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Abstract 

From collaborators in factories to companions in homes, social robots 

hold the promise to intuitively and efficiently assist and work alongside 

people. However, human trust in robotic systems is crucial if these robots 

are to be adopted and used in home and work.  In this chapter we take trust 

to be a set of expectations about the robot’s capabilities and explore the 

risks of discrepancies between a person’s expectations and the robot’s 

actual capabilities.  We examine major sources of these discrepancies and 

ways to mitigate their detrimental effects. No simple recipe exists to help 

build justified trust in human-robot interaction. Rather, we must try to 

understand humans’ expectations and harmonize them with robot design 

over time. 
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Introduction 

As robots continue to be developed for a range of contexts where they 

work with people, including factories, museums, airports, hospitals, and 

homes, the field of Human-Robot Interaction explores how well people 

will work with these machines, and what kinds of challenges will arise in 

their interaction patterns. Social robotics focuses on the social and 

relational aspects of Human-Robot Interaction, investigating how people 

respond to robots cognitively and emotionally, how they use their basic 

interpersonal skills when interacting with robots, and how robots 

themselves can be designed to facilitate successful human-machine 

interactions.  

Trust is a topic that currently receives much attention in human-robot 

interaction research. If people do not trust robots, they will not collaborate 

with them or accept their advice, let alone purchase them and delegate to 

them the important tasks they have been designed for. Building trust is 

therefore highly desirable from the perspective of robot developers. A 

closer look at trust in human-robot interaction, however, reveals that the 

concept of trust itself is multidimensional. For instance, one could trust 

another human (or perhaps robot) that they will carry out a particular task 

reliably and without errors, and that they are competent to carry out the 

task.  But in some contexts, people trust another agent to be honest in their 

communication, sincere in their promises, and to value another person’s, 

or the larger community’s interests. In short, people may trust agents 

based on evidence of reliability, competence, sincerity, or ethical integrity 

[1], [2]1. What unites trust along all these dimensions is that it is an 

expectation—expecting that the other is reliable, competent, sincere, or 

ethical.  Expectations, of course, can be disappointed.  When the other was 

not as reliable, capable, or sincere as one thought, one’s trust was 

misplaced.  Our goal in this chapter is to explore some of the ways in 

which people’s expectations of robots may be raised too high and 

therefore be vulnerable to disappointment.  

To avert disappointed expectations, at least two paths of action are 

available. One is to rapidly expand robots’ capacities, which is what most 

designers and engineers strive for.  But progress has been slow [3], and the 

social and communicative skills of artificial agents are still far from what 

seems desirable [4], [5].  Another path is to ensure that people trust a robot 

 

1 The authors have provided a measure of these multiple dimensions of trust and 

invite readers to use that measure for their human-robot interaction studies: 

http://bit.ly/MDMT_Scale   
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to be just as reliable, capable, and ethical as it really is able to; that is, to 

ensure that people understand the robot’s actual abilities and limitations.  

This path focuses on one aspect of transparency: providing human users 

with information about the capabilities of a system. Such transparency, we 

argue, is a precondition for justified trust in any autonomous machine, and 

social robots in particular [6], [7]. 

In this chapter, we describe some of the sources of discrepancies 

between people’s expectations and robots’ real capabilities. We argue the 

discrepancies are often caused by superficial properties of robots that elicit 

feelings of trust in humans without validly indicating the underlying 

property the person trusts in. We therefore need to understand the complex 

human responses triggered by the morphology and behaviour of 

autonomous machines, and we need to build a systematic understanding of 

the effects that specific design choices have on people’s cognitive, 

emotional, and relational reactions to robots. In the second part of the 

chapter we lay out a number of ways to combat these discrepancies. 

Discrepancies Between Human Expectations and Actual 

Robot Capabilities 

In robot design and human-robot interaction research, the tendency to 

build ever more social cues into robots (from facial expressions to 

emotional tone of voice) is undeniable. Intuitively, this makes sense since 

robots that exhibit social cues are assumed to facilitate social interaction 

by leveraging people’s existing social skill sets and experience, and they 

would fit seamlessly into social spaces without constantly being in the way 

[8]. However, in humans, the display of social cues is indicative of certain 

underlying mental properties, such as thoughts, emotions, intentions, or 

abilities. The problem is that robots can exhibit these same cues, through 

careful design or specific technologies, even though they do not have the 

same, or even similar, underlying properties.  

