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Brillouin scattering is an important and interesting nonlinear effect involving the interaction between optical and
acoustic fields in optical waveguides. It is increasingly useful in the field of photonics, where it supplies a tunable
ultra-narrow linewidth response that can be used for applications including sensing, filtering, and lasing, as well
as the acoustic storage of optical pulses. This tutorial gives an overview of the fundamentals of Brillouin scattering
aimed at newcomers to the field, and covers the physics underlying the interaction, the mathematical theory, and
setup details of foundational Brillouin experiments. ©2021Optical Society of America
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1. INTRODUCTION

The term Brillouin scattering describes an interaction in which
electromagnetic (EM) waves are coherently coupled to an
acoustic or mechanical wave in a light-bearing material [1–3].
Brillouin scattering differs from “standard” opto-acoustic inter-
actions (such as those occurring in surface acoustic wave devices
and acousto-optic modulators) in that the optical beams can
themselves excite or influence the acoustic field. This complex-
ity of interaction results in a number of effects: an acoustic wave
can be generated from the thermal background of the waveguide
material, an existing acoustic wave may be depleted by an optical
pulse, or a feedback loop known as stimulated Brillouin scattering
(SBS) can arise, manifesting as a third-order optical nonline-
arity several orders of magnitude stronger than the Raman or
Kerr effect. The Brillouin effect possesses an extremely small
linewidth—typically from tens to hundreds of megahertz,
and is often also tunable over a large frequency range. Such an
extremely narrow-band nonlinearity has found many useful
applications in modern photonics (for a recent review, see [4]):
the narrow spectral line can be used as a filter in microwave
photonics experiments [5,6], or as a source of gain in a Brillouin
laser [7,8]; the dependence of the Brillouin frequency shift on
the speed of sound makes the response suitable for sensing, espe-
cially of material properties [9,10]. The innate directionality of
the Brillouin process can be used as a basis for non-reciprocal
effects [11,12], and the interaction between light and sound can
be used to create an acoustic “memory,” in which information is
transferred to the relatively long-lasting acoustic waves [13,14].

The aim of this tutorial is to consolidate the current tools,
as well as the conceptual foundations, needed to understand,
model, and experimentally demonstrate Brillouin scattering in
modern nanophotonics experiments. In addition to discussing
the underlying physics of Brillouin processes, we present the
governing equations for Brillouin interactions (including new,
comprehensive derivations of these equations), and we discuss
the solutions to these equations in several of the more impor-
tant situations that arise in practice, such as in the dynamics of
interacting pulses. We also outline the experimental configu-
rations of the most commonly used Brillouin measurements.
At each stage, we explain the physics and modeling of these
interactions and explore the range of applicability for the various
approximations that are often made.

There have been several recent review and tutorial articles
covering Brillouin scattering in modern photonics. An overview
of experimental structures and applications of Brillouin scatter-
ing in modern nanophotonics can be found in [4]. A discussion
on platforms and the formal relation with opto-mechanics can
be found in [15]. A comprehensive recent tutorial on Brillouin
gain in both waveguides and resonators can be found in [16].
Readers interested in the theory of Brillouin scattering in optical
fibers are directed to the excellent review by Kobyakov et al.
[17]. Finally, we have found that a very good introduction to
the theory of elasticity for researchers with an electromagnetics
background is the book by Auld [18]. It is our aim here to bring
together the main concepts and tools from these publications,
together with additional material on numerical and experimen-
tal methods for practical Brillouin modeling and measurement,
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in a way that makes Brillouin scattering readily accessible to
graduate students and newcomers to the field.

This tutorial is organized as follows: in Section 2, we describe
the underlying physics of the Brillouin interaction and classify
the different types of scattering that may arise. In Section 3, we
give a general derivation of the equations that describe Brillouin
interactions; we also give commonly used approximations for
these equations. In Section 4, we discuss the materials and plat-
forms that are necessary for harnessing Brillouin interactions
in modern photonics systems. In Section 5, we describe several
important Brillouin experiments, including details on how
these can be set up and how the results can be modeled using the
equations in the previous section. We conclude with some fur-
ther reading on important aspects of Brillouin scattering that we
have not covered in this tutorial. Appendix A contains details on
numerical computation of optical and acoustic modes, and how
these can be used to calculate useful quantities such as Brillouin
gain.

2. PHYSICS OF BRILLOUIN SCATTERING

We consider an optical waveguide, oriented along the z axis and
considered to be infinitely long [Fig. 1(a)]. Provided that the
refractive index of the waveguide is greater than the surrounding
material, this structure will support confined optical modes with
a given angular frequencyω (withω= 2π f , where f is the opti-
cal frequency) and wave number k. These modes, together with
their associated modal fields, may be determined using a variety
of numerical methods, all of which solve Maxwell’s equations
on the cross section with appropriate boundary conditions on
the edge of the computational domain (such boundary condi-
tions should emulate an unbounded domain, from which no
reflections occur and that have any evanescent fields decreasing
away from the waveguide, and can be numerically implemented
using a perfectly matched layer [19]). It is possible to solve for
the modes in terms of either ω or k, with the choice depending
on the specific details of the numerical formulation.

Depending on the material composition (see Section 4),
waveguides can also support confined acoustic modes [18], with
angular frequency � (with �= 2πν, where ν is the acoustic
frequency) and acoustic wave number q . We note here that
although the terminology “acoustic field” or “acoustic wave”
is often used in this context, these waves are often mechanical
waves in solids, and so can support both shear and pressure
waves, as well as waves that are mixtures between the two, such
as Rayleigh or surface waves. Here, we follow the common
usage in referring to the “acoustic” and “optical” waves when
discussing the physics of wave interaction, and the “EM” and
“elastic” fields when discussing the relevant underlying inter-
actions and field components. Unlike EM waves, which are
always “transverse” in the sense that they can be represented by
the curl of a divergence-less vector, the elastic field equations
support an additional set of “longitudinal” waves—pressure
waves—that correspond to pure compressions and dilatations
of the material. Any acoustic wave can be decomposed into its
pressure and shear components, with each shear component
representing a mechanical wave with motion transverse to one of
the coordinate axes. The pressure waves are given by the diagonal
components of the mechanical strain tensor S, whereas the shear

Fig. 1. Representative geometries of Brillouin nanophotonic wave-
guides, in which the pump is input at z=−∞ and traveling in the
positive z direction. (a) In backward Brillouin scattering, the pump and
Stokes waves propagate in opposite directions. In this case, the acoustic
mode can be confined when the waveguide core lies on a substrate
(e.g., chalcogenide on silica): the acoustic mode consists mostly of
pressure waves moving along the waveguide, and so the dominant
strain component of the acoustic mode is Szz , meaning that any leakage
from the core is in the form of shear waves, which are below cutoff in
the substrate. (b) In forward Brillouin scattering, the pump and Stokes
are co-propagating. The acoustic wave propagates in the direction of
the pump, but with a very small wave number. The dominant strain
component of the acoustic field (Sx x ) corresponds to vibrations that
are transverse to the waveguide axis, and so the waveguide core must
typically be suspended to prevent coupling to substrate pressure waves
(e.g., for silicon waveguides).

components are given by the off-diagonal terms: for the pressure
wave propagating in the z direction in Fig. 1(a), the dominant
component of the strain is given by Szz, and for the breathing
mode depicted in Fig. 1(b), the dominant component is Sx x .
Pressure waves have a higher velocity than shear waves, in most
photonic systems by a factor of 1.5–2. In real waveguides, these
components are almost always coupled on physical boundaries,
and so any particular acoustic mode will be a mix of pressure and
shear waves, with one or the other dominating (see the waves in
Fig. 1). This mixing can form surface waves, of which Rayleigh
waves are the particular form if the surface is free to vibrate, as
occurs if a solid borders vacuum or (to a good approximation)
air. Rayleigh waves are even slower than shear waves, with a
velocity about 90% of the shear wave velocity in most photonic
materials.
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Acoustic waves can be confined to a waveguide by either
total internal reflection (TIR) or a strong impedance mismatch
between the core and the cladding. The conditions for confine-
ment of an acoustic wave by TIR are a little more complicated
than those for optical waves, but the same underlying physics
applies: the wave speed within the core should be less than
outside. Acoustic TIR guidance arises in two regimes. The first
is where the core wave speed is slower than all acoustic modes
in the cladding. This is the true TIR regime, where no energy
can be transferred to cladding modes. If the opto-mechanically
active mode in the core is a pressure wave (as is common in
backward Brillouin), this requires a relatively strong mechanical
contrast, because it needs to be slower than the shear waves in
the cladding, which are typically about 30%–50% slower than
the pressure cladding waves. If the core wave is faster than the
cladding shear wave, energy can be lost to the latter. However,
the efficiency of converting core pressure into cladding shear
grows with the mechanical contrast of the two materials. This
leads to the second regime: if the core is just very slightly softer
or denser than the cladding, there can exist pressure-type core
waves with negligible loss of energy to cladding modes. For
standard optical fibers, the germanium doping in the core
reduces the sound velocity sufficiently that a guided pressure
wave, of about the same diameter as the optical mode, can
form [17]; at the same time, the mechanical contrast is low
enough that almost no energy is lost to the shear waves. For
high-contrast combinations of materials, the interfaces between
the different solids can cause coupling from pressure waves to
shear waves, and the situation becomes more complicated: the
core must be considerably softer than the cladding to confine
a mode with a dominantly pressure-wave component. If TIR
confinement is not possible (as is almost always the case for
forward Brillouin scattering), the acoustic wave can be confined
by a very strong mismatch in acoustic impedance between the
core and the cladding, thereby preventing acoustic waves from
carrying energy away from the core. Typically, this is achieved
by suspending the core in air. The elastic waveguide modes
and their associated frequencies can be computed in the same
manner as for EM modes, substituting the equations of linear
elasticity for Maxwell’s equations (see Appendix A).

The fundamental nature of the Brillouin interaction can
be described as follows: interference between optical modes
of a waveguide generates a pressure, or a force density, on the
material, arising from radiation pressure or electrostriction (see
below). This pressure then excites an acoustic wave, provided
that energy and momentum are conserved in the interaction.
In turn, the strains of the acoustic field change the dielectric
properties of the medium and perturb its boundaries, effectively
creating a grating that scatters light from one optical mode to
another. The result (Fig. 2) is a narrow spectral line that is shifted
away from the pump by a frequency equal to the frequency �
of the acoustic wave—this difference is known as the Brillouin
shift. The specific value of � is determined by the frequency
of the pump and by the material parameters of the acoustic
wave (see Section 2.B), and can range from the hundreds of
megahertz (for forward Brillouin scattering) to tens of gigahertz
(for backward Brillouin scattering). The width of the Brillouin
spectral line is determined by the lifetime of the phonon mode.
For typical materials and waveguide configurations, this is on

Fig. 2. Experimental measurement of a backward Brillouin scat-
tering spectrum, showing the Stokes and anti-Stokes lines, as well as
the reflection from the pump. This experiment used 300 m of silica
single-mode fiber, at levels of pump power (∼100 mW) where the
Stokes begins to dominate but where the anti-Stokes is still visible.

the order of 1–10 ns, giving a linewidth in the tens to hundreds
of megahertz.

In optically isotropic material platforms, there are four
leading-order physical mechanisms that lead to the opto-
acoustic interaction described above. (For completeness,
we note that acoustic fields generate both strains and
rotations, which drive Brillouin scattering via photoelas-
ticity/electrostriction and roto-opticity/electrovolution,
respectively [20]. However, roto-optic effects are usually sig-
nificant only in waveguides made from materials with strong
optical anisotropy and will therefore not be discussed in detail
in this introductory tutorial [21,22].) First, mechanical strains
in the waveguide can be induced by the EM field via elec-
trostriction. Related to electrostriction is the converse effect
of photoelasticity, whereby strains induce local changes in the
dielectric permittivity. Third, radiation pressure arising from
the reflection of EM waves from structural boundaries can
physically move the waveguide boundaries and so drive acoustic
waves. Finally, the motion of structural boundaries induced
by mechanical vibrations induces a localized change in the
EM properties. The two quantities electrostriction and photo-
elasticity are related via a Maxwell relation [23,24], as are the
moving-boundary and radiation pressure effects. This relation-
ship between “back-action”—where the EM field exerts forces
on the mechanical structure—and what might be described
as “forward action”—where a change in dielectric properties
leads to scattering of light—can be derived from conservation
of energy at the microscopic scale: the work needed to deform
a structure must be balanced by the change in the amount of
energy contained in the EM field, and any work done by the
EM field must result in a commensurate change in the elastic
energy.
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A. Stokes and Anti-Stokes Transitions

As in any macroscopic field interaction, we can also picture
Brillouin processes in terms of the creation and annihilation
of quasi-particles, in this case photons (which give rise to the
EM field) and phonons (which in the classical limit form
material vibrations in the waveguide). It is often useful to
distinguish interactions according to whether the phonon is
absorbed or emitted in the interaction (Fig. 3). In the Stokes
Brillouin transition, a high-frequency photon is converted
into a lower-frequency Stokes photon, in the process creating a
phonon. This transition can be either stimulated or can occur
spontaneously—in the case of spontaneous emission, this refers
to emission that arises due to the existence of thermal phonons.
(In the context of Brillouin scattering, “spontaneous emission”
of photons refers to any incoherent emission, be it true spon-
taneous emission due to phononic vacuum fluctuations or
emission stimulated by pre-existing thermal phonons. Above a
low threshold temperature T ≈ ~�/kB ' 1 K, the latter contri-
bution dominates by far.) The Stokes transition is the one most
commonly used in backward Brillouin scattering experiments.
Anti-Stokes transitions, in which a lower-frequency photon
(typically the pump) is converted to a higher-frequency photon
(the anti-Stokes), while absorbing a phonon, are also possible.
Both processes can be seen at work in, for example, Brillouin
memory experiments [14], in which the Stokes process is used
to “write” information to the acoustic field and the anti-Stokes
process is used to “read” it back out. The exact conditions for
when these processes become stimulated, and indeed whether

Fig. 3. Different transitions in Brillouin scattering. Each photon is
associated with a wave number k and frequency ω. Each transition can
be visualized as a closed set of vectors located in the dispersion diagrams
in Figs. 4 and 5.

stimulated scattering is possible, arise from consideration of the
coupled mode equations (CMEs) in Section 3.

