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Abstract: Plasmonic phenomena in metals are commonly
explored within the framework of classical electrody-
namics and semiclassical models for the interactions of
light with free-electron matter. The more detailed under-
standing of mesoscopic electrodynamics at metal surfaces
is, however, becoming increasingly important for both
fundamental developments in quantum plasmonics and
potential applications in emerging light-based quantum
technologies. The review offers a colloquial introduction
to recent mesoscopic formalism, ranging from quantum-
corrected hydrodynamics to microscopic surface-response
formalism, offering also perspectives on possible future
avenues.
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1 Introduction
The modern information society is largely enabled by a rev-
olution in information and communication technologies,
being strongly rooted in classical electrodynamics and
further catalyzed by developments in quantum physics,
condensed-matter physics, optical sciences, and materials
science. While electrodynamics is largely a classical dis-
cipline, the developments of quantum mechanics imme-
diately stimulated a curiosity for how to connect and
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understand physical phenomena and observables across
the border between the more familiar properties of the
world of classical physics and the new intriguing world
governed by quantum physics. This constitutes a long-
lasting curiosity [1], and this review joins this curiosity
with a focus on explorations of light–matter interactions
at exactly this interface between the classical electrody-
namics of electromagnetic fields and the quantum physics
of condensed-matter systems. In particular, a mesoscopic
electrodynamic formalism for plasmonics systems is being
reviewed, including both semiclassical hydrodynamics
and microscopic surface-response formalism, all aiming to
correct the classical electrodynamics for quantum effects
occurring at metal surfaces. Beyond the mere curiosity in
understanding fundamental electrodynamic phenomena
of matter – ranging from two-dimensional (2D) materials
to strongly-correlated materials – the mesoscopic electro-
dynamics formalism also has implications for emerging
quantum technologies in the second quantum revolution
[2, 3], including the use of quantum plasmonics [4–7] to
enhance the generation of nonclassical light for quantum-
information processing [8–10].

The review is written in a colloquial style, aiming to
offer a broad introduction to the mesoscopic electrodynam-
ics at metal surfaces, hopefully serving as a useful starting
point for scientists at all levels with a more general interest
in electrodynamics, while also providing an overview to
experts in plasmonics.

1.1 Foundation of classical electrodynamics
During 2020, we were celebrating the 200-years anniver-
sary of Ørsted’s discovery in electromagnetism that he
disclosed on July 21, 1820 [11]. His observation of the
mutual connection of electrical currents and magnetic
fields contributed to and further inspired curiosity-driven
discoveries by several European contemporaries in physics
and mathematics, including Ampère, Coulomb, Faraday,
Ohm, and Gauss [12]. Eventually, this inspired Maxwell
to formulate his now-famous set of four partial differ-
ential equations (PDE) [13] that form the basis for our

Open Access. ©2021 N. Asger Mortensen, published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International
License.



2564 | N. A. Mortensen: Mesoscopic electrodynamics

fundamental understanding of classical electromagnetism
[14]:

𝛁 ⋅ D(r, t) = 𝜌(r, t), (1a)

𝛁 ⋅ B(r, t) = 0, (1b)

𝛁 × E(r, t) = −𝜕tB(r, t), (1c)

𝛁 ×H(r, t) = J(r, t)+ 𝜕tD(r, t). (1d)

In order of appearance, D is the displacement field, 𝜌 is
the electric charge density, B is the magnetic field, E is
the electric field, H is the magnetizing field, and J is the
electric current density – all scalar and vectorial fields
having spatial and temporal variations as indicated by the
spatial coordinate vector r and the temporal coordinate t,
respectively. These equations of Maxwell have remained
a cornerstone in physics and engineering ever since and
his formalism has formed the foundation for numerous
scientific discoveries and technological innovations [15].
Slightly more than 150 years later, one can hardly overes-
timate the importance of Maxwell’s equations to modern
society. In fact, electromagnetism remains a fantastic play-
ground that still catalysis surprising developments [16] that
for sure must have progressed far beyond any imagination
of Maxwell himself.

A later important contribution to electrodynamics
came from Lorentz, describing the electromagnetic force
(now known as the Lorentz force) exerted on moving elec-
trically charged particles by electrical and magnetic forces.
In some way, Lorentz also prepared the ground for later
important developments (by Einstein, Bohr, and many
contemporaries) in both relativity and quantum physics.
The latter paradigm has been tremendously important
for our understanding of matter and light–matter interac-
tions, including atomic physics and extensions to perhaps
even more complex condensed-matter systems comprised
by manifolds of such atoms. Alongside this develop-
ment, there have been numerous advances in the clas-
sical, semiclassical, and quantum descriptions of matter
and the constitutive laws invoking the mutual interac-
tion with light, while the electromagnetic fields them-
selves remain being governed by Maxwell’s equations.
Even when the quantum nature of light, i.e. photons, is
considered, Maxwell’s equations still remain as a basis
for the introduction of quantized light fields. As such,
the overall developments within electrodynamics have
not seriously rocked the foundation itself, but rather the
explorations and applications of electrodynamics have
been further fueled by developments in materials science

and micro/nanotechnology (including materials synthe-
sis, materials processing, and device fabrication) com-
bined with new predictive power offered by computational
physics and advanced mathematics.

1.2 Electrodynamics in modern optical
sciences

In the optical sciences (the physical science of light and
light–matter interactions), being mainly engaged with the
optical frequency part of the even broader electromagnetic
spectrum, the developments surrounding electromagnetic
waves have in recent decades catalyzed the growth of
a number of new concepts in photonics, all rooted in
the classical electrodynamics of Maxwell’s equations. The
examples are including fiber optics [17], photonic crystals
[18, 19], plasmonics (which will be addressed in more
details), transformation optics and metamaterials [20–22],
metasurfaces [23, 24], zero-index materials [25–27], 2D
material photonics [28–34], and most recently non-
Hermitian photonics [35–37] and topological photonics
[38–40]. Perhaps there is no need to emphasize, but the
breath of photonics is naturally even broader (including of
course also light generation, manipulation, and detection)
and today it is recognized as a key enabling technology of
critical importance to society.

For the further harvesting of the full potential of pho-
tonics, the field has so far mainly exploited the more
(semi)classically based properties of optical materials and
light fields [8, 10]. Naturally, one needs the quantum
descriptions of electrons in solids to appreciate the optical
properties of semiconductors and metals. However, when
eventually interfacing Maxwell’s equations, the materials’
properties usually enter through quite simple constitutive
laws:

D(r) = 𝜀(r, 𝜔)E(r), (2a)

B(r) = 𝜇(r, 𝜔)H(r), (2b)

J(r) = 𝜎(r, 𝜔)E(r). (2c)

Here, we are for convenience emphasizing the Fourier fre-
quency domain associated with temporal harmonic fields
with an e−i𝜔t time dependence (where 𝜔 is the angu-
lar frequency), while for ease of notation we have sup-
pressed the frequency dependence of the fields. In other
words, the electromagnetic properties of materials are
being characterized by their electric permittivities 𝜀, mag-
netic susceptibilities 𝜇, and electrical conductivities 𝜎.
At this stage, these are largely phenomenologically based
response functions.
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For the magnetic response (Eq. (2b)) it is common to
use 𝜇(r, 𝜔) ≃ 𝜇0, where 𝜇0 is the vacuum permeability.
This approximation (to be utilized throughout the remain-
ing of this review) works extremely well at optical frequen-
cies, where magnetic moments are reacting too slowly to
the rapidly varying optical fields to cause any appreciable
magnetic response. Maxwell’s equations (Eqs. (1)) can now
be rewritten as a generalized eigenvalue problem:

𝛁 ×𝛁 × E(r) =
(
𝜔

c

)2
[
𝜀(r, 𝜔)
𝜀0

− 𝜎(r, 𝜔)
i𝜀0𝜔

]
E(r). (3)

Here, c = (𝜀0𝜇0)−1∕2 is the speed of light in vacuum and
𝜀0 is the vacuum permittivity. It is worth noting how
the response of the free electrons can be represented
by also a dielectric function by mathematically absorb-
ing 𝜎 into 𝜀. At this stage, it is, however, instructive to
maintain both terms, relating interband transitions (local-
ized/bound electrons) to the 𝜀 term, while accounting for
intraband transitions (free electrons) through the 𝜎 term.

For dielectrics – high-quality optical materials with
low absorption – it is common to use semiclassical
Drude–Lorentz models for the dielectric function 𝜀(r, 𝜔)
(Eq. (2a)) or alternatively experimentally tabulated mate-
rials properties, potentially fitted with the Drude–Lorentz
model or Sellmeier expressions. In the presence of res-
onances, causality implies that the dielectric function is
complex-valued (𝜀 = 𝜀′ + i𝜀′′), with the real and imagi-
nary parts being related through Kramers–Kronig relations
[41]. However, in many frequency regimes and away from
absorption resonances, it is common to simply neglect any
small frequency dispersion, thus approximating the dielec-
tric function by a real-valued constant, n2 = 𝜀 ≈ 𝜀′, where
n is the refractive index.

For the electrodynamics of free electrons in metals, the
use of a linear conductivity𝜎(r, 𝜔) and Ohm’s law (Eq. (2c))
is being introduced already in the physics classes of pri-
mary school. As such, we may tend to simply take it for
granted. On the other hand, it appears almost pedestrian
when compared to developments in other research areas
of nanoscience, e.g. mesoscopic electron transport and
molecular electronics, where the transport of charge can be
ballistic [42]. Ohm’s law assumes a local linear-response
relation between electrical currents J(r, 𝜔) induced in a
given point r in response to driving electrical fields E(r, 𝜔)
in the very same point r. In other words, there is no long-
range response of the electron gas due to the perturbation.
A priori, there is nothing wrong with Ohm’s law, and in
most cases, this intuitive form is an appropriate and accu-
rate description of the interaction of electromagnetic fields
with free charge carriers. In fact, the accuracy very much

depends on the underlying description of the material’s
conductivity that enters Ohm’s law, and in most cases, we
are anyway utilizing experimentally tabulated values of
materials’ properties in the frequency regimes of interest.

This review has a focus on physics that manifest in
experimentally more recently accessible regimes, where
the above form of Ohm’s law falls short in accurately
accounting for the underlying quantum and nonlocal
dynamics of electrons. On such situations, the constitutive
relations generalize to integral forms [14]:

D(r) = ∫ dr′ 𝜀(r, r′, 𝜔)E(r′), (4a)

J(r) = ∫ dr′ 𝜎(r, r′, 𝜔)E(r′). (4b)

Here, the finite range of 𝜎(r, r′, 𝜔) quantifies the degree
of nonlocality in the free electrons’ response to driving
fields [43]. Mathematically, this linear-response integral
form originates from a Volterra series, which generalizes
the more common Taylor series by its ability to capture
temporospatial “memory” effects, i.e. temporal and spatial
dispersion [44]. The PDE in Eq. (3) now generalizes to the
integro-differential equation (IDE):

𝛁 ×𝛁 × E(r)

=
(
𝜔

c

)2

∫ dr′
[
𝜀(r, r′, 𝜔)

𝜀0
− 𝜎(r, r′, 𝜔)

i𝜀0𝜔

]
E(r′). (5)

We shall return briefly to the mathematical and physical
foundation for these generalized linear-response consti-
tutive laws. At this point, it suffices to note that the
strength of linear-response theory is that the phenomeno-
logical coefficient 𝜎, that emerges in the linear Taylor
expansion J(E) ≃ 0+ 𝜎E, can usually be determined from
experiments. Obviously, there is a widespread tabulation
of metals’ conductivities, implicitly assuming the local-
response approximation (LRA). As an example, the low-
frequency conductivity of metals is well documented for
centuries and the high-frequency optical response is also
known, e.g. from the tables of optical constants of the
noble metals by Johnson and Christy [45]. However, there
is currently no tabulated experimental data available for
the corresponding two-point response function.

The aim of recent efforts has been to establish a
theoretical understanding of 𝜎(r, r′, 𝜔) [or alternatively
𝜀(r, r′, 𝜔)] and its implications for optical experiments that
invoke metal nanostructures hosting plasmon excitations,
i.e. collective oscillations in the free-electron gas. This is
a rapidly developing subfield within the broader area of
nano-optics [46, 47] and plasmonics [48] (the science and
technology associated with light fields interacting with
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plasmons and nanoscale light–matter interactions), being
commonly referred to as nano plasmonics, and recently
even quantum plasmonics in the anticipation of optical
manifestation of also quantum phenomena [5].

The nonlocal aspects of plasmons were already
implicit in the hydrodynamic description of electrons by
Bloch [49], and since then it is well-established within
condensed-matter physics that 𝜎 is a two-point function.
However, for historical reasons, implications have mainly
been explored for extended and translational invariant sys-
tems where semiclassical and quantum descriptions are
available within the Fourier-space representation [50, 51],
i.e. with a focus on 𝜎(q, 𝜔). The Lindhard dielectric func-
tion 𝜀(q, 𝜔) is a prime example of a quantum mechanical
description of the linear-response of electrons in metals
[52, 53], but given in a Fourier-space representation that
challenges its immediate real-space application to finite
nanostructures without translation invariance.

1.3 Plasmonics
As already alluded to in Section 1.2, the term plasmon-
ics covers the optical science and photonics technology
associated with the interaction of light with plasmons.
Obviously, the name brings associations with the term
electronics, referring to technologies and devices that har-
vest from the properties of electrons. While electronics
largely operate through the single-particle manipulation of
excitations (of fermionic nature) in the free-electron gas,
the plasmon is a collective excitation (of bosonic nature)
involving all the free electrons. Plasmons propagate as
charge-density waves, much resembling the propagation
of sound in a compressible gas of molecules.

Following the discovery of Langmuir waves in ion-
ized gases in the 1920s [54], the existence of plasmons
in solids was predicted in the 1950s by Pines and Bohm
[55–59]. As suggested in the above analogy with sound
waves, plasmons are charge-density waves that propagate
in the bulk of metals are of a longitudinal kind. However,
near surfaces of metals, the spatial termination of the elec-
tron gas allows for spatially localized plasmon excitations
– so-called surface plasmons (SPs), which are transverse
electromagnetic waves being strongly confined normal to
the surface, while free to propagate along the surface [60].
Their hybridization with light fields is commonly referred
to as surface-plasmon polaritons (SPPs). The SP was in
1957 theoretically predicted by Ritchie [61] and shortly after
experimentally observed by Powell and Swan [62].

It is the concept of SPs that forms the backbone of
modern plasmonics, now branching out in many inter-
esting research directions and application areas [63–65].

There are by now many basic introductions to plasmon-
ics, including the textbooks by Maier [66] (reflecting the
early focus on more common metals like the noble metals)
and Gonçalves and Peres [67] (extending the introduc-
tion to also include the more recent 2D materials). To get
an impression of the current breath of plasmonics, the
reader is referred to the special issue [68] published in con-
nection with the 9th International Conference on Surface
Plasmon Photonics (SPP9) held recently in Copenhagen
(www.SPP9.dk). Above, we have emphasized the plasmon
response associated with intraband transitions of free car-
riers. Beyond metals, plasmons can of course also manifest
in less dense electron systems, and as such, plasmonics is
also explored in doped semiconductors [69–71] and 2D
materials [32, 34, 72]. In passing, we note that there is now
also growing attention to plasmon-like behavior associated
with negative dielectric function values. This can be due
to electronic interband transitions, including the possible
interband response in graphene [30, 67, 73] and in silicon
[74], while the negative response may also be caused by
phonon polaritons, such as in polar dielectrics [75].

Plasmonics is a research area and application field
that has developed tremendously with a foundation in
classical electrodynamics. Figure 1 is illustrating some of
the most common approximations involved in the clas-
sical electrodynamics treatment [48, 66], some of which
are discussed briefly in the following while being revisited
when reviewing the mesoscopic electrodynamics formal-
ism that seeks to relax several of those inherent approx-
imations. While still relying on Maxwell’s equations and
common linear-response theory, the further approxima-
tions may be relaxed by resorting to material-response
models of increasing complexity, ranging from the semi-
classical nonlocal hydrodynamic formalism [76] and Boltz-
mann formalism [50] over quantum many-body formalism
[77], such as the random-phase approximation (RPA) and
Lindhard theory [52] or Kubo formalism [78], or alter-
natively ab initio computational approaches widespread
in condensed-matter physics, such as time-dependent
density-functional theory (TDDFT) [79]. These methods not
only enable detailed descriptions of bulk response func-
tions but also mesoscopic surface properties that can be
rigorously accounted for in the electrodynamics through
surface-response formalism [80].

1.3.1 Piecewise-constant approximation

When considering plasmons in metal structures of a finite
extension, one needs to describe the dielectric function
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Figure 1: Schematic summary of common approximations inherent
to the classical electrodynamics treatment of plasmonic phenomena
at surfaces of metallic nanostructures, highlighting also examples
of intriguing physical effects being neglected – some of these
constitute entire research areas in themselves, such as quantum
optics and nonlinear optics, while others represent aspects of the
quantum regime addressed by mesoscopic electrodynamics
formalism. Mathematical implications of the classical
electrodynamics are discussed in, e.g. Eqs. (3), (6), and (7).

in both the interior and the exterior of the metal vol-
umes. Inspired by long-established traditions in the elec-
trodynamics of composite dielectric problems [81], it is in
plasmonics likewise common to invoke yet another approx-
imation – piecewise-constant approximation (PCA) with
an abrupt surface termination of the metal, where we
neglect any atomic-scale inhomogeneities in the vicinity
of the surface [48, 66]

𝜀(r, 𝜔) ≈
{
𝜀(𝜔) , r ∈ metal,
𝜀0 , r ∉ metal,

(6)

while similar considerations apply to 𝜎(r, 𝜔). As a result,
the dielectric landscape is now formed by interfacing
piecewise-constant (bulk) local-response functions, while
Eq. (3) is then solved by invoking the classical pillbox elec-
trodynamic boundary conditions at these interfaces [14].
It should be emphasized that the PCA has been tremen-
dously successful in advancing the field of plasmonics,
where it has proven absolutely sufficient to interpret the
majority of experimentally observed phenomena. On the
other hand, the same approximations are being challenged
by more recent developments in nanoscale plasmonics and
light–matter interactions [10, 82–84].

1.3.2 The Drude model underlying plasmonics

To appreciate the mere existence of plasmons, the vast
majority of works in plasmonics start from the Drude
description of the dynamics of free electrons exposed to

an electrical field [85]. The starting point is entirely classi-
cal, utilizing Newton’s second law to establish an equation
of motion for a single free electron, while subject to the
electrical field E in the Lorentz force:

m𝜕t𝒗 = −𝛾m𝒗− eE. (7)

Here, 𝒗 is the velocity field of the electron which has the
electrical charge e. In the general case of free electrons, m
would be the common mass of the electron, while when
later dealing with electrons in a solid, it becomes the effec-
tive mass [86]. The right-hand side contains also a relax-
ation term 𝛾𝒗 associated with the scattering time 𝜏 = 𝛾−1

of the electrons. Only later, the quantum description of the
electron gas makes its entry, when semiclassically account-
ing for the sea of free electrons contributing to the collective
plasmon oscillation.

For time-harmonic fields, Eq. (7) is solved straightfor-
wardly, giving the velocity field 𝒗 ∝ E of the electron. Only
now, the quantum theory of the electron gas enters, when
summing up the contributions from many such electrons
to form a current density J = −ne𝒗, where n is the density
of free conduction electrons in the conduction band of the
metal [86]. In passing, we note that rather than a contin-
uum formulation, one may also follow a computationally
more challenging particle-simulation approach, where one
aims to keep track of the many individual conduction
electrons [87, 88]. Following the continuum formulation,
the end result is nothing but Ohm’s law, but now with
a semiclassical expression for the frequency-dispersive
conductivity [86]

𝜎(𝜔) = i𝜀0
𝜔

2
p

𝜔 + i𝛾
, (8a)

or alternatively the associated equivalent dielectric func-
tion [86]

𝜀(𝜔) = 1−
𝜔

2
p

𝜔(𝜔+ i𝛾)
. (8b)

Here, 𝜔p =
√

ne2∕m𝜀0 is the characteristic plasma fre-
quency associated with collective oscillation of the electron
gas. It is also the frequency where 𝜀(𝜔) changes sign, being
negative below the plasma frequency while attaining a pos-
itive value above. Note that for later ease of notation, Eq. (8)
is now omitting 𝜀0, so that 𝜀(𝜔) is being the relative dielec-
tric function, with its corresponding value in a vacuum
being given by 𝜀 = 1.

To better appreciate that 𝜔p constitutes a characteris-
tic frequency of the plasma, solving Eq. (3) for longitudinal
fields (𝛁 × E = 0) gives the well-known condition𝜀(𝜔) = 0
for the existence of longitudinal plasmon oscillations.
The solution is obviously an oscillation at the frequency
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𝜔L(q) = 𝜔p. This excitation is known as the bulk plasmon.
The absence of any wave vector dispersion is an immediate
effect of the LRA. For transverse fields (𝛁 ⋅ E = 0), the solu-
tion is 𝜔T (q) =

√
𝜔2

p + c2q2, making the plasma transpar-
ent to propagating waves only above the plasma frequency,
while propagation is prohibited below the plasma fre-
quency. It should be emphasized that here we have entirely
focused on the response of the free conduction electrons,
while deliberately leaving out contributions from bound
electrons to the dielectric function, since this can be
accounted for straightforwardly by an additional back-
ground dielectric function. For transparency and the ease
of presentation, this choice is maintained throughout the
review, except when turning to computational examples
involving e.g. noble metals.

