Towards Corpus Annotation Standards
The MATE Workbench'

Laila Dybkjer, Niels Ole Bernsen
Natural Interactive Systems Laboratory
Science Park 10, 5230 Odense M, Denmark
E-post: laila@nis.sdu.dk, nob@nis.sdu.dk

Abstract
This paper describes the European MATE project and its work towards speech

corpus annotation standards. Focus is on the MATE workbench which is

thoroughly described and illustrated.

1. Introduction
The aim of the European Telematics project MATE (Multilevel Annotation

Tools Engineering) has been to facilitate the use and reuse of spoken language
resources, coding schemes and tools by addressing theoretical issues and
implementing practical solutions. MATE was launched in 1998 in response to
the increasing need - not least in the area of spoken language dialogue systems
research and development - for tools and standardisation efforts in support of
efficient markup of spoken dialogue corpora at multiple levels.

The main results of the project are the MATE markup framework which bridges
between the theoretical and the practical activities of MATE and is proposed as
a standard for the definition and representation of markup for spoken dialogue
corpora (Dybkjer and Bernsen 2000b), and the MATE workbench which
supports the use of the markup framework. Even if the project has formally
come to an end, the project consortium has continued funding for improving the
workbench and new versions continue to appear. The newest version of the

software can always be downloaded from the MATE web site at

! This paper is also being published in the Proceedings of the COCOSDA meeting in Beijing, 21 October 2000.

Laila Dybkjer, Niels Ole Bernsen

http://mate.nis.sdu.dk. Both an executable version and the source code is

available, the latter under the GNU open source LGP license.

A discussion forum has been set up at the MATE web site for asking questions
and sharing experience on the workbench, and for adding new tools to the
MATE workbench to enhance its functionality.

In the following, Section 2 briefly describes the theoretical approach of MATE,
Section 3 provides a detailed walkthrough of the MATE workbench, and

Section 4 mentions related work.

2. Theoretical Background
To provide a solid basis for the coding standard to be proposed by MATE, more

than sixty existing coding schemes belonging to five different coding levels (i.e.
prosody, (morpho-) syntax, co-reference, dialogue acts, and communication
problems) and their cross-level interaction were reviewed (Klein et al. 1998).
The collected information served as background for establishing the MATE
markup framework (Dybkjer et al. 1998, Dybkjer and Bernsen 2000b). In
MATE, a coding level is some level of abstraction at which to conceptualise,
tag, analyse, and retrieve information inherent in language corpora.

The MATE markup framework is a conceptual model which basically prescribes
(1) how files are structured, for instance to enable multi-level annotation, (ii)
how tag sets are represented in terms of elements and attributes, and (iii) how to
provide essential information on markup, semantics, coding purpose etc.

The central concept of the MATE markup framework is the coding module. A
coding module is an extended kind of coding scheme which prescribes what
constitutes a coding, including the representation of markup and the relations to
other codings. Coding modules incorporate (i), (i1) and (ii1) above. Thus, the
MATE coding module is a proposal for a standard description of coding

schemes.

Towards Corpus Annotation Standards: The MATE Workbench

For each of the above-mentioned five annotation levels and the issues to do with
cross-level annotation, one or several of the reviewed coding schemes were
adopted as starting points for the definition, following the MATE markup
framework, of best practice coding schemes for implementation in the MATE

workbench (Mengel et al. 2000).

3. The MATE Workbench
The MATE workbench (Isard et al. 1998, Isard et al. 2000, Dybkjer and

Bernsen 2000a) is a software tool set which supports the MATE markup
framework, incorporates the MATE best practice coding schemes, and enables
users to annotate corpora and extract information about annotated corpora via a
user-friendly interface. The workbench is in continued development and,
although the full functionality and desired user-friendliness has not yet been
achieved, there is already considerable interest among colleagues from around
the world in using the MATE workbench.

The workbench is implemented in Java. It has been tested on Unix (Solaris) and
Windows (NT and 98) but should run on any platform for which Java 1.2 or
newer is available. The workbench has a modular architecture which facilitates
the addition of new modules and new tool functionality by its users. XML is
used for internal file representation. Style sheets are used for specifying the
visual presentation of data to users. Style sheets are written in the MATE Style
sheet Language (MSL). The emerging standard in this area is XSLT. XSLT,
however, was not fully defined when the workbench was being designed, and
lacked various necessary functionalities at the time. It was therefore decided to
implement MSL which uses the MATE query language but is otherwise similar
to XSLT.