B. Phase Matching and Main Types of Brillouin
Scattering

Both Stokes and anti-Stokes processes must obey conservation
of energy and momentum. Brillouin coupling between two
optical waves with frequencies and wave numbers given by
(k1, ω1) and (k2, ω2) therefore requires an acoustic wave with
wave number q and frequency� given by

q = k2 − k1 and �=ω2 −ω1. (1)

This reflects the highly resonant nature of the process: minor
deviations on the scale of the mechanical quality factor lead to
a rapid reduction in nonlinear interaction. Equation (1) gives
the phase matching conditions between the interacting waves,
and can be represented graphically on a dispersion diagram,
as shown in Figs. 4(a) and 5(a). On these diagrams, a phase-
matched interaction has the property that the vectors of all three
waves add to zero. The relations (1) and their associated disper-
sion diagrams are important for understanding the direction
of propagation, and also give a good indication of the sorts of
approximations that can be made to predict system behavior.

In general there are three main types of Brillouin scattering in
waveguides, and we outline their main features in the following.

1. BackwardBrillouin Scattering

In backward Brillouin scattering, counter-propagating optical
beams exchange energy via an acoustic mode whose wave vector
is oriented in the propagation direction of the pump for the
Stokes process, and in the opposite direction to the pump in the
anti-Stokes process [Fig. 4(a)]. Because this requires an acoustic
mode with a large wave vector in the waveguide direction, these
modes are, in the core of the waveguide, usually very close to
being pure pressure plane waves, with phase fronts aligned nor-
mal to the waveguide axis. Given the difference of several orders
of magnitude in frequency between light and sound waves, an
excellent approximation for the phase matching condition for
backward Brillouin scattering is that the acoustic wave num-
ber is twice as large as the optical wave number, leading to an
approximation of the Brillouin shift of

�≈ 2k0cp, (2)

where cp is the phase velocity of the acoustic wave, and k0

is the wave number of the pump. For waveguides that have
cross-section dimensions larger than the optical and acoustic
wavelength in the core, the dominant strength of the backward
interaction is determined by the electrostrictive/photoelastic
effect. This is because the strains of the acoustic field do not
perturb the waveguide boundaries, and conversely, radiation
pressure from the optical field does not easily excite longitudinal
acoustic modes (it is worth noting that this may not be the case
for waveguides with strongly guided acoustic modes, in which
pressure and shear modes become strongly hybridized). Because
for these waveguides the dominant EM field components are
aligned transverse to the direction of propagation (say, to the y
axis), and the largest elastic field components are aligned along
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Fig. 4. (a) Sketch of a dispersion diagram for backward Brillouin scattering, showing both Stokes and anti-Stokes transitions. Note that in reality
the steepness of the optical mode bands, or light lines, (solid blue) would be far greater than is depicted, and the frequency of the acoustic mode bands
(dashed black) would be far lower. (b) Illustration of output power on a detector in the backward direction, in the case of low pump power. For low
pump power, both Stokes and anti-Stokes signals are visible. In most experiments, there exists a reflection, usually from the input facets of the wave-
guide, from the pump. (c) Illustration of output detector power in the backward direction for high pump powers. As the pump power increases, the
Stokes becomes stimulated and dominates the anti-Stokes signal (as shown in the measured spectrum in Fig. 2).

Fig. 5. (a) Sketch of a dispersion diagram for forward Brillouin scattering, showing the set of Stokes and anti-Stokes transitions up to the second
order. All transitions use the same acoustic mode. (b) Illustration of output power on a detector in the forward direction, in the case of low pump
power. For low pump power, both Stokes and anti-Stokes signals are visible, with the higher orders typically hidden in the noise floor. Because the
pump also propagates in the forward direction, it will feature extremely strongly in the detected power and usually must be filtered out. (c) Illustration
of output detector power in the forward direction at very high pump powers. As the pump power increases, the first-order Stokes/anti-Stokes begin to
combine with the existing acoustic modes to form higher-order lines.

the waveguide (z axis), the electrostrictive coupling is typically
determined by the p y y zz component of the Pockel’s tensor
(see Section 3.C); in contracted notation, this is denoted p23,
which is equal to p12 in isotropic and cubic materials and the
coefficient usually given in SBS computations.

2. ForwardBrillouin Scattering

In forward Brillouin scattering, co-propagating optical waves
couple to an acoustic mode that has a finite frequency but a wave
vector that is close (but not exactly equal) to zero [Fig. 5(a)].
Such an acoustic mode is therefore very close to being transverse,

in the sense that the mode possesses a very small group velocity
and a finite, non-zero phase velocity. This means that very little
energy is transported along the waveguide direction; for conven-
tional waveguides (i.e., those that are translationally invariant, as
opposed to periodically modulated), the dominant components
of the strain field are therefore those transverse to the waveguide
orientation.

To properly confine these almost-transverse acoustic modes,
a waveguide must be isolated as much as is practicable from its
surroundings, i.e., we must create a large enough impedance
mismatch so that the acoustic mode cannot escape from the
core. Such isolation can be achieved effectively by suspending
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the waveguide (or its surrounding substrate) in air [25,26],
supporting the waveguide on a very thin pillar [27], or trapping
the acoustic mode in a photonic crystal fiber [28] or using a
phononic crystal [29]. The frequency of the acoustic mode in
forward Brillouin scattering depends strongly on the physical
dimensions of the waveguide, e.g., the angular frequency of
the first “breathing” mode of a rectangular waveguide is on the
order of

�≈
π

a

√
E
ρ
, (3)

where a is the waveguide width, E is the Young’s modulus,
and ρ is the material density of the core. This is usually a good
approximation for the forward Brillouin frequency shift. Since
these transverse acoustic modes are highly dependent on the
waveguide dimension, this type of scattering was initially called
“guided acoustic wave Brillouin scattering” (GAWBS) [30].
In forward Brillouin scattering, the acoustic modes possess
strain components that are dominantly transverse to the wave-
guide axis, and so the electrostrictive interaction is typically
determined by the p y y y y or p22 (or p11 for cubic and isotropic
symmetry) component of the Pockel’s tensor. The coupling can
also be strongly enhanced through radiation pressure, which can
act in the same direction as the strain field [25].

Forward Brillouin scattering has much in common with
Raman scattering, and is indeed referred to as “Raman-like
Brillouin scattering” [28]. Like Raman scattering, forward
Brillouin scattering couples two optical beams to a vibration
that is “stationary”—in Raman scattering this is either the
localized acoustic mode associated with a molecular vibration,
or a high-frequency, non-propagating vibrational mode of a
lattice (known as the optical phonon band because of its ability
to couple to light). Unlike Raman scattering, which involves
scattering from vibrations at the molecular scale, forward
Brillouin scattering involves scattering from elastic waves that
are sufficiently long so that the molecular or atomic structure of
the material can be considered to be a continuum; these waves

therefore consist of collective movement of atoms arising from
the lower-frequency “acoustic” phonon band of the material.
The frequencies of forward Brillouin scattering are therefore
approximately four orders of magnitude lower than that for
Raman scattering, lying in the hundreds of megahertz rather
than in the terahertz range.

3. Intermodal Brillouin Scattering

Intermodal Brillouin scattering involves coupling between
different order optical modes in a multimoded waveguide
[Figs. 6(a) and 6(b)]. This process can occur in either the for-
ward or backward direction, with each case having properties
analogous to the standard forward or backward Brillouin con-
figurations. Because the exchange of energy is between optical
modes with potentially different symmetries, it is important that
the acoustic mode possesses the correct symmetry to support
the interaction [31]. In the simple case of a step-index fiber or a
suspended rectangular semiconductor waveguide, the different
optical modes are simply the different polarization states that
can propagate. In more complex geometries such as a micro-
structured fiber, this simple correspondence breaks down, and a
full modal picture is necessary. An outline of the symmetries and
allowed transitions for waveguides with C2v symmetry is given
in Fig. 6(c); a more comprehensive discussion can be found
in [31].

C. Initiation of Brillouin Scattering

Brillouin processes can be initiated through either the action of
an optical seed , i.e., a small amount of power from a secondary
optical field at the Stokes frequency (the Stokes beam), or the
action of thermal phonons in the waveguide that scatter the
pump. Experiments can therefore be divided into seeded and
spontaneous Brillouin measurements. The difference is seen in
the experimental setup for backward Brillouin scattering (see
Section 5.A): the seeded experiment includes an input Stokes
wave downshifted from the pump by the Brillouin frequency

Fig. 6. (a) Forward and (b) backward dispersion diagrams for intermodal Brillouin scattering. In the cases illustrated, the Stokes and anti-Stokes
lines result from phonons propagating in opposite directions, as in the backward case. The particular acoustic mode that enables the intermodal tran-
sition depends on the symmetries of both optical modes. (c) Combinations of optical and acoustic fields that have non-trivial photoelastic contribu-
tions in isotropic rectangular waveguides (or more generally, waveguides with C2ν symmetry), where arrows denote polarization directions, and A, B j

denote the mode characters. Reproduced with permission from [31].
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shift, whereas the spontaneous experiment requires only the
pump. Both cases are “driven”: seeded experiments require an
additional externally applied optical field, while spontaneous
interactions are initiated by thermal fluctuations.

While there is broad agreement on the meaning of a spon-
taneous Brillouin measurement, there is some division in
the literature over the exact meaning of stimulated Brillouin
scattering, and it is useful to clarify this point. Here and in
the following discussion, we take “stimulated” to refer to any
process whereby the Stokes beam can experience gain if all
sources of loss are removed from the system, after the system
has achieved a steady state. For example, under this definition,
backward Brillouin scattering is always a stimulated process,
even if it is initiated spontaneously. As we shall see in Section 3,
forward Brillouin scattering is not a stimulated process, since
in the steady state, the Stokes and anti-Stokes lines periodically
exchange energy, such that neither experiences a net gain.

3. BRILLOUIN COUPLED MODE EQUATIONS

Although Brillouin scattering can in principle occur in any kind
of photonic component, it is typically encountered in wave-
guides. Until fairly recently, most research had been conducted
in step-index fibers, and this is still reflected to some degree in
the presentation of Brillouin scattering in textbooks. This leads
to several approximations that have become widespread in the
discussion of Brillouin effects; for example, Brillouin scattering
is commonly characterized by an intensity gain coefficient (in
units of m/W), which is considered an intrinsic material param-
eter. This approximation holds only as long as the optical and
acoustic waves are almost unperturbed plane waves. When the
mode profiles differ from this (e.g., in structured fibers or nano-
scale waveguides), a description based on the full eigenmodes
becomes necessary, and the notion of an “SBS-gain” becomes
strongly dependent not only on the waveguide geometry but the
participating modes, unless it breaks down altogether as in the
case of forward Brillouin scattering.

A first-principles calculation of Brillouin scattering, e.g., by
solving Maxwell’s equations nonlinearly coupled to the
Christoffel equation, is impossible in virtually every system
of practical relevance. This is due to a separation of scales: first,
the time scales of the optical and the acoustic problems differ
by typically five orders of magnitude. Second, even integrated
waveguides with record-breaking gain coefficients require inter-
action lengths on the millimeter scale to provide appreciable
overall response, i.e., the system size differs from the acoustic
wave length by some four orders of magnitude. This separation
of scales makes a coupled mode description particularly well
suited to Brillouin problems.

A. Length Scales of Brillouin Scattering

We first discuss the relevant length and time scales in a typical
Brillouin problem. There are four relevant length scales, which
we can roughly sort in ascending order: the fundamental length
scale is the optical wavelength λ in the waveguide. We stress that
this differs from both the wavelength in vacuum and that in bulk
matter. It is most easily expressed via the optical wave number
k = 2π/λ, which is typically found via numerical calculation

alongside the optical mode profile, e.g., in the form of a mode
index. The optical wavelength λ is on the order of hundreds
of nanometers—most recent Brillouin experiments take place
in the near infrared, and so this quantity usually ranges from
500 nm to 1µm.

The next potentially relevant length scales are the acoustic
wavelength and localization length. The acoustic wavelength
is given by the wave number difference of the optical modes
(Figs. 4–6), where backward propagating modes have negative
wave number k. For example, if the optical wave numbers of two
forward propagating modes differ by 10%, then the relevant
acoustic mode for this intermode process will have a wavelength
10 times greater than the optical wavelength. This means that
in every backward Brillouin scattering and some forward inter-
modal problems, the acoustic wavelength is of an order similar
to the optical wavelength. The acoustic localization length is
the length over which a sound wave of frequency� decays. It is
linked to the acoustic wavelength via the quality factor (typically
a few hundreds) and typically takes values of several dozen to
hundreds of micrometers. It should be noted that in intramode
and most intermode forward scattering settings, the acoustic
wavelengths can reach the order of centimeters or even meters;
due to the low acoustic group velocity, the localization length
can often remain sub-millimeter in forward scattering as well.
Therefore, the most appropriate second length scale is almost
always the acoustic localization length, which we denote as the
inverse acoustic damping coefficient 1/αb .

The third relevant length scale is that on which the waveguide
varies along the direction of propagation. In the case of a fiber,
this is simply its length; in nano-scale waveguides, this can be,
e.g., the distance between suspension posts, sharp bends, or
similar features. We will denote this with Lwg. This parameter
describes how far optical and acoustic waves can travel without
being perturbed by waveguide discontinuity.