1.3.3 Excitation of plasmons

Since plasmons involve the displacement of charged par-
ticles, they may quite naturally couple to the electromag-
netic fields of Maxwell’s equations. As an example, the
electrical field, associated with light impinging on a metal-
lic nanostructure, will exert a force on the free electrons
– under the right circumstances, this can excite a plasmon
oscillation, and in turn, this will be reflected also in the
spectral composition of the scattered light. As such, the
existence of plasmons can be physically manifested and
optically observed in the appearing color of the nanopar-
ticles [63, 89, 90]; an effect known from ancient glass
[91, 92] and now exploited with modern nanotechnology
for artificial colors [93, 94].

As an alternative to the intuitive excitation by light
waves, e.g. beams of photons as in a classical light micro-
scope, plasmons can likewise be excited by beams of
charged particles, e.g. with electron beams in an electron
microscope. The coupling of the incident electrons with
the plasmons can naturally be appreciated from the repul-
sive force in Coulomb’s law, while one can also associate
electromagnetic fields with the impinging flux of elec-
trons. Historically, excitation by swift electrons was the
first means to experimentally observe plasmons [62], while
the majority of later studies and applications invoke light
excitation schemes. Naturally, the diffraction limit of Abbe
[95] enforces some hard resolution limitations to the obser-
vation of plasmon phenomena in optical spectroscopy,
thus limiting the ability to spatially resolve plasmons
at sub-wavelength length scales in true nanostructures.
However, amazing developments in electron-based spec-
troscopies [96, 97] have over the recent decades opened
complementary ways for explorations of plasmons all

the way to the few nanometer length scales. As an
example, plasmons have been observed in L ∼ 500 nm
silver nanowires [98] with electron-energy loss spec-
troscopy (EELS) in a transmission electron microscope
with resonances resembling the well-known standing-
wave mechanical oscillations on a restricted string. Over-
all, this picture consolidates the classical understanding
of sub-wavelength plasmon wave phenomena. Along with
the tremendous advances not only in fabrication [99],
including lithography for top-down nanopatterning of met-
als, but also the more bottom-up chemical synthesis of
complex metallic nanoparticles, the ability to experimen-
tally explore even smaller length scales has generated also
a renewed theoretical interest in 𝜎(r, r′) for the optical-
frequency nonlocal response of plasmonic nanostructures.
In the following, we offer a further introduction to this.

1.3.4 Why be concerned with the nonlocal response?

The LRA seems to be inherent to our general understanding
and use of linear-response theory, and it is boldly taken
for granted by the vast majority of introductory textbooks
in the general field of electromagnetism and even beyond.
The obvious way to mathematically connect Eqs. (4) and (2)
is through the introduction of the Dirac delta function 𝛿(r),
having the usual property that ∫ dr′ 𝛿(r − r′)(r′) = (r)
for a general function  . As such, the Dirac delta function
representations

𝜀(r, r′, 𝜔) ≈ 𝛿(r − r′)𝜀(r, 𝜔) (9a)

𝜎(r, r′, 𝜔) ≈ 𝛿(r − r′)𝜎(r, 𝜔) (9b)

convey the short-range assumption behind the LRA, while
also hinting that the LRA could be phenomenologically
relaxed by substituting the Dirac delta function with a
finite-range function, such as a Gaussian-type response
function [100]. This will be the topic of later discussions in
Section 2.1.

As already touched upon, the rationale behind the
LRA is that one only has a material response in the same
point of space as where the perturbation of the material is
being applied. This may on the one hand feel intuitive and
in accordance with the often absence of long-range corre-
lation. On the other hand, if one imagines a compressible
jelly soup of matter, then one can clearly also imagine
some finite-range response of the substance when apply-
ing a local force. When treated quantum mechanically, the
electron gas constitutes a compressible gas with a finite-
range response governed by intrinsic length scales of the
electron gas. For typical metals, the Fermi wavelength is of
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the order 𝜆F ∼ 0.5 nm [86], thus suggesting a quite short-
range response. At the same time, the perturbation might
not be entirely local or point-like in space. As we shall dis-
cuss, both of these issues matter for the validity of the LRA
in metals. The discussion of this will, however, take a more
formal starting point.

1.3.5 Symmetries and conservation laws

Symmetries are ubiquitous in physics while being inher-
ently connected to also conservation laws. This was already
appreciated in the early 1900s by Noether [101] and it con-
stitutes a cornerstone in our understanding of physical pro-
cesses with a mutual exchange of energy and momentum
of the involved degrees of freedom. Following Noether’s
theorem, the commonly accepted principle of conservation
of energy conservation follows stringently from the time-
invariance of the system. In the present context, spatial
translational invariance immediately implies the conserva-
tion of momentum. Thus, to better appreciate the strength
of light–matter interactions and the possible mutual cou-
pling of light and plasmons, we shall next consider the
energy and momenta of both kind of excitations.

1.3.6 The energy and momentum carried by photons

Solving the Maxwell’s equations in free space, i.e. 𝜌(r, 𝜔)
= 𝜎(r, 𝜔) = 0, 𝜀(r, 𝜔) = 𝜀0, and 𝜇(r, 𝜔) = 𝜇0, one arrives
at the well-known dispersion relation of light, 𝜔(k) = ck,
where k is the wave vector (of length k = |k|) associ-
ated with the spatiotemporal harmonic oscillation of the
plane-wave form ei(k⋅r−𝜔t). The corresponding momentum
of the photons is ℏk = ℏ𝜔∕c and for optical energies, say,
ℏ𝜔 ∼ 3 eV, this gives a wave vector in the order of
k ∼ 3 × 10−3 nm−1. Here, the unit has been chosen in the
anticipation of light interacting with nanoscale structures.
The bottom line is that this photon momentum is very
small in magnitude in comparison with the characteristic
momenta of any other degrees of freedom in light–matter
interactions, thus justifying the common assumption that
photons carry hardly any momentum themselves. In semi-
conductor optics [102], this is the reasoning behind the pic-
ture of vertical interband transitions (in an infinite, trans-
lational invariant semiconductor system), i.e.Δq = k ≈ 0,
whereΔq is the change in wave vector associated with the
excitation of an electron across the bandgap in the electron
energy band structure (𝜿). Here, the principle of energy
conservation gives c(𝜿′) = 

𝑣
(𝜿)+ ℏ𝜔(k), with the sub-

scripts denoting the conduction and valence bands, while
momentum conservation implies that the initial and final

wave vectors are given by 𝜿 and 𝜿′ = 𝜿 +Δq ≈ 𝜿, respec-
tively. In summary, this leads to the common condition
c(𝜿) ≈ 

𝑣
(𝜿)+ ℏ𝜔, with the wave-vector dependence of

the photon energy being suppressed to highlight its negli-
gence. In terms of the constitutive equations, this justifies
the well-accepted approximation 𝜀(q, 𝜔) ≈ 𝜀(q → 0, 𝜔),
which is the Fourier-space version of the LRA. One argu-
ment why the LRA is so reasonable thus relates to the tiny
momentum carried by the photon. Another take on this
comes from a real-space look at the light field associated
with the photon, oscillating in real space with a wavelength
of 𝜆 = 2𝜋∕k ∼ 400 nm. With the Abbe diffraction limit in
mind [95], no matter the effort in focusing fields with such
wavelength components, the perturbation of the matter
will be far from point-like. The effect of spatially averag-
ing a local perturbation over a finite region is to smear the
nonlocality.

1.3.7 The energy and momentum of surface plasmons

Surface plasmons on planar interfaces are in-plane spa-
tiotemporal harmonic oscillations of the plane-wave form
ei(q∥⋅r∥−𝜔t), being tightly confined to the interface of the
metal (with dielectric function 𝜀) and the dielectric (with
dielectric function 𝜀d). The common dispersion relation
can be obtained analytically within the LRA [66, 67, 103,
104]

q∥(𝜔) = 𝜔

c

√
𝜀(𝜔)𝜀d(𝜔)
𝜀(𝜔)+ 𝜀d(𝜔)

. (10a)

Considering for a metal–air interface (𝜀d = 1) and invoking
for simplicity the loss-less Drude model (Eq. (8) with𝛾 → 0)
to mimic 𝜀(𝜔) of the metal, the corresponding dispersion
relation

q∥(𝜔) = 𝜔

c

√
𝜔2 − 𝜔2

p
2𝜔2 −𝜔2

p
(10b)

exhibits a diverging-q∥ behavior when approaching 𝜔

= 𝜔SPR ≡ 𝜔p∕
√

2. This is known as the surface-plasmon
resonance (SPR) [66]. Let us now return to the discussion
of the momentum carried by a surface-plasmon excitation
and how it compares to the momentum carried by a photon
of the very same energy.

The dispersion relation illustrated in Figure 2 has two
branches – the polariton branch, which for low frequen-
cies resembles the dispersion of photons, and the plasmon
branch, where the wave vector diverges as one approaches
the SPR. In the former case, the momentum consequently
resembles that of a photon, while in the latter case, there
is a large gap in momentum between the photon and
the SP. Following the discussion on Noether’s theorem,
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Figure 2: Surface-plasmon dispersion relation (Eq. (10b)), indicating
also the dispersion of transverse waves above the plasma
frequency, and the nondispersive (due to the local-response
approximation) bulk plasmons at the plasma frequency. For
comparison, the linear dispersion of photons in a vacuum is also
shown (dashed).

this prohibits the plane-wave excitation of SPs on planar,
translation invariant metal surfaces. Alternatively, if by
some means SPs are excited, they will be nonradiative.
The momentum gap is in some way both a blessing and
a curse for the applications of SPs; they are conveniently
confined to the surface, but they are also difficult to excite.
Here, the key to optical excitation of SPs is to break the
translation invariance, thus relaxing the requirement for
momentum conservation. This can either occur in the exci-
tation part (in principle through the use of spatiotemporal
inhomogeneous fields [84]) or in the surface topography
that is hosting the SPs, e.g. through the exploitation of
nanostructured metal surfaces and metal nanoparticles of
varying morphology. The above discussion, however, also
highlights a more fundamental issue in the so-far classical
treatment of SPs. The wave vector of the SP can exceed
that of the corresponding photon, thus facilitating even
shorter real-space oscillations of the corresponding elec-
tromagnetic fields. This has the intriguing consequence
that SP can focus electromagnetic energy beyond Abbe’s
diffraction limit, with the important practical implication
of bringing electromagnetic energy to the very nanoscale
[84, 105–109]. On the one hand, the diverging and sin-
gular behavior [110] is accompanied by a corresponding
enhancement of local electromagnetic fields, which has
been fueling a lot of the interests in plasmonics. On the
other hand, the diverging behavior is to some extent an
artifact of the LRA and the negligence of plasmon damping.
However, what is the limit then to this focusing, and how
much of the diverging behavior remains in a more accu-
rate description? As one approaches such singularities,
the decreasing group velocity (𝜕𝜔∕𝜕q∥) causes a slow-light

enhanced susceptibility to damping [111], which in turn
limits the slow-down itself [112–114]. In the case of the
SPR, Ohmic damping would smear the diverging behavior
[66, 115]. However, even in the hypothetical absence of such
damping [116], the plasma oscillations cannot physically
occur on shorter length scales than those supported by
the underlying electron gas itself. This is where the quan-
tum nature of the electron gas comes into play, essentially
introducing a cut-off as one approaches𝜔∕𝑣F [104, 117].

1.3.8 The energy of localized surface-plasmon
resonances

In the initial discussion of SPs, we considered translational
invariant systems in the context of the SP dispersion rela-
tion, i.e. the wave vector q∥(𝜔) and its energy dispersion
(Eq. (10a)). Turning now the attention to structures of a
finite extension, this wave vector is being quantized, in
turn causing discrete values of the associated frequency.
As a result, we will have localized surface-plasmon res-
onances (LSPR). An alternative perspective on this starts
from the initial discussion of the Drude theory, where the
negatively charged gas of free electrons was oscillating
freely with respect to the positively charged background
of the atoms in the metal. In the equation of motion
(Eq. (7)), this was resembled by the absence of any restoring
force. Turning now the attention to metallic domains of a
finite extension, e.g. embedded in vacuum or some dielec-
tric, the displacement of the electron gas with respect to
the positively charged background will naturally involve
a restoring force. In equilibrium, there is overall no net
charge on the domain. Obviously, the numbers of electrons
and equally many positively charged atoms are conserved
even when the electron gas is slightly displaced away from
its equilibrium position. However, on the one edge of the
domain, there will locally be a slight excess of electrons,
while this is balanced by a slight deficit of electrons on the
opposite edge.1 Coulomb forces between those regions of
induced charge densities (of opposing sign) will naturally
work to restore the equilibrium. As such, the system now
behaves like a mass-spring system and it will exhibit a nat-
ural frequency. Including a restoring force in Eq. (7) leads
to the Drude–Lorentz model.

1 Within the LRA, the electron gas is incompressible, thus being
displaced as a rigid body. As a consequence, the induced charge
is strictly of a surface kind, i.e. an induced surface charge density. In
the later treatments, this will be relaxed by accounting for the finite
compressibility of the quantum electron gas.
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To further appreciate the formation of the LSPR, we
will for simplicity focus the discussion on an archetype
problem in electromagnetism: the polarizability of a spher-
ical particle in a homogeneous field. How can this problem
be relevant to a plasmonic nanoparticle at optical frequen-
cies? In the quasi-static regime, where the particle radius
R is much smaller than the wavelength 𝜆 of the polarizing
field, this does indeed to a first approximation resemble the
above textbook problem, and in agreement with full treat-
ment of also radiation effects within Mie theory [118, 119].
Also, the smaller the particle, the better is this quasi-static
approximation (QSA).

In this way, the polarizability𝛼(𝜔) associated with the
dipole resonance is in the QSA given by [66]

𝛼(𝜔) = 4𝜋R3 𝜀(𝜔)− 𝜀d(𝜔)
𝜀(𝜔)+ 2𝜀d(𝜔)

, (11a)

which closely resembles the well-known Clausius–
Mossotti relation, or equivalently the Lorentz–Lorenz
equation, that describes a homogeneous diluted mixture
of such polarizable particles. For metals, with a negative
𝜀, the polarizability can be resonantly enhanced at the fre-
quency pole of this expression, defined by the Fröhlich
condition

𝜀
′(𝜔)+ 2𝜀′d(𝜔) = 0, (11b)

involving the real parts of 𝜀 = 𝜀′ + i𝜀′′ and 𝜀d = 𝜀′d + i𝜀′′d .
For a Drude metal in vacuum, it immediately gives 𝜔LSPR
= 𝜔p∕

√
3. Thus, the metallic particle supports a dipole

resonance (and for that sake also high-order resonances
[120]) below the plasma frequency. While the strength
of the polarizability naturally depends on the size R of
the particle, intuitively giving smaller particles a smaller
cross section, the resonance frequency is in itself size-
independent within this QSA. In a quantum treatment of
electrons-in-a-box, the electrons occupy discrete energy
levels that reflect the size of the box [by quantizing the
wave vector 𝜅 of electrons and thus in turn (𝜅)], thus
giving size-dependent optical features associated with
single-particle transitions. On the other hand, the col-
lective response of all the electrons (at near the Fermi
level) is seemingly occurring at a size-independent fre-
quency determined entirely by the Drude dielectric func-
tion. Adding to this, the resonance linewidth will be size-
independent too. Indeed, this result is enabled by the
nontrivial dispersion in Eq. (10b) in the large-q∥ limit.

The above discussion is relevant even beyond spheri-
cal particles since in the quasi-static limit there is no real
dependence on the morphology of the particle. As such,
the resonance properties mainly reflect the material prop-
erties captured by 𝜀(𝜔) [121, 122]. This apparent paradox is

a result of the LRA and the negligence of radiation effects
inherent to the above treatment. As we shall see, relaxing
the LRA to include quantum corrections associated with
the finite compressibility of the electron gas, we indeed
find R−1 size corrections to the quasi-static result for both
the LSPR frequency and its linewidth.

1.3.9 Nanoscale experimental explorations

The preceding sections have hopefully served to establish a
curiosity for nonlocal effects in the optical response of plas-
monic nanostructures. The aim of this section is to drive
home the point by also providing the experimental argu-
ments why explorations of quantum and nonlocal effects
are both intriguing and timely problems in the field of plas-
monics. In a way, the argument is two-fold, representing
developments in both the ability of nanotechnology to not
only enable true nanoscale plasmonic structures but also
the advancements in instrumentation and measurement
techniques, now facilitating the probing and resolution of
plasmons and their hosting environments down to almost
the atomic length scales [96, 97]. The experimental com-
munity now has access to both samples and experimental
techniques that have enabled intriguing observations that
seriously challenge the foundation and understanding of
light–matter interactions inherently rooted in the com-
mon and widespread assumption of a local electrodynamic
response of matter.

Figure 3 displays a selection of noble-metal-based
plasmonic nanostructures from the international liter-
ature, being enabled with modern techniques in nan-
otechnology and nanofabrication, ranging from bottom-
up chemically synthesized metal nanoparticles to top-
down patterning of metals by electron-beam lithography
(EBL) and focused-ion beam (FIB) lithography. The exam-
ples have the exhibition of extreme nanoscale features
in common, while also serving to highlight the capabili-
ties of scanning transmission electron microscopy (STEM)
in imaging these nanostructures with a resolution reach-
ing the atomic scale. As an example, panel (A) shows a
nanoparticle dimer formed by slightly elongated chemi-
cally grown crystalline gold nanoparticles separated by a
1 nm gap, while the STEM zoom-in image illustrates the
presence of the atomic columns in the crystalline parti-
cles and the atomic-scale perfect ordering of the particles’
surfaces. Likewise, panel (B) shows a chemically synthe-
sized 5 nm silver nanoparticle with the STEM enabling the
visualization of the atomic columns in the crystalline par-
ticle. Panel (C) illustrates the ability of FIB to make steep
and narrow nanogrooves on a gold surface. Here, the deep
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Figure 3: Selection of scanning transmission electron microscopy images of plasmonic nanostructures, all with a common feature of
exhibiting true nanoscale features. (A) Gold nanoparticle dimer exposing a nanogap (left) and with clear indications of the atomic columns
(right). Figure adapted from Ref. [123] (© 2012 American Chemical Society). (B) Silver nanoparticles with a clear indication of the atomic
columns. Figure adapted from Ref. [124]. (C) Steep and narrow nanogrooves in the gold surface. Figure adapted from Ref. [125]. (D) Gold
bow-tie antennas with nanogaps. Figure adapted from Ref. [126] (© 2012 American Chemical Society). (E) An array of gold nanoparticles with
nanogaps. Figure adapted from Ref. [127] (© 2017 American Chemical Society).

trenches constitute metal–insulator–metal (MIM) struc-
tures [128] with the opposing metal surfaces being sep-
arated by nanogaps in the few-nanometer regime. Panel
(D) illustrates the STEM imaging of gold bow-tie anten-
nas with the formation of 3–4 nm gaps enabled by EBL.
The right-hand sub-panel displays the hybridized plasmon
modes probed and visualized with EELS. Finally, panel (E)
shows STEM imaging of superlattices of chemically syn-
thesized gold nanoparticles, being themselves in the sub-5
nm regime, while separated from neighboring particles by
even smaller ∼1 nm gaps. These tiny gaps of plasmonic
dimers can support tremendously enhanced local fields
(see e.g. tutorial explanation in the supplementary infor-
mation of Ref. [129]), and the concept has been explored
for plasmon-enhanced light–matter interactions [130–133]
with astonishing field-enhancement factors.

The impressive capabilities of nanofabrication and
nanoscale imaging can be breathtaking on their own, but
the next challenge to digest is how to theoretically account
for the light–matter interactions in such systems. Here,
the majority of interpretations rely on the use of Ohm’s law
and the Drude model (Eqs. (2c) and (8)) which fully neglect
the existence of mesoscopic phenomena, quantum effects,
and the existence of atomic-scale details in the structures.

The overall hypothesis underlining the formalism
reviewed is that as the characteristic length scale of metal-
lic nanostructures a start to become comparable to the
nonlocal length scale 𝜉 of the jelly electron gas, nonlocal
corrections to the LRA are anticipated. Nevertheless, the
LRA procedure was endorsed in the analyses of experimen-
tal data in Ref. [126] from the group of Joel Yang. The title
of this early seminal paper quite concisely summarizes the
somewhat surprising conclusion [126]: “Nanoplasmonics:
Classical down to the Nanometer Scale”. Having digested
the implications of this paper, one may seriously question
the entire motivation for the efforts to establish a meso-
scopic electrodynamics framework. However, the apparent
consequence of this seminal work has been further chal-
lenged by a number of later works (partly stimulated by
Ref. [126]), now consolidating the consensus that quan-
tum and nonlocal corrections to the LRA are critical to the
interpretation of experiments.

The particle-on-a-mirror configuration was experi-
mentally enabled by the hybridization of gold nanopar-
ticles and substrates with the nanogap being enabled by
the use of ultra-thin spacer materials [134]. As the gap
is reduced, one observes an increasing redshifting, in
accordance with the expectations based on the LRA and
the use of plasmonic hybridization theory [135]. However,
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for gaps smaller than 1–2 nm, the resonance is signifi-
cantly blueshifted with respect to the anticipations from
the LRA. The blueshifting is quite appreciable, signifi-
cantly exceeding the error bars and resolutions of the
optical spectroscopy, while eventually constituting more
than Δ𝜆LSPR ∼ 100 nm for the smallest gap. This is an
observation that cannot immediately be accounted for by
the LRA, and the authors suggest a nonlocal origin of the
blueshifting, being promoted by the very small gap.

