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Noble metal nanostructures are ubiquitous elements in nano-optics, supporting plasmon modes that can focus light
down to length scales commensurate with nonlocal effects arising from quantum confinement and spatial dispersion
in the underlying electron gas. Quantum and nonlocal effects can be more prominent in crystalline noble metals, due
to their lower intrinsic loss (when compared with their polycrystalline counterparts), and because particular crystal
facets give rise to distinct electronic surface states whose signatures can be imprinted in the optical response of a struc-
ture. Here, we employ an atomistic method to describe nonclassical effects impacting the optical response of crystalline
noble metal surfaces and demonstrate that these effects can be well captured using a set of surface-response functions
known as Feibelman d-parameters determined from such quantum-mechanical models. In particular, we characterize
the d-parameters associated with the (111) and (100) crystal facets of gold, silver, and copper, emphasizing the impor-
tance of quantum surface effects associated with electron wave function spill-out/spill-in and with the surface-projected
band gap emerging from the atomic-layer corrugation. Furthermore, we show that the extracted d-parameters can be
straightforwardly applied to describe the optical response of various nanoscale metal morphologies of interest, including
metallic ultrathin films, graphene–metal heterostructures hosting ultraconfined acoustic graphene plasmons, and crys-
tallographic faceted metallic nanoparticles supporting localized surface plasmons. We envision that the d-parameters
presented here, along with the prescription to extract and apply them, could help circumvent computationally expensive
first-principles atomistic calculations to describe quantum nonlocal effects in the optical response of mesoscopic crys-
talline metal surfaces, which are becoming widely available with increasing control over morphology down to atomic
length scales for state-of-the-art experiments in nano-optics. © 2021 Optical Society of America under the terms of the OSA
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1. INTRODUCTION

Metals support collective oscillations of their conduction electrons,
known as plasmons, with light-trapping and light-manipulation
capabilities at nanometer length scales (i.e., well below the diffrac-
tion limit imposed by traditional optics [1,2]). The wealth of
fundamental explorations in plasmonics over the last couple of
decades has contributed to shape the field of nano-optics [3,4],
holding great promises for nanophotonic-based technologies
including theranostics [5,6], photocatalysis [7,8], structural
coloring [9], solar energy harvesting [10,11], and quantum infor-
mation [12–14]. Advances in modern nanofabrication techniques
have fueled plasmonics research further by enabling the realiza-
tion of nano-optical devices operating at deeply subwavelength
scales [15,16]. As current state-of-the-art capabilities can pat-
tern metallic nanostructures down to the few-nanometer regime
[17–19]—where the frontiers of quantum and classical physics

coalesce—new routes towards next-generation plasmon-based
technologies begin to emerge, while also posing new challenges
in understanding and modeling their optical response at truly
nanometric scales [14,20,21].

The realization of thin crystalline noble metal films [22–25]
is key to cutting-edge explorations of novel plasmonic devices:
metallic nanostructures with a high degree of crystallinity are
anticipated to exhibit lower Ohmic losses when compared to
their polycrystalline kins [26], with the recent observation of
plasmons in laterally patterned few-atom-thick crystalline silver
films partially confirming this intuition [19]. Furthermore, it is
well established in surface science that (111) noble metal surfaces
possess Shockley surface states (SSs), with features resembling
those of a two-dimensional electron gas (2DEG) [27–29]. The
2D-like plasmon modes supported by Shockley SSs [29,30] can
be characterized, for example, by angle-resolved spectroscopy
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[31–33], and play a role in near-field light–matter interactions at
such surfaces.

While ab initio methods capture nonclassical effects in the
optical response of ultrathin metal films or few-atom metal clus-
ters [34,35], they often require substantial computational efforts
that rapidly become unfeasible for structures with characteristic
sizes & 10 nm; nevertheless, precision within ∼10 nm is what is
currently afforded by state-of-the-art top-down nanofabrication
techniques. One of the overarching challenges in theoretical nano-
optics is thus to describe the optical properties of nanostructured
metals by solving Maxwell’s equations while accounting for—in
the response functions entering the constitutive relations—
quantum-mechanical effects that emerge when electrons are
confined in low-dimensional systems, ideally without resorting
to demanding numerical approaches that provide limited insights
into the underlying physics. Fortunately, the situation is somewhat
simplified in metals by their ability to effectively screen electro-
magnetic fields, which leads to an optical response dominated
by surface effects. In this context, the concept of microscopic
surface-response functions, such as the Feibelman d -parameters
[21,36–40], offers a practical and scalable recipe to simultaneously
incorporate quantum-mechanical phenomena, such as electronic
spill-out, nonlocality, and surface-enabled Landau damping, into
the optical response of metal nanostructures [21,36–38,41], as has
been recently demonstrated experimentally [42].

Here, we apply a quantum-mechanical framework employing
a one-dimensional (1D) potential that describes a vertical stack
of (homogeneous) atomic layers [43], to model crystalline met-
als. The wave functions obtained by solving the corresponding
Schrödinger equation are then used to compute the nonlocal
optical response of selected noble metal (gold, silver, and copper)
films with specific crystallographic orientations—namely, the
(100) and (111) surfaces—from which we extract the associated
Feibelman d -parameters. We demonstrate that the d -parameters
obtained for a thick film (tantamount to a semi-infinite metal),
once tabulated (as we do here), can be straightforwardly incor-
porated into a wide range of electromagnetic problems, ranging
from analytical solutions for simple geometries [21,37,38] to
full-wave numerical electromagnetic solvers of realistic particles
[42], to accurately describe quantum-mechanical effects impacting
the optical response of the system [38,42]. We anticipate that
the results presented herein could be widely deployed to describe
ongoing experiments and engineer future nanoscale plasmonic
devices at the extreme nanoscale.