For example, in human interaction, following another person’s gaze is 

an invitation to joint attention [9]; and in communication, joint attention 

signals the listener’s understanding of the speaker’s communicative 

intention.  Robots using such gaze cues [10] are similarly interpreted as 

indicating joint attention and of understanding a speaker’s instructions 

[11], [12]. However, robots can produce these behaviors naïvely using 

simple algorithms, without having any concept of joint attention or any 

actual understanding of the speaker’s communication. Thus, when a robot 

displays these social cues, they are not symptoms of the expected 

underlying processes, and a person observing this robot may erroneously 

attribute a range of (often human-like) properties to the robot [13].   
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Erroneous assumptions about other people are not always harmful.  

Higher expectations than initially warranted can aid human development 

(when caregivers “scaffold” the infant’s budding abilities; [14], can 

generate learning success [15], and can foster prosocial behaviors [16].  

But such processes are, at least currently, wholly absent with robots. 

Overestimating a robot’s capacities poses manifest risks to users, 

developers, and the public at large. When users entrust a robot with tasks 

that the robot ends up not being equipped to do, people may be 

disappointed and frustrated when they discover the robot’s limited actual 

capabilities [17]; and there may be distress or harm if they discover these 

limitations too late. Likewise, developers who consistently oversell their 

products will be faced with increasing numbers of disappointed, frustrated, 

or distressed users who no longer use the product, write terrible public 

reviews (quite a significant impact factor for consumer technology), or 

even sue the manufacturer. Finally, the public at large could be deprived of 

genuine benefits if a few oversold robotic products cause serious harm, 

destroy consumer trust, and lead to stifling regulation.  

Broadly speaking, discrepancies between expectations and reality have 

been well documented and explored under the umbrella of “expectancy 

violation,” from the domains of perception [18] to human interaction [19]. 

In human-robot interaction research, such violations have been studied, for 

example, by comparing expectations from media to interactions with a real 

robot [20] or by quantifying updated capability estimates after interacting 

with a robot [21]. Our discussion builds on this line of inquiry, but we do 

not focus on cases when an expectancy violation has occurred, which 
assumes that the person has become aware of the discrepancy (and is 

likely to lose trust in the robot). Instead, we focus on sources of such 

discrepancies and avenues for making a person aware of the robot’s 

limitations before they encounter a violation (and thus before a loss of 

trust). 

Sources of Discrepancies 

There are multiple sources of discrepancies between the perceived and 

actual capacities of a robot. Obvious sources are the entertainment 

industry and public media, which frequently exaggerate technical realities 

of robotic systems. We discuss here more psychological processes, from 

misleading and deceptive design and presentation to automatic inferences 

from a robot’s superficial behavior to deep underlying capabilities. 
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Misleading design 

Equipping a robot with outward social cues that have no corresponding 

abilities is, at best, misleading. Such a strategy violates German designer 

Dieter Rams’ concept of honest design, which is the commitment to design 

that “does not make a product more innovative, powerful or valuable than 

it really is” [22]; see also [23], [24]. Honest design is a commitment to 

transparency—enabling the user to “see through” the outward appearance 

and to accurately infer the robot’s capacities.  In the HRI laboratory, 

researchers often violate this commitment to transparency when they use 

Wizard-of-Oz (WoZ) methods to make participants believe that they are 

interacting with an autonomous, capable robot. Though such 

misperceptions are rarely harmful, they do contribute to false beliefs and 

overly high expectations about robots outside the laboratory. Moreover, 

thorough debriefing at the end of such experiments is not always provided 

[25], which would reset people’s generalizations about technical realities.  

Deception 

When a mismatch between apparent and real capacities is specifically 

intended—for example, to sell the robot or impress the media—it arguably 

turns into deception and even exploitation [26]. And people are 

undoubtedly vulnerable to such exploitation. A recent study suggested that 

people were willing to unlock the door to a university dormitory building 

for a verbally communicating robot that had the seeming authority of a 

food delivery agent.  Deception is not always objectionable; in some 

instances it is used for the benefit of the end user [27], [28], such as in 

calming individuals with dementia [29] or encouraging children on the 

autism spectrum to form social bonds [30]. However, these instances must 

involve careful management of the risks involved in the deception—risks 

for the individual user, the surrounding social community, and the 

precedent it sets for other, perhaps less justified cases of deception. 

