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This  paper  investigates  possible  biological  and  economic  effects  of  using  marine  sanctuaries  as  a  man-
agement  tool,  employing  cellular  automata  techniques  to  model  biological  growth  and  area  distribution,
assuming  open  access  to  the  fish  stock  resources  outside  the  protected  area.  The  cellular  automata  model
eywords:
arine protected area

ellular automata modelling
isheries management
ioeconomics

incorporates  a fish  harvest  model  based  on  standard  assumptions.  In agreement  with  previous  studies
this  study  confirms  that  large  protected  areas  are  necessary  for  significant  impact  on  stock  conservation,
given  standard  assumptions.  The  conclusion  may  however  not  be  equally  unambiguous  when  employ-
ing  more  realistic  scenarios,  assuming  non-uniform  distribution  of  biomass  and  fishing  effort.  This  study
shows  that  significant  stock  conserving  effects  could  be  obtained  even  when  less  that  10%  of the  total
distribution  area  of  the  stock  is  protected  from  fishing  activities.
. Introduction

As the word suggests, the idea behind Marine Protected Area
MPA) is to protect marine ecosystems from human activities which

ay  cause destruction or other undesired impacts on environment
r species located in the area. Such destructions may  have negative
conomic consequences not only for the environment and ecosys-
em, but also for fisheries, tourism or other industries depending on
he natural resources. How these industries are affected depend on
he biological properties of the ecosystem, how the MPA  is imple-

ented, control and surveillance, as well as the economic dynamics
f industries exploiting the natural system. Controversial issues
ay  be placement and size of the protected area, type of protec-

ion, and restrictions on economic activities within the protected
rea. Given the complex and dynamic interrelation between nat-
ral systems and economic activities and the uniqueness of each
uch relation, it is challenging to establish general solutions fitting
ll cases. This paper presents a theoretical study of an idealised sys-
em including fish migration along a coastline where a part of the
oast line may  be closed for fishing while there are open access
sheries elsewhere.

Marine protected areas involves different issues within dif-
erent disciplines, consequently a number of different modelling

pproaches are found. A vast number of publications on MPA
elated issues are found in resource economics and conserva-
ion biology, but there are few influential contributions aiming
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E-mail address: arne.eide@uit.no

165-7836/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.fishres.2011.10.004
© 2011 Elsevier B.V. All rights reserved.

to merge the different disciplinary traditions. Several papers
refer however to these differences in modelling approaches. Fish-
eries biologists have been criticised for including harvest in a
simplified manner, excluding economic dynamics (Smith and
Wilen, 2003), while economists may  express biological growth
and spatial dynamics too simplified. Grafton et al. (2005) points
at some of these problems. Interesting attempts of cross-over
models exists, as by Hilborn et al. (2006),  including fleet dynam-
ics though excluding economic behaviour, or Smith and Wilen
(2003) who  include spatial distribution of biomasses, but not
the important interaction between spatially distributed fishing
activities and the spatial distribution of fish biomass. While
biologists of obvious reasons emphasise the biological dynam-
ics, the interests of economists of equally obvious reasons are
on the economic dynamics (or rather equilibriums). The first
(biological dynamics) may  be studied in greater details when
simplifying the fishing activity to a single fishing mortality rate,
while the latter (economic dynamics) may  lead to conventional
biological modelling within the framework of standard bioeco-
nomics.

Most bioeconomic publications on MPA  issues assume MPA  to
be no-take zones. Several studies based on deterministic mod-
els, indicate that MPA  in fact has limited value as a management
tool (Hannesson, 1998; Conrad, 1999). The use of MPA  reduces
the net revenues, and the conservation effect seems to be weak
unless very large areas are included in the marine sanctuary. Conrad

(1999) argues however that deterministic models are less useful to
reveal the true value of MPA  regulation. He therefore introduced a
model with stochastic growth and found the variance of fish stock
biomasses to be reduced after introducing marine sanctuaries.

dx.doi.org/10.1016/j.fishres.2011.10.004
http://www.sciencedirect.com/science/journal/01657836
http://www.elsevier.com/locate/fishres
mailto:arne.eide@uit.no
dx.doi.org/10.1016/j.fishres.2011.10.004
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annesson (2002) arrived at the same conclusion, using a stochas-
ic spatial distribution of stock components inside and outside the

PA.
From a methodological point of view the spatial component

ppears to be most challenging when studying the economic effects
f MPA  regulation. Nevertheless the spatial dimensions in most
ioeconomic studies has been largely ignored or highly simpli-
ed. The most common modelling approach has been to define
wo homogeneous stock components, one within the MPA  and
he other within the open area; assuming an interaction between
he two areas through density driven migration (metapopulation

odelling). Different solutions exist on how to handle the envi-
onmental carrying capacity of the two stock components and
ifferences in the final conclusions seem in some extent to reflect
ifferences in modelling approach and basic assumptions. Previous
ioeconomic studies include continuous and discrete time mod-
ls and investigate the effects of open access fisheries as well as
egulated fisheries maximising present value of net revenues over
ime.

A even wider range of modelling approaches are found in biolog-
cal studies on stock–harvest interaction in cases of protected areas,
lso including the use of cellular automata modelling techniques.
oustakas et al. (2006) utilise cellular automata methodology to
odel spatial distribution while including stochastic elements, to

valuate the effects of closed areas. Fishing is included as a learning
rocess by vessel movements between neighbouring cells based
f fish stock densities. Apart from harvest production, economic
odelling is not included and the fleet dynamics is controlled

y presence of fish, willingness to move and fleet density con-
traints, not by economic performance. A recent study by Silvert
nd Moustakas (2011) discusses the performance of using one
arge versus several small MPAs while employing a 1D cellular
utomata model with similarities to the one presented in this study.
oustakas and Silvert (2011) presents a corresponding 2D model

ssuming, as in Moustakas et al. (2006),  the objective of the fishing
eet to be to maximise catch. Based on bioeconomic theory and
ssuming an open access fishery (Gordon, 1954), the objective of
ach fishing unit is in this study assumed to be to maximise net
evenue.