In the following, we describe and illustrate the MATE workbench

functionalities.

Laila Dybkjer, Niels Ole Bernsen

3.1. Getting started
As mentioned, the MATE workbench can be downloaded from the MATE web

site at http://mate.nis.sdu.dk. The download page describes how to start the

workbench from a command tool. Starting the workbench will result in the
following two windows being opened. The first window (Figure 1) allows the
user to open new project windows (Figure 2), access available tools, such as the
coding module editor (Figure 5), and access the online help function.

The second window (Figure 2) shows example projects which include best
practice coding schemes and annotated examples for a number of different

annotation levels.

24 The MATE Workbench [_ O] x]
File Tools Help
alcame to the MATE Warkhench, %

Figure 1. The control window.

[Projects H=l B
File Edit Project Tools
- |Run|jinfo
3 A0 DifLailaidownload2/ProjectsiCormProbs
@ Dy & ca.mp
9 [Laila %c0mprDbS_MATE-dialogue.xml
@ 3 download2 ca.html
® 3 Projects [B} guidelines.dtd
@ [BASPartitur %membs-dtd
% C|comProbs| D| \types
G”I-EI camp [#) quidelines xml
o 3 coreference EWpes_MATE-dialogue.xml
© [MapTask % E2r:npsrlobs-notes_MATE-dialogue.xml
@ [Morphasyntax R ca.run
-3 i :
&gVerbMot.an E comprob-notes.did
MATE-dialogue 3 camprobs-notes_MATE-dialogue xml.mh
@ [Hlabel
@ [CrasslLevel
& [Prosody
@ [operatar
@ [testprojectmp :
@] MateSetup =
' Dl

Figure 2. The projects window.
3.2. Annotation
The two main functionalities of the MATE workbench are support for

annotation of spoken dialogue corpora and linguistic data, and information

Towards Corpus Annotation Standards: The MATE Workbench

extraction from annotated corpora. The workbench annotation support is

described in the following.

3.2.1. Best practice coding schemes

Ready-to-use best practice coding schemes are included for most of the coding
levels addressed by MATE. Prosody is not yet included. Style sheets allow the
user to view and annotate files in an appropriate way using any of the
implemented best practice schemes. Example dialogues are provided which
illustrate how a tagged dialogue and the accompanying tag set will be shown
when a particular best practice scheme is being applied. Internally in the
workbench, an annotated dialogue is represented as a set of references to the
transcription of the dialogue and possibly to other coding files. By default, the
transcription refers to timeline information. The two windows in Figures 3 and 4
show annotation based on the MATE MapTask scheme and the MATE
communication problems scheme, respectively. Figures 3 and 4 aptly illustrate
the very different display requirements imposed by different coding schemes.
Clicking on the green ‘PLAY’ button in the Map Task window in Figure 3 will
result in the audio file corresponding to the transcribed turn being played. The
giver and the follower are the two speakers. Each speaker turn can be annotated
with a speech act chosen from the list on the left by selecting the speaker and
then clicking on the tag to be assigned. For example, the second giver utterance
has been annotated with the ‘instruct’ dialogue act.

In the communication problems window in Figure 4, the orthographically
transcribed dialogue is shown in the upper left-hand panel. To support the coder,
guidelines for cooperative dialogue are shown in abbreviated form in the upper
right-hand panel. Types of violation of particular guidelines are incrementally
added by the coder in the lower right-hand panel. This panel is empty when
annotation starts. The blue markup in the dialogue refers to the types of

violation described in the lower right-hand panel and the violations themselves

Laila Dybkjer, Niels Ole Bernsen

refer to the guidelines. The lower left-hand panel shows annotator's notes.
Again, this panel is empty when annotation starts. Notes can be added whenever
the annotator needs to add an explanation of, e.g., why something went wrong in
the dialogue so as to cause a communication problem.