Impact of norms 

At times, people are well aware that they are interacting with a 

machine in human-like ways because they are engaging with the robot in a 

joint pretense [31] or because it is the normatively correct way to behave. 

For example, if a robot greets a person, the appropriate response is to 

reciprocate the greeting; if the speaker asks a question, the appropriate 

response is to answer the question. Robots may not recognize the 

underlying social norm and they may not be insulted if the user violates 

the norm, but the user, and the surrounding community (e.g., children who 

are learning these norms), benefit from the fact that both parties uphold 
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relevant social practices and thus a cooperative, respectful social order 

[32]. The more specific the roles that robots are assigned (e.g., nurse 

assistant, parking lot attendant), the more these norms and practices will 

influence people’s behavior toward the robot [33]. If robots are equipped 

with the norms that apply to their roles (which is a significant challenge; 

[34], this may improve interaction quality and user satisfaction. Further, 

robots can actively leverage norms to shape how people interact with it, 

but perhaps even in manipulative fashion [35]. Norm-appropriate behavior 

is also inherently trust-building, because norms are commitments to act, 

and expectations that others will act, in ways that benefit the other (thus 

invoking the dimension of ethical trust; [36], norm violations become all 

the more powerful in threatening trust.    

Expanded inferences 

Whereas attributions of norm competence to a robot are well grounded 

in the robot’s actual behavior, a robot that displays seemingly natural 

communicative skills can compel people to infer (and genuinely assume to 

be present) many other abilities that the robot probably is unlikely to have 

[37]. In particular, seeing that a robot has some higher-level abilities, 

people are likely to assume that it will also possess more basic abilities 

that in humans would be a prerequisite for the higher-level ability. For 

instance, a robot may greet someone with “Hi, how are you?” but be 

unable itself to answer the same question when the greeting is 

reciprocated, and it may not even have any speech understanding 

capabilities at all. Furthermore, a robot’s syntactically correct sentences do 

not mean it has a full-blown semantics or grasps anything about 

conversational dynamics [38].  Likewise, seeing that a robot has one skill, 

we must expect people to assume that it also is has other skills that in 

humans are highly correlated with the first. For example, a robot may be 

able to entertain or even tutor a child but be unable to recognize when the 

child is choking on a toy. People find it hard to imagine that a being can 

have selected, isolated abilities that do not build upon each other [39].  

Though it is desirable that, say, a manufacturer provides explicit and 

understandable documentation of a system’s safety and performance 

parameters [40], [41], making explicit what a robot can and cannot do will 

often fail.  That is because some displayed behaviors set off a cascade of 

inferences that people have evolved and practiced countless times with 

human beings [32]. As a result, spontaneous reactions to robots in social 

contexts and their explicit beliefs on what mental capacities robots possess 

can come apart [42], [43]. 
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Automatic inferences 

Some inferences or emotional responses are automatic, at least upon 

initial encounters with artificial agents. Previous research has shown that 

people treat computers and related technology (including robots) in some 

ways just like human beings (e.g., applying politeness and reciprocity), 

and often do so mindlessly [44].  The field of human-robot interaction has 

since identified numerous instances in which people show basic social-

cognitive responses when responding to humanlike robots—for example, 

by following the “gaze” of a robot [45] or by taking its visual perspective 

[46].  Beyond such largely automatic reactions, a robot’s humanlike 

appearance seems to invite a wide array of inferences about the robot’s 

intelligence, autonomy, or mental capacities more generally [47]–[49].  

But even if these appearance-to-mind inferences are automatic, they are 

not simplistic; they do not merely translate some degree of humanlikeness 

into a proportional degree of “having a mind.”  People represent both 

humanlike appearance and mental capacities along multiple dimensions 

[50]–[52], and specific dimensions of humanlike appearance trigger 

people’s inferences for specific dimensions of mind.  For example, 

features of the Body Manipulator dimension (e.g., torso, arms, fingers) 

elicit inferences about capacities of reality interaction, which include 

perception, learning, acting, and communicating. By contrast, facial and 

surface features (e.g., eyelashes, skin, apparel) elicit inferences about 

affective capacities, including feelings and basic emotions, as well as 

moral capacities, including telling right from wrong and upholding moral 

values [53].   

Variations 

We should note, however, that people’s responses to robots are neither 

constant nor universal.  They show variation within person, manifesting 

sometimes as cognitive, emotional, or social-relational reactions, can be in 

the foreground or background at different moments in time, and change 

with extended interactions with the robot [8], [32]. They also show 

substantial interpersonal variation, as a function of levels of expertise [54], 

personal style [55], and psychosocial predispositions such as loneliness 

[56]. 