Different modelling traditions have developed alongside each
ther in fisheries biology and economics, both dealing with the
ame fisheries management issues, including the use of MPA, from
he angle of different disciplines. The relationship between the two
egarding the impact of MPA  regulations has been the focus of sev-
ral papers. Grafton et al. (2005) aims to bridge the divide between
he two traditions, but do not address the modelling challenge of
patial distribution in particular, even though this part appears to
e one of the core problems of bridging the gap between the tra-
itions. The spatial behaviour is however the main focus of Smith
nd Wilen (2003) in their case study of a sea urchin diving fish-
ry. They criticise biological models for not including economic
ehaviour and illustrate in their case study how the effect of eco-
omically rational behaviour differs from the results while ignoring
hese dynamics. In an empirical study of a snow crab fishery Swain
nd Wade (2003) describe how fishing effort are more intense
n areas closer to home port, than in other areas with similar or
igher densities of crab. Obviously they are observing an effect of
conomically rational behaviour. Salthaug and Aanes (2003) also
iscuss and model the spatial distribution of a fleet on the basis
f the relation between catchability, fish density and fleet concen-
ration, rather than including economic measures directly. There
s an assumption of rational behaviour, but these models have not

een capable of expressing this in economic terms. Unfortunately
hey have not been offered much help from the bioeconomic lit-
rature, since the modelling tradition there more is into dynamic
ptimisation and metapopulation modelling than integrating more
13 (2012) 118– 132 119

complex biological dynamics and sophisticated spatial distribution
models.

Cellular automata methodology is a relatively new approach in
the modelling of complex systems, utilising certain arbitrary rules
specifying how the automaton develops (Wolfram, 2002). The cel-
lular automaton consists of cells and an initial state of each cell.
The state variables of a cell evolve over time due to predefined
rules and the initial state of the cell and its neighbouring cells. Sim-
ple rules may  create complex patterns as the automaton defined
by a fixed number of cells evolves by each computational step.
The theoretical idea of cellular automata (CA) dates back to von
Neumann, 1966 and was  developed further by Stephen Wolfram
and others in the early 1980s as a discrete time model with stages
of evolvement in space and state (Wolfram, 2002). The basic idea
of stepwise development through computational calculations also
opens for the inclusion of continuous state variables within each
cell, referred to as continuous cellular automata (CCA; see Wolfram,
2002).

Darwen and Green (1996) claims that cellular automata
methodology is a better approach to model a population in a land-
scape than models based on partial differential equations are. CA
and CCA models are consistent with empirical experiences of spa-
tially heterogeneous population densities with local extinctions
and local booms (Darwen and Green, 1996). The simplicity of
cellular automata methodology also reduces the computing time
compared with corresponding models based on numerically solv-
ing differential equations. Balzer et al. (1998) provides an overview
over the first decades of development of cellular automata ecolog-
ical models. During recent years there has been a vast number of
publications within this field and cellular automata models now
are virtually covering all areas of biological modelling as well as, in
fact, most other modelling areas. This development also offers new
possibilities of including economic rational behaviour of harvest-
ing units, utilising economic theory and merging the two  modelling
traditions.

This study is an early attempt on moving in this direction,
presenting deterministic models where the fish stock biomass
essentially develops through simple CCA rules, also influenced by
fishing activities. Fleet dynamics is related to economic perfor-
mance, following standard assumptions of bioeconomic dynamics
where the marginal changes of fishing effort are proportional to net
revenue of previous time period.

The two  alternative biological growth models are presented (1)
a model proposed by Wolfram (2002; page 157, here referred to as
CCA) and (2) a straight forward cellular automata representation of
a discrete time logistic growth equation (here referred to as LCA).
A slightly different representation of logistic growth was also stud-
ied by a cellular automata rule in Darwen and Green (1996).  Their
model was however a 2D lattice while the models presented here
is a 1D row of cells evolving over discrete computational steps.

In this study the expression MPA  is used on an area where fishing
activities are prohibited, while open access to the fish resources is
assumed outside the protected area. This simplification means that
MPA  here is employed in its most extreme version, together with
the other extreme, the open access fishery. The term MPA  is chosen
because it is commonly used in the literature, but the only type of
MPA  considered in this study is marine sanctuaries.

2. Biological model

Assume a finite number of cells in a row and connect the first and

last cell, resulting in a circular representation of cells as illustrated
in Fig. 1. The cells may  represent the coast line of an island. Each
cell holds a specific fish biomass, being the state variable of the cell.
The total stock biomass then is the sum of biomasses in the finite



120 A. Eide / Fisheries Research 113 (2012) 118– 132

F rates t
c conne

n
i

b

b

g
t
n
s
t
t
o
t
i
g
r

0

f
u

b

{
b
n
r
u
b
b

t
c
o
e

b

T

b

r

b

ig. 1. A finite number of cells (here 25 cells) in a circular connection (above) illust
ircle  is represented by a row of cells (below), assuming the first and last cell to be 

umber of cells. The initial biomass vector with n elements (cells)
s

 = (b1, b2, b3, . . . , bn) (1)

 evolves over time as a function of a simple CA rule involving a
rowth rate (g) and assumed diffusion pattern. The diffusion pat-
ern is controlled by the range parameter r which determines the
umber of neighbouring cells involved when calculating the new
tate variable of each cell (Wolfram, 1984). If r for example equals 1,
he biomasses of 1 neighbouring cell on each side of the current cell,
ogether with the current cell itself, determine the new biomasses
f the cells. More specifically implies the CCA rule employed here
hat biomass b2 (state variable of cell 2) next step with range r = 1,
s one third of b1 + b2 + b3 plus the growth given by the growth rate
. In the CCA model only the fractional part of the new biomass will
emain in the cell, therefore

 ≤ bi ≤ 1 (2)

or 1 ≤ i ≤ n. The growth rate (g) gives the percentage growth per
nit of time. The biomass growth then is expressed by

i,t+1 =

⎧⎨
⎩

g + 1
2r + 1

i+r∑
j=i−r

bj,t

⎫⎬
⎭ , (3)

} representing the fractional part of the expression within the
rackets (0 ≤ { } < 1; example: {1.2} = 0.2); while bn+1,t = b1,t (con-
ecting the circle, see Fig. 1), g ≥ 0 (a non-negative growth rate) and

 ≥ 0 . As the growth rate (g) is constant, biomass growth is linear
ntil the collapse level of b = 1 is reached, where only the fractional
iomass value remains within the cell. Hence the long term average
iomass (in absence of fisheries mortality) is 1/2.