In particle-on-a-substrate configurations, indepen-
dent works [136–139] have been addressing the dipole
resonance in the particles with nonlocal effects being
promoted by the smallness of the particles themselves.
With reference to the R3 prefactor in the polarizability
(Eq. (11a)), the particles are too small to have a signifi-
cant optical cross-section [140]. Instead, they are being
explored with EELS, while simultaneously exploiting STEM
to image the particles, which allows a unique correla-
tion of plasmon energies with the particle sizes. Despite
significant error bars associated with the determination
of both the 𝜔LSPR and R, there is an unambiguous and
significant blueshift by up toΔ𝜔LSPR ∼ 0.5 eV for the small-
est particles. This cannot be accounted for by the LRA,
which anticipates that 𝜔LSPR = 𝜔p∕

√
3 is independently

of the radius. Instead, a nonlocal origin of blueshifting has
been proposed, even though the experimental blueshift-
ing [138] appears to exceed the theoretical expectation
[141]. Independent observations of similar results were
used to promote an alternative electron-in-a-box interpre-
tation [139], where the collective plasmon oscillation would
be explained as a result of many individual electron tran-
sitions between occupied and unoccupied electron energy
levels in the metal particle [142]. The interpretation of Ref.
[139] was later debated [143], and essentially, the radius R
seems too large compared to the Fermi wavelength 𝜆F to
cause appreciable and resolvable quantized energy levels
of the electronic structure in the room-temperature exper-
iments [144]. However, irrespective of the interpretations,
the independent and experimentally sound observations
of blueshifts in Refs. [136–139] stand as a result that cannot
be appreciated within the LRA.

As a final example of a much longer-standing exper-
imental observation, optical spectroscopy was done on
silver nanoparticles embedded in different gases [145].
In the case of an argon host medium, the experiments
illustrate very clear R−1 size-dependent corrections in both
the frequency position and the resonance linewidth. This
has as well been addressed by Kreibig and co-workers
[146, 147], including also a more comprehensive treatment

[148]. In passing, we note that this far-field measure-
ment is robust to inhomogeneous broadening associated
with a possible size-dispersion in the ensemble of mea-
sured particles [149]. The size-dependent broadening is
now a well-accepted phenomenon being accounted for
by pragmatically adding a so-called Kreibig term to the
bulk damping [148], i.e. 𝛾 → 𝛾 + AvF∕R, where empirically
A ∼ 1. Microscopically, the Kreibig damping can be under-
stood in the context of surface-enhanced Landau damping
[150–154] manifesting only at the surface, and due to the
surface-to-volume ratio (S∕V ∝ R−1) this eventually leads
to an R−1 correction. However, for three decades its more
explicit relation to the nonlocal response has perhaps
been less clear and there has been no explicit and uni-
fied way of accounting for size-dependent frequency shifts
and broadening in the electrodynamics of more arbitrarily
shaped geometries. As will be discussed, the mesoscopic
electrodynamic framework fills this gap.

At this stage, it is instructive to briefly touch on the Lan-
dau damping of plasmons [155]. Intuitively, plasmons can-
not oscillate at shorter length scales (larger wave vectors)
than allowed for by the Fermi properties of the underlying
electron gas itself. The microscopic mechanism that pre-
vents this from manifesting is known as Landau damping
[155], which suppresses plasmon excitation in metal with a
wave vector exceeding𝜔∕𝑣F (with𝑣F being the Fermi veloc-
ity), in which case plasmons decay into electron–hole pairs
[51]. In plasmonics, the bulk Landau damping is perhaps
not of too much concern, while its influence can be sig-
nificantly enhanced near surfaces [116]. Here, the abrupt
change in confinement supports large Fourier components
of the electromagnetic fields, which exceed the unset for
Landau damping, thus leading to a surface-enhancement
of Landau damping [154, 156–158]. Landau damping will
be discussed in more detail in Section 7.3.

In passing, plasmonic dimers sub-nanometric gaps
have been subject to intense experimental research [123,
126, 139, 159–163]. Promoting extreme light–matter inter-
actions [109], they have been anticipated to host quantum-
tunneling mediated charge-transfer plasmons (CTP)
[82, 164], and there have been experiments claiming
optical-frequency quantum tunneling phenomena in plas-
monic dimers [139, 159]. Clearly, the theoretical explana-
tion of such phenomena would require formalism beyond
the LRA. As will be discussed, the mesoscopic electro-
dynamics being reviewed challenges the importance of
tunneling effects as a significant source of dissipation in
metal-based plasmonic dimers, drawing instead attention
to quantum corrections associated with surface-enhanced
Landau damping and surface-mediated scattering.
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The above discussion has independently emphasized
nanoparticle monomers and dimers, while perhaps leaving
the impression that their electrodynamics represent differ-
ent and independent physics. Indeed, the literature is often
alluding to either quantum-size (monomers) or quantum-
tunneling effects (dimers). In closing this introduction, the
reviewed mesoscopic electrodynamic formalism offers a
unified description, advocating that for many experimen-
tally accessible configurations the compressibility of the
quantum electron gas and the surface-enhanced Landau
scattering constitute the dominating and common way that
quantum nonlocal response influences the electrodynam-
ics of both monomers and dimers.

2 Generalized nonlocal wave
equation

To aid a more general discussion of quantum corrections to
the classical electrodynamics, this section starts from the
general IDE formulation of nonlocal response in Eq. (5),
here without loss of generality written with an emphasis
on the convenient dielectric function representation

𝛁 ×𝛁 × E(r) =
(
𝜔

c

)2

∫ dr′ 𝜺(r, r′)E(r′). (12)

While this IDE form clearly conveys the nonlocal nature
of the problem, we will here pursue the goal of a fully
equivalent PDE formulation involving only a single PDE
for the electrical field. In particular, Ref. [165] posed
the curious question if nonlocal electrodynamics could
be reformulated in terms of the following second-order
PDE?

𝛁 ×𝛁 × E(r) =
(
𝜔

c

)2 [
𝜀(𝜔)+ 𝜉2𝛁∇

]
E(r). (13)

If so, we would have rendered the problem mathematically
local in nature, i.e. only involving one spatial coordinate.
Furthermore, we would also have eliminated the J-field
problem, leaving us with a generalized eigenvalue problem
involving only the E-field. Conceptually, this would be no
small feat, being also of practical importance for computa-
tional electrodynamics [166] with accounts for the nonlocal
plasmonic response. At this stage, 𝛁∇ remains an abstract
second-order linear partial-differential operator represent-
ing the nonlocality and its correction to the LRA Drude
dielectric function 𝜀(𝜔), while 𝜉 would be a length scale
being characteristic of the finite range of the nonlocal
response. Below, we discuss possible embodiments of the
operator in more detail.

2.1 Short-range isotropic response
Inspired by the phenomenological approach of Ref. [100],
let us focus on an isotropic homogeneous electron gas
where𝜀(r, r′) = 𝜀(|r − r′|). We aim to relax the assumption
of the local response in Eq. (9) by relaxing the Dirac delta
function response to occur over a finite range. Anticipat-
ing that this range is not too long (consistent with q2

wavevector corrections to the LRA Drude function [167]),
we next introduce the first three moments of the short-
range isotropic response function

∫ dR 𝜀(|R|) = 𝜀(𝜔), (14a)

∫ dR R 𝜀(|R|) = 0, (14b)

∫ dR R2
𝜀(|R|) ≡ 𝜉2

. (14c)

Recalling Eq. (9), the (zeroth) moment of the response
function naturally gives the Drude dielectric function 𝜀(𝜔)
associated with the LRA. The first moment vanishes for
symmetry reasons and irrespectively of the details of the
response function, since the integral involves the product
of an even and an odd function, making the full integrand
an odd function with respect to R = r − r′. The second
moment by definition naturally gives the range 𝜉 of the
response function. In addition to the systematic introduc-
tion of the range 𝜉, the usefulness of these moments will
soon become clear. Finally, the 𝜉-notation is deliberately
chosen to underline its close resemblance to the 𝜉 nonlocal
length scale that will be introduced in proceeding sections.

2.2 Transformation to PDE formulation
Naturally, 𝜉 is a small length scale that must be associ-
ated with the intrinsic length scales of the electron gas. For
the moment, one could have the Fermi wavelength 𝜆F in
mind, or alternatively the Thomas–Fermi screening length
q−1

TF [86]. Even without knowledge about the microscopic
details of the response function, it thus feels safe to assume
that all other fields vary slowly on the length scale of 𝜉. In
particular, as suggested in Figure 4, the E-field inside the
integral in Eq. (12) will vary on the much longer length
scale of 𝜆, which motivates a Taylor expansion of E(r′, 𝜔)
around the point r, anticipating that we can then subse-
quently perform the integral term by term. To second-order
in

(
r′ − r

)
this expansion gives

E
𝛼

(r′, 𝜔) ≃ E
𝛼

(r, 𝜔)+𝛁E
𝛼

(r, 𝜔) ⋅
(

r′ − r
)

+ 1
2
(

r′ − r
)T [𝛁𝛁E

𝛼
(r′, 𝜔)

] (
r′ − r

)
… (15)
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Figure 4: Schematic illustration of a short-range isotropic
response function 𝜀(|r − r′|) and the comparison of the nonlocal
range 𝜉 to the dimension of the nanostructure a, and the wavelength
𝜆 of the polarizing optical field. The analysis assumes that
𝜉 ≪ a ≪ 𝜆.

where the Hessian 𝛁𝛁 has elements {∇∇}
𝛼𝜂
= 𝜕

𝛼
𝜕
𝜂

and
𝛼 = {x, y, z} and 𝜂 = {x, y, z}. Here, we already start to
see the contours of what the abstract operator 𝛁∇ could
possibly be.

When now performing the integral term by term, the
moments defined in Eq. (14) will come in handy and we
immediately see that leading order in this expansion,
𝛁∇ will involve second-order partial derivatives. In fact,
in a scalar treatment for the electrical field, the Taylor
expansion immediately gives 𝛁∇→ 𝛁2 [165]. Second-order
off-diagonal terms, such as 𝜕x𝜕y, do not contribute for
the same symmetry reasons that make the first moment
vanish. Considering the vectorial nature, we could natu-
rally also imagine terms in 𝛁∇ involving the double-curl
operator (𝛁 ×𝛁×) and the gradient-of-divergence opera-
tor (𝛁[𝛁⋅ ]). In passing, we note how curl and divergence
operators are already common to the PDE formulation of
Maxwell’s equations (Eq. (1)) and that the double-curl oper-
ator is already featured on the left-hand side in both the
IDE (Eq. (12)) and PDE (Eq. (13)) formulations of the wave
problem.

How general is the above treatment then? Since
the only assumption is that we have a short-range
isotropic response, the nonlocal correction term 𝜉

2𝛁∇
should hold irrespectively of the microscopic details
underlining the response function [165]. As such, one
could even imagine several co-existing mechanisms con-
tributing in concert to give a common overall nonlo-
cal range of the response. As such, it seems natural to
anticipate that 𝜉2 = ∑

i𝜉
2
i . In Section 4 we shall explic-

itly consider one such example where convection and

diffusion coexist to form exactly such a problem with
𝜉

2 = 𝜉2
conv + 𝜉2

dif [168].
With the formal formulation of the problem as a sin-

gle PDE, it is now also apparent how nonlocal response
effectively enters as a small smearing term, that blurs
induced surface charge over a finite length scale. As such,
it is also clear how quantum nonlocal effects tend to
manifest as spectral shifts proportional to the surface-
to-volume ratio. Also, the LRA field singularities associ-
ated with abrupt variations in surface topology, commonly
addressed through by-hand addition of artificial rounding
[170], will now be smeared over a finite length scale 𝜉.
An alternative perspective is that even when plasmons are
confined in arbitrarily sharp boxes, the cut-off in the wave
vector (essentially 𝜉−1 ∼ 𝜔∕𝑣F) limits the higher Fourier
components and consequently prevents a full resolving
of the geometry. Figure 5 shows an example, where the
metal surface has an abruptly varying surface topogra-
phy. In the particular example, we show the electrical-field
intensity distribution for the excitation of an arbitrarily
sharp metallic tip. Clearly, the underlying geometry has
a self-similarity, thus posing a singular problem for wave
equations without any intrinsic length scales [171]. In the
LRA such a structure would exhibit a strong field singu-
larity [110] whereas nonlocal response serves to smear the
induced charges and the field intensity over a character-
istic length scale given by 𝜉. This brings us to also note
a more practical side to the Laplacian-like diffusion term.
As it is already well known from efforts to numerically
solve the Navier–Stokes equation for hydrodynamic prob-
lems, the pragmatic addition of a small artificial diffusion is
often useful and even essential to stabilize numerical solu-
tions [172]. Here, the Laplacian-like term actually benefits
numerical solutions of plasmonic problems in a similar

Figure 5: Typical electrical-field intensity for the plane-wave
electromagnetic excitation of an arbitrarily sharp metallic tip. The
nonlocal response serves to smear out the diverging field of the
otherwise singular geometry. The results are obtained with the aid
of a finite-element method implementation of the hydrodynamic
model. Figure adapted from Ref. [169] (© 2012 AIP Publishing).
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way, even though we shall in the next sections empha-
size the physical origin rather than being an artificially
introduced term. With this smearing term in the equation,
electrodynamic simulations of metal structures with even
arbitrarily sharp features in the surface topography will not
suffer the usual convergence issues due to the underlying
singular response [173].

As another example of the influence of a finite 𝜉, the
hydrodynamic model has been applied to hyperbolic meta-
materials [21] comprised alternating thin parallel layers of
metal and dielectric. Here, the cut-off in plasmon wave vec-
tor 𝜉−1 ∼ 𝜔∕𝑣F serves to regularize the otherwise diverging
density-of-states [174], thus imposing fundamental limi-
tations on the enhancement of light–matter interactions
that hyperbolic metamaterials can offer, e.g. in combina-
tion with quantum emitters. Similar limitations appear in
relation to light–matter interactions enhanced in the near
vicinity of nanocorrugated metal surfaces. As an example,
the surfaced-enhanced Raman scattering [175–178] on cor-
rugated surfaces [179] is naturally reduced by geometrical
rounding [180], while nonlocal response poses further
fundamental limitations on the otherwise diverging effect
[181]. Having discussed the overall nonlocal modifications
of the electrodynamic wave equation, we now proceed to
specific semiclassical models that allow us to estimate the
nonlocal length scale 𝜉, i.e. the strength of the quantum
corrections to the LRA description.

3 Semiclassical nonlocal
hydrodynamic model
– convection dynamics

Having discussed the more general properties of nonlocal
electrodynamics, we now proceed to a particular semi-
classical embodiment of this. The nonlocal hydrodynamic
treatment of electrons in metals dates back to seminal work
by Bloch [49], and the later literature is rich, including
the more comprehensive textbook by Boardman [182] and
reviews by Barton [76] and later Pitarke et al. [60] and Raza
et al. [183].

The starting point for the inclusion of nonlocal effects
is in direct line with the Drude equation of motion that
we have already considered in the introduction. However,
rather than considering first the equation of motion for a
single electron, while later multiplying by the density of
electrons in quantum electron gas, we this time imme-
diately adapt a fluidic picture that accounts also for a
finite compressibility of the electron system. The hydro-
dynamic equation of motion is then given by (suppressing

for transparency the spatial and temporal arguments)

Classical equation−of−motion
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

m
[
𝜕t + 𝒗 ⋅𝛁

]
𝒗 = −m𝛾𝒗− eE −

Quantum
correction
⏞⏞⏞

𝛁𝛿G[n]
𝛿n

(16)

Here, 𝒗 is now to be understood as the velocity field of
the electron fluid. As in the Navier–Stokes equation of
fluid dynamics, the acceleration term on the left-hand side
is now emphasizing a Lagrangian specification with the
usual time derivative replaced by the material (substan-
tial) time derivative. On the right-hand side, we have the
sum of forces acting on the fluid particle. In addition to the
electrical part of the Lorentz force and the phenomenolog-
ical damping term, we have compared to Eq. (7) now also
included a gradient term of an energy-density functional
associated with the density-dependent total energy of the
electron gas. It is this pressure-like term that introduces
the quantum mechanics of the electron system into the
semiclassical equation of motion.

3.1 Quantum description of the
compressible electron gas

Depending on the level of details that we consider in the
quantum description of the electron gas, this energy func-
tional can in addition to the internal kinetic energy of
the electron gas also include correlation and exchange
phenomena. For the free-electron gas with a parabolic dis-
persion relation it is relatively straightforward to show that
G ∝ n5∕3, and within Thomas–Fermi theory one likewise
finds the result [86]

G[n] = 3h2

10m

( 3
8𝜋

)2∕3

∫ dr n5∕3(r, t) (17)

and consequently the functional derivative becomes
𝛿G∕𝛿n ∝ m𝑣2

F(n∕n0)2∕3, with 𝑣F being the Fermi velocity
associated with the equilibrium electron density n0 [86].
Note how the equation of motion in Eq. (16) is both non-
linear and nonlocal, thus forming a starting point for also
nonlinear and nonlocal plasmonics [184–186], while we
will here aim for a linear relationship between the induced
current density J and the driving E-field.

3.2 Linear-response nonlocal constitutive
relation – quantum corrections to
Ohm’s local-response law

In the efforts to extract the linear-response part of Eq. (16)
and determine the frequency-domain generalized consti-
tutive law, we first differentiate the equation of motion with
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respect to time and then invoke the continuity equation,

𝜕tn = −𝛁 ⋅ (n𝒗), (18)

to eliminate 𝜕tn. In the spirit of linear-response theory, the
equation of motion is linearized, exploiting the following
linearization procedure [183]

n(r, t) = n0 + n1(r, t), (19a)

(19b)

(19c)

𝛿G[n]
𝛿n

=
(
𝛿G[n]
𝛿n

)

0
+
(
𝛿G[n]
𝛿n

)

1
. (19d)

As a result, 𝒗 is the velocity correction to the static sea
of electrons with a homogeneous equilibrium density n0,
while n1 is likewise the small (n1 ≪ n0) induced density
variation associated with the driving E-field. We emphasize
that with the assumption of a homogeneous equilibrium
density n0, we are naturally excluding any quantum-
confinement effects associated with a finite size a of the
metallic domains, which we may safely do as long as we
have a ≫ 𝜆F. Furthermore, we are also implicitly neglect-
ing inhomogeneity in the near vicinity of the metal surface
[187], such as Friedel oscillations [188] on the length scale
of the Thomas–Fermi screening length q−1

TF . On a simi-
lar footing, we are also neglecting the possible quantum
spill-out associated with a finite work function and the
evanescent quantum electron wave functions into the clas-
sically prohibited vacuum surrounding the metal domain.
On the other hand, n1(r, t) is allowed to be inhomogeneous,
and indeed it will be so in the vicinity of the metal sur-
face. Clearly, these chosen physical assumptions will be
reflected in the boundary conditions that we will return to
in Section 3.3.

Finally, the linearization procedure is completed by a
Fourier transformation to the frequency domain to give the
following coupled PDE problem, constituting the master
equation for the nonlocal electrodynamics [189]:

𝛁 ×𝛁 × E(r) =
(
𝜔

c

)2
E(r)+ i𝜔𝜇0J(r), (20a)

𝜉
2(𝜔)𝛁

[
𝛁 ⋅ J(r)

]
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Quantum correction

+ J(r) = 𝜎(𝜔)E(r)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Ohm′slaw

, (20b)

where the dispersive strength of the quantum correction is
given by

𝜉
2(𝜔) = 𝛽

2

𝜔(𝜔 + i𝛾)
, 𝛽

2 = 3
5
𝑣

2
F. (20c)

While Planck’s constant does not appear in this expression,
it is nevertheless a quantum correction since the Fermi
velocity 𝑣F is a concept unique to the quantum treatment
of the electron gas [86]. To aid a transparent comparison
to the LRA Drude problem, we have in Eq. (20a) deliber-
ately omitted interband contributions [𝜀int(𝜔) = 1] in the
first term on the right-hand side, thus fully resembling the
omission of interband contributions in Eq. (8). Here,𝜎(𝜔) is
the already introduced Drude conductivity within the LRA
(Eq. (8)). We have considered the 𝛽-parameter appropriate
for a three-dimensional (3D) electron gas, being reflected
by the 3∕5 prefactor. For more details on this, we refer to
work by Halevi [190] and the discussions by Raza et al.
[183].

Clearly, Eq. (20b) constitutes a generalized constitutive
equation, with the first term on the left-hand side contain-
ing the nonlocal quantum corrections to Ohm’s law. The
range 𝜉 ∼ 𝑣F∕𝜔 of the nonlocal response has a straightfor-
ward interpretation: it is approximately the distance that
an electron would move by convection during the time of
an optical cycle. For the noble metals, this distance is at
most of the order of 1 nm.

In terms of resonances, it can already be anticipated
that this nonlocal correction term will be responsible for
the previously discussed frequency shifts of resonances,
i.e. Δ𝜔LSPR. Since 𝛾 ≪ 𝜔, 𝜉2 has only a small imaginary
part, but in principle, this would add a small nonlocal
broadening too. We shall later in Section 4 return to this.

3.3 Boundary conditions
When interfacing materials with different electromagnetic
properties, boundary conditions constitute a central ele-
ment of the electrodynamic problem [14]. As such, bound-
ary conditions are also central to the nonlocal electrody-
namics as first discussed by Pekar in the context of exciton
problems [191]. For plasmons, this is perhaps also some-
thing that has caused some, at least initially, confusion in
the literature [192, 193]. In the following, we summarize
the considerations for the nonlocal hydrodynamic model.

