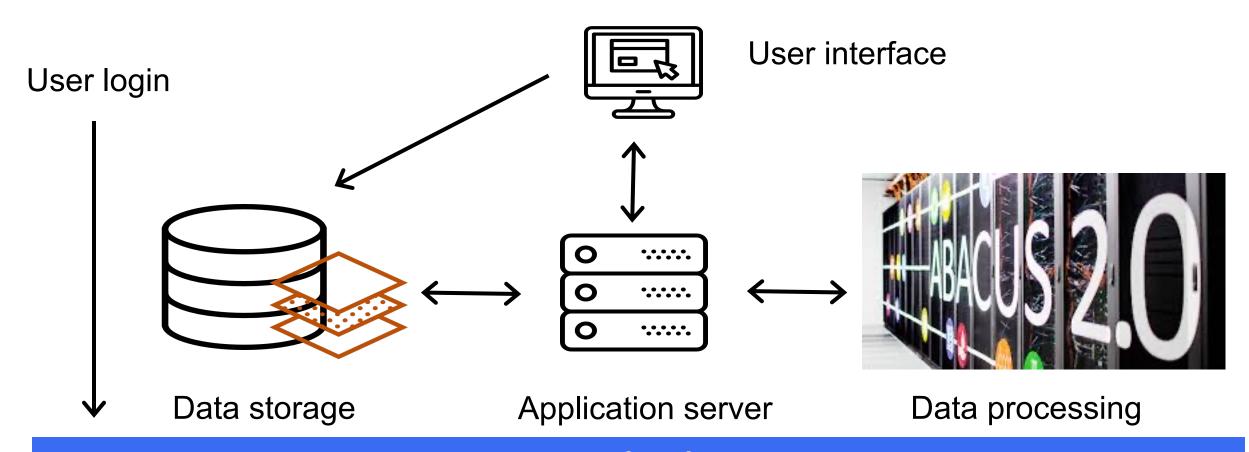
Open source and collaborative

Sharing of algorithms (and training data)

Sharing of workflows and data processing settings

Aims

Make it easier to combine acceleromter and GPS data


Facilitate transparancy of data processing decisions

Offer easy access to secure data storage and supercomputer data processing

ICAMPAM KEYSTONE, COLORADO, USA 2822

HABITUS

Ucloud

UCloud Docs

Login

eScience Center

Developer Guide

User Guide

Search

About

Secure Platform

Interactive HPC

Data Analytics

Private Cloud

Share & Collaborate

Project Management

Getting Started

Manage Files and Folders

Share and Mount Locally

Access Applications

UCloud User Guide ¶

Interactive digital research environment built to support the needs of researchers for both computing and data management, throughout all the data life cycle

Getting Started

Tutorial videos

Platform Overview

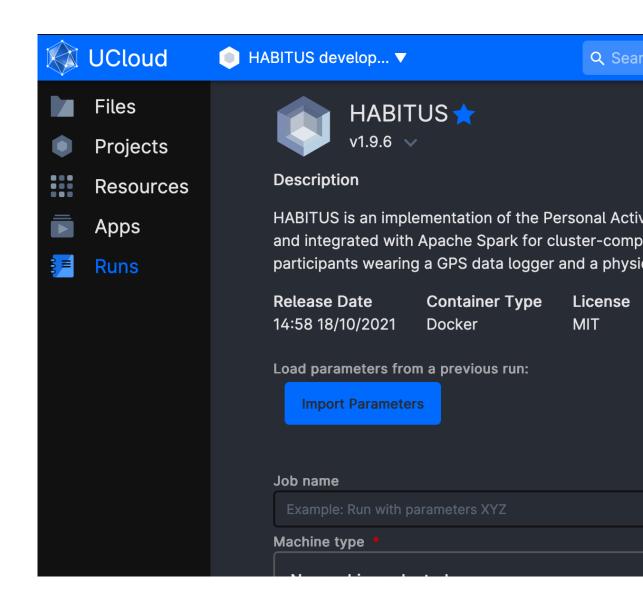
Navigate, launch jobs, share & collaborate

Supported Apps

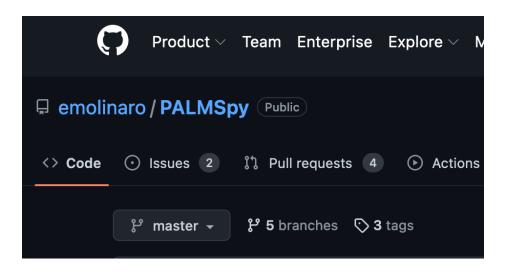
Apps catalogue ≡

https://docs.cloud.sdu.dk/

Application server


Applications run in a container
Processing is scalable, 1 core per
person (>14,000 cores available)