Natural mortality is expressed indirectly by the remaining frac-
ional part, reflecting a density dependent mortality determined on
ell level (local collapses). The biomass vector is a discrete function
f time at given initial biomass value (b0), here on the basis of (3)
xpressed by the continuous cellular automata rule

t = CCA(bt−1) (4)

he corresponding discrete logistic growth equation is

i,t+1 = g + 1
2r + 1

⎛
⎝1 − 2

i+r∑
bj,t

⎞
⎠

i+r∑
bj,t (5)
j=i−r j=i−r

epresented by the cellular automata rule

t = LCA(bt−1) (6)
he spatial distribution and relationship in the model. In the following graphics the
cted.

Total biomass at time t is

Bt =
n∑

i=1

bi,t (7)

According to Wolfram (2002) CCA has its equilibrium biomass
B∞ = n/2 when r > 0. Biomasses calculated by Model (4) are pre-
sented in Table 1 for the case of 13 cells, g = 1/2 and an initial
biomass of 1 is placed in the mid  cell. Table 2 displays the cor-
responding biomasses of Model (6) distributed on 7 cells and with
g = 3/5.

Graphical examples of Model (4) when varying growth rate (g)
and diffusion pattern (r), are shown in Fig. 2 when a initial biomass
in a single cell of a total of 99 cells develops over 100 time steps for
different growth and range parameters. One of the cases displayed
in Fig. 2 (r = 1 and g = 1/2) is shown numerically in Table 1.

Growth Model (4) is displayed in Fig. 2 both as biomass patterns
(left hand panel) and as total biomass development over time (Bt) in
a more traditional way  (right hand panel). Corresponding biomass
developments are shown in Figs. 3 and 4 for Models (4) and (6),
with a randomly distributed initial low biomass (in Fig. 2 the initial
biomass is placed in a single cell). The figures show how diffusion
and growth properties affect biomass variations over time for 100
(Fig. 3) and one million (Fig. 4) cells.

If the number of cells (n) is increased and time span (t) pro-
longed, the graphical presentation displayed in the left hand panel
of Fig. 2 soon proves to be less useful than more traditional graphical
presentations of the development of the total stock biomass over
time, as shown in the right hand panel of Fig. 2. The solid curves in
Figs. 3 and 4 represent the CCA model, while the dashed curves rep-
resent the logistic growth model LCA. The figures reveal lower stock
biomasses in Model (4) than in Model (6) for r = 0, while increased
biomass fluctuations seem to be associated with increasing r val-
ues. These fluctuations may  further to be damped by increasing
growth rates (g). For r = 0 the stock biomasses of Model (4) do not
reach the levels of Model (6) unless g is having very high values
(beyond 0.75 in the given parameter setting). The simple explana-
tion is that without diffusion (r = 0) the effect of additional growth
(based on a fixed percentage) in cells with low biomasses in biomass
terms are less than the corresponding growth of cells with large
biomasses. While diffusion efficiently levels out this asymmetry, it
becomes apparent when there is no diffusion. It may  be regarded
more as a theoretical issue than a real problem since there will

always be some diffusion, not only due to the biological properties
of the species, but there will also be physical reasons for diffusion to
certain extent be present. While Fig. 3 displays total biomass devel-
opment over time with a spatial distribution over 100 cells, Fig. 4
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Table  1
Cellular biomasses calculated by Model (4) for g = 1/2, r = 1 and b0 given by the first row (t = 0). The table corresponds to the first period of the pattern shown in the mid
column of the first row of Fig. 2.

t b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 B

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
1 0  0 0 0 0 1/2 1/2 1/2 0 0 0 0 0 3/2
2  0 0 0 0 1/4 1/2 3/4 1/2 1/4 0 0 0 0 9/4
3 0  0 0 1/8 3/8 3/4 7/8 3/4 3/8 1/8 0 0 0 27/8
4  0 0 1/16 1/4 5/8 0 3/16 0 5/8 1/4 1/16 0 0 33/16
5  0 1/32 5/32 15/32 7/16 13/32 3/32 13/32 7/16 15/32 5/32 1/32 0 99/32
6  1/64 3/32 21/64 17/32 21/32 15/32 29/64 15/32 21/32 17/32 21/64 3/32 1/64 297/64

Table 2
Parameter values used in the simulations displayed in Figs. 6 and 7.

Parameter CCA and LCA Description

r 2 Range, number of affected neighbouring cells on each side
g  0.5 Biological growth rate
n  100 Number of cells
q  1 Catchability coefficient
d 0, 1, 8 Parameter controlling fishing effort distribution
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isplays the corresponding picture in the case of one million cells.
he impacts of increasing growth rates and diffusion ranges are
triking. Increasing the number of cells makes the curves smoother,
omparing Fig. 3 with Fig. 4. Increased diffusion increases biomass
uctuation, while mean biomass equilibrium is not affected by the
iffusion properties, except in the case of r = 0 (no diffusion).

From a biological point of view diffusion of fish stocks may
e explained as behavioural adaptation to varying environmen-
al conditions, as the experienced prey densities may  increase and
or) the corresponding predator densities decline by proper migra-
ory behaviour. Both causes (targeting food and avoiding predators)
nvolves relations to fish of the same species as well as well as to

ther species. As previously indicated the only significant differ-
nce in overall performance of the two models is found in the case
f no diffusion (r = 0). Increasing positive r values increased the rate
f adaptation and adapting capacity, but in order to link this to the

ig. 2. CCA Model (4) of varying diffusion properties at constant growth with an initial 

rowth rate (g) is 0.5 and the diffusion property given by the range parameter r, indicatin
teps  (t = 100) displayed in the horizontal axes. The left panel shows the biomass of each
ach  computational step in the nine cases.
ce of harvest
t of effort
effort stiffness parameter

dispersal abilities of different species, it has to be related to the
physical basic cell size, since the range number refers to number
cells on each side of the cell which initially holds the migrating
biomass.