Status quo 

The fact remains, however, that people are vulnerable to the impact of 

a robot’s behavior and appearance [57]. We must expect that, in real life as 

in the laboratory, people will be willing to disclose negative personal 

information to humanoid agents [58], [59], trust and rely on them [60], 
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empathize with them [61], [62], give in to a robot’s obedience-like 

pressure to continue tedious work [63] or perform erroneous tasks [64].  

Further, in comparison to a mechanical robot, people are more prone to 

take advice from a humanoid robot [65], trust and rely on them more [60], 

and are more likely to comply with their requests [66]. None of these 

behaviors are inherently faulty; but currently they are unjustified, because 

they are generated by superficial cues rather than by an underlying reality 

[57].  At present, neither mechanical nor humanoid robots have more 

knowledge to share than Wikipedia, are no more trustworthy to keep 

secrets than one’s iPhone, and have no more needs or suffering than a 

cartoon character. They may in the future, but until that future, we have to 

ask how we can prevent people from having unrealistic expectations of 

robots, especially humanlike ones.    

How to Combat Discrepancies 

We have seen that discrepancies between perceived and actual 

capacities exist at multiple levels and are fed from numerous sources. How 

can people recover from these mismatches or avoid them in the first place? 

In this section, we provide potential paths for both short- and long-term 

solutions to the problem of expectation discrepancy when dealing with 

social robots. 

Waiting for the future 

An easy solution may be to simply wait for the robots of the future to 

make true the promises of the present. However, that would mean an 

extended time of misperceived reality, and numerous opportunities for 

misplaced trust, disappointment, and non-use. It is unclear whether 

recovery from such prolonged negative experiences is possible.  Another 

strategy to overcome said discrepancies may be to encourage users to 

acquire minimally necessary technical knowledge to better evaluate 

artificial agents, perhaps encouraging children to program machines and 

thus see their mechanical and electronic insides.  However, given the 

widespread disparities in access to quality education in most of the world’s 

countries, the technical-knowledge path would leave poorer people misled, 

deceived, and more exploitable than ever before.  Moreover, whereas the 

knowledge strategy would combat some of the sources we discussed (e.g., 

deception, expanded inferences), it would leave automatic inferences 

intact, as they are likely grounded in biologically or culturally evolved 

response patterns.     
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Experiencing the cold truth 

Another strategy might be to practically force people to experience the 

mechanical and lifeless nature of machines—such as by asking people to 

inspect the skinless plastic insides of an animal robot like Paro or by 

unscrewing a robot’s head and handing it to the person.  It is, however, not 

clear that this will provide more clarity for human-robot interactions. A 

study of the effects of demonstrating the mechanistic nature of robots to 

children in fact showed that the children still interacted with the robot in 

the same social ways as children to whom the robotic side of robots had 

not been pointed out [67]. Furthermore, if people have already formed 

emotional attachments, such acts will be seen as cruel and distasteful, 

rather than have any corrective effects on discrepant perceptions.     

Revealing real capacities 

Perhaps most obvious would be truth in advertising. Robot designers 

and manufacturers, organizations and companies that deploy robots in 

hotel lobbies, hospitals, or school yards would signal to users what the 

robot can and cannot do.  But there are numerous obstacles to designers 

and manufacturers offering responsible and modest explanations of the 

machine’s real capacities. They are under pressure to produce within the 

constraints of their contracts; they are beholden to funders; they need to 

satisfy the curiosity of journalists and policy makers, who are also keen to 

present positive images of developing technologies.   

Further, even if designers or manufacturers adequately reveal the 

machine’s limited capabilities, human users may resist such information. 

If the information is in a manual, people won’t read it.  If it is offered 

during purchase, training, or first encounters, it may still be ineffective.  

That is because the abovementioned human tendency to perceive agency 

and mind in machines that have the tell-tale signs of self-propelled motion, 

eyes, and verbal communication is difficult to overcome. Given the 

eliciting power of these cues, it is questionable (though empirically 

testable) whether explicit information can ever counteract a user’s 

inappropriate mental model of the machine.  