There is no example coding module for transcription in the MATE workbench.
Instead, a converter from Transcriber format (

http://www.etca.fr/CTA/gip/Projets/Transcriber/) to MATE format enables

transcriptions made using Transcriber to be exported to MATE format and

annotated using the MATE workbench.

3.2.2. Adding a new coding module

Users may add new coding modules (coding schemes) themselves for existing or
new coding levels via the coding module editor, cf. Figure 5. In order for a
coding scheme and the dialogues annotated using it to be usable and
understandable by people other than its creator, some key information must be
provided. The MATE coding module which is the standard coding scheme
description format proposed by MATE, serves to capture this information. A
coding module includes the ten items shown in Figure 5. It prescribes what
constitutes a coding, including markup representation and relations to other

codings (module references).

Towards Corpus Annotation Standards: The MATE Workbench

Ega Coding Window M=l E3

File Edit Tools Help

& are going to go due south straight south and then we're going to g-- turn straight back round and

south and then straight back up again with an old mill on the right and you're going to pass on the

instruct JAPLay giver

explain ohdy: _

A : F'LA ¢ giver instruct
e Cictarting off we are above a caravan park
(ARETVA dri sy follower
Uyt Amrmbiram
align APLAY giver
reply-y :

e Alhead north pagt an old mill an the right hand side

s JPLAY follower
BRI e south and then back up again
acknowledge PLAY giver
ready eah
clarify J|PLAY giver

LA “|lefi-hand side of the mill

JPLAY follower
Aright okay

[4]

Figure 3. Annotation using the MATE Map Task scheme.

. e . -
Egz,Lommunlca!lon Problems

File Edit Tools Help

= |

Communication Problems: comprobs_MATE-dialogue

| | a|ove [T
s welcome to trips 97 version 3 point 2 SG4-1 N1 h GG9 Sgomany; _
I'm ready to start SG5-1 IGG10 Highlight asymmetries.
1SG4 State your capabilities,
SG741 i
= hello lsG5 State how to interact.
GG11 Be aware of user backaround knowledge.
s hi 5G86 Be aware of user inferences.
867 Adaptto novices and experts.
u show me a map of pacifica 6612 Be aware of user expectations.
g Cover the domain.
s ok N2 -":SG8 ey
IGG13 Enable meta-communication
u clear where are the people - |SGS Enable systermn repair.
A etc.). The utterance should be reflected back at the user in the
Add New Note g response to reassure them that they are being correctly
N1 ‘We do not have the graphics part ofthe dialogue. Thus there |88 - understood.

may be instructions and feedback on the screen which we df
not know about. Moreover, we don't know for sure whao the
intended user group is and which additional information

material users have access to. The markup of communicatid
problems is made exclusively on the basis ofthe speech pa

of the dialogue.

N2 Probably a map is displayed on the screen providing the
necessary feedback. Ifthis is the case there is no violation ot
5G2. _.

N3 It is not clear which of the two trucks the system is going to E 51

5622

[8G4-1
5G5-1

|8G7-1

Itis usually not a good idea to use coreferences in feedback
situations because it does not become clear exactly what the
system is talking about.

There is apparently no communication of what the system ca
and cannot do.

Mo instructions are provided to the user on how to interact wi
the system.

The user is assumed to know how to use the system - there is?
no offer of more detailed information for the user should this ni
be the case.

Figure 4. Annotation using the MATE communication problems scheme.

Laila Dybkjer, Niels Ole Bernsen

Eggﬂale Coding Module Editor - Hew coding module

File Edit Functions
A X enBOB €8
Mame ! Attribute name
Coding purpose : .
Coding level : |F"5m“r | b |
Data sources : Type
hodule references
@ Markup declaration : |ENUM v|
Entities Values
@ Elements ; AieE
Q MyE_Iement es
id no
Firstatir
Description
Example
Coding procedure
Creation notes
Presence
HDEFAULT b4
Example

Figure 5. The coding module editor.

3.2.3. Adding a new proj ect
A new MATE project folder can be created (Figure 6) via the ‘File’ menu

in the project window in Figure 2.

[EZMATE query E

Please enter name of hew project to create
|D:ILaiIaIu:h:uwnIoadQIPrnjectsICDmPrnbsI |

| OK H Cancel |

Figure 6. Creating a new project.