Models (4) and (6) express biomass growth as discrete time pro-
cesses on micro level, within and between cells. The total biomass
is indirectly determined by the growth functions at micro level,
but in a non-transparent and pseudo-random manner, though the
average biomass of neighbouring cells in the long run may  be a
good proxy of the overall total biomass of the stock (at least when
harvest is not included). Diffusion (determined by the range param-
eter r) contributes in the long run to level out biomass differences

between cell clusters placed in different areas, reaching a relatively
stable total biomass level. In the present study all cells are assumed
to share the same local carrying capacity of 0.5, with a collapse limit
of 1.

condition of one single biomass (b49 = 1) in the centre cell of 99 cells (n = 99). The
g number of influenced neighbouring cells. The figure includes 100 computational

 cells distributed vertically, while the right hand panel shows the total biomass of
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ig. 3. Biomasses over time in a CCA Model (4) (solid curves) and LCA Model (7) (da
nitial  cell biomasses and 100 cells (n = 100). The vertical axes of each case measure

. Fishing regulated by closed area

The CCA and LCA models presented above represent biological
rowth and spatial distribution. Now fishing is introduced to the
odel, restricted by the marine protected area (MPA) and market
conomic constraints. The control of compliance with the regula-
ions is assumed to be perfect and no cost of control and surveillance
re considered.

r 0 r 1

g 0.25

g 0.50

g 0.75

g 1.00

ig. 4. Biomasses over time in a CCA Model (4) (solid curves) and LCA Model (7) (dashed c
nitial  cell biomasses and 1,000,000 cells (n = 1,000,000). The vertical axes of each case m
t  = 100).
urves) of varying diffusion properties (r) at growth rates (g) with the same random
ass and the horizontal axis time. The figure includes 100 time steps (t = 100).

The stock biomass within a MPA  is given as a subset of the
biomass vector b,

bMPA = (bs, . . . , bs+m−1)
where s is the first cell and m is the number of cells included in
the MPA. Absence of protected area is regarded being a special case
of MPA  regulation (no closed area; m = 0). The model circularity

r 2 r 3

urves) of varying diffusion properties (r) at growth rates (g) with the same random
easures biomass and the horizontal axis time. The figure includes 100 time steps
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akes the choice of s-value insignificant, hence s = 1 is assumed in
he following. The MPA  biomass vector then simplifies to

bMPA = (b1, . . . , bm),
0 ≤ m ≤ n and s = 0 when m = 0

(8)

ishing activities target biomasses in the non-protected area (NPA),
epresented by the complementary subset of bMPA in the biomass
ector b

NPA = (bm+1, . . . , bn). (9)

otal targeted biomass at time t then is

NPA,t =
n∑

i=m+1

bi,t (10)

 common assumption in harvest production models is that the
tock-output elasticity is equal one (Eide et al., 2003). A useful
roperty which follows as a consequence of this assumption is a

inear relationship between the fishing mortality rate and fishing
ffort per unit of time. Most studies on stock–effort–harvest rela-
ionships indicate however that this relationship seldom is linear,
nd empirical studies suggest that the stock-output elasticities are
ore likely to be around 1/2 than close to 1 (Hannesson, 1983;

ide et al., 2003). Fish harvest production is therefore in this study
ssumed to have a stock output elasticity of 1/2, while harvest (h)
s assumed to be linear in fishing effort

i,t = qei,t

√
bi,t, (11)

hen bi ∈ bNPA and ei is the fishing effort of cell i. Total fishing effort
s the sum of the fishing effort of all cells

t =
n∑

i=m+1

ei,t (12)

nd total harvest is given by

t =
n∑

i=1+m

hi,t (13)

he spatial dimension in the cellular automaton opens for differ-
nt ways of spatial distribution of fishing effort. A distribution rule
ased on stock biomass distribution is given by the expression

i,t = bi,td∑n
i=1+mbi,td

Et, (14)

here distribution parameter d (where d ≥ 0 is expected) controls
o what extent biomass distribution affects the distribution of fish-
ng effort. The special case d = 0 gives a uniform distribution of
shing effort independent of biomass distribution. The case of d = 0

s in line with most of the published bioeconomic MPA  studies pub-
ished, usually separating the stock into two components (open
nd closed to fishing). Uniform distribution of fishing effort (d = 0)
implifies the expression of the fishing effort with each cell to the
onstant ratio

i,t = bi,t0∑n
i=1+mbi,t0

, Et = Et

n − m
(15)

hile d = 1 gives an effort distribution perfectly reflecting the stock
iomass distribution. The cases of d > 1 which could be called smart
shing, where the distribution of fishing effort takes advantage of
he biomass clustering, successfully targeting the most biomass

ense cells, In the extreme situation of d = +∞ all fishing effort is
laced in the single cell holding the highest biomass.

More sophisticated distribution rules (or simple cellular
utomatons, for example as proposed by Moustakas et al., 2006)
13 (2012) 118– 132 123

may  take into consideration distribution histories (of biomass
and/or effort) and include constraints on local densities and growth
of effort. It could be argued that the distribution model proposed
above (Eq. (14)) connects to history through the time path of total
fishing effort, as will be explained in the following.