In the LRA, the J-field may be entirely eliminated from
the problem, leaving us with a closed PDE for the E-field.
When subsequently looking for solutions inside a finite
metallic domain, possibly coupled to the surrounding exte-
rior vacuum, the PDE naturally needs to be solved subject
to boundary conditions that will connect field solutions in
the interior with those of the exterior. For the LRA problem,
this reduces to the usual boundary conditions for the E-
field itself [14]. The boundary condition for E of course
follows as a consequence of Maxwell’s equations them-
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selves, i.e. the derivation of the boundary conditions only
involves Maxwell’s equations and the use of Gauss’ and
Stokes’ theorems.

Turning to the nonlocal problem and the coupled PDE
in Eq. (20), it is, however, immediately clear that now we
also need an additional boundary condition (ABC) for the
J-field. While the literature might occasionally leave the
impression of some arbitrariness and that there is some
freedom in choosing the ABC, the unambiguous message
to be echoed in this review – which will be substanti-
ated below – is that there is no such freedom for just
convenient mathematical or numerical choices. In fact,
once the physical context has been specified, the ABC
follows explicitly from already existing boundary condi-
tions and the fulfillment of the continuity equation for the
induced charge fluctuations. In other words, we should first
formulate the physical assumptions and then boundary
conditions simply follow from the governing equations. For
more detailed accounts, we refer to Refs. [117, 168, 189, 194].
The above being said, one can of course imagine situations
with surfaces of more complex matter, where unambiguous
physical conditions are not easily formulated.

To proceed with the formulation of boundary condi-
tions for the J-field, the physical assumption is here to
treat the electron gas as homogeneous (in the equilibrium),
being confined by a hard-wall potential associated with a
very high work function. In this way, n0 is assumed con-
stant throughout the metal while it drops abruptly to zero
outside the metal surface. This formed a starting point
for the specular-reflection model of Ritchie and Marusak
[195] and the semiclassical infinite-barrier model of Fuchs
and Kliewer [196]. The step-like variation unambiguously
leads to exactly one required ABC, namely the continuity of
the normal component of the free-electron current density
J [189, 197]. The implicit assumption of an infinite work
function does not allow electrons outside the metal. Con-
sequently, we have J = 0 outside the metal, while being
still finite inside the metal. Thus, no electrons move across
the metal surface, while they are still free to move par-
allel to the surface (in this way the hydrodynamics of
electrons is different from the more common treatment
of hydrodynamic flow assuming a no-slip Dirichlet-type
boundary condition for the fluid velocity [198]). In other
words, the normal component of J is zero at the surface,
which we mathematically express as n ⋅ J = 0, with n being
the normal vector. Here, we have emphasized the physi-
cal arguments, but this can also be derived rigorously by
invoking Gauss’ theorem [117].

3.4 Reflections on physical assumptions
Let us now briefly reflect on the physical assumptions.
The assumption for the ground state of the electron gas
corresponds to an infinite work function, thus suppressing
quantum-spill out of electrons beyond the surface of the
metal, while we are clearly also neglecting any density
variations inside the metal, i.e. confinement effects such
as Friedel oscillations [187]. The pragmatic defense is that
despite the limitations, this picture is close in spirit to the
LRA that involves an implicit assumption of a spatially
uniform equilibrium electron density, i.e. n0(r) ≈ n0.

We emphasize that this is a reasonable first description
of noble metals that are commonly employed in plasmon-
ics, while spill-out effects are mainly important for less
common cases like sodium [122, 199–202]. The effects of
mutual interactions among the electrons depend naturally
on n0, and details of the equilibrium density profile are
thus commonly explored for varying the Wigner–Seitz
radius rs ∝ n−1∕3

0 [187], conveniently normalized by the
Bohr radius a0. For noble metals rs is roughly 2a0 [86],
while sodium is characterized by rs ≃ 4a0, where the lower
density reduces screening, thus causing more pronounced
Friedel oscillations. In both cases, deviations from a uni-
form electron gas manifest on the Fermi wavelength scale,
and only in the near vicinity of the surface.

For Friedel oscillations near the interior of the metal
surface, we emphasize that there have been attempts of
relaxing the assumption of a homogeneous equilibrium
density [203, 203–206]. As an example, the self-consistent
jellium results for n0(r) by Lang and Kohn [187] have
been incorporated in LRA descriptions with a locally vary-
ing electron density [205]. Despite the intuitive simple
extension of the LRA, this results in nonphysical singu-
lar behavior at points in space where 𝜀(r, 𝜔) ∼ 0 (in the
evanescent tail of the electron density), being an artifact of
the underlying LRA [205]. The fact that the Fourier trans-
form of n0(r) would introduce wave-vector components
exceeding𝜔∕𝑣F (the onset of Landau damping) is resolved
by self-consistent hydrodynamic treatments [207–209].

3.5 Rewriting the coupled PDE problem
Returning to Eq. (20) the next task is now to eliminate
the J-field from the problem, thus hopefully ending up
with a single PDE for the E-field. Here, the perhaps not so
immediately obvious trick is to first operate on Eq. (20a)
by taking the divergence. Since the divergence of any curl
field is zero, we immediately get the general property that
𝛁 ⋅ E ∝ 𝛁 ⋅ J. Applying this in turn to Eq. (20b) it straight-
forwardly allows us to now eliminate the J-field with the
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following result [194]

𝛁 ×𝛁 × E(r) =
(
𝜔

c

)2 [
𝜀(𝜔)+ 𝜉2(𝜔)𝛁[𝛁⋅ ]

]
E(r). (21)

It should be emphasized that this PDE has exactly the struc-
ture that we anticipated in Eq. (13), with 𝛁𝛁→ 𝛁[𝛁⋅ ]. We
also emphasize that we have arrived at this exact result
without invoking any approximations in the rewriting
steps, and using only standard identities from the calculus
of vector fields.

Regarding boundary conditions at the metal’s sur-
faces, we note that in the context of Eq. (21), the surface
boundary condition n ⋅ J implies that n ⋅ E is only contin-
uous across the boundary in the absence of interband
transitions and for vacuum surroundings. However, in
general, there is a normal-component electric-field discon-
tinuity if the interband contribution on the metal side is
not fully compensated by dielectric contributions on the
dielectric side of the interface [117].

To close the circle of the phenomenological arguments
in Section 2.2, based on the Taylor expansion that led
to a Laplacian nonlocal correction term, we use that for
any vector field F we have 𝛁 ×𝛁 × F = 𝛁

[
𝛁 ⋅ F

]
−𝛁2F.

In this way we can now introduce the Laplacian operator
and grouping the additional double-curl term with the one
already existing on the left-hand side, we arrive at the exact
rewriting of the problem [194],

𝛁 ×𝛁 × E(r) =
(
𝜔

c

)2
s(k𝜉)

[
𝜀(𝜔)+ 𝜉2(𝜔)𝛁2

]
E(r), (22)

where on the right-hand side s(x) =
(

1− x2)−1 = 1 + (x2)
gives a re-scaling of the initial eigenvalue (𝜔∕c)2. For
k𝜉 = (𝜔∕c)𝜉 ≪ 1, being equivalent to𝜉 ≪ 𝜆, the re-scaling
is, however, negligible and we finally arrive at the result
in Eq. (13) with 𝛁∇→ 𝛁2 already anticipated phenomeno-
logically through the Taylor expansion procedure which
indeed assumed as a starting point that 𝜉 ≪ 𝜆.

Let us finally note that in relation to the differences
between longitudinal and transverse polarization, the form
of𝛁∇will differentiate between the two polarizations. From
the Fourier representation of the hydrodynamic model it
is well-known that whereas the transverse component of
the response function is wave vector independent, the lon-
gitudinal component depends on the wave vector [183].
Returning to Eq. (21), we indeed immediately find with a
Helmholtz decomposition that transverse and longitudinal
solutions satisfy the following

0 =
[
𝜀(𝜔)

(
𝜔

c

)2
+𝛁2

]
ET , (𝛁 ⋅ E = 0), (23a)

0 =
[
𝜀(𝜔)+ 𝜉2(𝜔)𝛁2

]
EL, (𝛁 × E = 0). (23b)

The latter equation adds wave vector dispersion to the pre-
viously discussed bulk plasmon, with 𝜔L(q) being now
defined by 0 = 𝜀(𝜔L)+ 𝜉2(𝜔L)(iq)2. Inserting the Drude
dielectric function, we get 𝜔L(q) =

√
𝜔2

p + 𝛽2q2. In the

same way, we find that 𝜔T (q) =
√
𝜔2

p + c2q2. For an in-
depth discussion that classifies and compares both scalar
and tensorial nonlocal response models, see Ref. [210].

3.6 Implications for experiments
The implications of the hydrodynamic formalism are per-
haps best illustrated by considering the polarization of a
small metallic sphere of radius R. Figure 6 illustrates the
induced fields in a sub-wavelength 2D version of this geom-
etry, with panel (a) indicating how the induced charge
density associated with the dipole resonance is smeared
over a finite region (∼ 𝜉) in the near vicinity of the surface
(rather than being a strict surface charge as in the LRA),
while panel (b) shows the corresponding norm of the elec-
tric field. The 3D spherical version of this problem can
naturally be treated exactly within Mie theory [120, 189].
For the dipole resonance, we find to leading-order in R−1

that [120, 124, 168, 183, 189]

𝜔LSPR ≃
𝜔p√

3
+ 𝛽√

2R
=
𝜔p√

3

[
1 + 𝜉√

2R

]
(24a)

which implies that the relative spectral shift is given by

Δ𝜔LSPR
𝜔LSPR

≃ 𝜉√
2R
. (24b)

Figure 6: Schematic illustration of excitation of sub-wavelength
metallic disk, R ≪ 𝜆, with the E-field (in red) polarized in the
horizontal plane. (a) Induced charge density 𝜚(r) of the dipole
resonance and (b) corresponding norm of the electric field.
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This is the hydrodynamic nonlocal explanation for the
R−1 size-dependent shift discussed in the literature for
noble metals. While there indeed is a qualitatively good
agreement, the experimentally observed blueshifting in
Ref. [125] exceeds the predictions of the hydrodynamic
model (using generally agreed tabulated Fermi properties
of silver [86]). We deliberately refrain from any pragmatic
fudge-fitting in the quest of claiming also a quantitative
agreement. It is emphasized that the spectral blueshift
associated with the finite compressibility of the free elec-
tron gas (treated in a hard-wall approximation) is opposite
to the redshift characteristic for metals, such as sodium and
aluminum, with pronounced spill-out that conflicts with
the hard-wall approximation. This apparent problem of
opposite spectral shifts derives from the hard-wall approx-
imation, while it is per se not a fundamental issue of
hydrodynamics, and self-consistent hydrodynamic mod-
els do indeed capture both size-dependent blueshifts and
redshifts in silver and sodium particles, respectively [207].

As another consequence, Figure 7 shows how in addi-
tion to the blueshifting of the dipole resonance below
the plasma frequency, the nonlocal hydrodynamic model
also predicts a series of longitudinal resonances above
the plasma frequency. These resonances are associated
with particle-in-a-box type standing longitudinal plasmon
waves confined by the metal surface [189]. Fingerprints of
nonlocal hydrodynamic response are constituted by the
blueshifting of the dipole resonance and the emergence
of bulk-plasmon resonances above the plasma frequency.
Naturally, discrete longitudinal resonances can also be
confined in other geometries, and Ref. [189] showed that
they naturally only appear above the plasma frequency,

Figure 7: Extinction spectrum of a cylinder of radius R = 2 nm,
contrasting the nonlocal hydrodynamic result (solid line) to the
local-response approximation (dashed line). The chosen materials
parameters resemble gold with ℏ𝜔p = 8.812 eV, ℏ𝛾 = 0.0752 eV,
and 𝑣F = 0.0046c = 1.39 × 106 m/s.

while being damped below the plasma frequency. Dis-
crete longitudinal resonances in ultra-thin metal films [211]
have been experimentally observed in e.g. silver [212] and
potassium [213] films.

Turning to dimers of nanoparticles, the tiny gap works
essentially as a capacitor, thus hosting an increasing local
electrical field as the gap is reduced. In the LRA, there
is naturally a diverging and eventually singular behavior
[214, 215]. Here, the nonlocal response redistributes the
induced surface charge over a finite region 𝜉 near the sur-
face, thus relaxing the singular response even when the
particles are touching [173, 216–219]. This introduces fun-
damental limitations to the field enhancement, while also
posing fundamental limitations for the associated plasmon
hybridization [220].

4 Generalized nonlocal
hydrodynamic model
– convection–diffusion dynamics

In this section, we introduce the concept of diffusion
into the hydrodynamic description of the nonlocal plas-
monic response of the electron gas [168]. The already
treated hydrodynamic model is semiclassically accounting
for the finite compressibility of the electron gas. Here, we
will in addition account for surface-scattering phenom-
ena by introducing an additional relaxation mechanism
for the surface-induced charge. While the extension is
surprisingly straightforward, the consequences of the addi-
tional account for diffusion are far reaching. After having
reviewed the formalism, the section will briefly provide
such examples.

It should be emphasized that while diffusive transport
may perhaps seem like a new innovation in the context of
mesoscopic electrodynamics, its importance for the nonlo-
cal response was already anticipated in textbook accounts
on spatial dispersion [221]. An important contribution of
Ref. [168] was to treat convection and diffusion on an equal
footing. The odds are high that this calculation was already
worked out in detail by Landau and Liftshitz, while the final
result eventually only qualified for an insightful footnote
in their Course of Theoretical Physics [221]: “For an isotropic
conducting medium, the conditions for spatial dispersion to
be negligible may be different for transverse and longitudi-
nal permittivities. For the former, the characteristic distance
𝜉 over which the kernel of the integral in (4) is nonzero is the
smaller of 𝑣F∕𝜔 and 𝓁, where 𝑣F is the mean velocity of the
carriers and𝓁 their mean-free path. For the longitudinal per-
mittivity, 𝜉 is the smaller of 𝑣F∕𝜔 and (𝓁𝑣F∕𝜔)1∕2, the latter
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being the distance traveled by the carriers by diffusion along
the field in a time∼ 1∕𝜔; the diffusion coefficient𝒟 ∼ 𝓁𝑣F.
The spatial dispersion is unimportant if k𝜉 ≪ 1.”2

Naturally, the convection–diffusion equation is widely
exploited in various disciplines within natural and techni-
cal sciences (and beyond), including drift-diffusion theory
in semiconductor physics [222] as well as fluid mechan-
ics and chemical engineer [77]. In fact, earlier work on
nanofluidics and convection–diffusion dynamics in the
electrohydrodynamics of electrolytes [223] was indirectly
catalyzing the consideration of co-existing transport mech-
anisms explored in Ref. [168].

4.1 Convection–diffusion dynamics
We start from the equation of motion of the original hydro-
dynamic treatment, Eq. (16), but rather than the usual
simple form for the continuity equation, Eq. (18), we now
instead invoke the convection–diffusion equation,

𝜕tn = 𝒟𝛁2n−𝛁 ⋅ (n𝒗), (25)

where𝒟 is the classical diffusion constant associated with
diffusive transport of the electrons. Again, we invoke the
linearization procedure detailed in Eq. (19) and repeat the
tedious manipulations that eventually led to Eq. (20). Per-
haps not too surprising, with this procedure we arrive at
the exact same master equation for the generalized nonlo-
cal optical response (GNOR), only now with a generalized
nonlocal length scale [168]

𝜉
2(𝜔) = 𝛽

2

𝜔(𝜔+ i𝛾)
+ 𝒟

i𝜔
. (26)

In terms of boundary conditions, the convection and dif-
fusion components of the current entering Fick’s law are
of the same mathematical form and they are consequently
subject to the same boundary conditions [168]. As a result,
boundary conditions remain unchanged in the presence of
diffusion, giving us n ⋅ J = 0 on the metal surfaces so that
no electrons escape the metal volumes.

As already anticipated in Section 2.2, convection and
diffusion coexist to form a generalized nonlocal problem
with 𝜉2 = 𝜉2

conv + 𝜉2
dif, where 𝜉2

conv =
𝛽

2

𝜔(𝜔+i𝛾) is that of the
usual hydrodynamic problem, while 𝜉2

dif =
𝒟
i𝜔 is an addi-

tional contribution due to diffusion. This is fully along
the line of the discussion by Landau and Liftshitz (see
quote above), the main contribution of this work being

2 Mathematical expressions have been adapted to the current nota-
tion, and the referenced equation is now referring to the correspond-
ing equation in this review.

the additional appearance of Euler’s imaginary i in the
addition of 𝜉2

conv and 𝜉2
dif. Of course, this is more than a

mathematical curiosity, and it will have important physical
implications. In passing, we note that the only conceptual
change in the formalism is to render 𝜉2 complex valued. As
such, all existing work rooted in the usual hydrodynamic
description can easily be extended to include diffusion
by making the simple substitution 𝛽2 → 𝛽

2 − i𝒟(𝜔 + i𝛾)
[168]. This applies not only to analytic treatments e.g. Refs.
[104, 120, 189] but also to numerical implementations,
e.g. the finite-element method (FEM) work [173, 194, 224],
the discontinuous Galerkin time-domain method [225], the
Green’s function surface-integral method [226], the Fourier
modal method [227], and multipole expansions [228].

4.2 Physics underlining the diffusion
Starting from statistical physics and the principle of
entropy [221], it is clear that any initial charge inhomo-
geneity will seek to relax or equilibrate to a state without
gradients in the density. Clearly, this can be facilitated
by various means, including the mutual interaction of the
electrons. Classically, we mimic such complex microscopic
phenomena by the diffusion process. Invoking the diffu-
sion equation in the above treatment, we are thus hiding
our ignorance about the microscopic details of such many-
body interactions behind the Brownian motion of charge
carriers by resuming to the introduction of a classical
diffusion constant 𝒟.

The diffusion constant is generally interlinked with
other transport parameters such as the scattering time, e.g.
𝒟 ∝ 𝜏 = 𝛾−1. In the context of plasmonics, the diffusion
constant 𝒟 accounts for the diffusive temporal spreading
of an initially pure surface charge into the metal volume of
a plasmonic nanoparticle. Diffusion thus degrades plas-
monic excitations, providing an additional broadening
mechanism that, mathematically, is enacted by an imag-
inary contribution to 𝜉2. As such, 𝒟 captures the effects
of both mutual interactions among the electrons and the
nonspecular scattering of the electrons on rough metal
surfaces. However, it also mimics the surface-enhanced
Landau damping due to the creation of electron–hole
pairs, as will be discussed in more detail in Section 5.

The potential misconception that diffusion is slow
could motivate its negligence in comparison with convec-
tion (see discussion in the quote by Landau and Liftshitz
above). Here, we have treated the two mechanisms on an
equal footing, allowing the physical relevant parameters to
finally decide if one of them would dominate the other, or
if they indeed are playing in concert to form a generalized
complex-valued nonlocal parameter.
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In which domain is the model valid? For classical gases
of charged particles (such as dilute plasma, electrolytes,
and weakly doped semiconductors), the velocity distribu-
tion is governed by the Maxwell–Boltzmann statistics and
the diffusion constant𝒟 is proportional to the temperature
T, as summarized by the Einstein relation. The primary
focus here is, however, metals with a denser electron gas
that exhibits other statistics. In this case, Fermi–Dirac
statistics implies a narrow transport velocity distribution
[221] with a characteristic velocity 𝑣F. As a result, the diffu-
sion constant is simply given by 𝒟 ≃ 𝑣2

F𝜏, corresponding
to a mean-free path of 𝓁 = 𝑣F𝜏. We emphasize that the
diffusive model is valid for structural dimensions exceed-
ing the mean-free path. In pure single crystals [229] 𝓁
can be of the order of 100 nm for silver and gold, down
to ∼3 nm for sodium. The reason for mentioning sodium
will become clear when later discussing ab initio modeling
of plasmons. Moreover, in realistic plasmonic nanostruc-
tures,𝓁 depends on actual material-processing conditions,
becoming naturally shorter than in single-crystalline bulk
metals. This enlarges the validity domain of a diffusion
description to include structures with dimensions of only
a few nanometers. For even smaller dimensions with a < 𝓁,
electrons will move ballistically between the surfaces of the
structure, and surface scattering might become important.

For metals, Eq. (26) simplifies to

𝜉
2(𝜔) =

𝑣
2
F
𝜔2

[
3
5
− i𝜔
𝛾

]
+ (𝛾∕𝜔). (27)

This result enables an important insight into the inter-
play of different broadening mechanisms: the lower the
Ohmic loss and absorption, the more important is the non-
local response due to long-range diffusion of the induced
charge. Re-introducing the diffusion constant 𝒟 and the
𝛽-parameter we arrive at the equation

𝜉
2(𝜔) ≃ 𝛽

2

𝜔2 − i𝒟
𝜔
, 𝓁 ≫ 𝑣F∕𝜔, (28)

which holds if the mean-free path significantly exceeds the
convective length. The existence of spatial dispersion in
homogeneous media, as for example, appearing within the
common hydrodynamic Drude model, can be derived from
higher-level descriptions such as the Boltzmann equation,
the RPA, or techniques exploited also in plasma physics
[230], such as quantum kinetics and hydrodynamics [231].
Beyond hydrodynamics, confined structures with broken
translational invariance constitute a largely unexplored
territory, with few attempts dealing with RPA aspects of
localized plasmon resonances [204]. In support of the
prediction of diffusive broadening, both self-consistent
hydrodynamic studies [232] and RPA studies have revealed

an increased plasmon linewidth associated with Landau
damping [233].