3.2.4. Adding a new file
Figure 7 shows the browsing for an existing file to be added to a project
folder. The window is invoked from the ‘Edit Project” menu in the project

window in Figure 2. New files in a particular format may be created

Towards Corpus Annotation Standards: The MATE Workbench

(Figure 8) via the same menu and files may also be removed via this menu.
As a minimum, a new XML file which is being created must be given a
name, and the DTD or coding module to be applied must be specified.
However, it 1s recommended that further header information is provided as

well, cf. Figure 9.

E‘%Add files to project
Look in: |Ij ComProbs hd | @ @ @ _E_Etgu
[T tHzImg =

D camprob-notes. did

D comprobs-notes_MATE-dialogue xml

D comprobs-notes_MATE-dialoguexml.mh
[y cornprobs.dtd

D camprobs_MATE-dialoguexml

[y guidelines.dtd

._D guidelines.xml

File name: |guide|ines.xm| | Open

Files of type: | AllFiles () v|| cancel |

Figure 7. Browsing to add a file to a project folder.

=] -
Mew file E

Choose file format

|IMATE XML File {.xml) - ||

.....

MATE Run File (.run)
esheet to MATE XML File {...)

MATE Stylesheet {.msl)

Figure 8. Creating a new file.

3.25. Listening to audiofiles

Audio files can be selected in the projects window (Figure 2) and played
using the MATE audio tool. The window in Figure 10 will then appear
displaying the sound file as a waveform. The audio tool might be used

during transcription if a user has added an appropriate transcription coding

Laila Dybkjer, Niels Ole Bernsen

module. As it stands, the audio tool acts as a support tool during annotation
and annotation review. For instance, when annotating communication
problems there is sometimes a need for listening to the speech file in order

to disambiguate an utterance and diagnose what went wrong.

[E Create new MATE XML File

DiLailaidownload2\ProjectsiComProbst
rFile name for the new MATE XML File |

"Direc‘tury where new files are put |

rDefault MATE Styiesheet

EXEN
ElE

~Use links to files or copy themto project directory————

rFiles usedireferred to by this file

|Use links to files | ~|

rCoded by {(name and profession}) |

"Date of coding |

{Mersion- |

~DTD file used or Coding module applied

ElEN

Fhe project context in which the coding was made--7|
’—F‘urpuse of coding |
‘—CurItact details for ohtaining additional infurmatiun7|

-Is it a transcription, coding or guery

|cuding | -]

Figure 9. Creating a new XML file

10

Towards Corpus Annotation Standards: The MATE Workbench

E0i

F2 MATE Audio Tool [l B3
File Help
“Waveform

T WOT WS EPSS WT T T

K1E7)

Current Position: 1.45 seconds

v<l]

Start Position: 4.45 seconds

End Position: 1.45 seconds

200

X Scale Factor: ¥ Scale Factor:

| 0.01 - || 5.0 ~|

| Tag H Clear || @ || Loop || Stop |

Figure 10. The MATE audio tool.

:\;: Projects
File Edit Project Tools
__[Run/nfo]
1 ¥ DiLailaidownload2/ProjectsiComProbsica.mp
9 Doy DiLalla\download 2\Projects\ComProbsica.msl|
® @ Lalla DiLailawdownload 2P rojects\ComProbsicomprobs_MATE-dialogue xmil
@ 3 download2 m DiLailawdownload 2P rojects\ComProbsicomprobs-notes_MATE-dialogue xmi
9 3 Projects [¥) DALaila\download 2\Projects\MATE- dialogue\MATE- dialogue xml
@ [BASPartitur [X) DiLaila\download 2\Projects\ComProbsivypes_MATE-dialogue.xml
@ = ComProbs [x) Di\Lailaldownload WP rojects\ComProbsiguidelines xml
- [E| camp [R) DA\Laila\download 2\Projects\ComProbsica.run
- [Ejcazmp
@ (7 Coreference
© [MapTask
@ (¥ maptask mp
@ [Morphosyntax
@ [VerbMobil
@] MATE-dialogue
© [Xiabel
©- [CrossLevel
@ [Prosody
@ [Operator i
- [testprojectmp E
Al il Dl MATE Stlesheet | Edt |

Figure 11. The edit option.