Packages and libraries written in R or python can easily be integrated



Builds on existing open source software

Dr Vincent van Hees, Consultant, www.accelting.com

PALMSplus for R

repo status Active Package version 0.1.0 Last change 2018-01-12

Overview

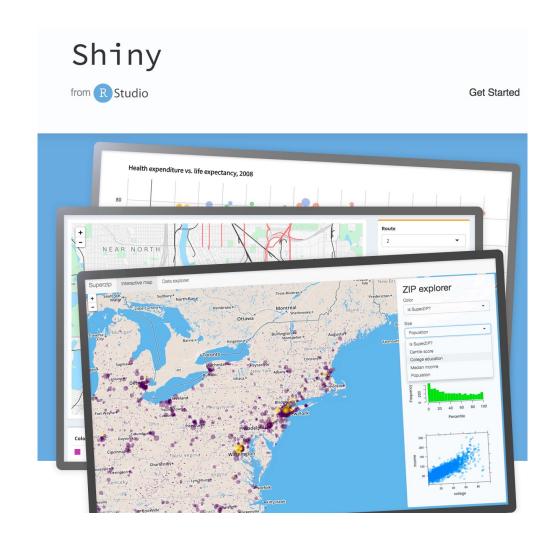
palmsplusr is an extension to the *Personal Activity Location Measurement System* (PALMS). This R package provides a customisable platform to combine PALMS data with other sources of information (e.g., shapefiles or csv files). This enables physical activity researchers to answer higher-level questions, such as:

Dr Tom Stewart, Auckland University of Technology

activityCounts

Calculate ActiLife counts from raw acceleration data

Dr Ruben Brondeel et al, Sciensano


Dr Emiliano Molinaro, University of Southern Denmark

User interface

Shiny for Rstudio
Easy to use interface
Limited number of processing options

Visualisation of output data

Developed by Vincent van Hees

Which type(s) of data would you like to analyse?
Raw acceleration (at least ten values per second per axis)
Counts (in ActiGraph .csv format)
GPS (in .csv format)
GIS (shape files + linkage file)
PALMS(py) output previously generated
Sleep Diary (in GGIR compatible .csv format)

What can HABITUS help you with?

Process raw accelerometer data with GGIR Generate ActiGraph counts based on raw accelerometer data Match & merge accelerometer and GPS data Remove the worst GPS errors (excessive speed and changes in altitude) Categorize activity intensity (sedentary, light, moderate, vigorous) Identify trips and tripmode (walking, bicycling, vehicle) Aggregate data into user-defined domains Export aggregated data as table or GIS file

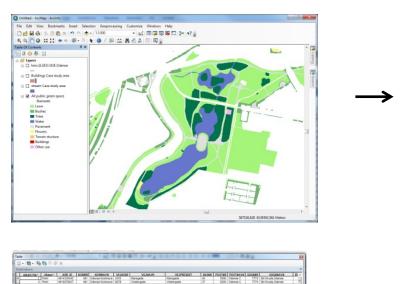
PALMSplus (R package)

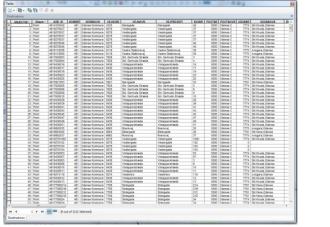
Which type(s) of data would you like to analyse?									
Raw acceleration (at least ten values per second per axis)									
Counts (in ActiGraph .csv format)									
GPS (in .csv format)									
GIS (shape files + linkage file)									
PALMS(py) output previously generated									
Sleep Diary (in GGIR compatible .csv format)									
What is you research interest?									
Data quality assessment									
Trips (displacements)									
Relation between behaviour and environment									
> Tick boxes above according to the analysis you would like to do									
Select the tools you would like to use:									
GGIR (R package)									
□ BrondCounts (R packages activityCounts + GGIR)									
PALMSpy (Python library)									