Table 1 is summarizing the characteristic length scales
for two noble metals, gold and silver, being widely
exploited in plasmonics. In addition, the table also
includes results for sodium. Though clearly not experimen-
tally attractable, sodium constitutes a good free-electron
jellium, which motivates its widespread consideration in
ab initio studies within TDDFT [201, 234–238]. The main
message is the similar ball game of the convective and
diffusive contributions to the nonlocal length scale, being
both in the sub-nanometer to nanometer regime. The fact
that they are roughly similar drives home the need for the
treatment of those two effects on an equal footing.

4.3 The relation to higher-level descriptions
Above, we have used the classically widely accepted con-
vection–diffusion model to account for diffusive effects
in the hydrodynamic description of plasmons in metallic
nanostructures. Here, we briefly mention more recent dis-
cussions of this. In particular, it is long known how the
hydrodynamic model with the convective contribution can
be derived from higher-level descriptions such as the Boltz-
mann transport equation or Kubo formalism [240, 241]. Can
the more recent diffusive contribution be derived in a sim-
ilar manner? Here, we recall that for convection and diffu-
sion sharing the same underlying microscopic mechanism,
their high and low-frequency limits should be intimately
connected by the fluctuation-dissipation theorem [78].
Focusing on the convective contribution 𝜉2

conv as it occurs
in the standard hydrodynamic model of a bulk metal, we
see that it actually already contains both high-frequency
convective and low-frequency diffusive contributions, i.e.

𝑣
2
F

𝜔(𝜔+ i𝛾)
≃
⎧
⎪⎨⎪⎩

𝑣
2
F
𝜔2 , 𝜔 ≫ 𝛾

𝑣
2
F

i𝜔𝛾
= 𝒟

i𝜔
, 𝜔 ≪ 𝛾

(29)

where 𝒟 = 𝑣2
F∕𝛾 is the already introduced classical esti-

mate for the diffusion constant. Now, this also indicates
that a high-frequency diffusive contribution term would
not emerge out of Boltzmann considerations applied to
the homogeneous bulk system. While somewhat a lengthy
discussion not repeated here, this can indeed also be
shown explicitly [242]. Simply stated, bulk diffusion at
optical frequencies is negligible. So, what is then the
physical mechanism behind the seemingly experimentally
observed diffusion at optical frequencies? Here, surface-
enhanced Landau damping represents a surface-scattering
effect beyond the bulk description of the metal [154, 156,
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Table 1: Central length scales and parameters for gold (Au), silver (Ag), and sodium (Na).

Fermi wavelength
𝝀F

Mean-free path
𝓵

Convection length
𝓵conv = 𝒗F/𝝎p

Diffusion length

𝓵dif =
√
𝓓∕𝝎p

Scattering time
𝝎p/𝜸

Au 0.52 nm 103 nm 0.10 nm 1.9 nm 1000
0.52 nm 50 nm 0.10 nm 1.3 nm 465a

Ag 0.52 nm 103 nm 0.10 nm 1.9 nm 1000
0.52 nm 40 nm 0.10 nm 1.1 nm 421a

Na 0.68 nm 2.6 nm 0.12 nm 0.32 nm 21a

0.68 nm 4.4 nm 0.12 nm 0.42 nm 37b

0.68 nm 2.3 nm 0.12 nm 0.31 nm 20c

The entries for different metals are based on Fermi wavelengths (𝜆F), Fermi velocities (𝑣F), and plasma frequencies (𝜔p) taken from Ashcroft
and Mermin [86], while the values for 𝜏 = 1/𝛾, and consequently also 𝒟 ≃ 𝑣2

F𝜏, originate from various references as indicated in the
right-most column of the table. aData tabulated by Blaber et al. [239]. bData used in simulations by Teperik et al. [201]. cData used in
simulations by Stella et al. [237].

157, 243, 244]. In fact, jellium ab initio considerations of
sodium-like metal surfaces in Ref. [202] demonstrate this
very explicitly.

Finally, we note that an ad hoc inclusion of surface
effects in a bulk term should be done with care and one
might naïvely speculate that the diffusion constant should
then at least be space-dependent to only account for dif-
fusion at the surface [242]. However, since the induced
charge density resides only in the near vicinity of the sur-
face without any significant density gradients in the bulk,
the diffusion is anyway only effective near the surface.
Thus, the pragmatic use of a spatially constant diffusion
constant is without practical consequences.

4.4 Implications for experiments

4.4.1 Unified description of size-dependent frequency
blueshifts and line broadening

As a first example of the physical implications, we re-
iterate that the two transport mechanisms together form
a complex-valued 𝜉2, with the real part being predomi-
nantly attributed to the convection, while the imaginary
part originates from the diffusion. For the dipolar LSPR of
a metallic sphere of radius R, one immediately finds R−1

size-corrections to 𝜔LSPR = 𝜔′LSPR + i𝜔′′LSPR given by [120,
124, 168, 183, 189]

𝜔
′
LSPR ≃

𝜔p√
3
+ 𝛽√

2R
, (30a)

𝜔
′′
LSPR ≃ −

𝛾

2
−

√
6𝒟𝜔p

24𝛽R
. (30b)

These expressions for the dipolar resonance transpire
clearly that the R−1 size-dependent nonlocal effects are

present in both the resonance frequency and linewidth.
It should be emphasized that, until the publication of
Ref. [168], line shifts have been explained by the nonlo-
cal response (and competing theories), whereas the line
broadening was ‘put in by hand’. Here, we have arrived
at a unified explanation of both experimentally observed
phenomena in noble metal nanoparticles by nonlocal
effects. Line broadening has been seen experimentally
in the extinction of small particles [145, 148, 245–250].
In particular, this is the generalized nonlocal optical
response (GNOR) explanation for the R−1 size-dependent
shift and broadening discussed in the experiments on sil-
ver nanoparticles, such as Ref. [145]. We note that for a
given size, the size-dependent blueshift is in the same
order of magnitude as the size-dependent broadening, thus
justifying the need for treating both effects on an equal
footing. This is what the GNOR seeks to do by accounting
for both convection and diffusion [168]. In fact, the Kreibig
model𝜔′′LSPR ≃ −

𝛾

2 −
A𝑣F

R , where experimentally A ∼ 1, can
be immediately used to estimate𝒟. Indeed, this procedure
gives values of 𝒟 that are in rough accordance with the
independent data in Table 1.

In passing, EELS explorations of silver nanoparticles
and their higher multipoles have likewise exhibited size-
dependent damping [124], with an angular-momentum
dependence [120] not anticipated by the phenomenolog-
ical AvF∕R term of the Kreibig model [148]. EELS mea-
surements on plasmons in thin nanowires and bow-tie
antennas have also revealed plasmon losses exceeding
the expectations based on bulk-damping parameters [98,
251]. Helped by the PDE formulation, the GNOR can natu-
rally also be used to numerical account for size-dependent
damping in nanostructures of more complex surface mor-
phology beyond mere spherical symmetry.
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As already emphasized in Section 3.6 for the hydrody-
namic model, also the GNOR model invokes the assump-
tions of the hard-wall approximation, thus foremostly
reaching out to the experimentally relevant cases where
noble metals with relatively high work functions are being
used. Without enforcing any self-consistency (such as in
Ref. [207]), the GNOR is on the other hand inadequate
for metals with pronounced spill-out effects, such as the
case of sodium that is being widely considered as a model
system in ab initio accounts [82, 164, 201, 236, 252, 253].

4.4.2 Hybridization and gap-dependent broadening in
nanoparticle dimers

The previous subsection has established contact between
experimental observations on monomers and the GNOR
model, showing how a finite 𝒟-value can mimic size-
dependent damping. Next, the crucial check is to explore
whether the GNOR model would also serve to explain spec-
tra of dimers. In particular, can experimentally observed
gap-dependent broadening [159, 162, 254] in dimers be
explained using the very same choice of𝒟-value?

Figure 8 shows an example where the gap g is reduced
to the nonlocal regime g ≲ 𝑣F∕𝜔. Here, resonances are
slightly blueshifted with respect to the LRA result. When
the gap shrinks further, progressively stronger hybridiza-
tion [135] and accordingly larger bonding-dipole plasmon
(BDP) redshifts are clearly seen. At the same time, the BDP
is gradually suppressed owing to the increasing role of dif-
fusion as the contact point is approached (g = 0). This is
in strong contrast to predictions from both the LRA [214]
(with even diverging field enhancement) and from previous
nonlocal theories that treated the 𝛽-parameter real-valued
[173].

As one enters the contact regime, the BDP fades away,
vanishing completely for g < 0. We emphasize that the neg-
ative gap values (g < 0) correspond to overlapping wires,
in which case conducting nanojunctions are formed. In
this way, the charge can flow back and forth in a classical
manner rather than being transferred in a quantum tun-
neling fashion. We emphasize that, for g ∼ 0, the diffusive
broadening is so strong that only higher-order modes per-
sist (as the induced surface charge is located away from
the contact point), while both the BDP and the CTP are
strongly suppressed. This makes a discussion on their pos-
sible coexistence problematic [160]. Finally, we note that
in the anticipated tunneling regime [82] the extinction
spectra are strongly broadened by the complex nonlocal
response. In fact, the semiclassical approach is in remark-
able agreement with the TDDFT results [201, 236, 237], with

Figure 8: Hybridization and gap-dependent broadening in sodium
nanowire dimers. The radius of the sodium wires is R = 4.9 nm with
the gap g varying from−19 to+19 Å. Progressively stronger
hybridization occurs as the gap narrows, with both a clear redshift
and broadening of the bonding-dipole plasmon. As the gap closes,
the charge transfer plasmon (CTP) develops and blueshifts as the
wires start to overlap (g < 0). Higher-order modes (also indicated by
dashed lines) exhibit hybridization and broadening too. The diff-
usion (𝒟 = 1.36 × 10−4 m2/s) causes GNOR spectra in accordance
with time-dependent density-functional theory calculations of Ref.
[201] and in overall agreement with the experimental observation of
the CTP [159, 160, 254–256] and its broadening. Figure reproduced
from Ref. [168] (© 2014 Nature Publishing Group, a division of
Macmillan Publishers Limited).

the diffusion contribution being responsible for ‘repairing’
the apparent incompatibility of TDDFT calculations and
earlier hydrodynamic predictions [201, 236].
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In the above context, it is therefore important to stress
that both the LRA and GNOR spectra are obtained with an
entirely semiclassical model where the simplifications and
the resulting boundary conditions (see Section 3.3) do not
consider a quantum-tunneling interpretation. Most criti-
cally, the work function is considered infinite and the metal
surfaces serve as hard walls or perfectly reflecting mirrors
for the electrons so that inter-nanoparticle charge transport
is entirely prohibited for g > 0. Instead, the gap-dependent
broadening is due to surface scattering as mimicked by the
diffusion contribution to the nonlocal response. In this
way, size-dependent broadening becomes pronounced as
the gap approaches the magnitude of the nonlocal length
scale. Note that broadening also occurs for weakly overlap-
ping wires; a case where quantum tunneling is suppressed,
with the charge-transport being of a classical nature. To
summarize, gap-dependent broadening sets in for nano-
metric dimer gaps and GNOR spectra agree qualitatively
with both experiments [159, 254] and ab initio studies [201].

So, what is the important common feature of the
monomers and the dimers? Clearly, tunneling has no mean-
ing for monomers. On the other hand, if surface scattering
appears near any metal surface, then this effect could
explain both the enhanced scattering at the surfaces of
monomers as well as the scattering near the surfaces
of almost touching dimers. This being said, although
quantum tunneling is systematically excluded from the
semiclassical theory, one cannot rule out the possibility
that quantum tunneling may lead to additional gap-size-
dependent broadening in dimers, as an additional physical
mechanism of spectral broadening [202]. In Section 5, we
turn to ab initio studies [202] where more rigorous insight
consolidates the importance of surface-enhanced Landau
damping (mimicked as diffusive broadening). In particu-
lar, we show how this indeed acts as a unifying feature of
both monomers and dimers.

5 Surface-response formalism
The previous sections have focused on nonlocal correc-
tions to the LRA that enter the electrodynamics at the
PDE level through an additional differential operator term.
In this section, we curiously explore the possibilities
for instead including the corrections through quantum-
corrected boundary conditions, while maintaining the LRA
form of the PDE itself. This has stimulated a renewed
interest in electrodynamic surface-response functions
[80, 257–261].

In the spirit of the LRA, the previous sections have
considered the situation where metal domains are charac-
terized by their bulk properties which extend all the way
to the metal surface. As an example, the equilibrium den-
sity of free electrons n0(r) was considered homogeneous
and given by n0 inside the metal, while dropping abruptly
to zero at the surface. When this problem is then in turn
perturbed by a time-varying E-field, the induced charge
density 𝜍 resides in the near vicinity of the surface, being a
strict surface-charge density in the LRA, while in the non-
local hydrodynamic description it is being smeared over
a finite region of extension 𝜉. In more general terms, we
may divide a given metal domain into its interior bulk part
(implicitly assuming that the domain is large enough to
exhibit a bulk part), being well accounted for by bulk opti-
cal parameters, while surrounded by an assumed thinner
transition region between the bulk part on the one side
and the exterior vacuum on the other side. Sipe refers to
this transition region at the surface as the selvage [262],
which includes the classically defined surface of the metal
domain.

In the zoom-in of Figure 9, we encounter an example
of the selvage in the context of the jellium description of
the equilibrium electron density, where the surface region
is hosting both Friedel oscillations and the evanescent tail
associated with quantum spill-out. The rationale behind
the results of Refs. [122, 202] is to treat the bulk part of the
electrodynamics classically, while dressing this problem
with quantum-corrected boundary conditions that account
for the nonlocal phenomena hosted in the selvage. This was
also the motivation for the earlier work by Luo et al. [263].
The inherent assumption is naturally that the selvage is of
a small extension relative to all other problems involved in
the classical electrodynamic problem, including of course
the light wavelength 𝜆 and the characteristic dimensions R
of the bulk part of the problem. As such, we are indeed look-
ing for surface corrections to the classical bulk problem.
It should be emphasized that this idea is well-rooted in
also the experimental understanding of the problem, with
deviations from the classical electrodynamics being asso-
ciated with surface-scattering phenomena [220, 264, 265].
Naturally, the selvage is present at any metal surface, while
its significance is promoted in nanoscale structures with
large surface-to-volume ratios.

5.1 The concept of Feibelman parameters
In order to quantify the dynamics in the selvage illus-
trated in Figure 9, we will now introduce the framework of
Feibelman [80], where 𝜚(r, 𝜔) denotes the induced charge
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Figure 9: Light-driven quantum-plasmonic response in a metallic
nanostructure (upper panel) is represented in classical
electrodynamics by an infinitely thin layer of dipoles that point
perpendicularly to the surface (lower panel). The metallic domain
has an interior bulk part and a selvage region at the surface,
constituting a transition region between the bulk and the exterior
vacuum. The magnifying glass (upper panel) zooms in on the
selvage, highlighting both the equilibrium electron density (black
solid line), and also the microscopic distribution of the induced
charge 𝜚 (red/green filled curve) which is inducing a dipole moment
(red arrow) proportional to the Feibelman parameter d

⊥
.

density that occupies the selvage region. In the context of
the previous hydrodynamic descriptions, we would have
𝜚(r, 𝜔) = n1(r, 𝜔), while we for historical reasons here pro-
ceed with the former notation. In the equilibrium case,
the Friedel oscillations in n0(r) occur on the Fermi wave-
length scale in the vicinity of the surface, and as we have
already seen in the hydrodynamic treatment, the dynamic
induced surface charge n1(r, 𝜔) is smeared on a length
scale of 𝜉, being sub-nanometric for the metals. Thus, the
extension of the selvage is indeed much smaller than any
other length scales involved in the classical electrodynamic
problem.

The net-induced surface-charge density 𝜍 is then given
by 𝜍(𝜔) = ∫ dx 𝜚(x, 𝜔), where the coordinate system is now
chosen so that x is in the direction of the surface nor-
mal, while later y will be in a direction parallel to the
surface. While the LRA treats the induced surface charge
as a strict surface charge, i.e.𝜚(x, 𝜔) = 𝜍(𝜔)𝛿(x), the idea is
to now represent a more general spatial distribution of the
charge by its first moment d

⊥
(𝜔), which accounts for the

centroid of the induced charge. In this way, the leading-
order quantum effect is to induce a dynamic dipole moment
proportional to d

⊥
(𝜔) in the surface region. The associa-

tion with a dipole moment naturally provides an important
hint that this can be used as input for quantum-corrected
mesoscopic boundary conditions to be exploited in sub-
sequent classical treatment of the electrodynamics. This
representation of quantum corrections is referred to as
the projected-dipole model (PDM) [202], being schemat-
ically illustrated in the right-hand panel of Figure 9.
While this first Feibelman parameter, d

⊥
(𝜔), is sufficient

to describe most problems invoking metal surfaces, we
for completeness also note the existence of an additional
parameter d∥(𝜔), which accounts for the possible surface
conduction by surface states [80]. In this way, the surface
response is now parameterized by the so-called Feibelman
d-parameters [80]

d
⊥

(𝜔) = ∫ dx x𝜚(x, 𝜔)
∫ dx 𝜚(x, 𝜔)

, (31a)

d∥(𝜔) =
∫ dx x𝜕xJy(x, 𝜔)
∫ dx 𝜕xJy(x, 𝜔)

. (31b)

We emphasize that the dispersive surface-response func-
tions will generally be complex-valued, d

⊥
= d′

⊥
+ id′′

⊥
and

d∥ = d′∥ + id′′∥ , with real and imaginary parts being related
through Kramers–Kronig relations. While d∥(𝜔) = 0 in the
absence of surface states, it could potentially be finite
for surfaces supporting Shockley surface states, e.g. (111)
surfaces of noble metals, or when surfaces are being cov-
ered by conducting molecular layers, e.g. 2D graphene-like
materials or other molecular films with in-plane order. We
shall return to both examples in the later discussion in
Section 7. In passing, we note that of course, the induced
surface charge and surface current would depend on the
amplitude of the electrical field, but in the spirit of linear-
response theory, the Feibelman parameters are naturally
independent of this assumed small amplitude. We note
that alternatively to Eq. (31), the d-parameters can also
be written in terms of surface integrals associate with the
difference between the actual microscopic fields and the
classical Fresnel fields stemming from the PCA in Eq. (6)
[80, 260, 266–268].

Finally, we note that in the above consideration we
have implicitly assumed that the surface topography varies
slowly on the scale of the perpendicular extension of the
selvage, thus effectively neglecting curvature effects. In
Section 5.4.1, we will further explore this assumption.
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5.2 Mesoscopic boundary conditions for
classical electrodynamics

We now turn to the problem of formulating quantum-
corrected boundary conditions that would allow the
account for Feibelman parameters in classical electrody-
namics. The key observation is that d

⊥
(𝜔) represents a

dipole moment. Just like any surface charge would enter
the regular electromagnetic boundary conditions [14], the
presence of a dipole layer and surface currents would do
so too.

The somewhat lengthy derivation and outcome of Ref.
[202] is the mesoscopic boundary conditions in Eq. (32),
which were recently generalized to include both d

⊥
(𝜔) and

d∥(𝜔) [269]
[[D

⊥
]] = d∥𝛁∥ ⋅ [[D∥]], (32a)

[[B
⊥
]] = 0, (32b)

[[E∥]] = −d
⊥
𝛁∥[[E⊥]], (32c)

[[H∥]] = i𝜔d∥[[D∥]] × n. (32d)

Here, we have adapted the notation of Ref. [269] where
[[F]] ≡ F+ − F− denotes the discontinuity of any vector
field F across an interface 𝜕Ω with outward normal
vector n.

The clear benefit of this approach is that the meso-
scopic boundary conditions can be applied in two and
three dimensions to any system size that is already
tractable within classical electrodynamics and with the use
of standard computational photonics tools [166] while cap-
turing quantum plasmonic aspects of nonlocal response
and a finite work function with TDDFT-level accuracy. It
should be emphasized that the challenge of the alternative
full TDDFT treatment [253] relates to the computational
complexity and the practical applicability to mainly small
plasmonic systems [201, 234, 235, 238, 270].

5.3 How to determine Feibelman
parameters?

Having reviewed the framework that allows the incorpora-
tion of quantum-corrected boundary conditions in classi-
cal treatments of the electrodynamics, we are next facing
the challenge of determining the Feibelman parameters for
relevant metal surfaces. There might be an impression that
being a microscopic concept, surface-response formalism
calls for ab initio time-dependent treatments of the surface
in order to extract dynamic surface-response functions.
However, any relaxation of either the LRA (Eq. (9)) or the
PCA (Eq. (6)) will lead to a situation with a finite surface

response. To appreciate this, we note that for a spatially
varying local dielectric function 𝜀(x), the induced charge
𝜚(x) is given by [271]

1
𝜀0
𝜚(x) ∝ 𝜕𝜀

−1(x)
𝜕x

, (33)

thus illustrating how an induced charge density occupies
surface regions where the dielectric function changes.