The last relevant length scale is the length scale of the optical
signal L sig. Examples for this are the distance over which SBS
amplifies a weak signal or the spatial length of the optical pulses
that are injected. Unlike the previous three lengths, this one
depends strongly on both the shape of the optical excitation
(e.g., pulse width) as well as the incident power level. The basic
idea of a coupled mode model is to describe the system using
functions that vary on the length scale of the optical signals.
Simply as a matter of efficiency, in many cases (e.g., in appli-
cations such as lasing and filtering), this will be comparable to
the waveguide length. However, this is not necessarily the case,
e.g., in storage and sensing experiments, nor is the waveguide
length necessarily equal to the length scale Lwg.

Finally, we mention two length scales that in our experience
are less impactful for the formulation of CMEs. The first is the
optical decay length. This quantity is usually at least compa-
rable to the waveguide length to ensure that signals can actually
pass through the system. The final length scale is the size of the
waveguide perpendicular to the direction of propagation. This
length is not relevant for the formulation of CMEs; however, it
can allow for approximations, e.g., to the participating modes or
the acoustic frequency as in Eq. (3).
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B. Fundamental Approximations and Coupled Mode
Equations

The main approximation needed to derive CMEs is to decouple
the transverse coordinates x , y from the direction of propa-
gation z and time. To this end, we express the optical and
acoustic fields as waveguide eigenmodes (composed of the
transverse field profiles and the harmonic z, t dependence)
weighted by one complex-valued envelope function an(z, t) per
contributing optical mode and b(z, t) for the acoustic field:

|ψ(x , y , z, t)〉 =
∑

n

an(z, t)|9n(x , y )〉e ikn z−iωn t
+ c.c. ,

(4a)

|φ(x , y , z, t)〉 = b(z, t)|8(x , y )〉e iq z−i�t
+ c.c. , (4b)

where c.c. represents complex conjugate terms, n labels the
optical modes, kn and q are the optical and acoustic wave
numbers, ωn and � the optical and acoustic frequencies, and
|ψ〉 = [E,H]T and |φ〉 = [T, V]T denote the optical and
acoustic states, respectively. In essence, Eq. (4) is just the familiar
separation of variables ansatz for solving partial differential
equations; however, please note that we have not made any
statement as to how well the expansions Eq. (4) satisfy Maxwell’s
equations and the equations of linear elasticity at this point.
Generally, the applicability of such a modal expansion requires
the amplitudes (here an and b) to vary slowly compared to the
respective carriers exp(iknz− iωnt) and exp(iq z− i�t).
With reference to the length scales discussed in Section 3.A, this
means that we require

λ� L sig (5)

to make an ansatz like Eq. (4) in the first place. If the expansion
is assumed to be complete, all the field information (for exam-
ple, the optical polarization) at each point of the waveguide
is contained within the expansion coefficients an(z, t) and
b(z, t).

In addition to the coupled mode expansion, we also make
a few more approximations to keep the derivations concise.
Primarily, we ignore dispersion—both waveguide and material
dispersion—in the derivation. Generally in Brillouin compu-
tations, dispersion plays a very small role, because the Brillouin
shift is so small that the change in mode index over this range can
be safely neglected. An example for how to include dispersion
can be found in [32,33].

1. OpticalModeEquations

We begin with Maxwell’s equations

∇ × E=−∂tB, (6a)

∇ ×H= ∂tD+ J, (6b)

where D and B are the electric and magnetic induction fields,
respectively, E and H are the electric and magnetic fields, respec-
tively, J is the dissipative current due to Ohmic losses, and ∇
is the three-dimensional del operator. Introducing the consti-
tutive expansions B=µH, D= εE+ PNL, and J= σE, and

decomposing the del operator into transverse and longitudinal
components ∇ =∇⊥ + ẑ∂z, the Maxwell’s equations above
become

∇⊥ × E+ ẑ× ∂zE=−∂t(µH), (7a)

∇⊥ ×H+ ẑ× ∂zH= ∂t(ε
(R)E)+ ∂t PNL

+ σE, (7b)

where ẑ= (0, 0, 1), PNL denotes the nonlinear polarization
field, and ε(R), σ , andµ denote the real part of the total permit-
tivity, (real-valued) Ohmic conductance, and permeability of
the medium, respectively. For reference, the real permittivity
and conductance can be combined into a complex permittivity
as usual: ε= ε(R) − iσ/ω when transforming to the fre-
quency domain. Rearranging Eq. (7) and assuming an absence
of nonlinear magnetic effects, we write that PNL

=1εE with
a perturbation1ε that, unlike ε(R), depends on both time and
position z along the waveguide, to obtain

E(opt)∂t

(
E
H

)
+ P(opt)∂z

(
E
H

)
+D(opt)

(
E
H

)

=−∂t

[
1E(opt)(t)

(
E
H

)]
− S(opt)

(
E
H

)
, (8)

where

E(opt)
=

(
ε(R) 0

0 µ

)
, S(opt)

=

(
σ 0
0 0

)
, 1E(opt)

=

(
1ε 0
0 0

)
,

P(opt)
=

(
0 −ẑ×

ẑ× 0

)
, D(opt)

=

(
0 −∇⊥×

∇⊥× 0

)
.

(9)

Introducing the notation |ψ〉 = [E,H]T , the system Eq. (8)
takes the more compact form

E(opt)∂t |ψ〉 + P(opt)∂z|ψ〉 +D(opt)
|ψ〉

=−∂t [1E(opt)
|ψ〉] − S(opt)

|ψ〉. (10)

Next we implement the expansion Eq. (4a) of the optical
fields:

|ψ(x , y , z, t)〉 =
∑

n

ane iφ(z,t)
|9n〉 + c.c. , (11)

where φn(z, t)= knz−ωnt , and |9n(x , y )〉 are eigenmodes of
the unperturbed (lossless and linear) waveguide problem:

(D(opt)
+ iknP(opt))|9n〉 = iωnE(opt)

|9n〉. (12)

The choice of expanding in terms of the eigenmodes of the
unperturbed problem simplifies the formalism. In principle,
we could choose to expand in the eigenmodes of the full prob-
lem including optical (and acoustic) loss; however, this would
require a full dual space of eigenfunctions, greatly increasing the
complexity of the derivation. For the relatively low-loss situa-
tions that occur in all Brillouin problems thus far this expansion
should remain accurate. In the unperturbed case, the modes are
orthogonal with respect to the energy operatorE(opt):

〈9n|E(opt)
|9n′〉 = Enδnn′ , (13)
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with the energy mode normalization factor

En = 〈9n|E(opt)
|9n〉 =

∫
dAE∗n · (ε

(R)En)+H∗n · (µHn)︸ ︷︷ ︸
Energy of mode per unit length

,

(14)
where the integral is evaluated over the entire x -y plane.
Likewise, we introduce the power flux of the mode:

Pn = 〈9n|P(opt)
|9n〉 =

∫
dA

(
E∗n,H∗n

) ( ẑ×Hn

−ẑ× En

)

= 2Re
∫

dAẑ · (En ×H∗n), (15)

which can be regarded as the power normalization factor. This
power flux may be used to introduce a second mode orthog-
onality relation that this time applies only to propagating
modes:

〈9n|P(opt)
|9n′〉 =Pnδnn′ . (16)

Substituting the expansion Eq. (11) into the system Eq. (10)
results in

E(opt)∂t

(∑
n

ane iφn |9n〉

)
+ P(opt)∂z

(∑
n

ane iφn |9n〉

)

+D(opt)

(∑
n

ane iφn |9n〉

)
+ c.c.

=−∂t

(∑
n

ane iφn1E(opt)(t)|9n〉

)

−S(opt)

(∑
n

ane iφn |9n〉

)
+ c.c.

(17)

By using Eq. (12) and the product rule expressions

∂t(ane iφn )= e iφn (∂tan − iωnan)= e iφn (∂t − iωn)an, (18a)

∂z(ane iφn )= e iφn (∂zan + iknan)= e iφn (∂z + ikn)an, (18b)

we can further simplify (17) to∑
n

e iφn (E(opt)∂t + P(opt)∂z)an|9n〉 + c.c.

=−

∑
n

e iφn [S(opt)an + (∂t − iωn)(an1E(opt))]|9n〉 + c.c.

(19)

As a next step, we apply a rotating wave approximation
(RWA), where we assume that amplitudes that oscillate with
exp(iωt) evolve independently from those at exp(−iωt). This
is generally a good approximation if the bandwidth of a physical
process is small compared to the central frequency, i.e., if the
time scale on which envelopes evolve is much larger than the
oscillation period. This is clearly the case in Brillouin scattering,
and manifests simply in dropping the complex conjugate terms:

∑
n

e iφn (E(opt)∂t + P(opt)∂z)an|9n〉

=−

∑
n

e iφn [S(opt)an + (∂t − iωn)(an1E(opt))]|9n〉.

(20)

Next, we disentangle this single equation for many coupled
optical amplitudes into a set of equations for one optical ampli-
tude each. This relies on the assumption that the optical modes
|9n〉 form a complete orthogonal basis, which is why we chose
the solutions to the lossless (Hermitian) problem Eq. (12) for
our field expansion. We decouple the amplitudes by projecting
Eq. (19) onto one specific mode:〈
9n

∣∣∣∣∣∑
n′

e iφn′ [E(opt)∂t + P(opt)∂z]an′

∣∣∣∣∣9n′

〉

=−

〈
9n

∣∣∣∣∣∑
n

e iφn′ [S(opt)an′ + (∂t − iωn′)(an′1E(opt))]

∣∣∣∣∣9n′

〉
,

(21)

and after dividing by the left-hand phase factor and applying the
orthogonality relations Eqs. (13) and (16),

(En∂t +Pn∂z)an =−
∑

n′

e iφn′−iφn [〈9n|S(opt)
|9n′〉an′

+ 〈9n|(∂t − iωn′)(an′1E(opt))|9n′〉].
(22)

Next, we employ a slowly varying envelope approximation
(SVEA), i.e., we assume that the physically relevant dynamic is
described by envelope functions an that vary slowly compared
to the time scale of their respective carrier frequencies and that
quickly oscillating contributions average to zero. This SVEA
is intimately linked with the earlier RWA, and they are often
applied in conjunction. First, we discuss the term involving
〈9n|S(opt)

|9n′〉. For non-degenerate modes, the phase factor
e iφn′−iφn oscillates quickly, and the term can be dropped. For
degenerate modes, this term can be non-zero and describe
mode conversion mediated by material loss. We will ignore this
possibility and assume

〈9n|S(opt)
|9n′〉 = Snδnn′ , (23)

with the damping constant Sn , but we note that systems with
strong loss might require the inclusion of such cross-coupling
terms.

So far, we have arrived at a set of equations of the form

(En∂t +Pn∂z + Sn)an

=−

∑
n′

e iφn′−iφn 〈9n|(∂t − iωn′)(an′1E(opt))|9n′〉.

(24)

Now, we must make an assumption about the nature of
1E(opt). In Brillouin scattering,1E(opt) describes the change of
the waveguide due to an acoustic field |8(x , y , z, t)〉, which we
express in terms of an acoustic eigenmode according to Eq. (4b).
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Since we assume that1E(opt) is proportional to the mechanical
deformation and the deformation field is proportional to the
real part of |8〉, we make the ansatz

1E(opt)(x , y , z, t)= b(z, t)e iq z−i�t1E(opt)
⊥

(x , y )+ c.c. ,
(25)

where the acoustic mode pattern is absorbed into the operator
1E(opt)
⊥

(x , y ). For the moment, we are not too worried how
exactly that works; we will revisit this point later. However, what
we can say immediately is that ∂t(an′1E(opt)) is small compared
to ωn′an′1E(opt), because both the envelopes an′ and b as well
as the phase factor e iq z−i�t are slow compared to the optical
frequency ωn′ . Within the SVEA, we can therefore simplify
Eq. (24) as

(En∂t +Pn∂z + Sn)an

= i
∑

n′

ωn′ e i(φn′−φn )[e i(q z−�t)
〈9n|1E(opt)

⊥
|9n′〉︸ ︷︷ ︸

=Qnn′

b + c.c.]an′ ,

(26)

where we introduce the opto-mechanical perturbation overlap
Qnn′ , which contains the interaction between the different opti-
cal states (which may be the same mode, or modes of different
polarizations), mediated by the operator 1E(opt)

⊥
coming from

the acoustic field. This form of the mode equation contains
the constants En and Pn , which reflect well-defined physical
constants of the optical mode, but whose values are arbitrary,
because the modes can be normalized in any way. This can be
resolved by dividing by either En orPn . The latter is more in the
spirit of classical (fiber-)optics Brillouin literature and leads to
the form(

v−1
n ∂t + ∂z +

1

2
αn

)
an

=
1

Pn
i
∑

n′

e i(φn′−φn)[e i(q z−�t)ωn′Qnn′b + c.c.]an′ , (27)

where vn =Pn/En is the group velocity of the mode, and αn is
the power loss parameter along the waveguide in units of m−1.
The factor 1/2 appears because the power damping parameter
is twice the amplitude decay parameter that would naturally
appear at this point, but is less commonly specified in the
literature. Alternatively, one can divide byEn leading to

(∂t + vn∂z + 0n)an

=
1

En
i
∑

n′

e i(φn′−φn)[e i(q z−�t)ωn′Qnn′b + c.c.]an′ , (28)

with the amplitude damping parameter 0n in time (units
s−1). The latter approach is much more in line with the
opto-mechanics literature, which typically does not involve
propagating waves. In fact, if the modes are chosen to be nor-
malized to En = ~ωn per unit length, then such a choice also
permits us to link up with quantum optics and the quantum
cavity opto-mechanics literature. For this particular “quan-
tum” normalization, we find ωn′Qnn′/En ≈ Qnn′/~ assuming
ωn′ ≈ωn .