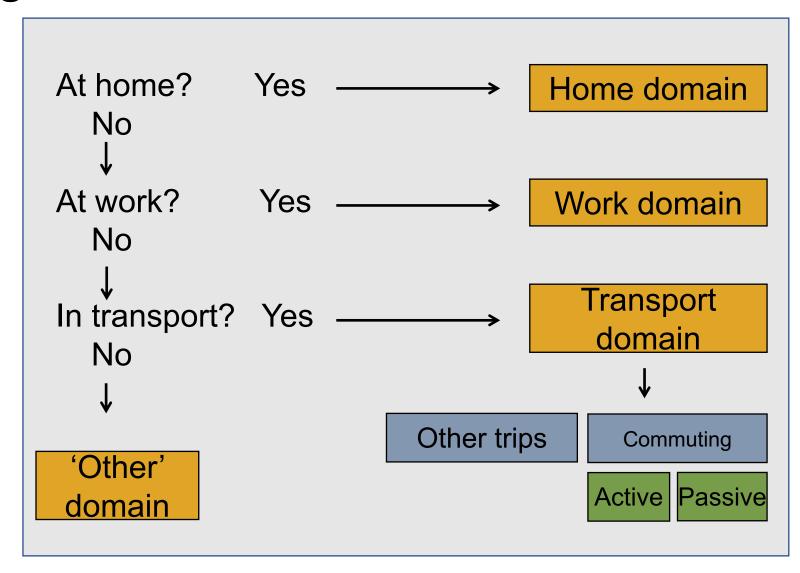
PALMSplus (R package)

Which type(s) of data would you like to analyse?								
Raw acceleration (at least ten values per second per axis)								
Counts (in ActiGraph .csv format)								
GPS (in .csv format)								
GIS (shape files + linkage file)								
PALMS(py) output previously generated								
Sleep Diary (in GGIR compatible .csv format)								
What is you research interest?								
Data quality assessment								
✓ Trips (displacements)								
Relation between behaviour and environment								
Proposed software pipeline: PALMSpy + PALMSplus								
Select the tools you would like to use: GGIR (R package)								
☐ BrondCounts (R packages activityCounts + GGIR)								
PALMSpy (Python library)								

✓ PALMSplus (R package)




which type(s) of data would you like to analyse?						
Raw acceleration (at least ten values per second per axis)						
Counts (in ActiGraph .csv format)						
GPS (in .csv format)						
GIS (shape files + linkage file)						
PALMS(py) output previously generated						
Sleep Diary (in GGIR compatible .csv format)						
What is you research interest?						
Data quality assessment						
✓ Trips (displacements)						
✓ Relation between behaviour and environment						
Proposed software pipeline: PALMSpy + PALMSplus						
Select the tools you would like to use: GGIR (R package)						
☐ BrondCounts (R packages activityCounts + GGIR)						
✓ PALMSpy (Python library)						



ICAMPAM KEYSTONG, COLORADO, USA 2022

GIS data and linkage file needed to define domains

Habitus - Data selection

Count accelerometry data directory...

/work/LineMatthiesen#8897/test-data-DK/Accelerometer

GPS data directory...

/work/LineMatthiesen#8897/test-data-DK/GPS

/work/LineMatthiesen#8897/test-data-DK/GIS

/work/LineMatthiesen#8897/test-data-DK/Tables/participant_basis_dk_10

/work/LineMatthiesen#8897/test-data-DK/test_output_dk

Give your dataset a name:

test-data-DK

Shiny

Habitus - Parameter Configuration

PALMSpy

PALMSpy takes as input summarised accelerometer data (ActiGraph counts) and GPS data and uses them to estimate movement behaviours from the perspective location in a country or city and travel distance and speed

PALMSpy configuration files are in .json. If you do not have one Download a template below.

Configuration file...

♣ Download template

Reset

Select a configuration file on the left. Download the template if you do not have a configuration file.

PALMSplus

No parameters are needed for the PALMSplus

Habitus - Parameter Configuration

PALMSpy

PALMSpy takes as input summarised accelerometer data (ActiGraph counts) and GPS data and uses them to estimate movement behaviours from the perspective location in a country or city and travel distance and speed

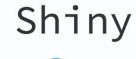
PALMSpy configuration files are in .json. If you do not have one Download a template below.

Configuration file...