5.3.1 Local-response approximation with equilibrium
electron-density profile

For simplicity, we entirely focus on the intraband response
of the electron gas itself. Using RPA arguments, it can be
shown that the Drude bulk response of a homogeneous
electron gas (Eq. (8b)) generalizes to [80, 204, 272–275]

𝜀(x, 𝜔) =

Metal
background
⏞⏞⏞

Θ(−x) +

Electron jellium
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[
𝜀(𝜔)− 1

]
Π(x)+

Surrounding
vacuum
⏞⏞⏞

Θ(x) , (34)

where the first term represents the background of the jel-
lium (for simplicity neglecting interband transitions). In
the second term, Π(x) ≡ n0(x)∕n0 is a normalized equilib-
rium density function approaching unity deep in the bulk
of the metal, while vanishing in the vacuum away from
the metal surface. Physically, this can be interpreted as
the common Drude response, but with a spatially varying
plasma frequency. The third term represents the surround-
ing vacuum. We emphasize that this concept of a spatially
varying plasma frequency has found broad use, includ-
ing Refs. [203, 205, 271, 276–281]. The idea of a smoothly
varying profile has also been considerations of local-field
corrections [282].

To illustrate the effects of spill-out, we consider the
smooth profile of the equilibrium electron density Π(x) =
tanh2

(
x−x0

a

)
Θ(x0 − x) [271, 283], where a is the charac-

teristic length over which the electron density drops. The
Heaviside function terminates the electron density beyond
x = x0, where the sign of x0 captures whether the induced
electron density spills inward or outward. Physically, this
model mimics a jellium metal surface (such as sodium)
with a moderate work function, which allows the quan-
tum spill-out of the equilibrium electron density beyond
the surface of the metal. The model qualitatively agrees
with results obtained by jellium considerations within
density-functional theory (DFT) [187], while n0(x) is here
for simplicity smooth, thus neglecting Friedel oscillations
[187, 188, 199, 284]. Only for x0 = a the symmetry of the
model makes the surface charge neutral.
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In passing, we note how interpolation formulas of the
jellium-surface problem [285] can be used to conveniently
link a to the Wigner–Seitz radius rs of the electron gas.
For densities relevant to noble metals (rs ∼ 4a0) we have
a ∼ 0.15 × 𝜆F [285]. Following the procedure in Ref. [271],
this particular equilibrium density profile gives

d
⊥

(𝜔) = x0 − a
arctan

(√
𝜀(𝜔)− 1

)
√
𝜀(𝜔)− 1

, (35a)

d∥(𝜔) = x0 − a. (35b)

Here, the parametrization in terms of the Drude dielectric
function 𝜀(𝜔) underlines how the surface-response func-
tions inherit their frequency dispersion from that of the
bulk counterpart. Figure 10A illustrates the generic depen-
dence associated with the spill-out, where d′

⊥
(𝜔) > d′∥(𝜔)

at low frequencies, while d′
⊥

(𝜔) < d′∥(𝜔) at higher fre-
quencies as one approaches the plasma frequency. It
should be emphasized that the above result is solely
the surface contribution from the relaxation of the
PCA to a spatially varying equilibrium electron density,
while the electrodynamics is still being treated within
the LRA.

5.3.2 Nonlocal semiclassical hydrodynamic model

Next, we consider the surface contribution from a relax-
ation of the LRA to a nonlocal hydrodynamic description,
while still maintaining the PCA. Having already promoted
the semiclassical hydrodynamic model in Section 3, where
the induced charge is smeared over a length scale 𝜉, one
could speculate that d

⊥
(𝜔) should somehow resemble

𝜉(𝜔). Indeed the following expressions [242]

d
⊥

(𝜔) = − 𝜉(𝜔)√
−𝜀(𝜔)

, (36a)

d∥(𝜔) = 0, (36b)

describe the surface response of the hydrodynamic jellium
surrounded by vacuum [122, 202], with d

⊥
representing the

centroid of the induced charge 𝜚, e.g. visualized in panel
(a) of Figure 6 for the dipole resonance treated within the
hydrodynamic model. As illustrated in Figure 10B, this
also emphasizes the point that d

⊥
(𝜔) will be complex-

valued just as 𝜉(𝜔) was found complex-valued within the
GNOR model that we considered in Section 4. Perhaps
somewhat ironically, the numerically more complicated
hydrodynamic models (where the numerical mesh needs
to resolve dynamics on the 𝜉 length scale in the vicinity
of the surface [173]) can now be solved within the numeri-
cally much more tractable LRA problem, while instead of

Figure 10: Spectral dependence of the frequency-dispersive
effective Feibelman parameter d

⊥
− d∥ for 𝛾∕𝜔p = 0.1, where the

real part (in blue) and the imaginary part (in orange) are related
through Kramers–Kronig relations. (A) Local-response
approximation contribution from a smooth equilibrium
electron-density profile, Eq. (35) normalized by a. (B) Nonlocal
hydrodynamic contribution, Eq. (36) normalized by 𝓁conv = 𝑣F∕𝜔p.

applying the mesoscopic boundary conditions, Eq. (32).
In passing, we note that different hydrodynamic boundary
conditions at the metal surface would naturally be reflected
in different surface-response functions too [286].
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5.3.3 First-principles jellium model

Next, let us proceed one level deeper in the descrip-
tion of the dynamic response of the quantum electron
gas, by turning to the jellium model that we already dis-
cussed in the context of the equilibrium properties of the
semi-infinite jellium. In the treatment of the dynamical
properties, we turn to the TDDFT, basically evaluating the
response of the semi-infinite jellium in the presence of
a time-harmonic E-field [202]. This has allowed numerical
evaluation of d

⊥
(𝜔) = d′

⊥
(𝜔)+ id′′

⊥
(𝜔) for specific values of

the Wigner–Seitz radius rs [202]. Note that in this specific
case, the charge-neutral surface makes d∥ vanish.

Figure 11 shows results for electron densities resem-
bling e.g. aluminum and sodium. The general trend is
that d′′

⊥
(𝜔) increases with frequency, peaking slightly

beyond the plasma frequency as a manifestation of surface-
enhanced Landau damping. Being microscopic linear-
response functions, the Kramers–Kronig relation naturally
causes a corresponding frequency dispersion for d′

⊥
(𝜔)

[41], with a positive value signifying the quantum spill-out
of the induced charge. For the more realistic modeling of
e.g. silver, d-band screening should be taken into account
[122, 199]. The accurate evaluation of the Feibelman param-
eters seems to remain a general challenge within the
TDDFT community.

5.3.4 Beyond jellium descriptions

Clearly, it would also be interesting to proceed beyond
jellium models by invoking atomistic descriptions [287].
Here, the challenge of atomistic details has been tackled
in ab initio studies of the response of metallic clusters
and gaps [288, 289]. As another example, atomic-layer
pseudo-potentials [290] have recently been invoked in RPA
descriptions of plasmons in noble-metal films [291] and the
same approach has been used to also evaluate Feibelman
parameters [292]. In the future, one would ultimately even
benefit from experimentally determined values [269], tab-
ulated for different metal surfaces in the same way that the
bulk parameters have been tabulated. Section 7.5.1 will
briefly discuss the prospects of this, using added graphene
layers [293] as an experimental probe of nonlocal effects in
the metal [294, 295].

5.4 Physical implications
The Feibelman parameter d

⊥
(𝜔) = d′

⊥
(𝜔)+ id′′

⊥
(𝜔) imme-

diately parameterizes two important quantum effects, i.e.
the electron spill-out via d

⊥
(𝜔) and the surface-enhanced

Figure 11: Spectral dependence of the frequency-dispersive
effective Feibelman parameter d

⊥
for jellium metals with different

Wigner–Seitz radius, where the real part (in blue) and the imaginary
part (in orange) are related through Kramers–Kronig relations. (A)
Jellium with rs∕a0 = 2 typical for noble metals. (B) Jellium with
rs∕a0 = 4 typical for sodium. Figure based on data from Ref. [296].

Landau damping associated with electron–hole (e–h)
excitations via d′′

⊥
(𝜔). However, since the ab initio TDDFT

treatment inherently accounts for also the finite compress-
ibility of the electron gas and its influence on transverse
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modes, the extracted Feibelman parameters include also
effects of the nonlocal dynamics of the bulk, that the semi-
classical hydrodynamic models account for. Of course, the
hydrodynamic models also include longitudinal modes
(see e.g. Figure 7 above the plasma frequency), that the
Feibelman parameters are leaving out by construction.
The link from the hydrodynamic bulk description to the
surface-response approach is highlighted by Eq. (36), while
the opposite attempt at deriving hydrodynamic parameters
from surface-response functions is more ambiguous [242].

With Eq. (36) in mind, it is of course immediately clear
that the present formalism can qualitatively explain both
the size-dependent frequency shifts and broadening in
monomers, as well as the gap-dependent broadening in
dimers. In the following sections, we show that it even
works qualitatively when benchmarking to full quantum
treatments within the TDDFT of the jellium model. Sub-
sequently, we use the established correspondence with
ab initio TDDFT calculations, to explore quantum plas-
monic response for structural dimensions that are beyond
any reach of ab initio methods. While we are here focus-
ing on the implications manifested through computational
studies, we will in Section 6 turn to a path where several
analytical results for the leading-order plasmonic quantum
corrections are obtained in a first-principles setting.

5.4.1 Benchmarking against full TDDFT results

Having extracted the Feibelman parameters from the semi-
infinite jellium model, Figure 11, it is next interesting to turn
the attention to a finite-size nanostructure formed from the
very same jellium. In fact, this will allow for a unique head-
to-head comparison between the current PDM approach
(treating the bulk classically, while invoking the quantum-
corrected boundary conditions) and a full TDDFT solution
(treating the entire volume quantum mechanically).

Figure 12 shows extinction spectra for sodium
nanowires, contrasting the results from LRA, PDM, and
TDDFT. For the latter, we are relying on TDDFT results
reported independently by Teperik et al. [201] for jellium
parameters resembling sodium. In panel (a), one first
observation is naturally the significant change in spectra
due to the quantum corrections, which serve to redshift the
dipole resonance [297], when compared to the LRA spectral
position. Perhaps more important in the present context,
we see an amazing quantitative agreement between the
PDM and the full TDDFT. The main approximation is here
the negligence of curvature effects, but even for this some-
what extreme example with R ∼ 5 nm, this is obviously not
a severe approximation.

Figure 12: Extinction spectra for sodium monomers and dimers,
contrasting results from local-response approximation (red-filled
curve), projected-dipole model (blue-filled curve), and
time-dependent density-functional theory (TDDFT) (green solid line).
(a) Cylindrical wire with radius R = 4.9 nm, (b) cylindrical wires with
radius R = 4.9 nm and gap g = 0.74 nm. The choice of these specific
geometrical parameters is motivated by the corresponding
availability of the TDDFT results extracted from Ref. [236]. Figure
reproduced from Ref. [202] (© 2015 American Physical Society).

Turning next to the dimer made from the very same
wires, now with a g = 1 nm gap, panel (b) shows simi-
lar quantitative agreement between the PDM and the full
TDDFT, thus emphasizing the extreme potential of the PDM
for computational quantum plasmonics.

In the context of the dimers, it should be noticed that
naturally the PDM prohibits the account for any possible
charge transfer between the wires, while the tunneling
mechanism is naturally fully contained in the full TDDFT
treatment. Nevertheless, the potential existence of optical-
frequency tunneling currents does not seem to be impor-
tant in the present case of a 1 nm gap. Given the tremen-
dous attention to quantum tunneling in nanogap dimers
[82, 159, 164, 254, 298], this is a perhaps somewhat surpris-
ing observation that we will return to in Section 7.

5.4.2 Quantum effects promoted by nanogaps in large
nanosphere dimers

Having established that the PDM excellently reproduces
the results of the numerically much more demanding
full TDDFT treatment, let us next turn to problems that
are simply too extensive for any TDDFT treatment of the
dynamics [253]. Here, Figure 13 shows results for sodium
nanosphere dimers where the sphere radius extends even
beyond R = 25 nm. As expected, the radius is far too large to
promote any significant R−1-corrections. Instead, the sub-
nanometric gap is promoting significant gap-dependent
corrections, causing very significant quantum corrections
to the LRA spectrum. This can be well appreciated in a
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Figure 13: Extinction spectra for sodium nanosphere dimers,
contrasting results from local-response approximation (LRA)
(red-filled curve) and the projected-dipole model (blue-filled curve).
Despite the relatively large radius R of the spheres, being far too
large to promote significant size corrections to the LRA, the tiny gap
g = 0.74 nm is in itself sufficient to promote significant
gap-dependent corrections. Figure reproduced from Ref. [202]
(© 2015 American Physical Society).

simple hybridization picture [135], with a change in the
effective gap separating the now slightly smeared charge
densities induced on the opposing metal surfaces, i.e.
g → g − 2d′

⊥
= g

(
1 − 2d

⊥

g

)
.

6 Surface-integral approach to
quantum corrections

While Section 5 focused on the introduction of micro-
scopic surface-response functions and the formulation of
mesoscopic boundary conditions that enable computa-
tional explorations, this section summarizes the efforts of
Ref. [122] in establishing the analytical means for deeper
insight into general properties of the quasi-static regime.
It almost goes without saying that the concept of surface-
response functions goes hand-in-hand with Green’s func-
tion surface-integral methods [299], which have already
been explored in the context of the hydrodynamic model
[226, 300, 301]. Here, we aim for the leading-order quantum
correction terms to the classical surface-integral eigen-
value equation for metallic domains in the quasi-static
regime [302, 303].

6.1 Surface-integral eigenvalue equation
Considering the quasi-static regime, where 𝜆 ≫ R and
retardation effects can be neglected, the spectral response
of the plasmons can be explored through a surface-integral
eigenvalue equation for the induced surface charge 𝜚; this
is the LRA part of Eq. (37) below. As a main outcome of
Ref. [122], this LRA surface-integral eigenvalue equation

is complemented by leading-order corrections due to the
Feibelman surface-response functions

Surface−integral eigenvalue equation (LRA)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Λ𝜍(r) = 𝒫∫
𝜕Ω

d2r′
[
n ⋅𝛁g(r, r′)

]
𝜍(r′)

+ d
⊥

lim
𝛿→0+∫

𝜕Ω

d2r′
[
n ⋅𝛁𝛁′ g(r + 𝛿n, r′) ⋅ n′

]
𝜍(r′)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Quantum spill−out& surface−enhanced Landau damping

− d∥∫
𝜕Ω

d2r′𝛁2
∥g(r, r′)𝜍(r′)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Conductive surface states

(37)

Here, g(r, r′) = ||r − r′||−1 is a scalar Green’s function
that represents the finite-range Coulomb interactions. In
the LRA part, 𝒫 denotes the Cauchy principle-value inte-
gration, while in the d

⊥
-correction term, 𝛁𝛁′ is the Hes-

sian with elements {∇∇′}
𝛼𝜂
= 𝜕

𝛼
𝜕
𝜂

and 𝛼 = {x, y, z} and
𝜂 = {x′, y′, z′}.

Most importantly, Eq. (37) constitutes an eigenvalue
problem withΛ being a scale-independent dimensionless
eigenvalue (or a set of such eigenvalues) that is unique
to the morphology of a given geometry. Once determined,
the eigenvalueΛ in turn provides the resonance frequency
through the definition

Λ = 𝜀d(𝜔)+ 𝜀(𝜔)
𝜀d(𝜔)− 𝜀(𝜔)

. (38)

which somewhat resembles an inverse Clausius–Mossotti
factor, see Eq. (11a).

Equation (37) forms an interesting starting point for
implications of the quantum corrections to the spectral
properties of plasmonic nanostructures, with a particular
focus on the interplays of morphology, scale, and materi-
als [122]. As we shall see, the LRA part of Eq. (37) is clearly
containing the essential information about morphology
and in turn the bulk-materials properties, via Eq. (38). In
addition, the correction terms associated with the Feibel-
man parameters reflect the scale and the surface-to-volume
ratio, while the surface-response functions naturally also
represent materials’ properties.

6.2 Physical implications

6.2.1 Universality of the LRA

Substituting the Drude LRA result in Eq. (8) into Eq. (38),
we may straightforwardly solve for the complex frequency
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𝜔 = 𝜔′ + i𝜔′′. Assuming 𝛾 ≪ 𝜔p, this gives the universal
LRA relation (for simplicity 𝜀d = 1)

𝜔
′ ≃

√
1
2 (1+Λ)𝜔p, (39a)

𝜔
′′ = −𝛾

2
. (39b)

between the resonance frequency 𝜔′ and the morphol-
ogy eigenvalue Λ. Likewise, Eq. (39b) illustrates the well-
known result of the linewidth reflecting the bulk-damping
parameter 𝛾 , while being independent of the morphol-
ogy [121]. Beyond quasi-statics [304], a related bound on
plasmon damping also exists [305].

Different morphologies lead to different eigenvalues
and resonance frequencies, but they all fall on a common
square root curve associated with Eq. (39a). Moreover, we
notice how this result is entirely independent of the scale
of the structures, i.e. the LRA exhibits no size dependence
in the quasi-static regime, as we have already discussed in
the context of spherical particles.

As an example, the spherical geometry has eigenval-
ues Λ = −(2l + 1)−1 [122], where l = 1, 2, 3,… is the angu-
lar momentum of the multipoles. For the lowest-energy
dipolar resonance (l = 1), the corresponding eigenvalueΛ
= −1∕3 immediately gives the well-known result 𝜔 =
𝜔p∕

√
3 for the dipolar spherical nanoparticle resonance

that we already found in the context of the Fröhlich condi-
tion in Eq. (11b). The sphere represents the most compact
simply-connected domain (with lowest surface-to-volume
ratio) and as such the spherical geometry represents also
a lower bound for monomers, while any more complex
morphology that follows from a surface deformation of the
sphere would be associated with a larger eigenvalue and a
higher resonance frequency.

Structures with hybridization of plasmon modes can of
course reach eigenvalues below the bound of the spherical
geometry. As an example, the flat open surface (semi-
infinite half-space) is associated with an eigenvalue of
Λ = 0 [122], corresponding to the well-known SPR at
𝜔 = 𝜔p∕

√
2 that also followed from Eq. (10b). When such

two opposing surfaces hybridize to form an MIM structure,
the otherwise degenerate eigenvalues split symmetrically
and shift away from Λ = 0, eventually reaching Λ = ±1
in the extreme zero-gap case, corresponding to bond-
ing and antibonding resonances at 𝜔 = 0 and 𝜔 = 𝜔p.
Naturally, the nonlocal effects will prohibit this extreme
limit [104] and there will be a fundamental limit to the
hybridization as also seen for dimer configurations [220].
Similar physics also manifest when the MIM structure is
formed by a metallic nanoparticle on a metallic substrate

– the nanoparticle-on-a-mirror geometry – with additional
in-plane localization of electromagnetic fields [109].

6.2.2 Nonclassical geometry-dependent corrections

Turning now to the leading-order correction terms in
Eq. (37), we immediately see how surface-response func-
tions serve to break the universality of the LRA discussed
above. The approach of Ref. [122] is to treat the correction
terms to the LRA perturbatively. For the shift in eigenvalues,

ΔΛ = 𝜘
⊥

d
⊥
+ 𝜘∥d∥ +(d2

⊥
)+(d2

∥) (40)

this introduces geometry-dependent perturbation factors
𝜘
⊥

and 𝜘∥, which have dimensions of inverse length, thus
representing effective wave numbers.3 In passing, we note
that negative and positive definiteness,𝜘

⊥
< 0 and𝜘∥ > 0,

can also be proved [122].
In the following, we will mainly focus the discussions

on situations with d∥ = 0, while we will in Section 7 discuss
extensions to situations with surface conduction medi-
ated by e.g. Shockley surface states or surface-added 2D
materials and long-range ordered molecular films.

Turning next to 𝜔(Λ), the shift in eigenvalue ΔΛ will
cause a shift in frequencyΔ𝜔 ≃ 𝜕𝜔

𝜕Λ ΔΛ, and from Eq. (38)
we arrive at [122]

Δ𝜔
𝜔

≃ 1 − 𝜀(𝜔)
4

𝜘
⊥

d
⊥

(41)

where we have used that for the Drude case 4
𝜔

𝜕𝜔

𝜕Λ = 1
− 𝜀(𝜔). Since 𝜘 ∝ R−1, with R now being some charac-
teristic size of the metallic domain, this result immediately
shows an R−1-dependence of the frequency shift in the
presence of a finite d

⊥
= d′

⊥
+ id′′

⊥
, being a redshift for

d′
⊥
> 0 or a blueshift for d′

⊥
< 0. Furthermore, we also see

similar R−1-dependent broadening due to d′′
⊥

.
For a sphere of radius R, it can be shown that 𝜘

⊥

= 2l(l+1)
(2l+1)R [122], thus showing the R−1-dependence explic-

itly. Cylinder, slab, and gap geometries can also be solved
analytically, showing in those translation-invariant cases
that 𝜘 is indeed proportional to the wave vector of the
light field [122]. More arbitrarily shaped geometries, pos-
sessing no obvious symmetries, will generally prohibit
analytical progress, while the LRA part of Eq. (37) can be
discretized by the boundary-element method [303] allow-
ing the numerical calculation of the nonclassical shape
factors 𝜘

⊥
and 𝜘∥. As an example, Figure 14 shows numeri-

cally evaluated morphology and shape factors for a number

3 We have here used𝜘 to explicitly emphasize the wave vector nature,
while Ref. [122] used the notation Λ(1).
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Figure 14: Numerically evaluated morphol-
ogy and shape factors, Λ, 𝜘

⊥
a, and 𝜘∥a,

for varying aspect ratio a∕b. Note how the
size-dependent shape factors have been nor-
malized by the characteristic length scale a.
(a) Cubes of side a and edge- and corner-
rounding 2b, (b) cylindrical pills of length
a, diameter b, and butt-rounding b, (c)
spheroids with principal axis a and b, and
(d) equilateral triangles of height b, side a,
and edge- and corner-rounding ≈ 0.165a.
A dipole mode is considered in all cases;
its induced dipole is along a in (a)–(c) and
along the triangle altitude in (d). Rounding is
intramural and of a cylindrical and spherical
kind with inscribed diameters equaling the
specified rounding value. Figure reproduced
from Ref. [122] (© 2017 American Physical
Society).

of simply connected geometries with varying aspect ratios.
For compact geometries with an aspect ratio a∕b ∼ 1, we
note how Λ attains negative values in the vicinity of the
eigenvalue for the sphere, i.e. Λ = −1∕3.