Legibility and explainability 

An alternative approach is to make the robot itself “legible”—

something that a growing group of scholars is concerned with [68].  But 

whereas a robot’s intentions and goals can be made legible—e.g., in a 

projection of the robot’s intended motion path or in the motion itself— 

capabilities and other dispositions are not easily expressed in this way.  At 

the same time, the robot can correct unrealistic expectations by indicating 



Trust and Discrepancy 

 

11 

some of its limits of capability in failed actions [69] or, even more 

informative, in explicit statements that it is unable or forbidden to act a 

certain way [70].   

A step further would be to design the robot in such a way that it can 

explicate its own actions, reasoning, and capabilities. But whereas giving 

users access to the robot’s ongoing decision making and perhaps offering 

insightful and human-tailored explanations of its performed actions may 

be desirable [71], “explaining” one’s capacities is highly unusual.  Most of 

this kind of communication among humans is done indirectly, by 

providing information about, say, one’s occupation [72] or acquaintance 

with a place [73]. Understanding such indirect speech requires access to 

shared perceptions, background knowledge, and acquired common ground 

that humans typically do not have with robots. Moreover, a robot’s 

attempts to communicate its knowledge, skills, and limitations can also 

disrupt an ongoing activity or even backfire if talk about capabilities 

makes users suspect that there is a problem with the interaction [32]. There 

is, however, a context in which talk about capabilities is natural—

educational settings.  Here, one agent learns new knowledge, skills, 

abilities, often from another agent, and both might comment freely on the 

learner’s capabilities already in place, others still developing, and yet 

others clearly absent.  If we consider a robot an ever-learning agent, then 

perhaps talk about capabilities and limitations can be rather natural. 

One potential drawback of robots that explain themselves must be 

mentioned. Such robots would appear extremely sophisticated, and one 

might then worry which other capacities people will infer from this 
explanatory prowess.  Detailed insights into reasoning may invite 

inferences of deeper self-awareness, even wisdom, and user-tailored 

explanations may invite inferences of caring and understanding of the 

user’s needs.  But perhaps by the time full-blown explainability can really 

be implemented, some of these other capacities will too; then the 

discrepancies would all lift at once. 

Managing expectations 

But until that time, we are better off with a strategy of managing 

expectations and ensuring performance that matches these expectations 

and lets trust build upon solid evidence. Managing expectations will rely 

on some of the legibility and explainability strategies just mentioned along 

with attempts to explicitly set expectations low, which may be easily 

exceeded to positive effect [74]. However, such explicit strategies would 

be unlikely to keep automatic inferences in check.  For example, in one 

study, Zhao et al. (submitted) showed that people take a highly humanlike 

robot’s visual perspective even when they are told it is a wax figure. The 
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power of the mere humanlike appearance was enough to trigger the basic 

social-cognitive act of perspective taking.   

Thus, we also need something we might call restrained design—

attempts to avoid overpromising signals in behavior, communication, and 

appearance, as well as limiting the robot’s roles so that people form 

limited, role- and context-adequate expectations.  As a special case of such 

an approach we describe here the possible benefit of an incremental robot 

design strategy—the commitment to advance robot capacities in small 

steps, each of which is well grounded in user studies and reliability testing.  

Incremental Design 

Why would designing and implementing small changes in a robot 

prevent discrepancies between a person’s understanding of the robot’s 

capacities and its actual capacities?  Well-designed small changes may be 

barely noticeable and, unless in a known, significant dimension (e.g., 

having eyes after never having had eyes), will limit the number of new 

inferences that would be elicited by it. Further, even when noticed, the 

user may be able to more easily adapt to a small change, and integrate it 

into their existing knowledge and understanding of the robot, without 

having to alter their entire mental model of the robot.  

Consider the iRobot Roomba robotic vacuum cleaner. The Roomba has 

a well-defined, functional role in households as a cleaning appliance. From 

its first iteration, any discrepancy between people’s perceptions of the 

robot’s capacities and its actual capacities were likely related to the robot’s 

cleaning abilities, which could be quickly resolved by using the robot in 

practice. As new models hit the market, Roomba’s functional capacities 

improved only incrementally—for example, beep-sequence error codes 

were replaced by pre-recorded verbal announcements, or random-walk 

cleaning modes were replaced by rudimentary mapping technology. In 

these cases, the human users have to accommodate only minor novel 

elements in their mental models, each changing only very few parameters. 