3.2.6. Editing afile

The MATE workbench uses three basic file types. Coding files are XML
files. Style sheets are MSL files used for visualisation of codings and for
annotation support. Runfiles specify which style sheet to apply to which
XML file. Any XML, MSL or runfile in a MATE project folder can be

11

Laila Dybkjer, Niels Ole Bernsen

opened and edited (cf. Figures 12-14) by selecting the file and clicking on

‘Edit’ in the projects window, cf. Figure 11.

3.2.7. Import from and export to other file formats

Files may be imported from other formats to XML. For the moment,
conversion from XLabels and BAS Partitur to XML is enabled. New
converters can easily be added, including converters which export from
XML to other formats, such as HTML. Figure 15 shows import from BAS
Partitur.

Egg D:\Laila\download24Projects\ComProbs\comprobs_ MATE-dia. .. =]

=?uml version="1.0" encoding="UTF-8" standalone="no"?=
=IDOCTYPE comprobs SYSTEM "comprobs.did |
=IENTITY word_file ". /MATE-dialoguefMATE-dialogue xml"=
=IENTITY viypes_file "wiypes_MATE-dialoguexml"=

1=

=l-- Tripg test dialogue --=
=comprobs id="comprobs_MATE-dialogue"=

=comprob id="CP1" href="8&word_file;@id{utt_1)_id{utt_2)"=
=ytref id="vT1" hreft="&vtypes_file#d{SG4-1)"1=
=fcamprob=

=comprob id="CP2" hret="&word_file;#id{utt_1)_id{utt_2)"=
=ytref id="vT2" href="&vtypes_file#d{SGa-1)"1=
=fcamprob=

=comprob id="CP3" hret="&word_file;#id{utt_1)_id{utt_2)"=
=ytref id="vT3" href="&vtypes_file#d(SGT-1)"1=
=fcamprob=

[4]

| Save || Cancel |

Figure 12. Editing an XML file.

12

Towards Corpus Annotation Standards: The MATE Workbench

‘:i D:ALaila\download2\ProjectzA\ComProbs\ca msl

|<!DOCTYPE mslstylesheet SYSTEM " [iMateSetupistylesheet did" [!
=IENTITY % displayOhjectDTD SYSTEM ./ IMateSetupidisplay-object. dtd"=

=l-- annotate_vtype: user highlights some text in the top left pane and then
clicks anthe 1D of a violation type in the bottom right pane, and a
caompraob element is added with hrefto the selected text and cantaining

avtref element which paoints to the viype whose ID has been clicked

-—

=IENTITY annotate_vtype "
Fldehug),*
[set, fcomprobs, [DO{comprobs),getElement]],
[set, fcomprobsDoc, [fcomprobs,get *document]],
I* Create a new comprob *F
[set, $newCamprab, [$comprobsDoc createElement,camprab]],
I give the news comprob an D of the form 'CPxecd unigue in its do
cument®

[$newComprob,putstirid, [fcomprobsDoc,newlD,CP]],

+

Save Cancel
Figure 13. Editing a style sheet.

:a D:\Lailavdownload2\Projects\ComProbs\ca.run [_ O]

basicCodingWindow{
Title ="Communication Problems";
Size = (800,600},
Styleshest="camsl";
MATEFile ="camprobs_MATE-dialogue xml”;

Save Cancel
Figure 14. Editing a runfile.

Ega MATE Conversion tools Hi=E3
Choose conversion tool:
||Bas Partitur >> XML e ||

Files selected for conversion:
DoLailavdownload 2\Projects\BASPaditune032achl _001_RGM.par

| Convert || Close || Help on selected tool |

Figure 15. Import from BAS Partitur to XML.