Finally, the combination of detailed surface-response
functions, as exemplified by the Feibelman parameters in
Figure 11, with the morphology and shape factors, as exem-
plified in Figure 14, naturally forms the basis for evaluating
quantum corrections in arbitrarily shaped geometries. The
conclusion is that in addition to the simple morphology
dependence (described by Λ), the rich interplay between
scale, shape, and material in quantum nanoplasmon-
ics can be understood quantitatively through just three
parameters: the characteristic scale R, the Feibelman d-
parameter, and the 𝜘 shape-factor. As a key result, Eq. (41)
illustrates the spectral shifts that directly links to the exper-
imental observations of size-dependent frequency shifts
and broadening.

We will conclude this discussion by returning to the
already discussed Clausius–Mossotti expression for the
dipolar resonance (l = 1), Eq. (11a), which in the presence
of surface response generalizes to [296, 306]

𝛼(𝜔) = 4𝜋R3

×

[
𝜀(𝜔)− 𝜀d(𝜔)

] [
1 + d

⊥
(𝜔)+2d∥(𝜔)

R

]

𝜀(𝜔)+ 2𝜀d(𝜔)− 2
[
𝜀(𝜔)− 𝜀d(𝜔)

] d
⊥

(𝜔)+2d∥(𝜔)
R

.

(42)

Here, the associated Fröhlich condition now depends
on the effective Feibelman parameter d

⊥
− d∥, that we have

already discussed in Figure 10, and in combination with
R−1, thus illustrating the promotion of R−1 size-dependent

frequency shifts and damping. Considering the reflection
from planar surfaces, the effective Feibelman parameter
d
⊥
− d∥ again appears in generalized Fresnel coefficients

[80, 296].

7 Discussion and outlook
The above colloquial-style presentations of semiclassical
hydrodynamic theory and microscopic surface-response
formalism have largely focused on developments in the
recent decade, while obviously not doing justice to the
many individuals and collective contributions that have
all served to advance the science in this research area. This
section seeks to partly compensate for this by offering brief
perspectives on these developments. Here, it should imme-
diately be emphasized how competing for efforts in ab initio
TDDFT treatments of the quantum plasmonic response
in metallic nanostructures, in particular by the groups of
Nordlander, Aizpurua, and Borisov (see Ref. [82] and ref-
erences therein), have provided a tremendous push and
inspiration to the developments of simpler semiclassical
models and the more recent revival of surface-response
formalism.

Finally, this discussion and outlook section also turns
to a number of topics and directions that are pertinent
to the discussion of quantum and nonlocal responses in
metallic nanostructures. The section naturally also serves
as an outlook to possible future work, with new avenues
where nonlocal plasmonic response and surface-response
functions will in one or the other way be important to the
explorations and harvesting of electrodynamics. Naturally,
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some aspects might turn out to be more of a speculative
nature.

7.1 Perspectives on semiclassical theory
developments

Obviously, it is today difficult for anyone to claim strong
fame to basic developments in nonlocal hydrodynamics of
electron systems, which was founded almost one century
ago by Bloch [49] and important contributions have since
then appeared continuously, going also beyond bulk phe-
nomena [196, 307–310]. In particular, Ruppin contributed
a seminal paper on the Mie treatment of spherical parti-
cles [307] but was perhaps a little ahead of experimental
developments in nanoplasmonics. With the later advent of
metallic nanostructures, the hydrodynamic approach has
in the recent decade had a revival. As it is often the case,
García de Abajo was timely and among the first-movers in
this new wave [311]. However, the attempts of numerically
resolving nonlocal effects in arbitrarily shaped geome-
tries through real-space formulations were sparked by
McMahnon et al. [312]. Ref. [189] was published as a direct
response to the work by McMahnon et al., providing rigor-
ously formulated real-space formulations with physically
transparent boundary conditions. This clarified intriguing
predictions by McMahnon et al. [312–315] as nonphysi-
cal artifacts of approximations. Admitted, our preliminary
conference contribution was guilty in that crime too [316].
Above this initial scientific dispute, Ref. [189] also provided
the foundation of numerous later works.

Perhaps most importantly, Eq. (20) formed the basis
for the first numerical implementation using the FEM [173]
and a first self-consistent hydrodynamic treatment of also
quantum spill-out [207]. For recent comparisons of hydro-
dynamic models, see Ref. [317, 318]. Another novel branch
was pioneered by Pendry and co-workers with a mar-
riage of transformation optics and nonlocal plasmonics
[217, 319], which aided significant analytical progress and
understanding into singular geometries.

While this review begins with an introduction of the
generalized nonlocal wave equation, the chronological
order of events was different. In fact, the first idea to
transform the IDE into an ordinary PDE followed signifi-
cant attention to the basic hydrodynamic formulation [189]
and was only in turn catalyzed by the phenomenological
treatment of the two-point response function by Ginzburg
and Zayats [100]. Irrespective of the character and origin
(microscopical, semiclassical, or phenomenological) of the
two-point response function, the IDE remains numerically
unattractive. In addition to the conceptually appealing

aspect of bringing the nonlocal IDE problem onto a PDE
form very close in spirit to the LRA, Eq. (13) has also impli-
cations for numerical solutions, since the problem has
mathematically now become of a seemingly local nature.
This enabled the FEM numerical evaluation of nonlocal
effects in extreme plasmonic waveguiding [194, 320]. Most
importantly, the generic form of the nonlocal correction
term in the PDE was an immediate source of inspiration
for the subsequent developments of the GNOR formalism
[168].

Prior to the GNOR model [168], convective-diffusive
transport was independently studied by Davis and Krowne
[321] and later Hanson [322]. Those earlier studies were
perhaps more of mathematical curiosity and with less
emphasis on the physics of metal nanostructures and their
nonlocal plasmonic response. Continuing the path initi-
ated by Landau and Liftshitz [221], the GNOR approach
treated convection and diffusion on an equal footing and
with immediate implications for the ability to semiclassi-
cally account for the nonlocal response associated with
both the quantum compressibility of the electron gas and
surface-enhanced Landau damping in arbitrarily shaped
geometries, thus providing a foundation of numerous later
works, including also numerical implementations of the
model [225, 228, 323]. In turn, Ref. [168] also enabled a
semiclassical explanation (in terms of surface-enhanced
Landau damping mimicked by diffusive scattering) of the
broadening of the BDP in nanogap dimers, which other
works attributed to quantum tunneling [82, 159, 164,
254]. Later, ab initio work in Ref. [202] gave the jellium-
based quantitative insight that consolidated the potential
importance of surface-enhanced Landau damping in gap
structures.

Finally, in recent years there has been significant
activity by Ciracì and co-workers in quantum hydrodynam-
ics invoking energy functionals of increasing complexity
[324, 325], thus going beyond the initial self-consistent
treatments relying on Thomas–Fermi theory with von
Weizsäcker gradient corrections [207].

7.2 Revival of surface-response formalism
As it should hopefully be clear from the above introduc-
tion to surface-response formalism, credit should go to the
surface-science community for early studies of the equilib-
rium properties of jellium surfaces by Lang and Kohn [187],
later motivating also explorations of temporal dynamics
and plasmons in jellium with spherical-symmetry con-
finement [326, 327]. In particular, Feibelman should be
recognized for introducing the surface-response functions
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in the first place [328], while there were many contempo-
raries contributing to this development (see Ref. [329] and
references therein).

Naturally, d-parameters have been explored in the
context of spherical particles, where analytical progress
is feasible, while there was for many years modest atten-
tion from the computational physics community. With the
formulation of mesoscopic boundary conditions, Ref. [202]
has changed this. The PDM is combining the computational
efficiency of classical electrodynamics with the accuracy
of ab initio TDDFT while allowing us to address quantum
corrections in geometries far too large for ab initio treat-
ments. As an example of this, the mesoscopic boundary
conditions have now been implemented in commercially
available FEM codes, allowing for the quantitative eval-
uation of quantum corrections in complex 3D plasmonic
nanoresonators, and with a detailed comparison to exper-
iments [269]. The idea of Ref. [202] was partly inspired by
work in the group of Pendry [263], where a finite-thickness
local layer represents the hydrodynamic nonlocal response
(see Ref. [330] for a generalization), while the PDM goes
beyond and capture quantum phenomena of a microscopic
theory of choice.

Finally, the TDDFT calculations pursued in Ref. [202]
have also caused a paradigm shift in the long-standing
discussions on the possible importance of quantum tun-
neling in nanogap dimers. This will be further addressed
in Section 7.4.

The LRA considerations of plasmon resonances by
Wang and Shen [121] are seminal, showing several uni-
versal properties within the QSA, such as the resonance
linewidth being independent of the nanostructure form of
the dielectric environment. Ref. [122] is rooted in this quasi-
static regime, exploiting first-principles surface-response
functions to analytically derive leading-order plasmonic
quantum corrections to the LRA electrodynamics of sub-
wavelength plasmonic resonators.

Being the first work to systematically elaborate on a
clear separation of the roles of shape, scale, and mate-
rial, Ref. [122] has naturally inspired further analytical
work for both localized and propagating plasmons, includ-
ing recent studies of quantum corrections in the context
of plasmon-emitter interactions [32] as well as the quan-
tum effects arising in the hybridization of 2D materials
with metal surfaces and guidance of plasmons in ultra-
thin metal films [295]. Refs. [122, 202] have largely focused
on the manifestation of surface-response functions with
an emphasis on the extinction, in turn stimulating also
near-field means of probing surface-response functions,
including quantum emitters [296] and 2D materials [295]

placed in the near vicinity of the metal surface. Finally,
Refs. [122, 202] also paved the way for collaborators’
breakthrough in a first experimental attempt at directly
measuring the nonclassical surface-response functions
[269]. Hopefully, this is a precursor for a future broad
tabulation of experimentally extracted surface-response
functions of practically relevant materials that can
be exploited in quantitative mesoscopic electrodynamic
computations.

7.3 Landau damping
The publication of Ref. [168], with the introduction of
a classical diffusion term, stimulated an interest in the
microscopic origin of this diffusive contribution. In simple
terms, the diffusion constant 𝒟 is the pedestrian way of
classically representing the Brownian motion of induced
charges that occur due to the probably much more complex
mutual interactions of the electrons in the near vicinity of
the surface. As such, we are hiding our ignorance of these
complex dynamics by sweeping all the microscopic details
under the carpet of classical diffusion theory. The diffusive
contribution to 𝜉2 being imaginary implies a close connec-
tion to Landau damping and the decay of plasmons into
electron–hole pairs. Quoting Khurgin from the discussions
at the 2015 Faraday Discussions on nanoplasmonics [331]:
“Kreibig scattering and Landau damping are essentially two
faces of the same process.”

Landau damping occurs for wave vectors exceeding
𝜔∕𝑣F and while perhaps not much of an issue in the bulk of
the metal (with a local translational invariance), the abrupt
termination of the electron gas near the surface enhances
the Landau damping. This can be appreciated from the
Fourier transform of even the equilibrium electron-density
profile (see Figure 15), representing Fourier components
exceeding 𝜔∕𝑣F.

To illustrate this more explicitly, we turn to ab ini-
tio solutions of the jellium surface [202]. To assist the
illustrations, we introduce the concept of a local effective
permittivity 𝜀eff(r, 𝜔) defined by

D(r, 𝜔) ≡ 𝜀 eff(r, 𝜔)E(r). (43)

The 𝜀 eff(r, 𝜔) = 𝜀′eff(r, 𝜔)+ i𝜀′′eff(r, 𝜔) so defined is called
“effective” because both the displacement and the elec-
tric fields are determined using a fully nonlocal-response
theory, and it is the effectively local quantity 𝜀eff(r, 𝜔)
that by definition connects the two electromagnetic
fields, i.e. close in spirit to the LRA of Eq. (2a). We
emphasize that there are no approximations involved
in this; it is merely a mathematical convenient choice,
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Figure 15: Plot of the spatial and spectral dependence of the real
(middle row) and imaginary (lower row) parts of
𝜀eff(r, 𝜔) = 𝜀′eff(r, 𝜔)+ i𝜀′′eff(r, 𝜔) in the near vicinity of the jellium
surface. For completeness, the top row illustrates the associated
equilibrium electron density n0(r). (a) A single semi-infinite jellium
surface. (b) Superposition of two independent semi-infinite jellium
surfaces, with no inter-surface charge transfer. (c) Two fully coupled
jellium surfaces, including the possible inter-surface charge
transfer associated with quantum tunneling. Figure adapted from
Ref. [244] (© 2017 World Scientific Publishing Company).

where the nonlocal response is being effectively rep-
resented by a spatially in-homogeneous local-response
function.

Deep inside the bulk of the jellium, we will natu-
rally recover the bulk dielectric function, while near the
surface, the approach should be able to quantitatively
reveal the anticipated surface-enhanced Landau damp-
ing. Indeed, the lower part of the panel (a) of Figure 15
unambiguously illustrates how locally at the surface, the
damping may significantly exceed the bulk part. This is the
surface-enhanced Landau damping, that the GNOR model
captures through the classical diffusion constant 𝒟 [332].
In the context of the microscopic surface-response func-
tions, this enhanced Landau damping is contained in the
imaginary part of the Feibelman d-parameter, i.e. d′′

⊥
(𝜔).

It should be emphasized that this surface-enhanced Lan-
dau damping will occur at any metal surface, whether the
surface belongs to a tiny metal nanoparticle or it is the
surface of a macroscopic piece of shiny metal. Naturally,
its significance for electrodynamics is greatly enhanced in
systems with an increased surface-to-volume ratio, while
in larger systems the overall damping will be dominated by
the bulk contributions. In the next section, we will discuss
the implications of surface-enhanced Landau damping
for the understanding of the dynamics of dimers with
sub-nanometric gaps.

7.4 Quantum tunneling
One of the topics that have perhaps sparked the most inter-
est in quantum plasmonics is associated with quantum
tunneling [82, 298, 333]. Intuitively, quantum tunneling
could potentially play a role in plasmonic dimers with a
sub-nanometric gap, which would allow the quantum tun-
neling of charge across the classically prohibited energy
barrier. If so, this should manifest in a CTP even when
the particles do not physically kiss each other. Intuitively,
the relaxation of the associated tunneling currents should
in turn represent also a broadening mechanism, short-
circuiting the capacitive mechanism behind the BDP [82].
The gap-dependent broadening in such nanogap dimers
has been explained by the phenomenological quantum-
corrected model (QCM) [164] that invokes additional dissi-
pation attributed to the relaxation of tunneling currents.

While obviously successful in qualitatively fitting
results of ab initio simulations [164, 201, 236, 252], the
QCM approach raises also relevant questions regarding its
physical foundation. The understanding of linear-response
mesoscopic quantum electron transport [42] is that the
tunneling through the classically forbidden gap region is
elastic (ballistic transport), while energy relaxation takes
place inside the metallic contact regions. We note that this
relaxation would eventually have to occur in a co-existence
with the relaxation associated with the surface-enhanced
Landau damping that we have discussed in the preced-
ing Section 7.3. The above being said inelastic tunneling
can of course occur if the electron is driven by a suffi-
ciently large electrical field (large voltage drop across the
barrier) that opens an energy window for interactions with
other dynamic degrees of freedom such as in photon or
phonon-assisted tunneling. As examples, this may mani-
fest in photon emission in direct current (DC) driven gaps in
a scanning tunneling microscope (STM) [334] and optical
rectification in a plasmonic nanogap [335]. The important
new insight brought by ab initio simulations in Refs [202] is
that indeed the surface-enhanced Landau damping seems
to entirely dominate the optical-frequency dynamics of
the plasmonic dimer even deep into the sub-nanometric
gap regime, where the low-frequency dynamics is com-
monly associated with quantum tunneling phenomena.
To illustrate this, panels (b) and (c) in Figure 15 revisits
the concept of the effective dielectric function, 𝜀eff(r, 𝜔)
= 𝜀′eff(r, 𝜔)+ i𝜀′′eff(r, 𝜔), contrasting ab initio results for two
coupled jellium surfaces [panel (c)] to the case of the
superposition of two independent jellium surfaces of the
same kind [panel (b)]. While the former case obviously
accounts for the possibility for quantum tunneling cur-
rents to be important for the optical-frequency dynamics,
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inter-surface charge transfer is by construction clearly pro-
hibited in the latter case. The very surprising outcome from
the space-energy maps of 𝜀eff(r, 𝜔) is that one can hardly
tell the differences between the two cases. Even for a gap of
only 3 Å, the dynamics of the dimer are still dominated by
the surface-enhanced Landau damping observed already
for the two independent surfaces [202]. Though based on a
specific jellium problem, this observation calls into ques-
tion the alternative quantum tunneling explanations of
the gap-dependent broadening in dimers. On the other
hand, the very same example illustrates how the plasmon
dynamics of the monomer and the dimer seems dominated
by some other common physics, being also of a quantum
origin: surface-enhanced Landau damping.

Gap-dependent broadening has indeed been observed
experimentally, while the experiments have sometimes
been interpreted solely as due to quantum tunneling.
In particular, seminal studies – “Revealing the quantum
regime in tunneling plasmonics” [159] and “Observation of
quantum tunneling between two plasmonic nanoparticles”
[254] – are clearly alluding to the quantum tunneling
as the microscopic mechanism underlining the experi-
mental observations. The optical response has been com-
plimented by low-frequency electrical measurements in
the DC tunneling regime [159], but it should, however,
be emphasized that there is an absence of explicit elec-
trical measurements of any optical-frequency tunneling
currents (being naturally extremely difficult due to lim-
ited electrical measurement capabilities in the optical-
frequency regime). As such, these experiments remain
important intriguing observations, while perhaps not pre-
senting the smoking gun for optical-frequency quantum
tunneling.

Naturally, the classically prohibited energy barrier
that separates the two surfaces is closely related to the
work function of the metals. Thus, turning to other materi-
als realizations could be one potential way to provide better
conditions for more explicit observations of quantum tun-
neling phenomena at optical frequencies. On the other
hand, Landau damping might be influenced as well [264].
Another related approach would be to introduce (molec-
ular) matter into the gap region of the dimer [161, 162,
298], thus effectively providing a stepping stone for charge
transfer and the CTP.

The pragmatic question is if charges would have a suf-
ficiently long time to tunnel through the classically prohib-
ited energy barrier before the optical field has its polarity
reversed? Acknowledging that the concept of a charge-
transfer tunneling time 𝜏CT is a delicate topic in itself [336],
tunneling would only be important to the overall dimer

dynamics of the junction at sufficiently low frequencies
where 𝜔𝜏CT ≪ 1. This circuit picture was already raised in
Ref. [168], providing also some arguments that 𝜔𝜏CT ≫ 1
in somewhat comparable STM experiments, but the mag-
nitude of 𝜏CT in plasmonic experiments remains an open
question.

Proposals favoring the importance of quantum tunnel-
ing in dimer dynamics were founded in ab initio treatments
of the jellium problem within TDDFT, and the phenomeno-
logical QCM was developed from there [164, 252]. As a com-
peting phenomenological model, GNOR instead accounts
semiclassically for surface-enhanced Landau damping
[168]. So which model is the more relevant one? We
have already seen how further jellium considerations offer
microscopic support for the dominating role of surface-
enhanced Landau damping for dimers. In fact, GNOR
offers a unified description of both monomers and dimers,
while the QCM is naturally not applicable to the former.
In order to allow experiments to independently settle on
the relative importance of quantum tunneling and Lan-
dau damping, circular dichroism in nanoparticle helices
has recently been proposed as a useful platform [332]. No
matter the efforts in finding fruitful materials systems, a
more fundamental challenge remains: dynamic tunneling
phenomena rely critically on overlapping evanescent tails
of electron density reaching beyond the surfaces of the
metals, but the very same tails constitute a source of sur-
face response too [271]. As a fundamental consequence of
causality and Kramers–Kronig relations [41], this surface
response is inevitably associated with surface-enhanced
Landau damping.

7.5 Quantum plasmons in low-dimensional
systems

Plasmons can be hosted in a broad plethora of physical sys-
tems, having at least the gas of free electrons in common.
Recalling the discussion of the Drude model, Eq. (8), the
plasma frequency 𝜔p ∝ n1∕2

0 reflects the density n0 of the
free-electron gas. Beyond the relatively dense 3D electron
gas (3DEG) of the metals, plasmons with a lower plasma
frequency can also be supported by the more dilute 3DEG
of doped semiconductors. Nonlocal effects exist also in
this situation, which have been explored in hydrodynamic
models [69, 70, 337]. In passing, we note that even undoped
semiconductors can host nonlocal phenomena associated
with excitons [338], and also interband transitions can
resemble plasmonic behavior [74].

Turning the attention to the dimensionality of the elec-
tron gas, the advents of semiconductor crystal growth and
semiconductor heterostructures paved the way for the 2D
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electron gas (2DEG) [339]. In addition to many fascinat-
ing electronic quantum phenomena, the 2DEG can also
host collective plasmonic oscillations, being of an in-plane
longitudinal kind with a common𝜔(q∥) ∝ q1∕2

∥ dispersion
relation [340, 341].