2. RESULTS AND DISCUSSION

In classical electrodynamics, a metal surface is commonly described
by a step-like dielectric function that changes abruptly from the
bulk, local dielectric function of the metal, εm ≡ εm(ω), to that
of the adjacent dielectric, εd ≡ εd(ω). However, this rudimen-
tary prescription can be augmented with d -parameter-corrected
boundary conditions that incorporate quantum effects associ-
ated with the optical response of metal surfaces to leading order.
Specifically, for a p-polarized electromagnetic field impinging on
a metal surface from the dielectric side, the nonretarded reflection
and transmission coefficients read [21,37–39]

rdm =
εm − εd + (εm − εd)Q(d⊥ + d‖)
εm + εd − (εm − εd)Q(d⊥ − d‖)

, (1a)

tdm =
2εd

εm + εd − (εm − εd)Q(d⊥ − d‖)
, (1b)

respectively. Here, Q is the in-plane wave vector (i.e., parallel
to the interface), while d⊥ ≡ d⊥(ω) and d‖ ≡ d‖(ω) denote the
frequency-dependent, complex-valued quantum surface-response
functions introduced by Feibelman [21,36–38] (see Appendix
A). In addition, for p-polarized light impinging on the interface
from the metal side, the corresponding nonretarded reflection and
transmission coefficients read

rmd =
εd − εm + (εm − εd)Q(d⊥ + d‖)
εm + εd − (εm − εd)Q(d⊥ − d‖)

, (2a)

tmd =
2εm

εm + εd − (εm − εd)Q(d⊥ − d‖)
. (2b)

Note that, in general, rmd 6= −rdm for dα 6= 0, where α ∈ {⊥, ‖}.
Equipped with Eqs. (1) and (2), the overall Fabry–Perot (FP)-like
reflection coefficient of the composite dielectric–metal–dielectric
heterostructure can be determined via

R = rdm +
tdmtmdrmde−2QL

1− rmdrdme−2QL
, (3)

where L denotes the metal film thickness.
The above quantum-surface-corrected description requires as

inputs only the local, frequency-dependent dielectric functions
of the metal εm and of the surrounding dielectric εd, along with
the frequency-dependent Feibelman d -parameters (d⊥ and d‖).
For a particular dielectric–metal interface, the d -parameters can
be obtained via first-principles quantum-mechanical methods
[e.g., time-dependent density-functional theory (TDDFT)] [39],
semiclassical or quantum-informed models [36], or experimentally
[40,42].

In what follows, we obtain the d -parameters from the reflec-
tion coefficients associated with crystalline noble metal surfaces
by performing nonclassical optical response calculations based
on the random-phase approximation (RPA), employing the
quantum-mechanical model reported in Ref. [44] (see Appendix
A for details). In the RPA formalism applied here, the nonin-
teracting susceptibility is constructed from single-particle wave
functions 9i (r) that satisfy the Schrödinger equation for a 1D
phenomenological potential V (z) characterizing each crystalline
metal [43]. To describe crystalline metals, we employ the so-called
atomic layer potential (ALP), which are simple parametrized
potentials that capture the atomic corrugations in the direction
perpendicular to the surface, and have been designed to reproduce
the salient features of the bulk and semi-infinite surface electronic
structures [43]. The ALP-RPA description thus incorporates the
effects of electronic band structure, electron spill-in/out, and
transverse atomic corrugation in the optical response of layered
silver (Ag), gold (Au), and copper (Cu) films with (100) or (111)
crystallographic orientation (see Table 3).

Dynamical core-electron screening (i.e., due to low-lying
occupied d -bands), which plays an important role in the optical
response of noble metals [45,46], is incorporated in the ALP-RPA
model through a polarizable background with dielectric function
εb(ω). A comprehensive description of the calculation is provided
in Appendix A. To maintain fidelity with experimental data, we fol-
low Ref. [47] and construct εb(ω) by subtracting the free-electron
component from the experimentally tabulated dielectric function,
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Fig. 1. Feibelman d -parameters for noble metals with distinct crystallographic surfaces. (a) Illustration of a semi-infinite crystalline noble metal sur-
face comprising vertically stacked atomic planes and characterized by a phenomenological atomic layer potential (ALP), for which the optical response is
computed in atomistic quantum-mechanical calculations (ALP-RPA); extraction of the Feibelman d -parameters associated with the metal surface facili-
tates a mesoscopic, surface-corrected treatment of its optical response, portrayed as the plane in (b) representing the centroid of the induced charge (given by
Re{d⊥}), which incorporates quantum nonlocal effects encoded in a surface dipole density. (c)–(e) Real (solid curves) and imaginary (dashed curves) parts of
d⊥ for the (111) and (100) facets of Ag, Au, and Cu, along with the d⊥ obtained in the specular reflection model (SRM), as indicated by the color-matched
legends in panel (c).

Table 1. Drude Parameters Characterizing
Free-Electron Gas Contributions to Noble Metal
Dielectric Functions

a

Metal ~ωexp
p (eV) ~γ exp (meV)

Ag 9.17 21
Au 9.06 71
Cu 8.88 103

aPhenomenological parameters used for a Drude-like dielectric function that
is compatible with experimental data [48]. The background contribution εb is
shown in Fig. 7.

ε
exp
m [48], such that εb(ω)= ε

exp
m (ω)+ (ω

exp
p )2/(ω2

+ iωγ exp),
where ωexp

p and γ exp are the experimentally determined plasma
frequency and phenomenological free-electron inelastic scatter-
ing rate, respectively. The parameters used to characterize silver,
gold, and copper are specified in Table 1, while the isolated εb are
presented in Fig. 7.

Using the ALP-RPA model, we follow the prescription outlined
in Appendix A.3 to extract the Feibelman d -parameters associ-
ated with noble metal surfaces having specific crystallographic
orientations (Fig. 1). More specifically, after computing the reflec-
tion coefficient in the ALP-RPA formalism, the d -parameters are
extracted by fitting Eq. (1) while employing a Drude-like dielectric
function of the form

εm(ω)= εb(ω)−
(ωALP

p )
2

ω(ω+ iγ exp)
, (4)

where ωALP
p is the plasma frequency obtained by fitting Eq. (1) in

the Q→ 0 limit to the ALP-RPA model. The employed values of

ωALP
p , which are related to the electron density computed from the

ALP by populating electronic states of a semi-infinite metal film
until the Fermi energy converges to its experimentally determined
value, are listed in Table 3.