3.3. Extracting information from annotated cor pora
Once a corpus has been annotated, it must be possible to extract

information from it for many different purposes. The MATE query tool is
available for selecting the document(s) to be queried and for specifying the
information to be subjected to a query, cf. Figure 16 (Isard et al. 2000). The

query tool is activated from the tools menu in a coding window, cf. Figures

13

Laila Dybkjer, Niels Ole Bernsen

3 and 4. The information which can be extracted includes statistical
information. Results are shown as illustrated in Figure 17. The interface for
displaying results is not yet finalised. This is why the query results window
for the moment only shows the raw XML data extracted from the queried

XML file.

gchw Window (0] x]

($x comprobs) ($y viref)

[[et]y aea |
(5[tcomprobs) ~ I_I[EE sf;xw v)| s |
(5 | tcomprobs) ~ | st (v = ¢ xicomprone) [=]>[nea |
(s [xtcomprobs) v fa =IE= o[e |

Figure 16. The query window.

utup_1
:u‘tu;j:z‘ <viref id="vT1" href="vtypes_MATE-dialogue xmi#id{5G4-1)" > <Mref>
qutup_3 viref id="VT2" href="types MATE-dialogue xmi#id(SGS-1)* > <Mref>
qutup_4 avtref id="vT3" href="vtypes_MATE-dialogue xmi#id(SG7-1)" > <Mref>
qutup_5 <viref id="vT4" href="vtypes MATE-dialogue xmi#d(SG2-1)" » <Mref>
qutup_6 <viref id="vT5" href="vtypes_MATE-dialogue xmi#d{5G2-1)" > <Mref>
qutup_7 vtref id="VT6" href="vtypes MATE-dialogue xmigid(SG2-2)" > <Mref>
quiup_8 <viref id="vT7" href="vtypes MATE-dialogue xmi#d({SG2-2)" > <Mref>
qutup_9 <viref id="vT8" href="vtypes_MATE-dialogue xmi#id(SG2-1)" > <Mref>
qutup_10 <viref id="vT9" href="vtypes_MATE-dialogue xmi#id(SG2-1)" > <Mref>
qutup_11 <viref [d="yT10" href="vtypes_MATE-dialogue xmiAd(SG2-1)" > <Mref>
qutup_12 eviref jd="vT 11" hret="vtypes_MATE-dialogue xmi#d(SG2-1)" > <Mref>
<vref id="vT12" href="vtypes_MATE-dialogue xmi#d(SG2-1)" > <Mref> =

Figure 17. Results of a violation types query, cf. Figure 4.

14

Towards Corpus Annotation Standards: The MATE Workbench

Eg_"i Help Window ==

""-“i""} The MATE Coding Module Editor (CME)
i)

Introduction

The MATE Coding Module Editor (CME) is a tool dewveloped for use in conjunction with the MATE Worlkbench to build and
edit coding modules for nguistic annaotation,

The CIME is cotnposed of the following three modes:

® Tree - Where the coding module iz defined (default mode).
® Coding Madule - & pretty-print of the entire Tree.
® 2L DTD - The fortmal XL Data Type Definition of the Markup Declaration defined in the Tree.

You can switch between these different wiews by clicking on the tabs. A coding module can only be edited from the Tree
Wiewr.

The Tree View is modified by using the Menuis or the Toolbar options to add or delete information to the current CWE file,

|Back]Index| auto help| Close |

Figure 18. The help window.

3.4. Getting help

An online help facility may be consulted at any time during use of the
MATE workbench. Figure 18 shows the topmost help page for the coding
module editor. Explanation of particular coding schemes is available from

the help menu in the coding window, cf. Figures 3 and 4.

3.5. Usability

Usability is a key concern in MATE. The focus on usability is reflected in
the coding module concept and in the workbench coding module editor.
The coding module prescribes a comprehensible standard description to be
made of any coding scheme. The coding module editor makes it easy to
specify coding modules — not least their markup declarations - also for non
XML-literate users. The editor enables the user to specify the markup

declaration for a new coding module almost without requiring any

15

Laila Dybkjer, Niels Ole Bernsen

knowledge of the underlying XML representation. The coding module
editor automatically generates a DTD which is then used internally by the
workbench. The coding module editor thus represents a major step forward
compared to tools which require users to write DTDs.

There are still a couple of major usability issues to be solved, however. One
issue is a user-friendly way of creating new coding visualisations. Writing
style sheets for the workbench is cumbersome and requires programming
skills because no editor is provided. The user must edit the raw style sheet
code (or write new code), cf. Figure 13. It is high on our wishlist to enable
users to easily define new visualisations. This may be done either by
providing a style sheet editor comparable to the coding module editor as
regards ease of use, or, alternatively, through a completely new interface
concept replacing the need for style sheets and enabling users to easily
define new visualisations.