In summary, the optical part of the problem is described by
one such equation [Eq. (27) or Eq. (28)] per optical mode that
participates in the Brillouin scattering process. Note that we
have only assumed that both envelopes are slow compared to
the optical carrier. The further treatment depends on whether
we assume that the envelopes an and b are also slow compared
to the acoustic frequency � or not. Note also that one has to
make identical assumptions for both the optical and the acoustic
envelopes, because they are coupled to each other, and differ-
ent treatment would lead to significant errors. Therefore, we
now derive the mode equation for the acoustic envelope and
afterwards further restrict the system of equations to backward,
forward, and intermodal Brillouin scattering.

2. AcousticModeEquation

The mechanical analogue to Maxwell’s equations are the equa-
tions of linear elasticity, which comprise the relation between
strain and mechanical displacement and the conservation of
momentum:

S=∇s U, (29a)

ρ∂2
t U=∇ · T+ f, (29b)

where S denotes the linear strain tensor, ∇s the symmetric
gradient operator, U the infinitesimal mechanical displace-
ment vector, ρ the mass density, T the mechanical stress tensor
(Cauchy stress), and f the body force density. As in the electro-
dynamic case, the system needs to be closed by a constitutive
relationship, which in the lossless case takes the form

Ti j =
∑

kl

c i j kl Skl , or equivalently Si j =
∑

kl

s i j kl Tkl ,

(30)
where we define the stiffness tensor c i j kl and the compliance
tensor s i j kl [18]. Next, we introduce friction due to the dynamic
viscosity tensor ηi j kl , which formally modifies the constitutive
relation

T̃i j =
∑

kl

(c i j kl + ηi j kl∂t)Skl . (31)

However, by splitting the stress tensor into a lossless [Eq. (30)]
and a dissipative part and then using the conservation of
momentum equation, we can also express the effect of ηi j kl as a
dissipative force density:

f(loss)
i =−∇ · η : (∇s V), (32)

where V= ∂tU is the local velocity field. Furthermore, we
introduced ‘:’ as a shorthand notation for a double index con-
traction, e.g., Eq. (31) reads in this form: T̃= (c+ η∂t) : S. As
in the optical case, we now introduce an acoustic state vector
notation |φ〉 = [T, V]T , where T= c : S is the lossless stress,
i.e., f(loss)

=∇ · (T− T̃). With this, we can now write a compact
master equation for the mechanical problem:

E(ac)∂t |φ〉 + P(ac)∂z|φ〉 +D(ac)
|φ〉 =−S(ac)

|φ〉 + |F 〉, (33)

where |F 〉 = [0, f]T is the external forcing term, and the opera-
tors are defined as
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E(ac)
=

(
s : 0
0 ρ

)
, P(ac)

=

(
0 −ẑ⊗s

−ẑ· 0

)
,

D(ac)
=

(
0 −∇⊥,s

−∇⊥· 0

)
, S(ac)

=

(
0 0
0 −∇ · η : ∇s

)
.

(34)

Here, we define the symmetrized tensor product⊗s by ẑ⊗s V=
(ẑ⊗ V+ V⊗ ẑ)/2. As in the optical case, we now approximate
the acoustic state in terms of the eigenmodes of the unperturbed

|E |2(x , y , z, t)=

∣∣∣∣∣∑
n

an(z, t)e iφn En(x , y )+ a ∗n (z, t)e−iφn E ∗n (x , y )

∣∣∣∣∣
2

=

[∑
nn′

e i(φn+φn′ )an(z, t)an′ (z, t)En(x , y )En′ (x , y )+ c.c.

]
︸ ︷︷ ︸

co-rotating

+

[∑
n,n′

e i(φn−φn′ )an(z, t)a ∗n′ (z, t)En(x , y )E ∗n′ (x , y )+ c.c.

]
︸ ︷︷ ︸

counter-rotating

, (39)

(lossless and no other external forcing) acoustic waveguide
problem:

(D(ac)
+ iqP(ac))|8〉 = i�E(ac)

|8〉, (35)

where for the sake of simplicity, we will include only a single
acoustic mode, leading to the aforementioned “expansion”
Eq. (4b):

|φ(x , y , z, t)〉 = b(z, t)|8(x , y )〉e iq z−i�t
+ c.c. (36)

At first glance, this difference in the modal expansions
for the optical and acoustic parts may appear unusual.
However, it is justified by the fact that the nonlinear opto-
mechanical processes that dominate Brillouin scattering (i.e.,
electrostriction/photoelasticity and radiation pressure and its
related optical moving-boundary effect) constitute inelastic
scattering processes between two photons and one phonon. As
a result, these opto-mechanical nonlinearities can mediate the
transfer of energy and momentum only between two optical
modes via one acoustic mode, and not between two acoustic
modes via one optical mode. Thus, opto-mechanically induced
coupling between two acoustic modes requires them to be
degenerate, in which case they will generally split into an opto-
mechanically bright and a dark mode (see [34] for an example in
cavity opto-mechanics). In such a case, the dark acoustic mode
can be ignored, and the Brillouin CMEs should be formulated
as described above in terms of the bright hybridized mode only.
As a result, the individual acoustic modes can be analyzed sep-
arately in most cases. A generalization to many acoustic modes
is fairly straightforward at the expense of additional subscript
indices; an example can be found in [33].

We insert Eq. (36) into Eq. (33) and obtain in analogy to the
optical mode equation:

(Eb∂t +Pb∂z + Sb)b = e−iq z+i�t
〈8|F 〉, (37)

where we introduce the normalization constants

Eb = 〈8|E(ac)
|8〉 =

∫
dAT∗ : (s : T)+ V∗ · (ρV), (38a)

Pb = 〈8|P(ac)
|8〉 =−

∫
dAẑ · (T∗ · V)+ ẑ · (T · V∗)

=−2
∫

dARe{ẑ · (T∗ · V)}.

(38b)

Next, we assume that the driving term |F 〉 in Eq. (37) is
due to optical forces, specifically, a result of optical intensity
fluctuations. The optical intensity at point (x , y , z) at time t is
given by

where, as before, we use the shorthand φn = iknz− iωnt .
Among the two terms indicated by braces, the first (“co-
rotating”) one varies on the optical time scale, which is much
too fast for the mechanical system to react to and therefore
effectively averages to zero. The only relevant term is the last
one, denoted “counter-rotating,” because its time dependence is
the result of two optical phases evolving in opposite directions.
Therefore, it is reasonable to drop the first two terms in Eq. (39).
Such an approximation, which replaces a full interaction term
with only the counter-rotating ones, is an RWA, which we
have encountered previously in the discussion of the optical
field. The application of the RWA at this point is always appro-
priate, because the optical time scale is always many orders of
magnitude faster than the acoustic scale.

Given that optical forces are caused by intensity fluctuations,
within this RWA, we may decompose |F 〉 into the contributions
that arise from the beat between each pair of optical modes:

|F (x , y , z, t)〉 =
∑
nn′

e i(φn−φn′ )an(z, t)a∗n′(z, t)|Fnn′(x , y )〉

+ e i(φn′−φn)a∗n(z, t)an′(z, t)|Fn′n(x , y )〉,
(40)

where we observe that the second term in the summand is the
complex conjugate of the first term. Substituting this into
Eq. (37) yields

(Eb∂t +Pb∂z + Sb)b = e−i(q z−�t)

[∑
nn′

e i(φn−φn′ )ana ∗n′〈8|Fnn′〉

+ e i(φn′−φn )a ∗n an′〈8|Fn′n〉

]
.

(41)

As with the optical equations, there are two obvious ways
to normalize these equations: either with respect to the modal
powerPb :
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(
v−1

b ∂t + ∂z +
1

2
αb

)
b =

1

Pb
e−i(q z−�t)

[∑
nn′

e i(φn−φn′ )ana∗n′ 〈8|Fnn′ 〉

+ e i(φn′−φn )a∗n an′ 〈8|Fn′n〉

]
,

(42)

with the acoustic power loss parameter αb in units of m−1, or
with respect to the modal energyEb :

(∂t + vb∂z + 0b)b =
1

Eb
e−i(q z−�t)

[∑
nn′

e i(φn−φn′ )ana ∗n′〈8|Fnn′〉

+ e i(φn′−φn )a ∗n an′〈8|Fn′n〉

]
,

(43)

with the acoustic amplitude decay parameter 0b in units of s−1.
As in the optical case, the energy normalization allows for easy
connection to quantum theories by choosingEb = ~�.

C. Coupled Mode Equation Parameters

We now present the explicit expressions for the parameters that
appear in the CMEs derived thus far.

1. DampingCoefficients

We start with the optical and acoustic damping parameters αn

and αb (as spatial decay parameters) and0n and0b (as temporal
decay parameters). It should be stressed that generally great care
should be taken when taking damping coefficients from the
literature, as they may refer to the decay of either the energy or
the amplitude of a wave, the former being greater by a factor of
two. Here, we have chosen to specify decay along the waveguide
by the power decay coefficient α, because this is almost univer-
sally how waveguide loss is specified. In contrast, we opted to
specify the decay with respect to time by the amplitude decay
coefficient, because this is how Brillouin linewidths are usually
specified in the literature.

We recall from Section 3.B.1:

αn =
2Sn

Pn
and 0n =

Sn

En
, (44a)

where Sn = 〈9n|S(opt)
|9n〉. (44b)

As a side remark, we also find 0n = vnαn/2, i.e., the spatial
decay parameter is a signed quantity, and the sign indicates in
which direction the optical amplitude decays—preferably in the
direction of propagation. With the definition ofS(opt), we find

Sn =

∫
dA|E(r)|2σ(r), (45)

where the integral extends over the entire transverse plane of
the waveguide, but has non-zero contributions only inside the
waveguide, of course. Likewise, we find for the acoustic decay
parameters

αb =
2Sb

Pb
and 0b =

Sb

Eb
, (46a)

where Sb = 〈8|S(ac)
|8〉 (46b)

=�2
∫

dA
∑
i j kl

S∗i j (r)ηi j kl (r)Skl (r). (46c)

If Brillouin measurements are available for a given struc-
ture, these quantities can also be obtained from the measured
Brillouin linewidth.

2. Opto-Mechanical CouplingCoefficients

Next, we move on to the nonlinear coupling coefficients. From
Eq. (26), we recall

Qnn′ = 〈9n|1E(opt)
⊥
|9n′〉, (47)

where 1E(opt)
⊥

denotes the change in the optical properties
due to a mechanical deformation and the braket is a stand-in
for the correctly performed perturbation integral. We will not
go into too much detail here, but it should be noted that the
perturbation theory of deformation of dielectric interfaces is
not a straightforward application of the usual integrals known
from, e.g., quantum mechanics. Rather, some additional atten-
tion is required as to which EM fields are continuous across the
interface. For further discussion of these issues, see [24,35].

The optical coupling coefficient Qnn′ has predominantly
two contributions: from the change in the bulk permittivity
of materials subjected to strain and from the displacement of
dielectric interfaces. The former is known as the photoelastic
contribution Q(PE)

nn′ , and the latter as the moving-boundary term

Q(MB)
nn′ . These two terms depend on which optical and acoustic

modes specifically interact, and they can differ in amplitude
and phase so that they can even compensate for each other for a
specific mode combination [25]. The photoelastic contribution
is due to the mechanical strain linearly changing the permittivity
(assuming a real-valued strain):

1εi j =−ε
2
r

∑
kl

pi j kl Skl , (48)

where all quantities in principle depend on the position vector,
and the proportionality factor pi j kl takes the form of a fourth-
rank tensorial material parameter known as the photoelastic
Pockels tensor. With this, the photoelastic contribution can be
evaluated:

Q(PE)
nn′ =−ε0ε

2
r

∫
dA

∑
i j kl

[E (n)
i (r)]∗E (n′)

j (r)pi j kl (r)Skl (r),

(49)
where E (n)

i refers to the i th electric vector component of the nth
optical mode. As for the moving-boundary terms, we state only
the result and refer the reader to [24,36] for more details:

Q(MB)
nn′ =

∫
C

dr(n̂ ·U)[(εa − εb)ε0(n̂× E(n))∗ · (n̂× E(n
′))

− (ε−1
a − ε

−1
b )ε−1

0 (n̂ ·D(n))∗(n̂ ·D(n′))],

(50)



Tutorial Vol. 38, No. 4 / April 2021 / Journal of the Optical Society of America B 1255

where the integral runs over the contour C that separates two
dielectrics with relative permittivities εa and εb and the local
interface normal vector n̂.

After examining the coupling coefficients that appear in
the optical equations, we now turn towards the corresponding
term in the acoustic equation, denoted 〈8|Fnn′〉. This again
can be decomposed into a bulk contribution and a surface
term. Their physical origins are electrostriction and radia-
tion pressure, respectively. Electrostriction is the mechanical
strain that appears in any medium due to EM intensity and
is linear with respect to the intensity (assuming real-valued
electric fields):

Ti j =−ε
2
r

∑
kl

E (n)
i E (n′)

j pi j kl , (51)

where the material constant pi j kl is the same Pockels tensor
that also describes the photoelastic effect. This is not a coinci-
dence, because conservation of energy requires nonlinear
processes to come in pairs as shown here. Depending on pref-
erence, this can be viewed as an example for either Maxwell
relations in a description of the interaction as an isentropic
process (see [23], p179) or as an example of Manley–Rowe
relations in energy-conserving nonlinear optics ([1], p88).
Likewise, the moving-boundary effect from Eq. (50) is part-
nered up with radiation pressure and generally, we can conclude
that

〈8|Fnn′〉 = i�Q∗nn′ . (52)

This holds under the assumption that the nonlinear
interaction itself does not dissipate energy, but makes no
assumption about the presence of linear loss. This is the case
with the photoelastic/electrostrictive effect and the moving-
boundary/radiation pressure effect. It does not hold, for
example, for optical forces caused by the absorption of light,
e.g., in the context of stimulated Rayleigh scattering or
electrostriction-like “current-striction” in semiconductors
[37]. Such systems require separate derivations for Qnn′ and
〈8|Fnn′〉.