To better distinguish the quantum effects directly related with
crystallographic facets, the d⊥-parameters extracted from the
ALP-RPA in Fig. 1 are contrasted with those obtained within the
specular reflection model (SRM), first proposed by Ritchie and
Marusak to study nonlocal effects impacting the dispersion of
surface plasmons [49], and later generalized by others to deal with
more complex structures [21,29,49–51]. The SRM—also known
as the semiclassical infinite barrier model (SCIB)—incorporates
bulk spatial dispersion (i.e., nonlocality or Q-dependent response)
but assumes a bulk, homogeneous electron gas, and thus neglects
both surface response and atomic corrugations captured in the
ALP-RPA model. In the case of the (100) orientation and the SRM,
the absence of surface currents for charge-neutral materials yields
d‖ = 0 [36,39]. Here, and for (111) surfaces alone, we introduce
d‖ heuristically to incorporate the response due to the presence of
Shockley SSs in (111) facets—as explained in Appendix A.2; when
extracting d⊥ for the (111) facets, we explicitly omit intraband
transitions involving SSs to avoid double-counting the effect of the
2DEG. The Feibelman d⊥-parameters presented in Fig. 1 clearly
distinguish the surface response akin to distinct metal crystallo-
graphic facets, i.e., different facets yield different d -parameters. In
particular, these differences are more discernable at low energies

(~ω< 1 eV) and at energies around ~ωcl
sp = ~ωp/

√
εb(ωcl

sp)+ εd

where the classical nonretarded surface plasmon is spectrally
centered.
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The d -parameter data presented in Fig. 1 show that Re{d⊥}< 0
forω.ωcl

sp, thus indicating an inward spill of the induced electron
density in noble metals, as opposed to the spill-out exhibited by
simple (i.e., jellium) metals [39,54]. Such spill-in behavior in noble
metals has been reported in numerous experimental studies, and
has been attributed to the dielectric screening from core electrons
[39]. Importantly, the approach we introduce here to extract d -
parameters from optical response calculations (namely, through
fits to the ALP-RPA-obtained reflection coefficient; see Appendix
A) reproduces the correct spill-in behavior (Re{d⊥}< 0), in
agreement with direct ALP-RPA computations of the induced
charge density, where the centroid of the induced charge density
(corresponding to Re{d⊥}) is indeed found to be located inside
the metal (Fig. S1). As we show in the following, the advantage of
the d -parameter formalism lies in its applicability to describe the
optical response of not only semi-infinite metallic films, but also of
more intricate noble metal morphologies.

A. Nonretarded Surface Plasmon Dispersion

In possession of the d -parameters associated with various noble
metal surfaces and their crystal facets, along with the analytical
expression of Eq. (1), we reproduce the nonretarded surface plas-
mon dispersion (given by the poles of rdm) obtained directly from
the ALP-RPA model. While the ALP method actually describes a
crystalline metal film of finite thickness, we obtain well-converged
results for N & 50 monolayers. Figure 2(a) shows the loss function
(via Im{r }) for silver with a (111) crystallographic orientation in
the ALP-RPA model as a function of in-plane wave vector (Q) and
energy; peaks in Im{r } indicate the surface plasmon dispersion,
which tends toward zero frequency for small Q, in accordance
with Eq. (3) for a film of finite thickness. Figures 2(b) and 2(c)
display the nonretarded surface plasmon dispersion for Ag and
Au, obtained from the ALP-RPA approach (colored dots) along
with the d⊥-parameter formalism (solid curves), together with
available experimental data [52,53]. Here, the d⊥-parameter
results have been extracted by comparing Eq. (1) with the ALP-
RPA-computed reflection coefficient in the thick-film limit; this
procedure, however, needs to be carried out judiciously, as the
conditions QL� 1 and Q|dα| � 1 (and provided that L� |dα|)
must be simultaneously fulfilled. More specifically, the extracted

d -parameter-corrected reflection coefficient reproduces the plas-
mon dispersion (to leading order in Qdα) directly computed from
the ALP-RPA, provided that the aforementioned conditions are
satisfied.

Chiefly, our results show that the optical response of a metal
surface is determined by the surface’s specific crystallographic
orientation and can be well described in terms of the Feibelman
d⊥-parameter for silver surfaces, as evidenced by the nearly over-
lapping dispersion relations obtained via the ALP-RPA model and
through the corresponding d -parameters. We can further distin-
guish the surface plasmon dispersion for different crystallographic
facets of the same metal, even in the Q→ 0 limit [as a consequence
of Eq. (4)], which can be attributed to differences in their electronic
band structure. Notably, the d -parameter-corrected response of
the Ag(111) surface—obtained from both the ALP-RPA and the
SRM—is in good agreement with experiment. However, for the
Au(111) surface, this is not the case, because the determination of
the gold surface plasmon dispersion is complicated by the onset
of broadening in the loss function at low Q, as we show in Fig. S2;
the situation is further compounded for copper, where no clear
maximum emerges in either the response described by Eq. (1) with
d -parameters or the direct ALP-RPA calculation, with only the
simpler SRM exhibiting well-defined maxima (see Fig. S3 for a
comparison of the quantum-corrected surface plasmon dispersion
relation, using the d -parameters obtained in SRM formalism, with
experimental measurements based on attenuated total reflection of
polycrystalline copper).

It is instructive to note at this point that, from Eq. (1), the non-
classical spectral correction to the nonretarded surface plasmon
frequency—keeping only terms up to first order in Qdα—is given
by [21,38,39]

Re {ωsp} ≈ω
cl
sp

[
1−

εd

εb(ωcl
sp)+ εd

QRe{d⊥ − d‖}

]
, (5)

where, as mentioned earlier, ωcl
sp ≡ Re

{
ωp/

√
εb(ωcl

sp)+ εd

}
is the

classical nonretarded surface plasmon frequency [21,29].
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Fig. 2. Nonclassical surface plasmon dispersion. (a) Loss function, via Im{r }, of a thick film consisting of N = 100 Ag(111) layers (i.e., effectively in
the semi-infinite limit) obtained within the ALP-RPA model. (b), (c) Dispersion relations of the indicated metals and facets as determined from maxima
in their computed loss functions; we extract the maxima of Im{r } directly from ALP-RPA calculations (color-coded points), while the dispersion of the d -
parameter-corrected model (solid curves) is given by the poles of the denominator of rdm obtained by fitting Eq. (1) to the ALP-RPA-computed reflection
coefficient. The triangular symbols represent experimental data for Ag (111) [52] and Au (111) [53].
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Fig. 3. Acoustic surface plasmons in (111) noble metal surfaces.
(a) Loss function, Im{r }, associated with a Au(111) surface computed
within the ALP-RPA model for a thick film in the semi-infinite limit (spe-
cifically, for N = 100). (b) Acoustic surface plasmon dispersion obtained
via the ALP-RPA model (solid line) and fitting (dashed line) to the linear
dispersion ω= vφQ, with phase velocities vφ detailed in Table 3. (c) Real
and (d) imaginary parts of the reflection coefficient of a Au(111) thick
film (N = 100 layers; indistinguishable from a semi-infinite metal) deter-
mined using both the ALP-RPA model (solid curves) and by employing
the corresponding d -parameters (dashed curves) for selected parallel wave
vectors Q [indicated by the color-matched legend in (d)].