Including harvest Model (11) in the biological growth Model (3)
yields

bi,t+1 =

⎧⎨
⎩

g + 1
2r + 1

i+r∑
j=i−r

bj,t

⎫⎬
⎭ − hi,t (16)

Eq. (4) is adjusted accordingly and the complete CCA model includ-
ing harvest (by the fishing effort E) and MPA  regulation (by the MPA
size variable m), is expressed by

bt = CCA(bt−1, Et−1, m)  (17)

m being the number of MPA  cells and E the total fishing effort. Cor-
responding expression in the logistic case is from Eq. (5) found to
be

bi,t+1 =

⎛
⎝ g + 1

2r + 1

⎛
⎝1 − 2

i+r∑
j=i−r

bi,t

⎞
⎠

i+r∑
j=i−r

bj,t

⎞
⎠ − hi,t (18)

and rule (6) is modified accordingly,

bt = LCA(bt−1, Et−1, m).  (19)

4. Economic model

The harvest Eq. (11) involves fishing effort (E) which is assumed
to have a fixed unit cost c. The unit cost c also is assumed to include
the sum of opportunity costs of all input factors in the production of
fishing effort. Further a constant unit price of harvest (p) is assumed.
The net revenue of harvest (NR) then is

NR = pH − cE. (20)

Since normal profit is included in the unit cost of effort, NR more
precisely is the total economic rent (abnormal profit) obtained in
the fishery. If an equilibrium solution exists, NR represents the
resource rent of that equilibrium; outside equilibrium a large part of
the rent obtained may  be labelled quasi rent following the definition
by Marshall (1893).

The dynamics of an open access fishery is determined by the
economic performance of the fleet and how fast it adjusts its fishing
effort and how fast the stock biomass adjusts to the changes in
fishing effort. The marginal changes in fishing effort may  be positive
or negative depending on positive or negative fleet net revenue.
Since normal profit already is included in the total cost of effort,
normal profit is obtained from the harvest production process when
NR = 0 while economic rent is earned when NR > 0. In case of the
latter the fishing effort should increase, as input factors earns higher
pay-offs in the fishery than outside. In this study marginal changes
in fishing effort is assumed to be proportional to NR, expressed as
a discrete time process by

Et+1 = Et(1 + aNRt) (21)

a is the adjustment (stiffness) parameter and represents an intrinsic

rate of change in effort. The value of a is determined by a num-
ber of factors, first of all at which rate capital can be replaced to
adjust for market perturbations. A further discussion regarding the
parameterisation of a is however outside the scope of this study.
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Cost of fishing effort (c) is decomposed on cells by fishing effort
Eq. (14)) and net revenue of the cell. Hence net revenue (economic
ent) of cell i is

ri = phi − bd
i∑n

i=1+mbd
i

E (22)

r simply

ri = phi − E

n − m

n case of d = 0 (also seen from Eq. (15)). Global net revenue is
xpressed by

R =
n∑

i=1

nri (23)

The parameter values used in the simulations are shown in
able 2. Initial biomass vector in all the performed simulations
ncludes 100 cells evolving over 2000 time steps. Time unit and cell
ize is not defined, hence the simulations may  cover a wide range
f different annual growth rates and actual migratory performance
Fig. 5).

. Results

The biological models presented above (CCA and LCA, Eqs. (17)
nd (19)) include the biological and spatial parameters g, r, d and n.
he economic part of the bioeconomic model includes the param-
ters q, p, c and a, while the MPA-size parameter m represents the
anagement tool of this study.
Let the two state variables (biomass vector b and total fishing

ffort E) have initial the values b0 and E0. Fig. 6 (CCA) and Fig. 7 (LCA)
isplay how fishing effort (horizontal axes) develop over time due
o changing economic rent (vertical axes), for different MPA sizes
nd effort distributions by two different values of d; 0, representing

 uniform distribution of fishing effort and 8, representing smart
shing or effort clustering.

Fig. 8 presents some statistical properties of the time series of
ffort, harvest, biomass and net revenue, from Figs. 6 and 7 (for

 = 0 and d = 8 while r = 2), as Box–Whisker plots with connected
edian values. The figure indicates a trend of increasing biomass

y increased percentage closure (increasing MPA  size) in an open
ccess fisheries and a corresponding decline in fishing effort and
arvest in both the CCA and the LCA model. The changes seem to
e more pronounced in the case of LCA and more vague in the CCA
ase. In addition to the two r/d combinations (2/0 and 2/8) displayed
n Fig. 8, Fig. 9 also includes combinations (0/0) and (2/1). From
he figure it is easy to see that in the LCA case of r = 0 and d = 0
he open access fishing effort becomes zero at a MPA  sizes beyond
0%, and a corresponding negative biomass impact on MPA  sizes

ust below this level. In all other cases the open access solutions
mplies positive fishing efforts and a almost a linear increase in
tock biomass by increasing MPA  size in an open access fishery.

hile the values on r and d seem to have a significant impact on the
lope of this linear relationship in the CCA cases, this is not so in the
CA cases (except for the special case of r = 0 and d = 0). Interestingly,
hough not unexpected since uniform effort distribution of both
iomass and effort is assumed in non-spatial models, the biomass
evelopment of the LCA and the CCA cases of d = 1 (where effort
istribution exactly is reflecting the distribution of biomass) show
he same pattern.
Figs. 10 and 11 display how respectively biomass and resource
ent cluster according to MPA  size. The chosen values of r and

 also connects to the simulation results shown in Fig. 9. The
lusters are presented as dendrogram plots involving different
13 (2012) 118– 132

r-d-combinations of the CCA model (the upper panels) and the LCA
model (the lower panels).

Further analysis of the model, also in other areas of the
parameter space, could be done by utilising the online version
of the model, published at Wolfram Demonstration Project
(http://demonstrations.wolfram.com/CellularAutomataModel-
OfAnMPAFishery/).

6. Discussion

This paper presents a deterministic spatially heterogeneous
model (according to the categorisation proposed by Sumaila and
Charles, 2002) based on simple principles of cellular automata mod-
elling combined with a more traditional harvest production model
under the assumptions of open access to the fish stock resources
and MPA  management. Fishing effort is distributed on the basis
of biomass distribution, controlled by a knowledge or smartness
parameter, d.