D. Some Common Further Approximations

In this subsection, we aim to simplify the model through further
approximations. None of these approximations is “automati-
cally” valid; one must always verify that they are appropriate
for the problem at hand. Unless otherwise stated, they can be
applied independently of each other.

1. Strict RWA,Slowly VaryingEnvelopes, andPhase
Matching

In many cases, we can drop all terms in the interaction except
those that are exactly phase matched. To see when this occurs,
we consider the energy-normalized Eq. (28) and Eq. (43):

(∂t + vn∂z + 0n)an =
i
En

∑
n′

e i(φn′−φn)

×
[
e i(q z−�t)ωn′Qnn′b + c.c.

]
an′ ,

(53a)

(∂t + vb∂z + 0b)b =
i
Eb

e−i(q z−�t)

×

[∑
nn′

e i(φn−φn′ )�Q∗nn′ana∗n′ + c.c.

]
.

(53b)

These equations still describe the phase-matched interaction
between optical and acoustic modes as well as the non-phase-
matched contribution. One example for the latter is the static
deformation of a waveguide due to the presence of light. Often,
these effects are not of interest and are weak; the resonant
excitation of acoustic waves is enhanced by the quality factor.
However, this means that off-resonant effects can become rel-
evant to the overall dynamics either when the acoustic Q-factor
is very low or when the dynamic of a system is short compared
to the acoustic time scale. The latter occurs, for example, in
experiments using optical pulses below'100 ps.

We now assume a situation where resonant scattering is
dominant and all envelopes an and b vary slowly compared to
the acoustic time scale�−1. As a result, only driving terms that
satisfy

ωn −ωn′ ±�≈ 0 (54)

will have an effect on the correct time scale. Conversely, all other
terms can be dropped in a second RWA. This RWA is more
restrictive than the first RWA in Section 3.B.1 in that it restricts
the physics captured by the model to even fewer interaction
terms.

A similar argument can be made about the spatial coordinate.
By requiring that the envelopes vary slowly compared to the
optical and acoustic wave lengths k−1

n and q−1, respectively, we
can restrict the relevant interactions to those that satisfy

kn − kn′ ± q ≈ 0. (55)

This SVEA and the RWA are generally applied together.
Finally, it is very common to combine Eqs. (54) and (55) and

to replace the “approximately equal” sign with an equals sign.
As a result, the only interactions retained are those where the
participating modes satisfy the phase matching conditions

ωn −ωn′ ±�= 0, kn − kn′ ± q = 0. (56)

It should be noted, however, that Eq. (55) and therefore also
the phase matching conditions are linked to the assumption that
all envelopes vary slowly compared to both k−1 and q−1. As a
result, it might not be strictly permissible to use phase matching
in some instances of forward Brillouin scattering.

For all phase-matched interaction terms, i.e., those that
satisfy Eq. (56), the phase factors such as exp(i(φn − φn′)) and
exp(iq z− i�t) cancel each other, so after neglecting non-
phase-matched interaction terms, we obtain the simplified
CMEs

(∂t + vn∂z + 0n)an =
i
En

ωn−ωn′=�∑
n′

ωn′Qnn′ban′

+

ωn−ωn′=−�∑
n′

ωn′Q∗nn′b
∗an′

 , (57a)
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(∂t + vb∂z + 0b)b =
i
Eb

ωn−ωn′=�∑
nn′

�Q∗nn′ana∗n′

+

ωn−ωn′=−�∑
nn′

�Qnn′a∗nan′

 , (57b)

where the summations cover only indices n′ that satisfy the con-
ditionsωn −ωn′ =±�, respectively.

2. ContinuousWaveApproximation

Some applications (such as Brillouin storage) require optical
pulses, but a large class of experiments use (quasi-)CW optical
fields. In such a setting, all intensities |an|

2, |b|2 should be con-
stant in time (not in space), i.e., the envelopes should have only
a phase modulation, e.g., a harmonic phase e−i1ωt . At least in
the latter case, we slightly adjust the carrier frequencies ωn and
� such that all envelopes an and b themselves become constant
with respect to time. As a result, we can now simply drop the
time derivatives in the CMEs:

(vn∂z + 0n)an =
1

En
i
∑

n′

e i(φn′−φn)

×
[
e i(q z−�t)ωn′Qnn′b + c.c.

]
an′ ,

(one for each mode n) (58a)

(vb∂z + 0b)b =
i
Eb

e−i(q z−�t)

×

[∑
nn′

e i(φn−φn′ )�Q∗nn′ana∗n′ + c.c.

]
.

(58b)

However, this is acceptable only if envelopes an and b really
do not change in time, which means that the right-hand sides
of Eq. (58) must not depend on time either. From this we see
that this approximation is appropriate only if the coupling
terms satisfy at least the frequency part of the phase matching
condition

ωn −ωn′ ±�= 0. (59)

Finally, it is convenient in CW problems to normalize ampli-
tudes by power rather than energy. We find

(∂z +
1

2
αn)an =

i
Pn

ωn−ωn′=�∑
n′

e i(kn′−kn+q)zωn′Qnn′ban′

+

ωn−ωn′=−�∑
n′

e i(kn′−kn−q)zωn′Q∗nn′b
∗an′

 ,
(60a)

(∂z +
1

2
αb)b =

i
Pb

ωn−ωn′=�∑
nn′

e i(kn−kn′−q)z�Q∗nn′ana∗n′

+

ωn−ωn′=−�∑
nn′

e i(kn′−kn−q)z�Qnn′a∗nan′

 .

(60b)

The remaining phase factors of the form e i(kn−kn′±q)z can
model detuning and cause complex interference effects along
the waveguide if more than two optical modes are involved.
Naturally, they disappear as soon as proper phase matching
is assumed. The great advantage of the CW approximation is
that Eq. (60) is only a system of ordinary differential equations,
which can be solved easily, e.g., using standard Runge–Kutta
integrators or in some cases even analytically.

3. Local AcousticResponseApproximation

In many cases, the propagation length of the acoustic excitation
is negligible compared to the other length scales of the problem,
in particular, the waveguide length and conversion length. In
this case, it is acceptable to assume vb = 0. This is generally
a very good approximation and may be used to simplify the
development of partial differential equation (PDE) solvers for
the optical envelopes in transient problems (see Section 5).
However, this assumption has great impact in conjunction with
the stationary approximation, because it simplifies the equation
for the acoustic envelope so far that it can be explicitly solved:

b =
i�
Eb0b

ωn−ωn′=�∑
nn′

e i(kn−kn′−q)z Q∗nn′ana∗n′

+

ωn−ωn′=−�∑
nn′

e i(kn′−kn−q)z Qnn′a∗nan′

 . (61)

This expression can now be substituted back into the optical
mode Eq. (60a) to completely eliminate b.

E. Equations for Backward Brillouin Scattering: Gain

We now restrict the equations derived thus far to the first impor-
tant special case: backward SBS in a relatively long waveguide.
Here “relatively long” means that the local acoustic response
approximation discussed in Section 3.D.3 can be applied.
Furthermore, we assume that only one acoustic mode is rel-
evant, and we assume that the system is excited with a single
CW mode. This allows us to apply the strict RWA presented in
Section 3.D.1.

From the dispersion diagram Fig. 4, we can see that a single
acoustic wave can couple a single pump wave only into one
Stokes and one anti-Stokes wave. Furthermore, we can see that
they are not coupled by the same acoustic wave: the Stokes
process uses an acoustic wave with phase velocity c p ≈�/(2k),
whereas the anti-Stokes process uses an acoustic wave with
c p ≈−�/(2k). Therefore, the two processes decouple and can
be treated separately. We restrict ourselves to the Stokes process
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involving two optical amplitude fields: a0 for the pump and a1

for the Stokes. From the dispersion diagram and Eq. (56), we
find for the acoustic wave

q ≈ 2k, �=ω0 −ω1. (62)

From the symmetry of the optical band structure, we can fur-
thermore conclude

v1 =−v0, 01 = 00, α1 =−α0. (63)

Finally, the low number of modes in the problem suggests
to drop the subscripts in the opto-mechanical coupling coef-
ficient: Q = Q∗0,1. As per our assumption, we use the CW
equations in the strict RWA [Eq. (60)]. Due to the small number
of amplitudes, the baroque use of indices and summation signs
simplifies to(

v−1
0 ∂t + ∂z +

1

2
α0

)
a0 =−

iω0

P0
Q∗a1b, (64a)

(
v−1

1 ∂t + ∂z +
1

2
α1

)
a1 =−

iω1

P1
Qa0b∗, (64b)

(∂t + vb∂z + 0b)b =−
i�
Eb

Qa0a∗1 . (64c)

Next, we assume that the optical fields remain approximately
constant over the length scale of the acoustic decay (≤100 µm in
most materials). This allows us to use Eq. (61), which in this case
reads

b ≈−
i�Q
Eb0b

a0a∗1 . (65)

Upon substituting this back into Eq. (64), neglecting the time
derivatives within a CW approximation, and by defining a new
coupling parameter,

g 0 =
2ω�|Q|2

P2
0Eb0b

, (66)

we end up with the well-known CMEs for backward SBS:(
∂z +

1

2
α0

)
a0 =−

1

2
g 0P0|a1|

2a0, (67a)

(
∂z +

1

2
α1

)
a1 =

1

2
g 0P0|a0|

2a1. (67b)

The parameter g 0 is the power gain coefficient, measured
in units of m−1 W−1. It is furthermore possible to neglect the
phase information carried in the complex amplitudes by intro-
ducing optical power amplitudes πn =Pn|an|

2 leading to the
coupled mode power equations

(∂z + α0)π0 =−g 0π0π1, (68a)

(∂z − α0)π1 = g 0π0π1, (68b)

whose most important subtlety is that the factors 1/2 in front of
the decay and gain coefficients vanish. This pair of equations can
be solved analytically.

F. Equations for Forward Brillouin Scattering: Phase
Modulation

Finally, we consider the modal equations for a typical forward
Brillouin situation in a long waveguide such as a structured fiber.
Forward Brillouin scattering differs significantly from backward
SBS in that multiple optical frequency lines participate in the
interaction, with one acoustic mode mediating the coupling
between them [33]. As before, we assume that only one acoustic
mode is relevant, which this time we assume to be thermally
excited rather than stimulated by an optical pump. Again, we
will employ the local acoustic response approximation, but this
time we will forgo the strict RWA.

From the dispersion diagram in Fig. 5, we can see that a single
acoustic wave does not merely couple a pump to the Stokes.
Instead, a single acoustic wave couples each optical pump or
(anti-)Stokes line to its immediately neighboring lines, poten-
tially leading to cascaded scattering. To fully capture this, we
keep the weak RWA and assume a single optical mode modu-
lated at multiples of the acoustic frequency�. Furthermore, we
note in the dispersion diagram that forward scattering involves
acoustic modes that are intersected by the light line of the optical
mode index and therefore must be higher-order modes very
close to cutoff:

q � k, �= cpq . (69)

As a result, we can ignore acoustic propagation altogether.
We start the description of the problem by restating Eq. (27)

for a single optical amplitude a0:(
v−1

0 ∂t + ∂z +
1

2
α0

)
a0 =

iω
P0
[Q∗b̃︸︷︷︸

AS.P.

+ Qb̃∗︸︷︷︸
S.P.

]a0, (70)

where v0, α0, and P0 are the group velocity, amplitude damp-
ing coefficient, and normalization power of the optical mode,
respectively, and b̃ is a phase transformation of the acoustic
amplitude b introduced to simplify the notation:

b̃ = exp[i(q z−�t)]b. (71)

The optical source terms are annotated according to their
physical role: the term “S. P.” describes the Stokes process, while
the term “AS. P.” describes the anti-Stokes process.

A key feature of Eq. (70) is that the source term on the right-
hand side is purely imaginary and therefore only a pure phase
modulation, but leaves the optical intensity |a0|

2 unchanged.
This is significant, because when we restrict Eq. (43) to the given
problem, we find that the acoustic field is driven only by the
optical intensity:

(∂t + 0b + i�)b̃ =−
i�(Q + Q∗)

Eb
|a0|

2, (72)

where we have set the acoustic group velocity to zero.
The effect is that in the absence of optical loss, the optical

forces and therefore the acoustic intensity do not change along
the waveguide. The optical and acoustic mode equations are
effectively decoupled and can be solved separately. For the
acoustic problem, this is straightforward by integration in time.
Solving the optical problem is slightly trickier and best done



1258 Vol. 38, No. 4 / April 2021 / Journal of the Optical Society of America B Tutorial

by integrating along the characteristic of the optical advection
problem. To this end, we assume that an optical field is injected
into the waveguide at z= 0 with a time-dependent signal given
by A(t). In the case of vanishing optical loss α0 = 0, we can
obtain a closed expression:

a0(z, t)= A
(

t −
z
v0

)
exp

[
− i g 00bP0z

×

∫
∞

0
dt ′
∣∣∣∣A (t − t ′ −

z
v0

)∣∣∣∣2 e−0b t ′ sin(�t ′)

]
.