B. Acoustic Surface Plasmons Due to Shockley
Surface States

At low frequencies, a feature exhibiting a nearly linear dispersion
emerges in the loss function associated with (111)-faceted metal
surfaces, indicating the existence of acoustic surface plasmons
arising from the presence of Shockley SSs [29,32,55–58]. Figure 3
shows the loss function of a Au(111) surface, which in the low-
frequency regime is marked by the presence of a well-defined—but
relatively broad—feature associated with its acoustic surface
plasmon [c.f. scales of Figs. 3(a) and 2(a)]. Next, we present the dis-
persion relation of acoustic surface plasmons akin to the Au(111),
Ag(111), and Cu(111) surfaces obtained within the ALP-RPA
framework (solid curves), and whose slope—corresponding to the
acoustic surface plasmon velocity—is then determined through
a linear fit (dashed curves); see Table 2. Note that the intrinsic
acoustic surface plasmons supported by noble metal surfaces of
well-defined crystallographic orientation have been characterized
experimentally under different conditions: for Au(111), a phase
velocity vφ/v2D = 1.7 was observed in Ref. [59], while a value
vφ/v2D ≈ 0.8 was reported at 78 K in Ref. [60]. The extracted
value in the present work is close to unity (see Table 2).

In principle, the Shockley 2DEG supported by the (111)-facets
can be accounted for through the Feibelman d‖-parameter (since it
is formally tantamount to a surface conductivity). Here, we exploit
this and introduce, in an ad hoc fashion, a heuristic expression for
d‖ (see Appendix A.2 for details). We emphasize here that, because

Table 2. Characterization of Acoustic Plasmons
Originating from Shockley Surface States

a

Material
EF − ε

⊥

SS
(eV) m∗(SS)/me v2D/c vφ/v2D

~γ2D

(meV)

Ag(111) 0.026 0.40 [61] 5.04× 10−4 1.0690 27.5
Au(111) 0.525 0.26 [61] 2.81× 10−3 0.9971 83.7
Cu(111) 0.356 0.41 [61] 1.84× 10−3 0.9676 118.1

aWe parametrize the (111) surface state (SS) of a specified noble metal by its
energy ε⊥SS below the Fermi energy EF, effective mass m∗, and Fermi velocity
v2D. The resulting acoustic plasmons are characterized by their phase velocity
vφ and phenomenological damping ~γ2D.

we account for the 2DEG heuristically, intraband transitions
involving SSs are omitted in the ALP-RPA-based d⊥ calculations
(thereby avoiding double-counting that contribution). Then, in
possession of both d⊥ and d‖, we employ Eq. (1) to reproduce the
optical response calculations obtained using the ALP-RPA model.
As observed in Figs. 3(c) and 3(d), where the real and imaginary
parts of the reflection coefficient for Au(111) are compared for
different values of Q, the agreement of the spectral positions is sat-
isfactory for small Q (where the d -parameter formalism is valid),
although the amplitudes of these already weak features are not well
reproduced.

C. Nonclassical Optical Response of Ultrathin Metal
Films

The practical utility of the d -parameter framework for mesoscale
electromagnetism becomes apparent by recognizing that, once
obtained for a specific dielectric–metal interface, they can be read-
ily incorporated in a broad range of optical response calculations,
either via d -parameter-corrected scattering coefficients [21,38] or
through d -parameter-modified boundary conditions [21,41,42].

As a concrete example, we now investigate the nonclassical opti-
cal response of ultrathin silver films comprising N (111) atomic
monolayers. Figures 4(b) and 4(c) show that the loss function
calculated within the ALP-RPA model for ultrathin silver films
(with thicknesses N = 20 and N = 5) is dominated by the surface
plasmons supported by the films. Incidentally, the plasmon disper-
sion relation obtained from the ALP-RPA model resembles that
obtained in a classical FP description. Figures 4(d)–4(g) compare
the spectral dependence of the reflection coefficient around the
surface plasmon resonance for selected in-plane wave vectors,
contrasting results from the ALP-RPA model with those from FP
models that include or neglect the d⊥-parameter correction. For
small values of a parallel wave vector (Q = 0.1 nm−1), quantum
corrections do not strongly impact the position and width of the
plasmon resonance; at larger in-plane momenta (Q = 0.8 nm−1),
where the plasmon resonance approaches that of a semi-infinite
film, the resonance features in the classical FP model exhibit
differences from those in the ALP-RPA calculation, which are cap-
tured by the d -parameters. The excellent agreement between the
calculated curves based on the d -parameter and ALP-RPA frame-
works underscores how the optical response obtained analytically
using Eq. (3) together with the Feibelman d -parameters [see
Eqs. (1) and (2)] accurately accounts for quantum effects impact-
ing the film’s electromagnetic response. Curiously, the optical
response for extremely thin Ag films, even down to N = 5 atomic
planes (except for low wave vectors, such as Q = 0.1 nm−1 in the
N = 5 case, presumably because the condition QL & 1 is not ful-
filled), appears to be well reproduced by the d -parameter-corrected
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Fig. 4. Nonclassical optical response of ultrathin metal films. (a) Schematics of Ag(111) film corresponding to N = 5 monolayers. (b), (c) Plasmon dis-
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RPA model. The white vertical lines in each figure select the loss function at Q = 0.1 nm−1 (solid line) and Q = 0.8 nm−1 (dashed line), for which the cor-
responding reflection coefficient R near the plasmon resonance is shown in panels (d) and (e), respectively, for N = 20 monolayers, and similarly in panels
(f ) and (g) for N = 5. (d)–(g) Real (solid curves) and imaginary (dashed curves) parts of the reflection coefficient R computed in the ALP-RPA (APL, blue
curves) and compared to the Fabry–Perot model of Eqs. (1)–(3) for calculations including the extracted d⊥ (d -par., red curves) and the purely classical (CL,
yellow curves) result obtained by setting d⊥ = d‖ = 0.

thin film reflection coefficient, although the application of the
d -parameters to describe such extremely thin films (N . 10) lies in
the borders of the regime of validity (i.e., subjected to L� |dα|) of
the d -parameter formalism for few-atom-thick films.