Standard deviation of the average biomass (shown for the CCA
model in Fig. 9, but visible for both the CCA and LCA model in
Figs. 7 and 8) is decreasing by increasing MPA  size, suggesting larger
stock biomass fluctuations by smaller MPA  size. This is consistent
with the findings by Conrad (1999) for the stochastic model he
applied, where also variance differences between open and closed
areas are discussed. It is not obvious how the effect of increased
smart fishing (higher d values) is in this respect. Probably there
are two counteracting effects, since increased d-value reduces the
fishing area by concentrating the fishing activity, but over time
the fleet may cover a large area since the biomass density varies,
also as a function of previous fishing. The open access fishery also
creates effort fluctuations since no equilibrium solution is estab-
lished, also influencing the causes of this. The fleet increases and
decreases as a function of profitability in the fishery, which gener-
ates biological consequences in different areas. As the area open to
fishery diminishes the fluctuations also are reduced, as a function
of the reduced probability space of fluctuating effort and biomass.
Decreasing biomass variance related to increasing MPA  size in par-
ticular causes corresponding changes in fluctuations of harvests
and net revenues (economic rent) in the CCA case. The average val-
ues remain however quite stable over large ranges of MPA  sizes,
different from in the LCA case (see Figs. 7–9).

Fleet dynamics related to net revenue fluctuations causes limit-
cycle patterns in the LCA Model (19) (Fig. 7), while the CCA Model
(17) displays pseudo-random patterns (Fig. 6), with decreasing
fluctuations by increasing MPA  sizes. Similarly the limit-cycles dis-
played in Fig. 7 increase in ranges by increasing MPA size up to a
closed area of about 25%, from which the limit-cycles contract by
increases closed area. Fig. 8 suggests that a similar pattern may
be found in the CCA Model (17), though less visible due to the
pseudo-random feature of CCA.

Figs. 6 and 8 also display interesting internal differences in the
open access dynamics between the two distributions of effort (d = 0
and 8). While d = 8 fishing activities effectively are targeting areas
with high biomass densities aiming to almost maintain the level of
fishing effort by increasing MPA  size. In the case of a uniform distri-
bution of fishing effort (d = 0) the open access effort exhibits larger
fluctuations and lower average values. Obviously the assumption
regarding effort distribution is critical for the model results. It
should be noted, as previously mentioned, that results obtained
by models which are not including any spatial dimension in prin-
ciple corresponds to the current results of d = 1, rather than d = 0

(if r > 0), since the lacking spatial dimension also implies a uniform
distribution of biomass.

Optimal size of the protected area has been the focus of many
authors, both from a biological (conservation) perspective and from

http://demonstrations.wolfram.com/CellularAutomataModelOfAnMPAFishery/
http://demonstrations.wolfram.com/CellularAutomataModelOfAnMPAFishery/
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State variables
Stock size B
Biomass distribution b
Size of fishing fleet E

Economic performance
Total harvest H
Total net revenue NR

Biological parameters
Migration r
Growth recruitment g
Natural mortality fractional part
Number of cells n

Economic parameters
Catchability coefficient q
Effort distribution d
Unit price of harvest p
Unit cost of effort c
Fleet growth delcine rate a

Management

parameter
MPA size m
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Fig. 5. Basic flow of Models (17) and (19), based on p

n economic point of view. As biologists tend to emphasise the bio-
ogical system in empirical studies and since economists put more

eight on human behaviour and theoretical models, it seems to
e more common in biological MPA  studies to discuss the actual
hysical size of the protected area (typically in terms of km2, see for
xample Claudet et al., 2008 and Halpern, 2003), while economists
ore or less in unison measure MPA  size in percent of total area. A

iodiversity study by Rodrigues and Gaston (2001) links the two
oncepts of physical and relative size to number of species and
umber of sites. Their study is based on bird distribution, but the
omplex relationships between absolute size, relative size, num-
er of species and local communities they describe, are probably
qually relevant for aquatic ecosystem. Economic utilisation of such
cosystem further complicates the picture.

It appears to be a considerable gap between the empirical
iological MPA  studies and bioeconomic studies based on metapop-
lation dynamics modelled by systems of differential equations. To

nclude all this aspects in a modelling exercise is however neither
asy nor particularly useful. A range of modelling approaches, with
arying focuses and simplifications, may  all represent valid and
seful ways forward, depending of the aim of the exercise. There

s no need for including all aspects, in fact it would not lead to a
seful model. But when spatial issues are the focus of a study, it
ppears to be a doubtful approach to simplify the spatial aspect
o only be represented by two biomass points (units) interacting
ith each other through density driven migration. Nevertheless

his appears to be the most common approach in bioeconomic MPA
tudies (see Conrad, 1999; Armstrong and Reithe, 2001; Hannesson,
998, 2002; Lauck et al., 1998). Migration between the two  areas

s not a border phenomena propagating into the two  areas causing
radients, biomass clusters and empty locations, but is modelled as
f it was liquid placed into two connected chambers. When remov-
ng some liquid from one chamber, its filled in from the other by
ravitation rather than by individual decision behaviour by the ele-
ents (in the liquid molecules which in an aquatic system could be

ndividual fishes, constituting the total stock). Vessel distribution
ecomes no issue, as the open area in the model has no distribu-
ion.
It seems to be a rather robust conclusion of a number of bioe-
onomic MPA  studies utilising the modelling approach described
bove, that the MPA  area needs to be rather large in order to ben-
fit the soundness of the stock and the economy of the fishery.
ter setting and the initial value of the state variables.

Armstrong and Reithe (2001) and Boncoeur et al. (2002) are exam-
ples of this, Beattie et al. (2002) present a review over several other
studies arriving at the same conclusion, suggesting large MPAs. The
hypothesis of the modelling exercise presented in this paper, is that
the finding that MPAs need to be large to do the work, to a large
degree could be influenced by the lack of spatial resolution in the
applied models. This hypothesis could not be rejected by this study.
On the contrary, this study shows that in cases where biomass and
fishing effort is equally distributed, both the CCA and the LCA mod-
els arrive at the same conclusion. But in other cases this conclusion
is altered.

The spatial distribution of biomass in the cellular automata
models are controlled by the range parameter r. In the case of
no biomass diffusion between cells (r = 0) it is clearly seen from
Figs. 2–4 that the stable biomass level of the CCA model never
reaches the theoretical equilibrium level of number of cells divided
by two  (0.5 in each cell) as in the LCA model.