(73)

The opto-mechanical coupling strength is hidden in the
parameter g 0, which has the same form as the power gain
parameter from backward SBS:

g 0 =
2ω�|Q|2

P2
0Eb0b

, (74)

but now describes a phase modulation rather than an amplifica-
tion effect. For forward Brillouin scattering, there is a character-
istic length associated with this phase modulation, which deter-
mines when higher Stokes orders will appear. From Eq. (74), this
length is

L c =
[
g 0P0|A(0)|2

]−1
=

1

g 0 Ppump
, (75)

where Ppump is the input power of the pump.
It should be stressed that the discussion so far applies to opti-

cal waveguides without dispersion. This is significant, because
any form of dispersion (or, more generally,ω-dependent optical
properties such as resonances in a Sagnac loop) will change the
relative phases between Stokes and corresponding anti-Stokes
and thereby translate the pure phase modulation of the forward
opto-mechanical interaction to a partial amplitude modula-
tion. This means that the addition of dispersive elements of
any kind can be used to turn forward Brillouin scattering into a
gain mechanism (or an “anti-gain” mechanical cooling mecha-
nism for opposite dispersion). This is one of the regimes where
Brillouin scattering dynamics and cavity opto-mechanics cross
over into each other, as indicated by the appearance of concepts
such as mechanical cooling.

4. MATERIALS AND PLATFORMS

We see from Section 3 that Brillouin interactions are determined
by a broad selection of tensors for the waveguide material,
including permittivity, stiffness, mass density, phonon viscosity,
and photoelastic tensors. In addition, under certain circum-
stances, we may also need to know other material tensors, such
as the third-order stiffness tensor [47]. Designing a Brillouin
platform therefore presents a considerable challenge in com-
plexity, in which all material parameters can play an important
role. In this section, we discuss how the material coefficients
in general affect the strength of Brillouin scattering, and out-
line the main factors determining the choice of materials for
Brillouin waveguide experiments.

In general, the strength of the Brillouin interaction depends
on three things: a strong innate coupling strength of the inter-
action (as provided by the high values of the components of the
Pockel’s tensor, or by strong radiation pressure contributions),
low loss of both optical and acoustic fields, and good confine-
ment of both optical and acoustic modes (with a good overlap
between them). Of these requirements, acoustic confinement
is often the key challenge, especially for backward Brillouin
devices that rely on TIR for confinement. This is because mate-
rial combinations that have been designed as optical waveguides
are often very poor acoustic waveguides. The underlying reason
for this is that a high refractive index is generally correlated with
high stiffness for many materials—silicon and diamond have
among the highest refractive indices and stiffnesses, whereas
polymers have low stiffness and a moderate index. A high stiff-
ness will in turn usually correspond to a high acoustic velocity. A
high-index, stiff waveguide core on a low-index, relatively soft
substrate—such as a silicon-on-silica nanowire—will therefore
confine the optical field, but the acoustic field will be slower in
the cladding than in the core and so will leak away too rapidly for
Brillouin effects to be measured.

There are several approaches to overcoming the challenge
of confinement. The first approach is to isolate the waveguide
in air—this approach is the standard in any case for forward
Brillouin scattering. In principle this should work for any mate-
rial, and the main difficulty of this approach is one of fabricating
sufficiently long, sufficiently stable suspended waveguides.
Another approach to the confinement problem is to look for
more appropriate materials. The doping of silica fiber with
germanium so as to create an optical waveguide fortuitously
lowers the acoustic wave speed in the core [17], and this means
that standard single-mode fiber is a guide for both acoustic and
optical modes. There also exists a class of materials that have
both high refractive indices and that are mechanically soft:
these are the soft glasses, and in particular chalcogenide glasses
[48]. An As2S3 waveguide core on a silica substrate will confine
both acoustic and optical modes, and in addition has strong
Pockel’s coefficients. Additional approaches to solving the
confinement problem have also been suggested, including the
use of metamaterials, photonic crystals, and phononic crystals
[29,49].

An “ideal” waveguide for Brillouin scattering is therefore
made from one or more materials that possess high refractive
indices (ensuring optical confinement), which are elastically
soft (ensuring acoustic confinement), and possess large photo-
elastic coefficients (ensuring strong photoelastic interactions),
as well as low viscoelastic coefficients (ensuring low acoustic
loss). If radiation pressure contributes strongly to Brillouin
coupling, the material and platform would also be chosen to
yield radiation pressure contributions that add constructively
to the electrostrictive contributions. Frequently, there is a
trade-off between all of these requirements, and no material
is “ideal.”

A major problem in contemporary Brillouin scattering
research is a scarcity of complete materials information in the
literature. In particular, results for the phonon viscosity tensor
are incredibly challenging to find, but may in certain instances
be entirely deduced from experimental measurements of optical
linewidths or quality factors [39]. Two useful repositories of
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Table 1. Optical, Elastic, Viscoelastic, and Photoelastic Bulk Parameters for Technologically Relevant Materials at
Pump Wavelength of 1550 nm

a

Material εr Ref. C11 C12 C44 ρ Ref. η11 η12 η44 Ref. p11 p12 p44 Ref.

SiO2 (fused) 2.1025 [38] 78.5 16.1 31.2 2200 [18] 1.6 1.29 0.16 [39] 0.121 0.271 −0.075 [40]
As2S3 6.0025 [41] 18.9 6 6.4 3200 [42] 1.8 1.45 0.18 [39] 0.25 0.24 0.005 [42]
Si [100] 12.0805 [43] 165.8 63.9 79.6 2331 [44] 5.9 5.16 0.62 [45] −0.094 0.017 −0.051 [40]
GaAs [100] 11.3582 [46] 118.8 53.7 59.4 5317 [44] 7.49 6.57 0.72 [45] −0.165 −0.14 −0.072 [44]

aRelative permittivity εr ; stiffness tensor coefficients Ci j (units of [GPa]) and material density ρ (units of [kg ·m−3
]); phonon viscosity coefficients ηi j (units of

[mPa · s]); photoelastic tensor coefficients p i j , where subscripts are in Voigt form.

physical properties constants include the CRC Handbook
(which possesses, for example, tables of elastic constants [44])
and the Springer Materials database (for example, on tables of
high-frequency optical properties [50]). With this scarcity in
mind, we present a collection of material coefficients in Table 1
for a range of commonly used materials present in photonic
waveguides, assembled from a wide range of published works.
However, we emphasize that this table does not even begin to
describe the diversity of solid, liquid, and gaseous media that
have been studied in the Brillouin literature across a range of
pump frequencies. Examples of the actual Brillouin gains and
coupling strengths for these materials in specific waveguide
geometries are computed in Appendix A. In addition to the ten-
sors listed in Table 1, it is important to keep in mind that other
intrinsic material properties and wave effects may play a role in
realizing the Brillouin scattering gains/couplings calculated in
this tutorial. As mentioned earlier, our treatment omits the pres-
ence of all optical losses but does incorporate linear elastic losses
(as viscoelastic effects ultimately determine optical linewidths).
In certain circumstances, the presence of linear and nonlinear
optical losses may need to be considered (i.e., where two- and
three-photon absorption effects [51] and free carrier absorption
[52] are important). In materials such as Si and GaAs, these
losses can be significant and subsequently pose a challenge in
realizing theoretically estimated results [53]. This gives soft
glasses a considerable advantage over semiconductor materials
such as Si and GaAs. That said, these glasses often have draw-
backs of their own, in that effects such as photodarkening and

crystallization can prove a challenge in the fabrication of such
structures [54].

5. BRILLOUIN MEASUREMENTS

We now consider, in detail, several examples of important
Brillouin experiments. This list is not intended to be exhaustive,
but to provide a reasonable starting point for setting up exper-
iments and performing basic modeling to check the results. In
each case, we discuss the experimental setup, relate this to the
equations in Section 3, and give examples of the type of output
that one can expect.

A. Pump–Probe Measurement of Backward Brillouin
Scattering

The fundamental configuration of backward Brillouin scatter-
ing is the pump–probe setup, shown in Fig. 7(a). In this setup, a
narrow-linewidth laser is used as a pump from which the probe
is carved off, and is then downshifted by an amount equal to
the Brillouin frequency shift. The two beams are injected from
opposite sides into the waveguide and interfere within it. The
pump–probe experiment gives a highly accurate measurement
of the Brillouin response and is usually used to determine the
Brillouin spectrum, including the linewidth and gain of a
waveguide.

The basic setup for pump–probe detection is shown in
Fig. 7(a). A narrow-linewidth laser (e.g., external cavity laser) is
separated using a fiber coupler or beam splitter into two arms,

90/10CW laser

1550 nm
EDFA

50/50

PC

pump

local
oscillator

ESA

90/10CW laser

1550 nm
EDFA

PC

pump

probe
VNA
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SSB
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(b) Setup for noise-initiated backward SBS(a) Pump-probe setup

device/fiber
under test

device/fiber
under test circulatorcirculator

EDFA
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Fig. 7. Experimental setups for backward Brillouin scattering. (a) Measurement of backward Brillouin scattering arising from an optical probe.
(b) Measurement of backward Brillouin scattering initiated from noise with a CW pump laser. This setup is based on heterodyne detection. The
backscattered light interferes with a local oscillator (from the original laser), and the result can be observed at the electrical spectrum analyzer (ESA).
Components in both setups: EDFA, erbium-doped fiber amplifier; PC, polarization controller; VNA, network analyzer; SSB, single-sideband
modulator; EOM, electro-optic modulator; NL filter, narrow-linewidth filter.
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the stronger (typically 90%) being the pump and the weaker
forming the probe arm. The probe arm is down-shifted in fre-
quency using a modulator—for this purpose, an RF-controlled
electro-optic modulator (EOM) can be used; a single-sideband
modulator can be employed to eliminate the higher-frequency
sideband. The used RF source can be either an independent
RF generator or the output channel of a network analyzer
[Fig. 7(a)]. Both pump and probe are amplified by an erbium-
doped fiber amplifier (EDFA), but the pump is typically about
10 times higher in power than the probe. A trick to increase the
optical pump power in the device under test while keeping the
average power low is to implement long pulses (about 50 ns) on
the CW light by using an EOM before the EDFA. The pump
and probe are launched from opposite sides into the optical
waveguide or fiber under test. While propagating through the
waveguide, the probe will be amplified by backward Brillouin
scattering, depending on the frequency difference between
the pump and the probe. The backward-propagating light
(amplified probe) is collected by means of a circulator, which
allows the pump entering the waveguide in one direction and
separating the counter-propagating probe light. At the output of
the circulator, the backward-propagating light is detected by a
photodiode, which is connected to the input of the network ana-
lyzer. To remove backscattered light stemming from Rayleigh
scattering or reflection from the facets, a narrow-bandwidth
filter (e.g., 3 GHz) should be used on the probe light. As all
Brillouin processes are polarization dependent, the polarization
of the pump and probe light has to be controlled and aligned in
the waveguide or fiber under test. By sweeping the frequency of
the probe and detecting the corresponding amplification on the
network analyzer, the Brillouin gain spectrum is then recorded.
A typical measurement of a pump–probe setup is shown in
Fig. 8(a). This represents the Brillouin gain spectrum with a
maximum at the Brillouin frequency shift of 7.58 GHz and a
linewidth of about 30 MHz (values for a chalcogenide As2S3

waveguide). When increasing the pump power level further, we
can enter the regime of pump depletion, which can be observed
in the spectrum as a flattening of the gain curve and finally a
dip in the center of the gain spectrum. In the inset of Fig. 8(a),
the linewidth of the Brillouin spectrum with increasing input
pump power is depicted, from which we can observe the typical
narrowing of the Brillouin spectrum.

To model the evolution of the fields in backward Brillouin
scattering, we employ CMEs (64), which can be solved numer-
ically with one of several available methods for solving coupled

partial differential equations [55]. The simplest approach is
to employ a transformation of coordinates ζ j = x − v j t for
each field to a reference frame that is co-propagating with the
j th envelope’s velocity v j . This characteristic transformation
converts the system of partial differential equations Eq. (64) to
a coupled system of ordinary differential equations, which can
then be solved using a Runge–Kutta, or even a Euler, method
algorithm that iterates in time. Because of the different scales
of the pulse velocities, it is difficult to obtain better than linear
convergence using this method; however, it has the advantage
of being extremely simple to implement. Figure 9 shows the
computed magnitude of the acoustic and optical field evolu-
tions along the waveguide for series of pulsed pump and Stokes
beams, as well as the solution in steady state. In solving these
equations, we assume that the optical field is well represented
by the mode that best fits the launch condition of the light into
the waveguide (for example, the fundamental mode with TE
polarization); the procedure for computing the coupling coeffi-
cients for this mode from the material and waveguide properties
is given in Appendix A.

B. Measurement of Noise-Initiated Backward
Brillouin Scattering

Noise-initiated Brillouin scattering can be thought of as the fun-
damental Brillouin response of the waveguide. It is often the first
type of measurement performed when a new Brillouin-active
waveguide is fabricated to determine the approximate location
of the Brillouin shift for future pump–probe measurements.
Note that for short samples (e.g., silicon-based waveguides) the
noise-initiated backward measurement might not be suitable
due to the limited interaction length and possible high optical
losses.