With the discovery of atom-thin 2D electron systems,
such as doped graphene, there is now a tremendous focus
on 2D plasmonics [67, 72]. The following subsections will
briefly mention some of those directions. The main theme is
here that the more dilute the electron gas, the potentially
larger are the intrinsic length scales of the electron gas,
such as the Fermi wavelength 𝜆F or the Thomas–Fermi
screening length q−1

TF . In the context of nonlocal response,
the hypothesis is thus that nonlocal effects could manifest
at longer length scales than we have so far observed for
metals (see Table 1).

The attention to low-dimensional systems, naturally
also involves a curiosity for the physics and materials prop-
erties that evolve in the transition from 3D materials sys-
tems to the true 2D world of atom-thin sheets of materials,
such as graphene. Figure 16 illustrates this transitioning,
offering now a new paradigm under the headline of trans-
dimensional photonics [342]. The following subsections
will discuss particular aspects of low-dimensional mate-
rials in connection with the surface-response functions of
metal surfaces.

Figure 16: Illustration of the materials paradigm of transdimensional
photonics [342], with the electrodynamics spanning the plasmonic
response of both the 3DEG and 2DEG systems. Material realizations
include (a) 3D crystalline metals, (b) quasi-2D crystalline metal films
[320, 343], (c) atom-thin metal films [344, 345], (d) layered 2D
exciton materials [32, 346], and eventually (e) one-atom thin 2D
materials [30, 67]. The support of a 2DEG by Shockley surface states,
closely analogous to the 2DEG in graphene, is closing the circle of
this new emerging materials paradigm. 2DEG, two-dimensional
electron gas; 3DEG, three-dimensional electron gas.

7.5.1 Graphene plasmons

The optical response of graphene is characterized by a 2D
surface conductivity 𝜎∥(q∥, 𝜔) that exhibits spatial disper-
sion associated with both the intraband response of the
free-electrons associated with doping, as well interband
transitions [67], both aspects reflecting the underlying lin-
ear electronic dispersion relation [347]. Depending on the
level of doping and the ratio of optical energy ℏ𝜔 rela-
tive to the Fermi energy F, quantum nonlocal effects can
manifest in graphene nanostructures of a finite dimension
[73, 348–351] or when the large-q∥ response of graphene
is probed, e.g. by singular metasurfaces [352], electron
beams [353, 354] or by in-elastic scattering processes [355].
In addition, the termination of the graphene lattice can
also lead to electronic edge states at the Dirac point,
e.g. zigzag-terminated graphene lattices, which can pro-
mote additional interband transitions and damping, thus
resembling in some aspects the surface-enhanced Landau
damping that can occur at metal surfaces due to the termi-
nation of the electron gas. However, for graphene lattices,
this is an unambiguous manifestation of the underlying
atomic lattice and its symmetries. As an example, such
edge phenomena can manifest in R−1 size-dependent fre-
quency shifts and damping in graphene nanodisks [73]
and nanotriangles [349]. In the following, we will focus on
the possibilities that graphene can further offer in the con-
text of unraveling mesoscopic electrodynamics at metal
surfaces.

Adding 2D materials to the surfaces of metals, the finite
𝜎∥(q∥, 𝜔) now allows surface currents. As such, an added
2D material can also be represented as a surface-response
function, contributing a finite d∥-component to the metal
surface, initially being characterized by d∥ = 0. Metal par-
ticles wrapped in graphene [356] and metal surfaced cov-
ered by 2D exciton material [357] represent such examples.
Likewise, the placement of graphene in closeness, prox-
imity to a metal mirror has already unveiled intriguing
quantum effects [293], arising as an interplay of nonlocal
2D plasmons in the graphene and their screening by the
nearby 3DEG of the metal, responding nonlocally by itself
[358]. Since the optical properties of the graphene are in
this context remarkably well-established within an analyti-
cal RPA theory for𝜎∥(q∥, 𝜔), the graphene might be used as
a probe that can teach us more about the less known non-
local properties of the nearby surface, potentially allowing
an experimental determination of the Feibelman param-
eters [295]. As we shall see in the next subsection, this
can even be extended to new explorations of atomic-scale
properties beyond the jellium picture of metals. Finally,
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the use of graphene as a probe of nearby electrodynamics
was recently even suggested as a possible avenue for explo-
rations beyond the common metallic state in a correlated
matter [359–361].

7.5.2 Shockley surface states

Crystalline metals are intuitively superior to their poly-
crystalline counterparts [362], and their practical impor-
tance for plasmonics [363] should not be underestimated
[287, 343, 364–368]. At the same time, it is well-established
in surface science [369] that (111) noble-metal surfaces
have Shockley states [370] (occasionally also referred to as
Tamm states [371]) with a 2DEG, see panel (a) in Figure 16,
with no counterparts for other surface facets (or poly-
crystalline films for that sake). The associated 2DEG is
in itself fundamentally interesting, somewhat resembling
the 2DEG of graphene [see panel (e) of Figure 16], while
exhibiting a free-electron like parabolic dispersion.

Crystalline noble-metal particles can exhibit many
different facets [372], being reflected also in morphology-
dependent resonances [373, 374]. On the other hand, larger
planar flakes now gaining attention in plasmonics are char-
acterized in particular by the (111) surfaces, see panel (b)
in Figure 16, while the flake edges can naturally be of other
kinds too [343]. The (111) facet of crystalline flakes is now
revitalizing the interest in Shockley surface states also in
the context of plasmonics.

The existence of a Shockley 2DEG stimulates explo-
rations in the spirit of 2D graphene plasmons [375], as
we have discussed in the preceding Section 7.5.1. Angle-
resolved electron energy loss spectroscopy has revealed
2D plasmons associated with similar surfaces [376, 377],
but with low energy and large wave vectors, rendering
them even more confined to the surface than what is seen
for the confinement of graphene plasmons to the carbon
monolayer [378]. Similarities with graphene plasmonics
might actually come in handy, with graphene plasmons
themselves providing the means to probe and unveil 2DEG
(and 3DEG surface) quantum phenomena. As such, the
approach of Lundeberg et al. [293] could be extended
to explore an arising interplay of nonlocal 2D plasmons
(of both the graphene and the Shockley-type kind) and
their screening by the nearby 3DEG, responding nonlo-
cally itself [291, 358]. While remarkable recent experiments
exploited poly-crystalline metal films [293, 379], the (111)
surfaces might offer a new paradigm when interfaced with
graphene. Hybridization of graphene and Shockley-type
plasmons would open new avenues for explorations of
quantum effects in highly confined electron gasses.

In the context of the plasmonic response of the bulk
3DEG, the surface-response functions are now dressed by
the presence of also the Shockley 2DEG [328], potentially
rendering d∥ ≠ 0 for (111) noble-metal surfaces, while d∥
= 0 for any other surface facet [292]. The curious question
is if there are any plasmonic signatures that would
distinguish (111) surfaces [380, 381] from any other surface
of the same metal?

Finally, turning to few-atom thin films, out-of-plane
quantum confinement should render the 3DEG and
its plasmons 2D-like [382]. Transition to this regime is
extremely interesting [344, 345], being at the heart of
transdimensional photonics [342]. In such situations,
with less clear ways to distinguish the surface from
bulk, one would perhaps have to return to the selvage
considerations of Sipe [262].

7.5.3 Molecular plasmons

Through doping, macro-molecules can be made conduc-
tive, thus potentially also supporting a plasmonic response
that could co-exist with single-particle optical transitions
in the molecule [383]. In particular, polycyclic aromatic
hydrocarbons are planar macro-molecules that in many
ways resemble finite-size nanoflakes of graphene. When
doped by the addition of few electrons, the observed strong
optical response has been given a plasmonic interpreta-
tion [384]. The important question is of course how to
unambiguously reveal the plasmonic nature and how to
tell it apart from common single-particle transitions? As
such, the microscopic definition of a plasmon that engages
only very few electrons is yet to be fully understood. How
plasmon-like is the excitation? Theoretical efforts have
been made to quantify the degree of collectiveness by
introducing a so-called plasmonicity measure [385, 386].
Since plasmons in atom-thin planar systems are in-plane
pressure waves of a longitudinal kind, this question of plas-
monicity suddenly connects to the work of also nonlocal
plasmonics in metals, where the electromagnetic energy
of the plasmon can be hosted in both transverse and lon-
gitudinal degrees of freedom (the former being accounted
for by classical formalism, while the latter emerges from
quantum considerations).

Using RPA techniques and energy-density arguments
there is a rigorous way to estimate the relative fraction
of electromagnetic energy hosted by longitudinal degrees
of freedom [174]. Interestingly, this ratio can be expressed
also in terms of experimentally measurable quantities, e.g.
the nonclassical-impact parameter (NCI) [174]

NCI = 1+ Im
{
𝜀
−1}

Q
, 0 < NCI < 1, (44)
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where Im
{
𝜀
−1} is the electron-energy loss function (e.g.

being probed in EELS experiments [96]) and Q = 𝜔∕Δ𝜔
is the quality factor of the resonance. By construction,
NCI = 0 for entirely classical (transverse) electrodynamics,
while NCI = 1 for fully developed nonclassical (longitudi-
nal) electrodynamics. This was already used to access the
degree of quantumness (nonlocality) associated with the
EELS observation of frequency blueshifts in silver nanopar-
ticles [124, 138].

Quite unintentionally, the NCI concept can equally
well be used as a rigorous plasmonicity measure for
molecular plasmonics in planar macro-molecules [386]:
A vanishing NCI ratio for electrodynamics entirely asso-
ciated with transverse single-particle transitions in the
molecule, while the ratio attains the value of unity for
longitudinal plasmon-like excitations. More recent works
have developed further on this energy concept in molecular
plasmonics [387, 388].

7.6 Surface chemistry
The very fact that the formalism of surface-response func-
tions was emerging from the surface-science community,
naturally also suggests the potential usefulness not only to
the more fundamental explorations of physics and electro-
dynamics but perhaps also to surface chemistry and appli-
cations areas such as photocatalysis. Localized plasmon
resonance is confined to the surfaces and surface chemistry
can thus change the plasmon resonance frequency, which
is essentially the principle behind plasmonic sensing
[389–391]. Likewise, already early experiments revealed a
sensitivity of the plasmon damping to the chemical nature
of the nanoparticle interface [392]. In the context of Refs.
[122, 202] and the introduction of Feibelman parameters
[80], this can be linked to the microscopic surface-response
functions (here predominantly d′′

⊥
). Another curious point

relates to Eq. (35) where x0 coincides with the static image-
plane position that emerges from a self-consistent solution
of the jellium perturbed by a static field [393–395]. As such,
x0 is being a quantity of interest in surface science at large
and a particular example being that of the surface-assisted
van der Waals interaction of an atom near a metallic surface
[266, 394].

Later, surface chemistry was explored as a means for
reversing the size-dependence of the SPR frequency [396],
thus illustrating how the chemical nature of the surface
can alter even the sign of d′

⊥
. In very recent experiments

[397], the formation of surface layers with in-plane longer-
range order may in principle even facilitate the support of
surface currents, thus being related to also d∥. In support
of this speculation, we have already discussed above how

the addition of 2D materials to the surface would effectively
add a finite d∥ component to the metal surface, initially
being characterized by d∥ = 0.

Surface-enhanced Landau damping is an inevitable
aspect of the strong confinement of light through SPs [243].
While being a curse for many applications, it is also a
blessing for the funneling of energy to the very nanoscale
through the local dissipation of electromagnetic energy.
This local plasmonic heating [398] has facilitated numer-
ous applications, ranging from cancer treatment [399]
to re-configuration of morphology-dependent plasmonic
resonators-[400], while the associated hot electrons hold
potential for additional use [401].

From the Newns–Anderson model [402], the chem-
ical binding of atoms and molecules to the surface is
well understood in terms of hybridization of surface states
with the add-atoms, where the equilibrium density profile
naturally plays some role. The curious question is if the
quantum spill-out of the optically induced surface-charge
density could participate in surface chemistry in a similar
way? The prospects for this would very much depend on
chemical-reaction rates and the possible charge-transfer
rate 𝜏CT relative to the driving optical frequency 𝜔. Inter-
estingly, this speculation is not entirely unrelated to the
discussions of quantum tunneling in Section 7.4.

7.7 Quantum plasmonics
With the focus on the quantum and nonlocal aspects
of plasmons, the mesoscopic electrodynamics formalism
forms an integral part of the rapidly developing field of
quantum plasmonics [4, 6, 7, 403] embracing both the
fundamental research and the quantum technology per-
spectives of plasmonics in the quantum regime. Most
importantly, this intriguing development can involve the
quantum aspects not only in at least two different ways: (i)
the possible quantum and nonlocal aspects of the matter
supporting the plasmons but also (ii) the quantum aspects
of the light fields, i.e. nanoscale quantum optics involving
plasmons [404–415]. The regime where both light and mat-
ter exhibits quantum dynamics has prospects for emerging
quantum technology [8], including the unique opportunity
for quantum electrodynamics (QED) with plasmonics [413]
and plasmon-enhanced generation of nonclassical light
[10]. Plasmon-emitter interactions are of paramount impor-
tance to the development of quantum plasmonics, includ-
ing the engineering of single-photon emission dynamics
[9, 416–418]. As examples, individual quantum emitters
have been coupled to propagating plasmons [419–422]
and to localized gap plasmons [423–428]. The interactions
are generally maximal at short emitter-surface separations,
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with emission being quenched by coupling to nonradiative
degrees of freedom when getting closer to the surface [429,
430]. When the separation h enters the 10–20 nm regime,
classical theory (valid when h ≫ d

⊥
) progressively deterio-

rates due to its neglect of quantum and nonlocal effects. In
passing, we note that mesoscopic corrections to the point-
dipole approximation can also occur if dimensions of the
emitter itself cannot be neglected on the scale of h [431].
Accounting for the surface-response functions of the metal,
surface-enhanced Landau damping is shown to have a dra-
matic impact on the amplitude and spectral distribution
of plasmon-emitter interactions [296]. Similar nonlocal
effects have also been explored in the context of spon-
taneous emission rates and plasmon-enhanced molecular
fluorescence [432–434] as well as strong coupling between
excitons or quantum emitters and plasmons [435–438].

Turning to more general plasmonic nanostructures,
quasi-normal mode (QNM) formalism for open-resonator
problems [439, 440] represents an important step for
the computational treatment of plasmon-enhanced single-
photon emission and for further exploitation of QED with
plasmonic systems [441]. Here, nonlocal hydrodynamic
aspects have been included in QNM formalism, thus allow-
ing the first computational explorations of the quantum
aspects of both light and matter in QED problems [442]. The
representation of the surface-response functions through
mesoscopic boundary conditions can likewise be used for
quantum-corrected QNM formalism. This forms also a con-
venient starting point for evaluations of spectral shifts and
broadening in the presence of retardation effects [269] (see
also Ref. [443] for an eigenvalue approach), thus going
beyond the quasi-static considerations of Ref. [122].

7.8 Metamaterials
While this review has its focus on the nonlocal response
associated with a quantum electron gas, it should be men-
tioned that there is a parallel interest in nonlocal effects
and spatial dispersion that manifest in artificial periodic
media and metamaterials [444], including Refs. [445–453].
Quoting Podolskiy from the discussions at the 2015 Faraday
Discussions on nanoplasmonics [331]: “The drastic differ-
ence between nonlocality in homogeneous media studied
previously and nonlocality in metamaterials lies in the origin
of additional waves. In homogeneous materials, the nonlocal
response is attributed to the spatial dispersion of the mate-
rial itself. In metamaterials, however, nonlocality appears
at the “effective medium” level; the response of every com-
ponent of the metamaterial may remain local, while the
granularity of the composite leads to the spatial dispersion
of the effective permittivity.”

Nevertheless, studies of nonlocal plasmonic effects
in metal-based hyperbolic metamaterials [117, 454], plas-
monic crystals [455], and epsilon-near-zero phenomena
[456] constitute examples of the relevance of nonlocal plas-
monic response to also concepts in metamaterials research.
Likewise, the nonlocal response of metamaterials also has
implications for SPPs sustained at their surfaces [457].
While clearly going beyond the focus of this review, it is
an interesting open question to which extend metamate-
rials governed by classical electrodynamics would be able
to mimic the spatial dispersion and nonlocal phenomena
beyond LRA aspects of the SP [458–460].

7.9 Topological nanophotonics
Let us finally turn to the quickly developing area of topo-
logical phenomena, which are ubiquitous in physics and
spanning areas from condensed-matter physics to physical
cosmology. Also, electrodynamics is now harvesting from
topology in many exciting ways with topological photon-
ics [461] manifesting in a plethora of novel directions [35,
38, 39] that challenge the common understanding of light
propagation and light–matter interactions. In bridging
topological physics (understood in broad terms, includ-
ing also nonreciprocity and non-Hermitian systems) and
nanophotonics, unforeseen topological control of quan-
tum light–matter interactions can be anticipated [40], with
developments in topological nanophotonics facilitating
intriguing interplays of light, matter, topology, and sym-
metry. Naturally, plasmons also play a potential future role
in such adventures and as such, the quantum and nonlo-
cal plasmonics might become an important aspect of this
development too. As a recent example of this, the nonlocal
response of plasmons is central to discussions [462–464]
of surface-magneto-plasmons [465–467] and the prospects
for optical isolators and nonreciprocal plasmonics
[468, 469].

8 Concluding remarks
The interaction of light with matter is largely being under-
stood within the framework of classical electrodynamics,
linear-response theory, and the LRA. This framework has
been instrumental for the interpretation of fundamental
experiments, while also fueling new thoughts and numer-
ous predictions of new intriguing electrodynamic phenom-
ena, that have in turn been confronted and confirmed
experimentally. The general success of this framework in
optical explorations of plasmons can largely be attributed
to the relatively “large” dimensions of the metal structures
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hosting the plasmons, thus justifying the LRA. However,
the increasing experimental ability to both realize and
probe plasmons in yet smaller metallic nanostructures
has also disclosed a need for more refined descriptions
of the light–matter interactions, possibly including effects
associated with the underlying quantum dynamics of the
electron gas of the metals. This is the reason for the
curiosity and the motivation for the theoretical efforts and
concept developments that have led to the mesoscopic
electrodynamics framework.

The review summarizes formalism and concept devel-
opments that are foundational to mesoscopic electrody-
namics and the understanding of quantum and nonlo-
cal plasmon response in metallic nanostructures. The
accounts for quantum effects enter the electrodynamics
at various levels of complexity, ranging from semiclas-
sical nonlocal corrections of Ohm’s law to Feibelman’s
surface-response functions, that account for the micro-
scopic temporospatial dynamics of the quantum electron
gas that manifest at length scales associated with the
underlying atomic lattice. In all cases, there is an effort to
offer physically transparent directions for the implementa-
tion of quantum corrections in classical electrodynamics,
thus also offering practical solutions that can be immedi-
ately implemented in state-of-the-art computational elec-
trodynamics, already widely exploited in the research and
engineering communities.

The dominating and unifying quantum effects that
manifest in both individual monomers and dimers (formed
from pairs of such monomers) can be briefly summarized
as
– Nonlocal response associated with the finite com-

pressibility of the quantum electron gas, causing size-
dependent spectral shifts of plasmon resonances,

– Landau damping and spill-out associated with the sur-
face termination of the quantum electron gas, causing
size-dependent spectral shifts and broadening.

While clearly acknowledging the importance of quantum
spill-out of charge, it is argued that relaxation related
to quantum-tunneling-mediated charge transfer perhaps
represents a less significant broadening contribution in
dimer structures as compared to spill-out related surface-
enhanced Landau damping. Admitted, this conclusion is
challenged by seemingly widespread intuition and con-
sensus in the field of plasmonics. The above paradigm
is supported by ab initio TDDFT calculations while being
somewhat in opposition to the competing paradigm of
quantum tunneling in nanogap plasmonic structures. Note-
worthy, the competing paradigms are both rooted in the

same – highly idealized – jellium-model considerations
and a few atomistic ab initio atomistic descriptions [288,
289], while experimental realizations can only be antici-
pated to be far more complex. Ideally, future fundamental
experiments would be designed with an emphasis on con-
fronting and clarifying these competing interpretations.
Perhaps, both interpretations may coexist without actually
competing.

Beyond the fundamental interest in the quantum
and nonlocal response of plasmons in metallic nanos-
tructures, the mesoscopic electrodynamics framework is
also central to emerging quantum technology that har-
vests from plasmon-enhanced light–matter interactions.
In particular, nonlocal response and surface-enhanced
Landau damping have a profound influence on the tem-
poral dynamics of quantum emitters placed in the near
vicinity of metal nanostructures.

The new insight in the quantum and nonlocal response
of plasmons is potentially also of relevance for future
explorations now heading in a number of exciting direc-
tions, ranging from the fundamentally important exper-
imental probing of surface-response functions — with
the aid of surface-added atom-thin 2D materials — to
the exploitation of light-induced hot electrons in surface
chemistry.

In closing, the timing of this review follows the recent
200 years anniversary of Ørsted’s discovery in electro-
magnetism. For two centuries fundamental explorations
and engineering efforts have advanced enormously on the
foundations of classical electrodynamics, while entirely
transforming our society and means for human interac-
tions. We are now on the verge of a second era, fac-
ing new paradigms in quantum light–matter interactions
with prospects for quantum-information processing. The
quantum-corrected mesoscopic framework will support
such new adventures with plasmons.
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