Uniform effort distribution combined with a heterogeneous dis-
tribution of biomass may  have devastating negative stock effects,
causing even small MPA  sizes to have significant conservation
effects, as seen in the CCA model of this study and reflected both
in Figs. 8 and 9. The negative stock effect of covering the complete
open area by fishing activities is shown to be dramatic, but equally
unrealistic, first of all by economic reasons. Technological devel-
opment makes the fleet increasingly efficient in catching efficiency
and fish finding capacity, the latter is probably increasing the value
of d far beyond 1, as indicated by other studies (Swain and Wade,
2003; Ellis and Wang, 2007).

Increasing growth rate (g) improves the fit of the CCA model,
moving the stable biomass closer towards the equilibrium level
and reducing the time of recovery. The LCA model seems to be
more robust towards changes in fishing patterns controlled by the
parameter d (Figs. 6 and 7), while the CCA model displays significant
changes by varying values of d. It is simply easier to take advan-
tage of increased knowledge about biomass distribution when this
distribution is non-uniform. The biomass distribution of the LCA
model is a priori expected to be less heterogeneous than what is
found in the CCA model since it follows a continuous growth pat-

tern within each cell, while the CCA model embeds local collapses
and recoveries (booms and blasts). These expectations are also con-
firmed in the performed simulations. This difference between the
two models vanishes in the case of d = 1where the distribution of
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Fig. 6. CCA Model (17) on varying percentage of MPA  cells and two fishing effort distributions, d = 0 (upper panel) and d = 8 (lower panel). The range parameter r is 2 in all
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ange  of −250–150) is measured by the vertical axis. The period displayed in each g

shing effort perfectly reflects biomass distribution and the aver-
ge biomasses in the CCA model get very close to the biomasses
btained by the LCA model. For other values of d the CCA model
eems however always to come up with larger biomass values than
hose found by the LCA model. This result may  question the effect
f partial area closure as an effective mean of stock conservation,

ften put forward as one of the main concerns when implementing
PA  regulation. The stock conservation effect of MPA  regulation

omes out to be less, and in some cases almost negligible in the
CA model compared with the LCA model.
asure total fishing effort (E, covering the range of 0–60), while net revenue (NR, the
counts 2000 time steps.

Smart fishing and high expertise in targeting areas of high fish
density (d > 0) contributes in stabilising the stock and reducing the
risk of stock depletion, increasingly so with increasing values of d.
In addition to the positive stock effects of effort clustering, there
are also economic benefits up to a certain point. As the value of d
is approaching infinity, the whole fishing fleet will be placed into

the single cell currently holding the largest biomass. Hence the
total catch could not exceed the stock biomass of this cell, illus-
trating that increased fish finding capacity not necessarily leads
to increased catches, even in the short run. The immediate (short
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Fig. 7. LCA Model (19) on varying percentage of MPA  cells and two fishing effort distributions, d = 0 (upper panel) and d = 8 (lower panel). The range parameter r is 2 in all
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overing the range of −20–20) is measured by the vertical axis. The period displaye

un) catch therefore reaches a maximum value at some value of

 within the range 0 < d < ∞.  It should be noted that there also is

 positive stock effect in the long run even though the economic
enefits contribute in increasing the level of open access effort and
ence increasing the stock pressure.
easure total fishing effort (E, covering the range of 0–15), while net revenue (NR,
ach graph counts 2000 time steps.

The seemingly stock conserving effect of increased ability to tar-

get and approach the fish dense area (cells) compared with uniform
distribution of fishing effort origins from the fact that the latter
represents a situation where all cells are targeted, even though the
fishing effort distributed on each cell is low. When the fishing effort
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hows  median values, while the mean values are indicated by horizontal black line
5%  of the data sample.

s concentrated in some cells, biomass growth in the other cells
s not negatively affected. The distributing of increased biomass
rom these cells contributes to recovery in the cells whit depleted
iomass by previously high fishing pressure. The increased fishing
ressure in some cells caused by smart fishing also leads to reduced
shing pressure in less attractive areas. The total effect of this needs
o be studied in greater details and it seems to be crucial to include
shing effort distribution in fisheries models not only because of
he biological effects, but also for the impact it may  have on the eco-
omic performance of the fleet. In a new not yet published study
y this author, the distribution of fishing effort is linked to the eco-
omic performance in a 2D model, including biomass distribution
relevant for income) as well as distance from port and other costs
f fishing. The same pattern is obtained while increasing the value
f d, as described above. This present study indicates that the per-
ormance of MPA  regulation in both aspects (stock conservation
nd economic benefits) has to be understood as functions of fish
nd fishers’ behaviour, the latter including fish finding activities
nd effort clustering in areas with high fish densities.

As further seen from Figs. 6 and 7, as well as in Fig. 8, net rev-
nues fluctuate between positive and negative values (quasi rent
ue to the definition by Marshall, 1893). In the long run periods of
ositive rent may  more than compensate for the losses in the peri-

ds of negative rent. The stiffness parameter a determines the rate
t which the fishing effort adjusts according to the economic per-
ormance of last period. The adjustment rate depends on how easily
nput factor in production may  be moved from one place to another.
h box includes 50% of the sample and the range covered by box and lines includes

As labour increasingly is substituted by capital in effort production,
the stiffness parameter is expected to decline, since labour more
easily is moved than capital items (vessel, gears, etc.) Changing the
stiffness parameter a within a realistic range of course changes the
absolute values, but the main pattern caused by the permanent
adjustment to changing economic performance remains as long as
a > 0.

