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Abstract

This thesis presents a comprehensive theoretical description of classical and quantum
plasmonics in three and two dimensions and also in hybrid systems containing elements
with different dimensionalities. It focuses on the theoretical understanding of the
salient features of plasmons in nanosystems as well as on the multifaceted aspects
of plasmon-enhanced light–matter interactions at the nanometer scale, with special
emphasis on the modeling of nonclassical behavior across the transition between
classical and quantum domains.

We have divided the content of this thesis into two main parts. In Part I we
present results obtained using classical theories of plasmonics, and in Part II we go
beyond classical electrodynamics by extending our theoretical considerations to the
nonclassical, quantum regime.

In the first part of the thesis, following an introduction to the foundational concepts
behind the theory of classical electrodynamics and to the core elements of classical
plasmonics in three and two dimensions, we develop a general theoretical formalism
for calculating plasmons in various two-dimensional (2D) geometries. We have then
applied that framework to study plasmon coupling and hybridization in 2D nanoslits,
and have fully characterized the properties of the resulting two hybrid plasmon modes
and how these can be tuned upon varying the slit’s width. Our method is valid for any
2D plasmon-supporting material (including ultrathin metallic films); both the case
where the material’s response is isotropic and the case where it is anisotropic have
been considered. Next, after having dealt with strictly planar 2D configurations, we
expand our investigations to nonplanar structures based on 2D materials. Concretely,
we consider one-dimensional channels formed by engineering the 2D material into
either a V- or a Λ-shape (i.e., resulting in a groove or in a wedge, respectively). We
have developed two distinct theoretical models for computing the features of the 2D
channels plasmons supported by such structures. Our results show that these modes
exhibit levels of light localization that are deeply subwavelength, even larger than
what could possibly be obtained by exploiting plasmons in the planar, continuous host
2D medium.

In the second part of the thesis, we identify the main shortcoming associated
with classical treatments of plasmonics, and then propose a number of different
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Abstract

theoretical approaches for overcoming those shortcomings. We start by reviewing the
hydrodynamic model for the homogeneous electron gas in three-dimensions, which
includes nonlocality to lowest-order; both the planar and the spherical configuration
are analyzed. We then briefly discuss the so-called specular reflection model which
includes the full nonlocal dielectric function of the homogeneous electron gas. Next,
we investigate how quantum nonlocal effects influence the dispersion of acoustic-like
graphene plasmons, which are ultraconfined graphene plasmons that can be excited
when a graphene sheet lies in close proximity to a metal substrate. We find significant
deviations from classicality pertaining to the plasmonic response of graphene, and
then exploit the remarkable confinement attained by this kind of graphene plasmons
to probe nonlocal effects in the metal’s optical response. Lastly, we present a unified
theoretical treatment of mesoscopic electrodynamics—rooted on the d-parameter
formalism—whose applicability encompasses both the classical and quantum regimes,
and, crucially, spans the challenging transition region where classical and quantum
effects can coexist. In particular, our approach allows a simultaneous account of
nonlocality, electronic spill-out, and surface-enabled Landau damping, while also
including retardation. We derive analytical expressions for the nonclassical scattering
coefficients in selected geometries, from which we determine the systems’ plasmonic
excitations. Our results show that, for a broad range of experimentally-relevant
parameters, the latter incur in substantial nonclassical resonant shifts (broadenings)
parameterized by a geometry-dependent factor times the real (imaginary) part of
the d⊥-parameter. Furthermore, we extend and apply our mesoscopic formalism to
a plethora of plasmon–emitter interactions. Specifically, we investigate the role of
quantum surface corrections to the plasmonic Purcell enhancement along with their
influence in enhancing dipole-forbidden transitions, plasmon-mediated energy transfer
between two emitters, as well as two-photon emission. Our findings underscore the
importance of incorporating nonclassical corrections in quantum nanoplasmonics; this
becomes increasingly important as current state-of-the-art nanoplasmonic studies
continue to probe ever-smaller nanostructures and/or emitter–metal separations.
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Resumé

Denne afhandling præsenterer en omfattende teoretisk beskrivelse, b̊ade klassisk og
kvantemekanisk, af plasmoner i tre og to dimensioner og ligeledes i hybride systemer,
der indeholder elementer med forskellige dimensionaliteter. Der er en fokus p̊a den
teoretiske forst̊aelse af de karakteristiske træk ved plasmoner i nanosystemer s̊avel
som p̊a de mangesidede aspekter af plasmon-forstærkede lys-stof vekselvirkninger p̊a
nanometer længdeskalaer, med særlig vægt p̊a modellering af ikke-klassisk opførsel i
overgangen mellem det klassiske og det kvantemekaniske domæne.