♣ Download template

Reset

Review the parameter values, especially the ones in yellow, and edit where needed by double clicking:


Show 5 entries				Se	arch:	
	value	field	↑↓ subfield	1 description	14	priority 🐪
insert_max_seconds	600	gps	general	please insert description		1
insert_missing	true	gps	general	please insert description		1
filter_invalid_values	true	gps	filter_options	please insert description		1
insert_until	false	gps	general	please insert description		0
interval	5	gps	general	please insert description		0

Showing 1 to 5 of 36 entries

Configuration file has successfully passed all formatting checks

PALMSplus

No parameters are needed for the PALMSplus

Previous12345...8Next

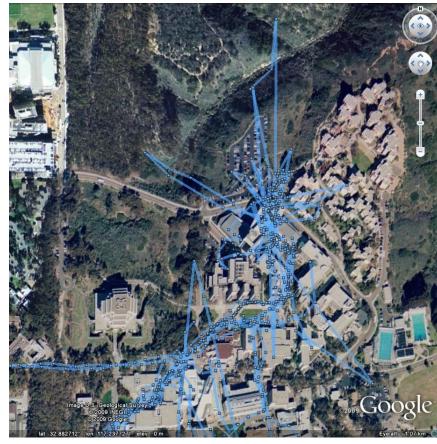
SDU &

Habitus - Analyses

Recommended order of analyses: PALMSpy -> PALMSplus

PALMSpy:

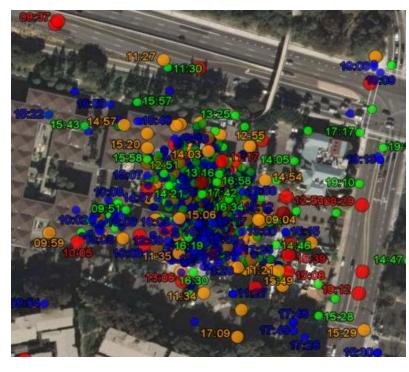
Start analysis


PALMSplus:

Start analysis

prev

Data processing – GPS noise removal


Before – Multi-story buildings generate noise

After – Noise removed Yellow = walking Orange = paused Gray circles = relative time at location

Data processing – GPS noise removal

Refine grossly invalid trackpoints (bad fixes)
Refine redundant trackpoints (non-movement)
Refine extraneous data points (jitter)

Before

After

Color coded by speed

Data processing – GPS noise removal

Filter lone-fixes – do not filter first and last fixes

Determine if trackpoint is valid

Check for excessive speed (> X)

Check for excessive change in elevation

Check for excessive distance traveled between trackpoints

Determine if trackpoint is redundant

Check for minimum change in distance between trackpoints (redundant)

Check for forward / backwards movement (jitter)

If invalid or redundant, delete trackpoint from vector and update derived values in adjacent trackpoint

ICAMPAM KEYSTONE, COLORADO, USA 2822

Data processing – trip detection

- Detects starting and stopping locations of trips
- Detects short pauses during trips
- Note: start point variations due to time to acquire first fix.

Starting point

Ending point

In motion

Pause

ICAMPAM KEYSTONE, COLURADO, USA 2822

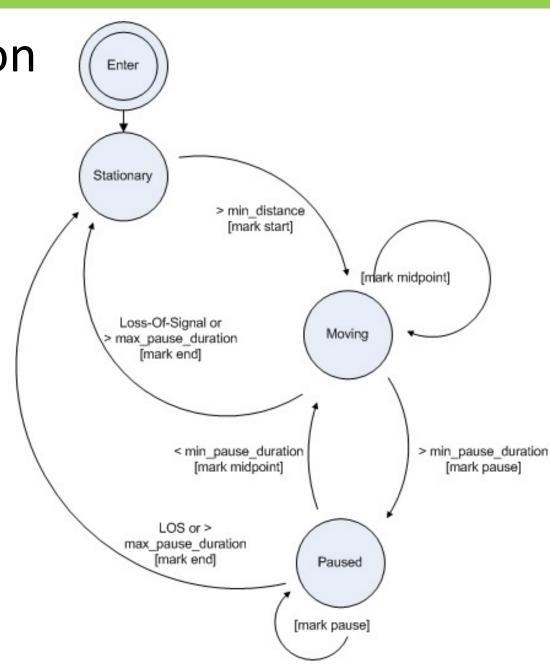
Data processing – trip detection

Marks Trackpoints as either:

Stationary

Start points

Mid points


Pause points

End points

Start point marked when distance traveled > threshold

End points marked on loss of signal or when duration at point exceeds a time threshold

Pause points when distance travel < threshold & duration at point within a time threshold