The measurement setup for noise-initiated backward
Brillouin scattering (e.g., [56]) uses heterodyne detection
and is depicted in Fig. 7(b). The power of a narrow-linewidth
laser (e.g., external cavity laser) is split into two parts: a strong
pump and a weaker local oscillator. The pump is amplified
by an EDFA, controlled in polarization, and launched into a
circulator to separate both optical propagation directions. Also
here, an EOM carving long pulses into the CW light can be
used before the EDFA to increase the peak pump power. The
amplified pump then enters the fiber or the waveguide under
test. The pump is backscattered due to longitudinal acoustic
waves. This process is initiated by thermal phonons that follow
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Fig. 8. Experimental data for (a) a pump–probe backward SBS setup, chalcogenide integrated waveguide; (b) noise-initiated backward SBS setup,
from left to right increasing pump power level, silica photonic crystal fiber; (c) noise-initiated forward Brillouin scattering setup, guided acoustic wave
Brillouin scattering in 25 m of a standard silica single-mode fiber.
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Fig. 9. (a) Plot of pump (solid black line), Stokes (dashed black), and acoustic (dotted blue) powers in backward Brillouin scattering, for con-
tinuous pump and Stokes fields input from left and right, respectively. Note that although the Stokes field appears to “decay,” it is propagating from
right to left and so is gaining in power. These calculations are performed for the fundamental TE mode of a 10 cm long rectangular silicon wave-
guide (200 nm× 450 nm) suspended in air; at an optical wavelength of 1550 nm, the acoustic frequency is 17.31 GHz with linewidth of 14.39 MHz,
resulting in a backward SBS gain of 2188 W−1m−1. The input pump power is 0.3 W at the beginning of the waveguide (z= 0), with input Stokes
power of 1 mW at the end of the waveguide (z= 0.1 m). (b) Pump, Stokes, and acoustic powers for pump and Stokes pulses. Both Stokes and acoustic
waves grow when the two pulses interact at the middle of the waveguide (5 cm) at around t = 0.25 ns, at the expense of the pump.

the Bose–Einstein distribution, depending on their frequency
and the environment’s temperature. The backscattered optical
waves pass again through the circulator, and its output inter-
feres via a coupler with the local oscillator stemming from the
original laser. The interfered light is then detected by an ampli-
fied photodetector that enables the detection of low-power
signals. A RF DC block (high-pass filter) is used to block the
backscattered light that stems from Rayleigh scattering and
facet reflections and therefore arises at the same frequency as the
local oscillator. The photodetector is connected to an electrical
spectrum analyzer with a bandwidth greater than the Brillouin
frequency shift. The lower the electronic noise level, the easier
the detection.

A typical measurement of the noise-initiated Brillouin spec-
trum is shown in Fig. 8(b) for different input pump power
levels. This measurement has been taken in a photonic crys-
tal fiber made out of silica. The Brillouin frequency shift is at
11.09 GHz. In the low-power regime, the measurement of the
spectrum has a low signal-to-noise ratio. When increasing the
optical power, a smooth Lorentzian curve similar to the one
in a pump–probe measurement can be obtained. Also here,
a narrowing of the Brillouin linewidth with increasing input
power can be observed.

The modeling of noise-initiated Brillouin scattering is less
often needed, since the main purpose is usually to measure the
overall Brillouin character of the device under test. To model
this, we modify the CMEs (64) by adding a small random part to
the acoustic field b(z, t), resulting in the dynamic equation [57]

(∂t + vb∂z + 0b)b =−
i�
Eb

Q∗a0a∗1 +
√
σb R(z, t). (76)

Here, the function R(z, t) is a complex-valued white noise term
(Langevin noise), with zero mean and auto-correlation given by
〈R(z, t)R∗(z′, t ′)〉 = δ(z− z′)δ(t − t ′). The strength of the

noise is given by

σb =
2kB T0b

Eb
, (77)

where T is the temperature of the waveguide core, and kB is
Boltzmann’s constant. As in the noiseless pump–probe case,
these equations can be solved numerically by transforming
the spatial coordinates of each field to a reference frame that
co-propagates with the mode velocity; the stochastic term can
then be integrated using a Euler–Mayurama step [57].

C. Pump–Probe Measurement of Forward Brillouin
Scattering

Forward Brillouin scattering is inherently different from back-
ward Brillouin scattering because the phase matching condition
is greatly relaxed (Fig. 5). The acoustic modes involved in for-
ward Brillouin scattering are nearly standing waves confined
by the transverse section of the waveguide, and so are almost
independent of the optical frequency—this can be seen from
the acoustic band in Fig. 5(a), which is almost flat for small wave
numbers. This means that every optical wavelength can couple
to the same acoustic mode. This has far-reaching consequences
for the measurement of forward Brillouin scattering. First of all,
to excite the transverse acoustic modes, an optical pump can be
used that is spectrally distant from the probe wave, where the
forward Brillouin scattering is observed. Second, the transverse
acoustic modes modulate the phase and polarization of the
probe wave, and so the best way to measure forward Brillouin
scattering is using an interferometric setup.

1. Direct Pump–ProbeSetup

This experimental configuration follows the pattern of the
pump–probe measurement of backward Brillouin scattering,
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Fig. 10. Experimental setups for forward Brillouin scattering.
(a) In the pump–probe setup, both optical waves are co-propagating,
and the frequency difference of pump and probe can be freely chosen
(taking into account the dispersion). The measurement can be taken
at the ESA or oscilloscope. (b) The double-pump setup is a specific
pump–probe setup where energy is transferred from one sideband to
the other sideband of an EOM when the frequency difference of the
sidebands matches the acoustic frequency. The result can be measured
by a Fabry–Perot interferometer. (c) The Sagnac-loop mirror is an
interferometric setup, and response of the transverse acoustic modes
is observed at the ESA. Components in the setups: EDFA, erbium-
doped fiber amplifier; PC, polarization controller; EOM, electro-optic
modulator.

and is shown in Fig. 10(a). A powerful pump is launched into a
fiber, exciting the transversely confined acoustic modes in the
fiber. The pump is intensity modulated to form strong optical
pulses via an EOM. Due to the relaxed phase matching condi-
tion, a probe laser can experience the phase modulation induced
by excited acoustic modes [28]. The frequency sidebands of
the probe wave created due to phase modulation can then be
detected spectrally, most conveniently by interference with a
local oscillator. One advantage of this experimental scheme is
that the polarization of pump and probe can easily be controlled
with respect to each other. This setup can also be combined with
a fiber loop, as has been implemented in [58] to gain sensitivity.
We note here that pulses, rather than a modulated CW, can also
be used to directly measure forward Brillouin scattering, which
is known to cause temporal shifts between successive solitons
propagating in optical fibers [59].

2. Dual PumpSetup

This setup [58] uses two optical pumps separated by the acoustic
frequency [Fig. 10(b)]. Both optical pumps are amplified and
launched into the fiber or waveguide under test. While they are
propagating through the waveguide, there is an energy transfer
between them, mediated by the transverse acoustic mode. While

the amplitude of both pumps is the same at the entrance of the
fiber, there will be a difference in amplitude at the output of the
fiber. By sweeping the frequency difference between the two
optical pumps, the acoustic resonance spectrum can be observed
by detecting both optical frequencies with an interferometer
or an optical spectrum analyzer. The difference of this setup
from the previous one is that the energy transfer between two
co-propagating optical waves is detected directly, rather than
having the probe at a remote frequency modulated by excited
acoustic phonons stemming from interaction with the pump.

The dynamics of forward Brillouin scattering are described
by CMEs Eqs. (70) and (72). These can be integrated either
analytically (see discussion in Section 3.F) or also numerically
using the same approach as in backward Brillouin scattering
(see Section 5.B). The amplitudes of two interacting beams
undergoing forward Brillouin scattering are shown in Fig. 11.
At the beginning of the waveguide, the Stokes (and anti-Stokes)
signals grow linearly as the pump depletes quadratically, giving
the appearance of “gain” in the Stokes. However as the evolution
continues, the first-order Stokes combine with the pump to
form higher-order Stokes and anti-Stokes lines. The amplitude
of the acoustic mode remains constant, since the Stokes process,
which creates phonons, is perfectly balanced by the anti-Stokes
process, which annihilates them. The acoustic field therefore
plays the role of a constant-strength phase modulator of the
optical signal.

D. Measurement of Noise-Initiated Forward Brillouin
Scattering

Because the primary characteristic of forward Brillouin scat-
tering is that it induces phase modulation, the noise-initiated
forward process is readily measured using an interferomet-
ric setup. A commonly used interferometer is a Sagnac loop
[60,61] where 50% of the light travels through a pathway and
the other 50% propagates through the same pathway but in
opposite direction [Fig. 10(c)]. This setup can detect both
radial and torso-radial acoustic modes. The simplified setup
is depicted in Fig. 10(c). An amplified laser is controlled in
polarization and enters a 50/50 fiber optical coupler. The two
outputs of the coupler are connected to the fiber under test.
The polarization is controlled before entering the coupler and
inside the fiber loop. As both optical waves travel through the
same optical path in a counterpropagative way, the polarization
can be adjusted such that there is destructive interference at
output B and constructive interference at output A [Fig. 10(c)].
The tuning of the interference condition is possible due to the
residual birefringence of the fiber loop and other components,
inducing a polarization-dependent phase shift. However, each
optical path accumulates phase modulation due to transverse
acoustic modes in the fiber or waveguide. As these acoustic
modes are incoherent, both optical paths do not accumulate
the same phase modulation. This leads to a significant signal at
output B because both optical paths are no longer equivalent.
The signal can then be detected with an amplified photodi-
ode and observed with an RF spectrum analyzer. Note that
a major advantage of this setup is that all transverse acoustic
modes can be measured at the same time, in contrast to CW
pump–probe measurements where prior knowledge of the
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Fig. 11. Evolution of Stokes lines in forward Brillouin scattering. Both (a) and (b) show the power in the pump and Stokes lines, normalized to
the input pump power Ppump, as a function of the normalized waveguide length ζ = z/L c as defined by Eq. (75). In (a), we see that the acoustic mode
amplitude is constant throughout the waveguide—this is a result of the fact that in forward Brillouin scattering, the acoustic mode is neither amplified
nor damped, and modulates the phase of the optical signal. In (b), we see that the Stokes and anti-Stokes lines appear symmetrically about the pump.

frequency of the acoustic modes is essential [62,63]. The Sagnac
loop—or Sagnac mirror—not only provides an interferometric
measurement solution but also helps to remove a large portion
of the amplified laser light, which would destroy a sensitive
photodiode. At the same time, a sensitive photodiode must be
used because the signature of phase modulation is very weak. An
example of such measurement is shown in Fig. 8(c), where the
plethora of acoustic modes in a standard single-mode silica fiber
(25 m) can be observed.

E. Applications of Backward Brillouin Scattering:
Distributed Sensing Setup and Optical Memory

All measurement techniques discussed thus far measure the
Brillouin response integrated over the whole length of the
fiber or over the entire waveguide on a chip. This means that
possible changes in the Brillouin spectrum due to structural
inhomogeneities of the waveguide or other parameters that
change the Brillouin response such as the temperature or strain
will lead to a broadening of the spectrum [47]. To resolve the
local response of backward Brillouin scattering, one can find
several methods in the Brillouin sensing community. Some
in-depth reviews and tutorials can be found in [9,64,65]. Here,
we give only a short overview. The original idea of a distributed
measurement of backward Brillouin scattering uses a pulsed
pump (intensity pulse) and a CW probe wave, which are sep-
arated by about the Brillouin frequency shift [10]. This setup
corresponds to the experimental setup in Fig. 12 including an
intensity modulator to create pump intensity pulses (module 1).
While the pump pulse travels through the waveguide, the CW
probe is amplified, and this can be measured on an oscilloscope.
Depending on the exact value of the Brillouin frequency shift
at each position in the waveguide, the amplification is higher
or lower. By sweeping the frequency difference between pump
and probe, the Brillouin spectrum can be resolved along the
fiber or waveguide. This technique is called Brillouin optical
time domain analysis (BOTDA), and the main drawback is
the limited spatial resolution of 1 m, which arises due to the

limited acoustic lifetime of 10 ns in silica. To increase the spatial
resolution several other techniques have been proposed, such
as using phase pulses instead of intensity pulses in the Brillouin
echoes distributed sensing (BEDS) technique, which leads
to a spatial resolution of around 5 cm [66]. Another proposal
exceeds this spatial resolution and reaches the sub-millimeter
region by using a frequency modulated source as pump and
probe and measuring the Brillouin response of a very narrow
correlation peak that can be displaced through the waveguide
[67,68]. The latter is called Brillouin optical correlation domain
analysis (BOCDA) and was inspired by similar techniques from
the radar community. The principle of this technique relies on
a broad source (either frequency modulated, phase modulated,
or an incoherent source based on amplified spontaneous emis-
sion), which is split into counter-propagating pump and probe
light, whereby the probe light is down-shifted by the Brillouin
frequency shift. The phase of both waves while propagating
through the device under test is random; however, they exhibit
correlation peaks, one exactly in the middle of the experimental
setup—the position where the Brillouin interaction is local-
ized and finally measured. The correlation peak can be swept
through the device, and therefore, a distributed Brillouin mea-
surement can be achieved. Such high spatial resolution can give
insight into the Brillouin response of short integrated wave-
guides [69]. Note that all these techniques rely on backward
Brillouin scattering. However, recently, it has been proposed
and experimentally shown that also forward Brillouin scatter-
ing can be used for a distributed measurement of the acoustic
properties along a waveguide [70–72]. Usually, Brillouin sensors
bare the challenge of discrimination of temperature and strain
effect on the Brillouin frequency shift. The polarization depend-
ence of Brillouin scattering can help to differentiate these in a
polarization maintaining fiber [73].

A variation of the standard backward Brillouin scatter-
ing experimental setup can be used for Brillouin-based light
storage [13,14]. The experimental design is again based on
the setup in Fig. 12, this time including module 1 (control
pulses) and module 2 (data pulses). Both pulses—shifted by the
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Fig. 12. Pulsed backward Brillouin scattering setup. (i) Distributed
Brillouin sensor setup; with module 1 but without module 2, this setup
resolves the Brillouin interaction spatially with a pulsed pump and
CW probe. The amplification of the probe through a pulsed pump is
observed at the oscilloscope. (ii) Brillouin memory setup; with both
modules 1 and 2, this scheme refers to Brillouin dynamic gratings and
Brillouin storage. Both interacting waves are pulsed, and therefore,
a local acoustic grating is created. The measurements are observed at
the oscilloscope. Components in the setup: EDFA, erbium-doped
fiber amplifier; PC, polarization controller; SSB, single-sideband
modulator; EOM, electro-optic modulator.