Consider, by contrast, Softbank’s Pepper robot. From the original 

version, Pepper was equipped with a humanoid form including arms and 

hands that appeared to gesture, and a head with eyes and an actuated neck, 

such that it appeared to look at and follow people. Further, marketing 

material emphasized the robot’s emotional capacities, using such terms as 

“perception modules” and an “emotional engine.”  We can expect that 

these features encourage people to infer complex capacities in this robot, 

even beyond perception and emotion. Observing the robot seemingly gaze 

at us and follow a person’s movements suggests attention and interest; the 

promise of emotional capacities suggests sympathy and understanding.  

However, beyond pre-coded sentences intended to be cute or funny, the 
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robot currently has no internal programmed emotional model at all. As a 

result, we expect there to be large discrepancies between a person’s 

elicited expectations and the robot’s actual abilities.  Assumptions of deep 

understanding in conversation and willingness toward risky personal 

disclosure may then be followed by likely frustration or disappointment.  

The discrepancy in Pepper’s case stems in part from the jump in 

expectation that the designers invite the human to take and the actual 

reality of Pepper’s abilities. Compared with other technologies people may 

be familiar with, a highly humanoid appearance, human-like social 

signaling behaviors, and purported emotional abilities trigger a leap in 

inference people make from “robots can't do much” to “they can do a lot.” 

But that leap is not matched by Pepper’s actual capabilities. As a result, 

encountering Pepper creates a large discrepancy that will be quite difficult 

to overcome. A more incremental approach would curtail the humanoid 

form and focus on the robot’s gaze-following abilities, without claims of 

emotional processing. If the gaze following behavior actually supports 

successful person recognition and communication turn taking, then a more 

humanoid form may be warranted. And only if actual emotion recognition 

and the functional equivalent of emotional states in the robot are achieved 

would Pepper’s “emotion engine” be promoted.  

Incremental approaches have been implemented in other technological 

fields. For example, commercial car products have in recent years 

increasingly included small technical changes that point toward eventual 

autonomous driving abilities, such as cruise control, active automatic 

breaking systems, lane violation detection and correction, and the like. 
More advanced cars, such as Tesla’s Model S, have an “auto-pilot” mode 

that takes a further step toward autonomous driving in currently highly 

constrained circumstances. The system still frequently reminds the user to 

keep their hands on the steering wheel and to take over when those 

constrained circumstances no longer hold (e.g., no painted lane 

information). However, the success of this shared autonomy situation 

depends on how a product is marketed.  Other recent cars may include a 

great deal of autonomy in their onboard computing system but are not 

marketed as autonomous or self-driving but are called “Traffic Jam Assist” 

or “Super Cruise.” Such labeling decisions limit what the human users 

expects of the car and therefore what they entrust it to do. A recent study 

confirms that labeling matters: People overestimate Tesla cars’ capacities 

more than other comparable brands [75].  And perhaps unsurprisingly, the 

few highly-publicized accidents with Teslas are typically the result of vast 

overestimation of what the car can do [76], [77]. 
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Within self-driving vehicle research and development, a category 

system is in place to express the gradually increasing levels of autonomy 

of the system in question. In this space, however, the incremental approach 

may still take steps that are too big. In the case of vehicle control, people's 

adjustment to continuously increasing autonomy is not itself continuous 

but takes a qualitative leap.  People either drive themselves, assisted up to 

a point, or they let someone else (or something else) drive; they become 

passengers. In regular cars, actual passengers give up control, take naps, 

read books, chat on the phone, and would not be ready to instantly take the 

wheel when the main driver requests it.  Once people take on the 

unengaged passenger role with increasingly (but not yet fully) autonomous 

vehicles, the situation will result in over-trust (the human will take naps, 

read books, etc.). And if there remains a small chance that the car needs 

the driver’s attention but the driver has slipped into the passenger role, the 

situation could prove catastrophic. The human would not be able to take 

the wheel quickly enough when the car requests it because it takes time for 

a human to shift attention, observe their surroundings, develop situational 

awareness, make a plan, and act [78]. Thus, even an incremental approach 

would not be able to avert the human’s jump to believing the car can 

handle virtually all situations, when in fact the car cannot.  

Aside from incremental strategies, the more general restrained design 

approach must ultimately be evidence-based design. Decisions about form 

and function must be informed by evidence into which of the robot’s 

signals elicit what expectations in the human.  Such insights are still rather 

sparse and often highly specific to certain robots.  It therefore takes a 
serious research agenda to address this challenge, with a full arsenal of 

scientific approaches: carefully controlled experiments to establish causal 

relations between robot characteristics and a person’s expectations; 

examination of the stability of these response patterns by comparing young 

children and adults as well as people from different cultures; and 

longitudinal studies to establish how those responses will change or 

stabilize in the wake of interacting with robots over time.  We close our 

analysis by discussing the strengths and challenges that come with 

longitudinal studies. 