Data processing – trip detection step 2

Reconsider trips

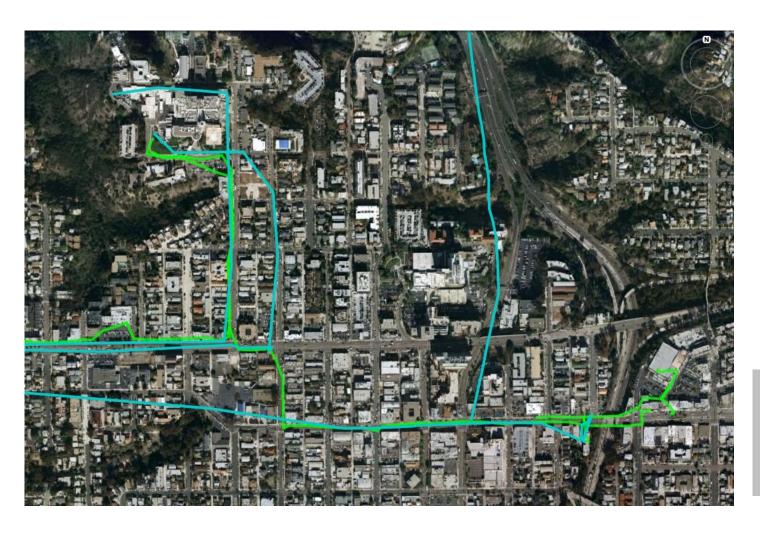
Remove trips where total distance < threshold

Remove trips where total duration < threshold

Remove trips contained within one location

Remove trips totally indoors

Number trips


Validity of PALMS GPS Scoring of Active and Passive Travel Compared with SenseCam

JORDAN A. CARLSON, MARTA M. JANKOWSKA, KRISTIN MESECK, SUNEETA GODBOLE, LOKI NATARAJAN, FREDRIC RAAB, BARRY DEMCHAK, KEVIN PATRICK, and JACQUELINE KERR