D. Graphene Next to Crystallographically Faceted
Metal Films: Acoustic Graphene Plasmons

We consider the “extrinsic” acoustic plasmons produced by the
hybridization of a closely spaced graphene layer with a crystalline
metal film. Unlike the “intrinsic” acoustic plasmons supported by
the (111)-facets, graphene’s optoelectronic tunability [62] pro-
vides an additional knob to actively modulate the optical response
of the emerging low-energy acoustic plasmon modes with linear
dispersion [63]. The experimental capability to position graphene
within ∼1 nm of a noble metal layer has been spurring enticing
explorations of extreme light concentration within the gap region
[21,40,64–66], which could be further improved by employing
crystalline noble metals [44]. In what follows, we summarize the
semi-analytical FP description of the optical response based on the
extracted d -parameters.

For a zero-thickness 2D graphene monolayer, the reflection and
transmission coefficients in the nonretarded limit [21,62,67] read

r 2D
gr =

1

1− iω/(2πQσ)
, t2D

gr = 1− r 2D
gr ,

where σ(Q, ω) is the nonlocal conductivity of graphene, which
we treat here at the level of the nonlocal RPA [21,62,68,69] (using
Mermin’s prescription for the relaxation-time approximation,
which conserves a local particle number [70]; we take τ = 500 fs).

Similar to Eq. (3), we compute the reflection coefficient of an
extended graphene sheet on top of a semi-infinite metal via the FP
model as

R = rdm +
t2
grrdme−2Qs

1− rgrrdme−2Qs
, (6)

where s stands for the graphene–metal separation, and rgr and
tgr are the (nonretarded) reflection and transmission coefficients
of graphene, respectively. In our calculations, we follow the
prescription of Ref. [55] to account for the spatial dependence
of the carbon 2p orbitals ϕ2p(r) extending outwards from the
graphene monolayer plane, leading to the corrected graphene
reflection and transmission coefficients rgr = r 2D

gr C 2
gre
−Qdgr and

tgr = t2D
gr C 2

gre
−Qdgr , where dgr = 0.33 nm is the interlayer spacing

of graphite and Cgr is a coupling factor defined in Ref. [55]. Taking
into account the aforementioned effective graphene thickness, the
separation distance s actually corresponds to the distance between
the edge of the graphene and the metal surface, i.e., s = 0 corre-
sponds to a finite distance dgr/2 between the graphene center and
the metal surface.

Acoustic graphene plasmons emerge when a graphene sheet
is placed near a metal [21,64–66], and whose signature is a
prominent low-energy linear dispersion feature in the reflec-
tion coefficient [Fig. 5(a)]. For the considered graphene–Au(111)
surface, the extrinsic acoustic plasmons are characterized as before
by ω= vgr Q, with vgr denoting the associated group velocity;
in such a heterostructure, vgr is determined by graphene’s Fermi
energy EF and the graphene–metal spacing s , as illustrated in
Fig. 5(b). Figure 5(c) reveals that neither the choice of model nor
the considered crystalline facet strongly influences the acoustic
plasmon dispersion characteristics. At low energies, the noble
metals are all good conductors that effectively screen the graphene
plasmon and render its dispersion acoustic. We remark, however,
that, for the same heterostructure, the dispersion relation of the
higher energy hybrid plasmon mode is indeed dominated by the
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Fig. 5. Acoustic graphene plasmons on a Au(111) surface. (a) Loss function, Im{R}, for single-layer graphene (SLG) doped to a Fermi energy EF =

0.5 eV and deposited directly on top of a semi-infinite metal Au(111) surface (the latter described within the ALP-RPA model). The white curve corre-
sponds to plasmons in free-standing SLG, and the black dashed curve is a linear fit to the resulting acoustic plasmon characterized by an acoustic velocity
vgr. (b) vgr computed as a function of doping while varying the separation distance from s = 0 nm to s = 2.1 nm in steps of 0.3 nm. (c) Acoustic plasmon
dispersion for a graphene–gold heterosructure computed using the various gold film models, as indicated in the legend in (d), which depicts the associated
linewidths. In (c) and (d), the black solid line is a reference for isolated SLG with EF = 0.5 eV.

metal’s properties [44]. However, inspection of the linewidths
of the acoustic plasmon in Fig. 5(d) reveals a substantial depend-
ence on the quantum-mechanical effects arising from the various
crystalline facets, which is underlined by the underestimation of
spectral widths in the SRM [44]. In particular, the obtained results
suggest that crystalline Au(111) gives rise to additional surface-
enhanced damping when compared to Au(100), presumably due
to the presence of an SS, and warranting further studies of the
acoustic plasmons in such heterostructures.

E. Crystallographically Faceted Nanoparticles

Going beyond planar, layered media, we explore the role of crystal-
lographic orientation in faceted noble metal nanoparticles (NPs).
The optical response of metallic NPs is dominated by the local-
ized surface plasmon (LSP) resonances supported by it, the most
prominent of which are typically those of dipolar character, as they
can couple to far-field radiation. As the NP size is reduced towards
nanometric dimensions, the ensuing NP’s surface-to-volume
ratio grows and thus leads to successively more pronounced non-
classical corrections associated with the NP’s quantum surface
response. To illustrate the importance of using the appropriate
Feibelman d -parameters for determining the quantum surface-
response associated with specific facets, we consider in Fig. 6(a) a
realistically faceted silver NP. Any natural NP—especially those
with characteristic dimensions .10−20 nm—no matter how
carefully synthesized, will always deviate from a perfect sphere as a
consequence of its growth in a sequence of specific crystallographic
planes [71]. The shape closest to a sphere is that of a truncated
octahedron, characterized by large hexagonal (111) surfaces and
smaller (100) facets, as depicted schematically in Fig. 6.