Longitudinal Research 

Longitudinal studies would be the ideal data source to elucidate the 

source of and remedy for discrepancies between perceived and actual 

robot capacities. That is because, first, they can distinguish between initial 

reactions to robots and more enduring response patterns. We have learned 

from human-human social perception research that initial responses, even 

if they change over time, can strongly influence the range of possible long-
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term responses; in particular, initial negative responses tend to improve 

more slowly than positive initial reactions deteriorate [79].  In human-

robot encounters, some responses may be automatic and have a lasting 

impact, whereas others may initially be automatic but could be changeable 

over time.  Furthermore, some responses may reflect an initial lack of 

understanding of the encountered novel agent, and with time a search for 

meaning may improve this understanding [80].  Longitudinal studies can 

also track how expectations clash with new observations and how trust 

fluctuates as a result.    

High-quality longitudinal research is undoubtedly difficult to conduct 

because of cost, time and management commitments, participant attrition, 

ethical concerns of privacy and unforeseen impacts on daily living, and the 

high rate of mechanical robot failures. A somewhat more modest goal 

might be to study short-term temporal dynamics that will advance 

knowledge but also provide a launching pad for genuine longitudinal 

research. For the question of recovery from expectation-reality 

discrepancies we can focus on a few feasible but informative paradigms. 

A first paradigm is to measure people’s responses to a robot with or 

without information about the true capacities of the robot. In comparison 

to spontaneous inferences about the robot’s capacities, would people 

adjust their inferences when given credible information? One could 

compare the differential effectiveness of (a) inoculation (providing the 

ground-truth information before the encounter with the robot) and (b) 

correction (providing it after the encounter). In human persuasion 

research, inoculation is successful when the persuasive attempt operates at 
an explicit, rational level [81]. By analogy, the comparison of inoculation 

and post-hoc correction in the human-robot perception case may help 

clarify which human responses to robots lie at the more explicit and which 

at the more implicit level. 

A second paradigm is to present the robot twice during a single 

experimental session, separated by some time delay or unrelated other 

activities. What happens to people’s representations formed in the first 

encounter that are either confirmed or disconfirmed in the second 

encounter? If the initial reactions are mere novelty effects, they would 

subside independent of the new information; if they are deeply entrenched, 

they would remain even after disconfirmation; and if they are 

systematically responsive to evidence, they would stay the same under 

confirmation and change under disconfirmation [82]. In addition, different 

response dimensions may behave differently.  Beliefs about the robot’s 

reliability and competence may change more rapidly whereas beliefs about 

its benevolence may be more stable.    
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In a third paradigm, repeated-encounter but short-term experiments 

could bring participants back to the laboratory more than once. Such 

studies could distinguish people’s adjustments to specific robots (if they 

encounter the same robot again) from adjustments of their general beliefs 

about robots (if they encounter a different, but comparable robot again). 

From stereotype research, we have learned that people often maintain 

general beliefs about a social category even when acquiring stereotype-

disconfirming information about specific individuals [83]. Likewise, 

people may update their beliefs about a specific robot they encounter 

repeatedly without changing their beliefs about robots in general [82].    

Conclusion 

Trust is one agent’s expectation about the other’s actions. Trust is 

broken when the other does not act as one expected—is not as reliable or 

competent as one expected, or is dishonest or unethical. In all these cases, 

a discrepancy emerges between what one agent expected and the other 

agent delivered. Human-robot interactions, we suggest, often exemplifies 

such cases: people expect more of their robots than the robots can deliver. 

Such discrepancies have many sources, from misleading and deceptive 

information to the seemingly innocuous but powerful presence of deep-

seated social signals. This range of sources demands a range of remedies, 

and we explored several of them, from patience to legibility, from 

incremental design to longitudinal research. Because of people’s complex 

responses to artificial agents, there is no optimal recipe for minimizing 

discrepancies and maximizing trust. We can only advance our 

understanding of those complex human responses to robots, use this 

understanding to guide robot design, and monitor how improved design 

and human adaptation, over time, foster more calibrated and trust-building 

human-robot interactions. 
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