The fluctuations in net revenues are reduced by increased MPA
size. Since an open access equilibrium is characterised by no rent
(as only normal profit is obtained), the rent obtained in the open
access dynamics is accidental rent when the level of fishing effort
is adjusting to constantly changing stock biomass. This quasi rent
causes the effort to increase or decrease with a rate determined by
how fast capital could be moved into or out off the fishery. In the
models presented here this rate is given by the stiffness parameter
a, assuming equal entry and exit rates. In the real world it is prob-
ably easier to enter than to leave a fishery, as the entrance may
come from all capital sources, while the capital already bound into
a specific fishery has limited possibilities of other placements in the
short run. Based on the findings in Eide (2007) a higher entry rate
than exit rate seems however not to alter the finding of this study.
Fluctuating biomasses give reason for corresponding changes in
fishing effort, depending on these entry and exit rates. Even slow

growing species outstrip the speed of growth in effort both when
increasing and decreasing biomass. Since the fishing effort in some
sense is running after the stock biomass, the effort is less than corre-
sponding open access effort when biomass level is peaking (causing
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ig. 9. Average values of biomass, harvest, effort and net revenue of each of the fou
urves) from simulations running over 500 time steps. The shaded areas indicate th
n  Table 2, except for r and d which values are indicated in the figure.

ositive rent) and higher when the biomass is reaching low level
causing negative rent). The negative rent in the real world of eco-
omic rational behaviour however has a minimum level where the
ontribution margin becomes zero and the fleet is better off stay-
ng in harbour. While this possibility is considered in Eide (2007),
t is not included in this study. By correcting for this error the quasi
ent obtained in the open access fisheries of this study could be
ven higher.

The cluster analyses displayed in Figs. 10 and 11 represent
nputs in the discussion on determining the optimal MPA size. As
reviously mentioned most bioeconomic studies on this issue con-
lude that the MPA  size needs to be considerable to give stock
onservation effects corresponding to rent maximisation (see for
xample Lauck et al., 1998; Armstrong and Reithe, 2001; Boncoeur
t al., 2002; Beattie et al., 2002; Helvey, 2004). These results are
onfirmed in Figs. 10 and 11 for the LCA model in cases fitting the
ommon assumptions of uniform effort distribution (r = 0) as well
s in the case of r = 2 and d = 1, which actually also represents the
ase of uniform distribution of effort (since the biomass is actu-
lly uniformly distributed even at range 2 in the LCA model). In
oth these cases there are two large clusters divided at MPA  sizes

elow and above 70–80% of the total area, which confirms the find-

ngs of the previous bioeconomic studies mentioned above. Also
he CCA model displays a similar pattern for r = 0 and d = 0, under
hich parameter setting the CCA model has an almost uniform
s (columns) obtained by CCA Model (17) (solid curves) and LCA Model (19) (dashed
dard deviations of simulations by the CCA Model (19). Parameter values are found

distribution of biomass and effort. In this case the stock biomasses
and net revenues in the CCA model cluster at the extreme MPA  sizes
of below and above 80–90% of the total area.

More interesting though is that except for the rather unrealistic
cases referred to above, none of the other findings from the CCA
model support the hypothesis that a large fraction of the total area
need to be protected in order to obtain an optimal economic per-
formance while utilising MPA  as a way  of regulating the fishery. On
the contrary, the effect of closing relatively small areas (3–15% of
the total area), is significant on both stock biomass and economic
performance. This indicates that the common assumption of uni-
form distribution of stock biomass and effort outside the protected
area dramatically affect the evaluation MPA  sizes.

The concept of cellular automata represents a simple way  of
modelling spatial distributions. A range of other ways of modelling
spatial distribution exists, and a number of previous MPA  studies
have utilised some of these methods. There is however another spe-
cial feature of cellular automata modelling which is not equally easy
achieved by other modelling techniques. Cellular automata imple-
ments micro dynamics at cell levels and is a bottom-up modelling
approach. The biological models proposed in this study could also

include cell specific parameter values in addition to the state vari-
ables. Varying environmental capacity of different cells could be
implemented by varying cell specific growth rates and/or satura-
tion levels (biomass maximum). A further study of the robustness
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Stock biomass
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Fig. 10. Dendrogram plots showing clustering on MPA  size (horizontal axis) of the biomass data from the simulations presented in Fig. 9. The numbers at the horizontal axes
represent the percentage area closed by MPA  regulation. The upper panel shows clustering on MPA  size in the CCA Model (17), while the lower panel shows the corresponding
clustering pattern in the LCA Model (19). The simulation includes 500 time steps (data set length) and 100 independent runs of each of the 8 cases shown in the graph. The
vertical axes indicate the squared Euclidian distance between the measured data sets.
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Net revenue
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ig. 11. Dendrogram plots showing clustering on MPA  size (horizontal axis) of the
ig.  9. The numbers at the horizontal axes represent the percentage area closed by
hile  the lower panel shows the corresponding clustering pattern in the LCA Model

f  each of the 8 cases shown in the graph. The vertical axes indicate the squared Eu
f MPA  regulation under different environmental conditions and
istribution rules should also include spatial environmental varia-
ion. The models presented in this study represent a possible way
orward to perform such investigations.
rce rent data (including catch and effort data) from the simulations presented in
 regulation. The upper panel shows clustering on MPA size in the CCA Model (17),
The simulation includes 500 time steps (data set length) and 100 independent runs

 distance between the measured data sets.
The theoretical study presented in this paper is not linked to any
specific real fishery. The aim has been to investigate some theoreti-
cal concepts regarding model design and common issues regarding
implementation of MPA  regulation in relation to fisheries, the issue
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f MPA  size being the most important. In principle any real fishery
ould be represented by the model, taking in consideration that the
arameter space is larger than the few single points investigated in
he simulations presented here. A large range of different fisheries
ould however be covered by the fraction of the parameter space
tilised in this study, first of all since cell size and time unit is not
pecified here. A time unit of several years could in principle cover
low growing species. Cell size combined with the range parameter

 could be specified to fit the theoretical physiological and physical
iffusion range a species may  have within the chosen time frame, or

 more accurate distribution area based on empirical studies may
e used to specify cell size. The total distribution area is covered by

ncreasing the number of cells sufficiently.
A further development of the model is now in progress. An

xtension from a 1D row to a 2D lattice also involves a shift in
he effort distribution proxy from being biomass distribution to be
heoretical (possible) net revenue distribution. This follows from
he fact that there will be differences in cost by approaching dif-
erent areas in the 2D lattice, by varying distance from home port.
y such minor changes a very flexible and general model may  be
vailable, which because of its simplicity makes it possible to inves-
igate issues which normally represent major modelling challenges,
ike seasonal growth, seasonal fisheries and seasonal variations in

arkets.
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