Brillouin frequency shift—travel from opposite sides through
the waveguide. The power of the data pulses is roughly 10%
of the power of the control pulses (frequency down-shifted
arm). At the position where they cross, they create an acoustic
wave: this can be seen as a writing process, as the information
(both amplitude and phase) of the optical waves is transferred
to the acoustic wave. This information can be read out with
a second so-called read pulse at the frequency down-shifted
arm (control arm), and detected at the oscilloscope. This
principle leads to a versatile optical delay line and has been
demonstrated for its coherent information transfer [14], multi-
frequency interaction [74], and the ability to reinforce acoustic
waves [75].

Within Brillouin-based delay techniques, quasi-light storage
via Brillouin scattering [76] and Brillouin-based slow light
[77,78] have also been demonstrated; an overview can be found
in [79]. Other applications of backward Brillouin scattering
are in the fields of narrow-linewidth lasers [7,8,80,81], optical
and RF filtering, and microwave photonics of which recent
overviews can be found in [82–84]. Forward Brillouin scatter-
ing has also found several applications, for example, in using
transverse modes for passive laser mode locking [85–88], sens-
ing [70–72,89], Brillouin lasing [8,90], and emitter–receiver
schemes [91].

6. CONCLUSION AND FURTHER READING

In this paper, we have covered those aspects of Brillouin scat-
tering that we believe are fundamental to the understanding
of the process, from both theoretical and experimental per-
spectives. However there are a number of important aspects
to Brillouin processes that we have not discussed explicitly
here.

Of particular importance is the interaction between Brillouin
scattering and other nonlinearities. Backward Brillouin scat-
tering can interact in a non-trivial way with the Kerr effect,
enhancing nonlinear processes such as four-wave mixing. This
is discussed in depth in [92]. A full theoretical treatment of

Brillouin scattering, including the Kerr effect, can be found
in the appendix of Winful [93], who once referred to the con-
tained equations as “the kitchen sink equations” because they
contain all relevant nonlinear processes and also include optical
chirp, which was used in this paper to enhance the efficiency of
Brillouin-based acoustic memory. Within semi-conductors,
nonlinear loss processes can play an extremely important role.
In particular, while two-photon absorption leads to a very
small effect, the creation of charge carriers leads to dramatically
enhanced nonlinear losses. This in fact puts fixed power limits
on the strength of SBS in semiconductors [53].

We have focused here on simple waveguide geometries;
however, there is a rich literature studying Brillouin processes in
resonators. This is naturally connected to the study of Brillouin
lasers, which we have not covered at all. A good introduction
to the study of Brillouin scattering in ring resonators can be
found in [94]. A general discussion of Brillouin lasing, including
the effects of noise, can be found in [95], and a more detailed
discussion of noise in integrated Brillouin lasers can be found in
[96].

We have also assumed throughout that the Brillouin proc-
ess takes place in a completely dispersionless environment.
By-and-large this is a good approximation, since the Brillouin
linewidth is usually sufficiently small, and pulses sufficiently
long, that dispersion effects can be safely neglected. However in
highly dispersive waveguides such as multi-structured optical
fibers near a band-edge, this assumption may not necessarily
hold, and interesting effects may be observed. In particular,
the balance between the Stokes and anti-Stokes processes in
forward Brillouin scattering no longer strictly holds, causing
amplification or damping of the acoustic field. A full discussion
can be found in [33].

Here, we have concentrated on the forward and backward
intramodal processes; however, there is much work, and some
very interesting physics, in the realm of intermodal scatter-
ing. In particular, the papers [97,98] have comprehensively
examined intermodal scattering in photonic crystal fibers, both
experimentally and theoretically.

Finally, a particularly interesting aspect of both backward
and intermodal Brillouin scattering is that they are inherently
non-reciprocal, because the interaction breaks time-reversal
symmetry through the creation of an acoustic grating that
travels in a particular direction. This effect could be lever-
aged to create an optical isolator. As with all non-reciprocal
devices, a careful distinction should be made between sys-
tems that are capable of true isolation, by which is meant a
device that blocks any possible backward-propagating state,
and those that control the propagation of optical states in a
non-reciprocal way [99,100]. A device that uses Brillouin
scattering to drive non-reciprocal mode conversion of opti-
cal signals that are then selectively filtered would in this
sense be a true isolator, being analogous to isolators based
on frequency conversion [101]. A proposal for true Brillouin-
based isolation was first given in [11], and non-reciprocal
Brillouin effects have been demonstrated in recent experimental
work [102,103].
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APPENDIX A: COMPUTATION OF ACOUSTIC
MODES AND GAIN/COUPLING PARAMETERS

To solve the systems of coupled PDEs [such as Eq. (64)], it is
first necessary to compute important quantities such as the gain
(coupling) coefficient g 0, frequency shift�/(2π), and Brillouin
linewidth 0b/(2π). To do this, one must accurately compute
the fields of both EM and acoustic modes in the waveguide,
given by Eq. (12) and Eq. (35), respectively:

(D(opt)
+ iknP(opt))|9n〉 = iωnE(opt)

|9n〉, (A1a)

(D(ac)
+ iqP(ac))|8〉 = i�E(ac)

|8〉. (A1b)

To be properly defined eigenvalue problems, these equations
must have appropriate boundary conditions on the edge of the
computational domain. Given that one is typically looking
for guided modes, it is usually sufficient to take the edge of the
computational domain sufficiently far away and to enforce
a perfectly conducting condition—or a perfectly clamped
condition, in the case of acoustic modes—on the outermost
boundary of the domain. For free-standing acoustic structures
(e.g., a pedestal waveguide in air), it is sufficient to limit the
computational domain to the waveguide itself, and then apply
freely vibrating boundary conditions at the air interface. The
problems encompassing the differential equations [Eq. (A1)]
together with their boundary conditions are then generalized
eigenvalue problems, with the eigenvalue being either the wave
number (kn, q) or the frequency (ωn, �).

The leading approach to solving these equations is by using
the finite element method (FEM), for which there are a number
of commercially available solvers. For the following compu-
tations we have used a free FEM-based program known as
NumBAT, the Numerical Brillouin Analysis Tool , which is spe-
cifically designed for Brillouin problems, and which has been
tested against a selection of experimental and numerical results
from across the Brillouin scattering literature. The program uses
a Python front end, which connects to a fast Fortran solver for
constructing a two-dimensional FEM solution for both EM and
acoustic modes. A range of (tutorial-type) scripts for calculating
the Brillouin scattering performance of a photonic structure
have already been created in the NumBAT installation files
and can be modified to suit the needs of the reader. NumBAT
code for the results presented in this appendix are packaged
with the latest release. The NumBAT package is available for
download at https://github.com/michaeljsteel/NumBAT, and
the associated documentation suite is also available online at
https://numbat-au.readthedocs.io/en/latest/. An article high-
lighting the package and summarizing a smaller selection of
benchmarks for backward, forward, and intermodal forward
Brillouin scattering is available [36].

Regardless of the software chosen to compute the modes,
the approach to computing the Brillouin gain/coupling takes
the same general form. For backward Brillouin scattering, the
procedure is as follows: first calculate the available EM states
in the structure using an estimate for the effective mode index
at the pump wavelength (e.g., λ= 1550 nm). An initial esti-
mate for the effective index of the EM mode can be made by
selecting a value close to the refractive index of the waveguide

material (NumBAT does this by default). Having determined
the available EM states, one must choose which one is the pump
field—typically, this is the fundamental linearly polarized mode
in either the x or y direction, depending on the waveguide. For
backward scattering, the Stokes field is simply the conjugate of
the pump, and because the pump and Stokes frequencies are
extremely close, the Stokes wave vector is simply the negative
of the pump wave vector. The wave vector q for the elastic field
is therefore twice that of the pump following conservation of
momentum, in accordance with Eq. (1). The next step is to
solve for the available elastic states in the structure, choosing
q as a fixed parameter and solving for the eigenvalue �. This
will typically give a range of solutions, corresponding to all the
different possible acoustic frequencies that can couple the pump
and Stokes. With both EM and acoustic fields computed, it
is possible to compute the overlaps Qnn′ for all elastic modes
for the chosen pump and Stokes fields. One quantity that is
difficult to predict in advance is the viscoelastic loss. If the com-
ponents of the viscoelastic loss tensor are known, then these can
be inserted into Eq. (46) to compute the overall acoustic loss.
In practical situations, it is often more convenient to estimate
the linewidth directly from an experiment or from the known
phonon lifetime. The modal powerPp of the pump/Stokes, and
the modal energy En , can be computed directly from the field
values of the eigenmodes. The gain or coupling coefficients for
each acoustic mode can then be computed with these quantities
in conjunction with Qnn′ replacing Q in Eq. (66).

In a typical computation, a large number of acoustic eigen-
modes are found (in fact, most FEM solvers will allow the user
to specify the number of modes to look for). Some of these
solutions are symmetry-forbidden and will have zero cou-
pling; however, in others, the coupling is simply small. Having
determined gain values for all of the elastic states, the domi-
nant acoustic mode is readily identified from inspection of the
gain values, and all other corresponding constants are easily
extracted.

Output values for backward SBS in a rectangular silicon
waveguide and for a cylindrical silica waveguide is given in
Table 2, showing a significant disparity in gain values. In Fig. 13,
we profile the elastic dispersion curves for the silicon rectangular
waveguide. The corresponding field distributions for the results
in Table 2 are shown in Figs. 14 and 15.

The approach for computing forward Brillouin scattering is
very similar to that for backward Brillouin scattering: the same
gain expression g 0 is used (although this quantity becomes a

Table 2. Summary of Backward Stimulated Brillouin
Scattering Results for a Selection of Waveguides

a

Waveguide k0 neff
�
2π

0b
2π g0

Si (200×
450 nm2)

8.651 2.134 17.29 14.33 −2192

SiO2

(1µm
diam.)

4.769† 1.176 9.22 10.65 −26

aNote that gain values are negative-valued as the Stokes wave is backward
propagating. k0 denotes the optical wave number, with † denoting a degenerate
optical mode (in units [106/m]), neff the effective refractive index,�/(2π) the
acoustic frequency (in units [GHz]), 0b/(2π) the acoustic linewidth (in units
[MHz]), and g 0 the gain (in units [W−1 m−1].
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Fig. 13. Elastic dispersion curves for 450× 200 nm2 rectangular Si
waveguide obtained using NumBAT. Curves are classified by (irreduc-
ible) group representations A, B1, B2, and B3.

Fig. 14. Transverse optical (pump and Stokes) fields and transverse
elastic field profiles for 450× 200 nm2 rectangular Si waveguide cor-
responding to largest backward SBS gain, calculated using NumBAT.
Values are summarized in Table 2, and outlines of computational
domains are superposed for reference.

Fig. 15. Transverse optical (pump and Stokes) fields and transverse
elastic field profiles for 1 µm diameter circular SiO2 waveguide corre-
sponding to largest backward SBS gain, calculated using NumBAT.
Values are summarized in Table 2, and outlines of computational
domains are superposed for reference.

coupling coefficient in place of a gain), and the same EM field
calculations are made to determine the pump field. The key dif-
ference is that the Stokes field is not the conjugate of the pump
field, and the Stokes wave vector is not the negative of the pump
wave vector. Here, the elastic wave vector can be, to an excellent
approximation, taken to be zero. As in the backward Brillouin
scattering case, the acoustic wave vector q ≈ 0 gives a selection
of available elastic fields and therefore a range of overlaps and
coupling values. A summary of output values for our two wave-
guide designs are given in Table 3, showing an enhancement
in coupling values compared to the gains calculated for the
backward configuration. The fields associated with these gain
values are presented in Fig. 16.

Table 3. Summary of Forward Stimulated Brillouin
Scattering Results (Format as in Table 2)

Waveguide k0 neff
�
2π

0b
2π g0

Si (200×
450 nm2)

8.651 2.134 8.52 7.89 17579

SiO2

(1µm
diam.)

4.769† 1.176 2.81 0.26 174

Fig. 16. Transverse optical (pump and Stokes) fields and transverse
elastic field profiles corresponding to largest forward SBS coupling for
the geometries introduced in Fig. 13 (top row) and Fig. 14 (bottom
row), respectively.

Table 4. Summary of Intermodal Forward Stimulated
Brillouin Scattering Results (Format as in Table 2)

Waveguide k0 neff
�
2π

0b
2π g0

Si (200×
450 nm2)

8.671 2.134
4.29 1.057 2.84 0.43 62724

SiO2 (1µm
diam.)

4.769† 1.176
4.769† 1.176 2.81 0.27 51

The calculation for intermodal forward Brillouin scattering is
slightly different from that of either backward or forward scat-
tering. Here, the pump and Stokes fields do not refer to the same
EM mode index (i.e., for intermodal forward scattering, the
pump could be the second available EM mode and the Stokes
the third available EM mode), and the elastic wave vector must
be explicitly determined following the conservation of momen-
tum condition q = kn − kn′ . Nevertheless, the approach is the
same: having chosen the desired pump and Stokes modes, one
is then able to calculate the available elastic modes associated
with each value of q , together with all associated gain values.
A summary of values for our two waveguide designs is given
in Table 4, showing a significant enhancement in the gain for
the rectangular silicon waveguide, relative to either the back-
ward gain or forward coupling values presented earlier. This
enhancement stems largely from a considerably lower acoustic
linewidth. The associated fields for the gain values in Table 4 are
presented in Fig. 17.
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Fig. 17. Transverse optical (pump and Stokes) fields and transverse elastic field profiles corresponding to the largest intermodal coupling for the
geometries introduced in Fig. 14 (top row) and Fig. 15 (bottom row), respectively.
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