Carlson et al. 2014, MSSE

ICAMPAM REYSTONE, COLORADO, USA 2822

Data processing – mode of transportation

Classify trips as walking, running, bicycle, vehicle

90% trip speed used as classifier

Vehicle

Pedestrian

Bicycle

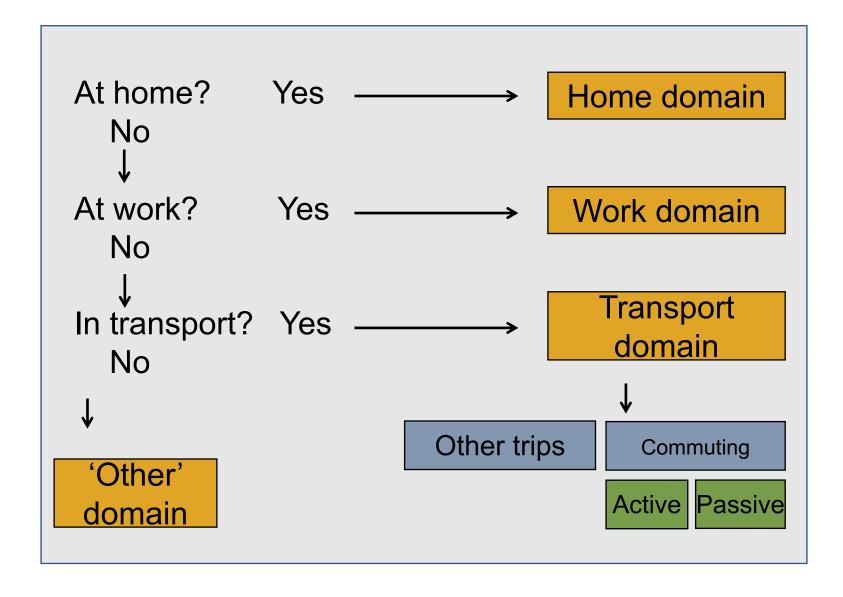
SDU

Habitus - Analyses

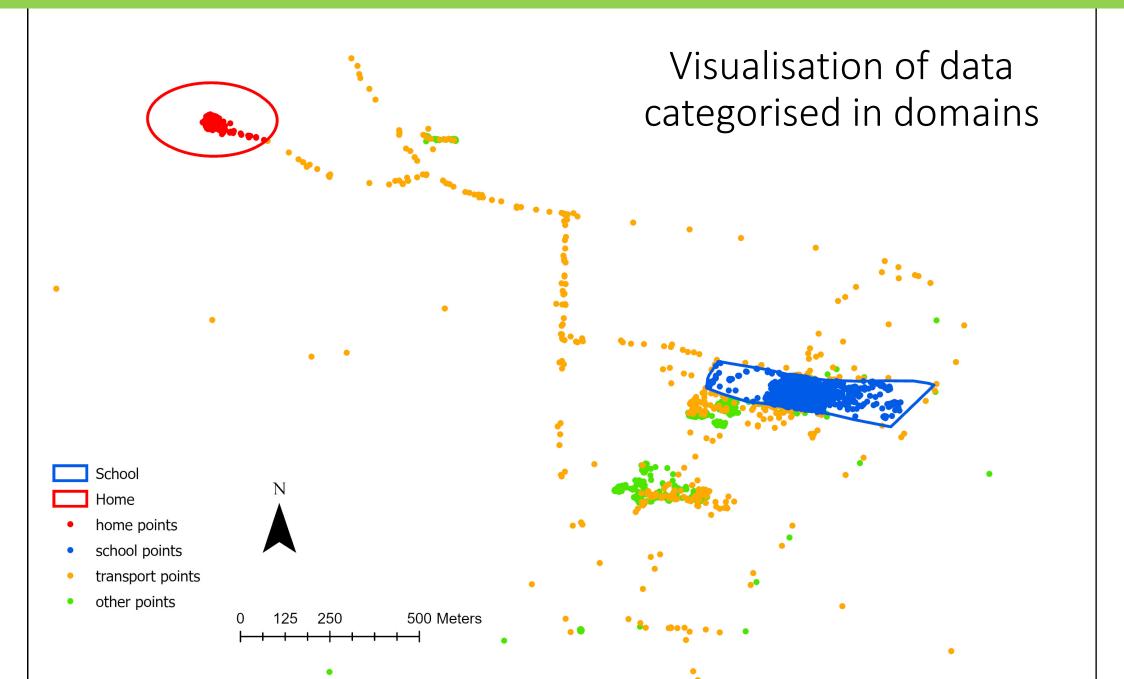
Recommended order of analyses: PALMSpy -> PALMSplus

PALMSpy:

Start analysis


PALMSplus:

Start analysis


prev

Data processing – classification in domains

Data processing – variables for each domain

Time spent in a domain (duration)

Weartime

Time sedentary (SED)

Time in LPA

Time in MPA

Time in VPA

Time in MVPA

Average CPM

Data processing – data output example

identifier	dte	dow	day_duration	day_weartime	day_lpa	day_mvpa	day_sed	day_cpm
GR012BE	13/06/2017	2	7200	4155	0	0	4155	0.644
GR012BE	14/06/2017	3	86400	11955	2790	15	9150	0.742
GR012BE	15/06/2017	4	86400	47310	9165	0	38145	0.652
GR012BE	16/06/2017	5	86400	21120	2865	15	18240	0.499
GR012BE	17/06/2017	6	86400	21750	5250	0	16500	0.753
GR012BE	18/06/2017	7	86400	4545	0	0	4545	0.095
GR012BE	19/06/2017	1	86400	28875	5175	105	23595	0.604
GR012BE	20/06/2017	2	86400	23310	3540	30	19740	0.522
GR012BE	21/06/2017	3	86400	12225	1455	0	10770	0.323

Next steps – short term

Extensive user testing
Bug fixing
Interface improvement
Creation of guidance materials

Next steps - adding domain classification to the next generation of devices/systems

We hope to build on **SurPASS**

Activity type data in domains

Non-count accelerometer metrics

For Healthcare For Research

About

What is SENS motion®

SENS motion® is a wireless medical device for collecting physical activity data from large groups of people. It is especially well suited for use in the healthcare sector and for large research projects. The system measures:

- Rest time
- Standing time
- Walking time
- Running & High-Intensity Movement time
- Cycling time
- Steps taken
- Motion intensity
- Sleep time and quality

https://sens.dk/

Next steps – combine accelerometer and GPS in machine learning

Identifying active travel behaviors in challenging environments using GPS, accelerometers, and machine learning algorithms

Katherine Ellis¹*, Suneeta Godbole², Simon Marshall², Gert Lanckriet¹, John Staudenmayer³ and Jacqueline Kerr²

¹ Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA

² Department of Family and Preventive Medicine, University of California San Diego, La Jolla, CA, USA

³ Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA, USA

Summing up

HABITUS is functional for users with experience in working with accelerometer, GPS and GIS data

Further improvements to the user friendliness and documentation will be made the coming months

Contact us if you would like to explore options to become a HABITUS user

Email us at habitus@sdu.dk or check www.habitus.eu for more information