A second major issue is the interface to the query tool and its results. As for
the latter, Figure 17 makes it evident that usability improvements are
needed. The query results could be presented far more transparently using
an appropriate style sheet. This is also on the MATE to-do list. So is a
more comprehensible interface for expressing queries than the present one

(Figure 16).

4. State of the Art

Several frameworks for speech corpus annotation have been proposed but
to our knowledge the MATE markup framework is still the more
comprehensive framework around. An example of another framework is

the annotation framework recently proposed by Bird and Liberman (1999)

16

Towards Corpus Annotation Standards: The MATE Workbench

which is based on annotation graphs. These are now being used in the
ATLAS project (Bird et al. 2000) and in the Transcriber tool (Geoffrois et
al. 2000). The annotation graphs serve as an intermediate representation
layer between interface and internal data structures. Whilst Bird and
Liberman do not consider coding modules or discuss the interface from a
usability point of view, they present detailed considerations concerning
timeline representation and timeline reference. The two frameworks may,

indeed, turn out to complement each other nicely.

Acknowledgements
We gratefully acknowledge the support for the MATE project provided by

the European Commission’s Telematics/Language Engineering
Programme. We would also like to thank all MATE partners. Without the
very considerable joint efforts of the project consortium it would not have

been possible to build the MATE workbench.

5. References
The MATE workbench is available in executable version and under the

GNU open source LGP license from the MATE web site at
http://mate.nis.sdu.dk. MATE reports are also available from this web site.

Bird, S. and Liberman, M. 1999. 4 Formal Framework for Linguistic
Annotation. Technical Report MS-CIS-99-01. Department of Computer

and Information Science, University of Pennsylvania.

Bird, S., Day, D., Garofolo, J., Henderson, J., Laprun, C. and Liberman,
M.: ATLAS 2000. A Flexible and Extensible Architecture for Linguistic

17

Laila Dybkjer, Niels Ole Bernsen

Annotation. In Proceedings of the 2" International Conference on

Language Resources and Evaluation (LREC 2000). Athens:1699-1706.

Dybkjer, L. and Bernsen, N. O. 2000a. The MATE Workbench.
Proceedings of the LREC 2000 workshop on Data Architectures and
Software Support for Large Corpora, Athens: 33-37.

Dybkjer, L. and Bernsen, N. O. 2000b. The MATE Markup Framework.
Proceedings of the 1" SIGdial Workshop on Discourse and Dialogue, Hong
Kong.

Dybkjer, L., Bernsen, N. O., Dybkjer, H., McKelvie, D. and Mengel, A.
1998. The MATE Markup Framework. MATE Deliverable D1.2.

Geoffrois, E., Barras, C., Bird, S. and Wu, Z. 2000. Transcribing with
Annotation Graphs. Proceedings of the 2" International Conference on

Language Resources and Evaluation (LREC 2000), Athens:1517-1521.

Isard, A., McKelvie, D., Cappelli, B., Dybkjer, L., Evert, S., Fitschen, A.,
Heid, U., Kipp, M., Klein, M., Mengel, A., Mgller, M. B. and Reithinger,
N. 1998. Specification of Workbench Architecture. MATE Deliverable
D3.1.

Isard, A., McKelvie, D., Mengel, A., Moller, M. B., Grosse, M. and Olsen,
M. V. 2000. Data Structures and APIs for the MATE Workbench. MATE
Deliverable D3.2.

Klein, M., Bernsen, N. O., Davies, S., Dybkjer, L., Garrido, J., Kasch, H.,
Mengel, A., Pirrelli, V., Poesio, M., Quazza, S. and Soria, C. 1998.
Supported Coding Schemes. MATE Deliverable D1.1.

18

Towards Corpus Annotation Standards: The MATE Workbench
Mengel, A., Dybkjer, L., Garrido, J., Heid, U., Klein, M., Pirrelli, V.,

Poesio, M., Quazza, S., Schiffrin, A. and Soria, C. 2000. MATE Dialogue
Annotation Guidelines. MATE Deliverable D2.1.

19