To compute the NP’s nonclassical extinction cross-section
σext, we have implemented in a finite-element method (FEM)
solver the mesoscopic d -parameter-corrected boundary conditions
[21,38,41,42]. In practice, this is tantamount to the introduc-
tion of surface electric and magnetic currents (see Appendix A.3)
characterized by the d -parameters presented in Fig. 1. Comparing
with the classical spectra (red curves), it is clear that the effect of
the d -parameters is to capture the nonlocal optical response of
such a NP. As expected for silver, the spectra are shifted toward
higher energies as a result of an inward shift (Re {d⊥}< 0) of the
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Fig. 6. Extinction spectra for a Ag truncated octahedra including
quantum surface corrections. Optical extinction cross-section (normal-
ized to the geometric cross-section area) of the circumscribed sphere
Rcirc for Ag truncated octahedra with Rcirc = 3, 5, and 7 nm (a, b, and
c respectively), as shown in the schematics on top. Red curves corre-
spond to the response of bulk Ag (classical with no d -parameters), and
black curves to facets (100) and (111) described by their corresponding
d -parameters shown in Figs. 1(a) and 1(b). The blue and yellow curves
in the inset of (a) show the corresponding spectra if the entire particle is
described entirely by the Feibelman parameters of (100) and (111) facets,
respectively.

screening charges. Studying different NP sizes, from 3 to 7 nm in
radius (meaning here the circumscribed radius Rcirc; see Fig. 6), a
consistent trend is observed, with the resonance broadening (as a
result of increased surface-assisted Landau damping) and under-
going stronger blueshifts as the size decreases, which is compatible
with the predictions of nonlocal hydrodynamics [50,72,73], and
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also in accordance with electron energy-loss spectroscopy (EELS)
experiments [74–77]. The observed behavior is attributed mainly
to the (111) facets—as shown in the inset of Fig. 6(a)—where
blue and yellow curves show the corresponding spectra assuming
that the entire NP is described solely by the d -parameters akin to
the (100) or (111) surface, respectively (see Dataset 1, Ref. [78]).
Naturally, since the associated surface area of the (100) facets is
smaller, and their corresponding Feibelman parameters are sig-
nificantly lower in magnitude than those of the (111) surface, the
former induce only a small frequency shift in the spectra. Then,
since the main effect is due to the (111) facets, the corresponding
spectrum almost coincides with the “mixed” one, where each facet
is described by its own parameters. It is also worth noting that,
because the truncated octahedron constitutes a highly symmetric
shape, the optical response of such NPs resembles that of spheres,
and thus changing the angle of incidence is not expected to lead to
significant differences.

3. CONCLUSION

The inherently large losses exhibited by noble metals are often
regarded as the “Achilles heel” of nano-optical functionalities
based on plasmonics, motivating intensive efforts to identify
new material platforms that can support long-lived polaritons.
Crystalline noble metal films constitute one appealing possibil-
ity that is now becoming increasingly available. Here, we have
introduced quantum surface-response corrections encoded in the
Feibelman d -parameters obtained from quantum-mechanical
optical response calculations (namely, using the ALP-RPA
model) of crystalline noble metals. We have shown that the d -
parameters for gold, silver, and copper surfaces tabulated here with
specific crystallographic orientations can be straightforwardly
incorporated in analytical models as well as in computational
electromagnetic solvers for computing the nonclassical optical
response of various nanoplasmonic systems of interest that con-
tain these facets. In particular, the d -parameters associated with
silver, for which screening by core electrons and interband transi-
tions emerge at higher energies, are found to faithfully reproduce
atomistic quantum-mechanical calculations, while further explo-
rations (both theoretical and experimental) of plasmon dispersion
relations in crystalline Au and Cu are needed to consolidate their
surface-response functions. Nevertheless, we envision that the
d -parameters reported here can be widely deployed to describe
quantum surface effects in crystalline noble metal surfaces that
are actively explored for novel nanophotonic functionalities and
applications. Our prescription for extracting the Feibelman d -
parameters directly from optical response calculations of metal
surfaces is versatile and can be applied to various plasmonic nanos-
tructures with different geometries and architectures, and could
fuel further explorations of quantum nonlocal phenomena at
dielectric–metal interfaces in both theory and experiment.

APPENDIX A: MICROSCOPIC
SURFACE-RESPONSE FUNCTIONS: FEIBELMAN
d-PARAMETERS

The surface-response functions introduced by Feibelman
[21,36,39], d⊥ and d‖, are formally given, respectively, by the
first moment of the quantum mechanical induced charge density
(ρind) and of the normal derivative of the parallel component of the
corresponding current density (J ind

x ) [21,36–38],

d⊥(ω)=

∫
∞

−∞
dzzρ ind(z, ω)∫

∞

−∞
dzρ ind(z, ω)

, (A1a)

d‖(ω)=

∫
∞

−∞
dzz ∂

∂z J ind
x (z, ω)∫

∞

−∞
dz ∂

∂z J ind
x (z, ω)

, (A1b)

in the long-wavelength limit. The Feibelman d -parameters
can be rigorously incorporated in electrodynamic problems by
appropriately modifying the boundary conditions at a given
dielectric–metal surface [21,38,42], in both analytical treatments
[21,37,38,41] and numerical implementations [41,42].

In the following, we abstract the contributions from bulk spatial
dispersion (relevant for any metal surface with a compressible elec-
tron gas) and surface contributions associated with the presence of
Shockley SSs [relevant to the (111) noble metal surfaces].

1. CONTRIBUTIONS FROM BULK SPATIAL DISPERSION

The surface-response functions associated with the spatial disper-
sion (nonlocal response) of the bulk response functions of the metal
[i.e., the wave vector dependence of the bulk dielectric function,
εL(k, ω)], can be incorporated in the d -parameters, for example,
via the SRM using [21,29,51]

dSRM
⊥
=−

2

π

εmεd

εm − εd

∫
∞

0

dk
k2

[
1

εL(k, ω)
−

1

εm

]
, (A2a)

dSRM
‖
= 0. (A2b)

We note that the vanishing of d‖ is a consequence of the charge-
neutral interface [39]. Below, we discuss how this is changed (heu-
ristically) in the presence of a Shockley SS.

2. CONTRIBUTIONS FROM SHOCKLEY SURFACE
STATES

We now consider the effect of a Shockley SS, while for simplicity
leaving out the response associated with the spatial dispersion
of the bulk states. We note that, with our sign convention of the
surface-normal, the surface conductivity σ2D is related to the
Feibelman d‖ parameter as σ2D(ω)=−iωε0(εm − εd)d‖(ω)
[21]. Furthermore, in the nonretarded limit, the 2D plasmon
dispersion relation associated with σ2D is generally given by
Q(ω)= iωε0(εm + εd)/σ2D(ω) [21]. Anticipating that we have a
Shockley SS that supports an acoustic plasmon [30], correspond-
ing to a dispersion relation

√
ω(ω+ iγ2D)= vφQ, we thus find

the connection between this phase velocity vφ and the “effective”
Feibelman parameters to be of the form

dSS
⊥
= 0, (A3a)

dSS
‖
=−

εm + εd

εm − εd

vφ
√
ω(ω+ iγ2D)

. (A3b)

For low frequencies (ω�ωp), this simplifies to d‖(ω)'
vφ/
√
ω(ω+ iγ2D), and asymptotically vanishes at high frequen-

cies. When implemented in the mesoscopic boundary conditions
for the electrodynamics, these Feibelman parameters—by
construction—support an acoustic plasmon with the desired
phase velocity. Considering the poles of the scattering coefficients
[see Eqs. (1) and (2)] together with Eq. (A3), we obtain

https://doi.org/10.6084/m9.figshare.13772371
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0= εm + εd − (εm − εd)Q(d⊥ − d‖)

= (εm + εd)

(
1−

vφQ
√
ω(ω+ iγ2D)

)
, (A4)

and we indeed find two decoupled solutions: the “classical” surface
plasmon resonance (defined by εm + εd = 0) and the (added ad
hoc) acoustic one with

√
ω(ω+ iγ2D)= vφQ. Table 2 gathers the

obtained phase velocities by fitting the acoustic surface plasmon
featured in the optical response [Fig. 3(a)], and the dampingγ2D by
associating the resonance to the width of a Lorentzian; specifically,
the widths have been computed numerically from the second
derivative of the imaginary part of the reflection coefficient to
remove the background contribution.

3. EXTRACTION OF THE d-PARAMETERS FOR
CRYSTALLINE METAL SURFACES

We describe crystalline metal films quantum mechanically,
computing their optical response at the level of the RPA follow-
ing the procedure detailed in Ref. [44]. As explained therein,
metal films are considered to have translational symmetry in
the R= (x , y ) plane, so that their electronic wave functions
are amenable to expansion in a plane wave basis according to
9 j ,k‖(r)= A−1/2eik‖·Rϕ j (z), with A denoting the normali-
zation area, k‖ the 2D electron momentum, and ϕ j (z) the
spatial dependence of state j in the quantization direction z.
The latter quantity is obtained by solving the eigenvalue problem
Hϕ j (z)= ~ε⊥j ϕ j (z) to obtain the associated energy eigenvalues
~ε⊥j of the 1D Hamiltonian H=−~2∂2

z /2me + V (z) deter-

mining the band dispersion ~ε j ,k‖ = ~2k2
‖
/2me + ~ε⊥j . The 1D

potential V (z), herein referred to as the ALP, is selected from those
reported in Ref. [43] that characterize faceted metals of thickness
L composed of N atomic planes stacked along the z direction with
interlayer spacing a s (naturally, L is an integer multiple of a s ).

Electronic bands are populated by successively filling the lowest
bands until the effective bulk electronic density neff is reached,
thereby determining the Fermi energy EF as

EF =

 M∑
j=1

m∗j

−1 nefft~2π +

M∑
j=1

m∗j ε
⊥

j

 , (A5)

where the sums over j terminate when ε⊥M < EF/~< ε⊥M+1 (i.e.,
j =M is the highest partially occupied band). The electronic
densities neff are determined by imposing the experimentally estab-
lished value of EF for a given noble metal in the bulk limit (i.e., for

a sufficiently thick film). For consistency with experimental obser-
vations [82–84], we impose a linear variation in the effective mass
of the parabolic bands as a function of their quantized energies~ε⊥j
according to m∗j/me = a~ε⊥j + b, thereby avoiding artifacts due to
an unrealistic number of excitation channels for vertical transitions
introduced by perfectly aligned parabolic bands; specific parame-
ters used in our calculations are reported in Table 3—note that the
SSs for (111) noble metal facets are assigned specific experimentally
determined effective masses.

We characterize the optical response of noble metal films by
the reflection coefficient R(Q, ω), expressed as a function of the
optical in-plane wave vector Q and frequency ω. Considering that
the relevant length scales are far smaller than the involved optical
wavelengths, we invoke the quasistatic approximation to com-
pute the reflection coefficient in terms of electrostatic potentials
as R = 1− φ(z)/φext(z), where φ = φext

+ φind is the sum of
external and induced potentials, the former exciting the system
and the latter computed following the ALP-RPA prescription
reported in Ref. [44]. In principle, the RPA response function
is constructed by summing over all possible transitions between
electronic states; however, because the Shockley SS of the (111)
surface is incorporated in d‖ following the ad hoc prescription in
the previous section, the reflection coefficient used to extract d⊥ is
computed by excluding intraband transitions involving (only) SSs,
thereby avoiding double-counting such transitions.

Following the RPA description outlined in Ref. [55], we correct
the Coulomb interaction to incorporate screening from core elec-
trons using the experimentally extracted polycrystalline dielectric
functions εb(ω) plotted in Fig. 7. The d⊥ associated with a given
noble metal facet is extracted from ALP-RPA calculations of a
sufficiently thick film, so that the optical response is converged
with the number of atomic planes. More specifically, we obtain
d⊥ by fitting Eq. (1) to the ALP-RPA reflection coefficient of the
thick film, employing the corresponding bulk dielectric function
εm of Eq. (4). It should be noted that the bulk plasma frequency
ωALP

p for each metal surface orientation that enters Eq. (4) in the
fitting is obtained from the ALP-RPA response of a finite film for
a sufficiently small in-plane wave vector, e.g., Q ∼ 0.005 nm−1,
so that nonlocal effects are safely neglected and the surface plas-
mon resonance is captured in an uncorrected (i.e., classical) FP
description. This procedure enables a stable parametrization of the
crystallographic bulk properties for each surface orientation when
the contribution from the d -parameters is negligible. In practice,
the surface plasmon for a finite film with N = 10− 40 atomic
planes appears at lower energies than the surface plasmon for the
semi-infinite film, and the associated resonance is undamped by

Table 3. Characterization of Quantum Well States in Noble Metals
a

Material a(eV−1) b m∗(SS)/me m0/me neff/n0 EF (eV) ~ωALP
p (eV) ~γ exp (eV)

Ag(100) –0.0817 0.2116 — 0.40 [79] 0.8710 –4.43 [43] 8.80 0.021
Ag(111) –0.1549 –0.5446 0.40 [61] 0.25 [55] 0.8381 –4.63 [80,81] 9.19 0.021
Au(100) –0.1068 –0.1802 — 0.24 0.9199 –5.47 [47] 8.67 0.071
Au(111) –0.1660 –0.8937 0.26 [61] 0.26 [55] 0.9443 –5.50 [80,81] 9.88 0.071
Cu(100) –0.0751 0.1078 — 0.34 0.9634 –4.59 [47] 11.38 0.103
Cu(111) –0.1084 –0.3303 0.41 [61] 0.31 [55] 0.9285 –4.98 [47] 11.50 0.103

aThe parameters defining the electronic bands of noble metals entering our optical response calculations are presented. Quantities a and b define the linear variation
in effective mass for band j as a function of its associated energy ~ε⊥j ; values for the Fermi energy EF, the effective mass associated with surface states m∗(SS), and the
effective mass for the bottom of the conduction band m0 are extracted from experimental reports, while the effective electron density neff is fitted to match EF, thus fix-
ing the plasma frequencyωALP

p .
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Fig. 7. Background dielectric function. (a) Real and (b) imaginary
parts of εb for the noble metals under consideration, obtained by sub-
tracting−(ωexp

p )2/ω(ω+ iγ exp) from the experimental tabulated data in
Ref. [48]. See Table 3 for the characteristic parameters of each metal.

interband transitions, thereby giving rise to a well-defined peak
(see, for instance, Fig. 4) from which ωALP

p is obtained by fitting
εm = εd(1+ rdm)/(1− rdm) [c.f. (2) in the Q→ 0 limit].

Once the bulk properties for each surface orientation are
set, we construct d⊥(ω) at a given ω by fitting Eqs. (1)–(3) for
a given value of Q to the ALP-RPA-computed response. We
maintain a large number of layers to avoid quantum finite-sized
effects emerging in thin films (N . 10− 20 atomic layers).
We then confirm that convergence is maintained with the cal-
culated d⊥(ω) as the number of layers and/or parallel wave
vectors is varied, where the latter condition is typically satisfied
for 0.3 nm−1 < Q < 1.5 nm−1. After the parameters are obtained,
they are applied to thick (Fig. 2) and thin films (Fig. 4). In (100)-
facet metals, we have set d‖ = 0, whereas for the (111)-surface we
employ the prescription of (4.1.2) (see Appendix A.2) to describe
the intrinsic low-energy acoustic plasmon.

APPENDIX B. FINITE-ELEMENT
IMPLEMENTATION

To calculate the extinction spectra of the truncated octahedra,
we used the commercial FEM solver COMSOL Multiphysics
5.4. As has been shown elsewhere [21,38,41,42], the Feibelman
d -parameters can be incorporated in any computational method
by adopting the so-called (d -parameter-corrected) mesoscopic
boundary conditions. More specifically, the d -parameters intro-
duce discontinuities in the parallel components of the electric and
magnetic fields, which can be expressed through [21,38,42]

n̂× (E2 − E1)=−d⊥n̂×
[
∇n̂ · (E2 − E1)

]
, (B1a)

n̂× (H2 −H1)= iωd‖
[
n̂× (D2 −D1)× n̂

]
, (B1b)

where Ei , Hi , and Di are the electric, magnetic, and displacement
fields, respectively, on side i of an interface between two media 1
and 2, and n̂ is the unit vector normal to the interface. These con-
ditions can be readily implemented in version 5.4 of COMSOL
Multiphysics, through surface current and surface magnetic cur-
rent densities, expressed through the down and up functions in
COMSOL Multiphysics for the fields at sides 1 and 2. Since the
expressions for these currents [right-hand sides of Eqs. (B1a) and
(B1b)] contain the fields themselves, the problem needs to be
solved iteratively, starting with the currents due to the incident
plane wave. To calculate the scattering and absorption cross sec-
tion, we need to integrate the Poynting flux of the scattered and

total field over a surface (a sphere) enclosing the NP, with a large
enough radius (∼2−3 nm more than Rcirc) to ensure that numeri-
cal noise due to the currents close to the surface will be minimum.
For sharp-edged NPs—like the octahedra studied here—it is also
necessary to introduce some rounding, to ensure that any spurious
edge/corner modes will be absent. This is needed for the classical
calculations (with d⊥ = d‖ = 0) as well. For non-vanishing d -
parameters, the additional damping they introduce smooths things
nicely. However, for a direct comparison between the two cases, it
is necessary to include the same rounding in both of them. This,
however, causes an additional numerical problem, because the
iterative method diverges when surface currents are added in such
small rounded elements. For this reason, surface currents are used
to describe only the square (100) and hexagonal (111) facets. This
is in practice not a bad approximation, as one needs to somehow
introduce a smooth transition between the two different current
densities. In terms of setup parameters, a cubic physical domain
of side 300 nm was used, surrounded by 300-nm-thick perfectly
matched layers. For the finite-element discretization, a mesh of
30,000 domain elements with maximum element size 20 nm and
minimum element size 0.5 nm provided converged spectra.
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