Afhandlingen er inddelt i to hoveddele. I Del I præsenteres resultater opn̊aet
ved hjælp af klassisk elektrodynamik for plasmoner, og i Del II udvides forst̊aelsen
fra den klassiske elektrodynamik ved at inkludere ikke-klassiske korrektioner for den
underliggende kvantedynamik.

Den første del af afhandlingen indledes med en introduktion til de grundlæggende
begreber bag teorien om klassisk elektrodynamik og til kerneelementerne i klassisk
plasmonics i tre og to dimensioner. Herefter udvikles en generel teoretisk formalisme til
beregning af plasmoner i forskellige to-dimensionelle (2D) geometrier. Dette er blevet
anvendt til at undersøge plasmon kobling og hybridisering i 2D nano-spalter, hvilket har
muliggjort en fuld beskrivelse af de tilhørende to hybride plasmon-tilstande, herunder
hvordan disse tilstande kan kontroleres ved at variere spaltebredden. Metoden er
generelt gyldig for vilk̊arlige 2D plasmon-understøttende materiale (inklusiv ultratynde
metalliske film). Tilfældet, hvor materialets respons er isotropisk, og tilfældet, hvor
det er anisotrop, er blevet behandlet. Efter behandlingen af disse strengt 2D planære
konfigurationer udvides overvejelserne til ikke-planære strukturer baseret p̊a 2D-
materialer. Konkret betragtes en-dimensionelle kanaler dannet ved at deformere det
planære 2D-materiale til enten en V eller en Λ formet overflade, hvilket resulterer i
henholdsvis en rille eller en kile. Der udvikles to forskellige teoretiske modeller til
beregning af de s̊akaldte 2D kanal-plasmoner, der understøttes i s̊adanne strukturer.
Resultaterne viser, at disse plasmon tilstande muliggør lyslokalisering p̊a længdeskalaer
langt under bølgelængden for lyset selv, og i en større grad end det er muligt med
plasmoner i det tilsvarende planære tilfælde.

I den anden del af afhandlingen identificeres den største begrænsning ved den
klassiske behandling af plasmoner. Det diskuteres, hvordan der kan korrigeres for dette
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ved en række forskellige teoretiske tilgange. Først gennemg̊as den hydrodynamiske
model for den homogene elektrongas i tre dimensioner, som inkluderer ikke-lokalitet
til laveste orden; b̊ade den plane og den sfæriske konfiguration analyseres. Derefter
drøftes kort den s̊akaldte spekulære reflektionsmodel, der inkluderer den fulde ikke-
lokale dielektriske funktion af den homogene elektrongas. Dernæst undersøges det,
hvordan kvantemekaniske ikke-lokale effekter p̊avirker spredningen af akustisk-lignende
graphene plasmoner, som er ultralokaliserde graphene plasmoner, der kan ansl̊as, n̊ar
et graphene ark placeres ovenp̊a en metaloverflade, og i tæt vekselvirkning med denne.
Der er betydelige afvigelser fra den klassiske opførsel af plasmonerne i graphene, hvilket
yderligere udnyttes til at udforske ikke-lokale effekter i det nærtvedliggende metal’s
optiske respons. Til sidst præsenteres en samlet teoretisk behandling af mesoskopisk
elektrodynamik, forankret i d-parameter formalismen, hvis anvendelighed omfatter
b̊ade de klassiske og kvantemekaniske regimer. I særdeleshed muliggør formalismen
udforskninger i det spændende og udfordrende overgangsomr̊ade, hvor klassiske og
kvantemekaniske effekter potentielt kan sameksistere. Især tillader fremgangsmådes
en samtidig beskrivelse af ikke-lokalitet, quantum spill-out, og overfladeassisteret
Landau-dæmpning, samtidig med at beskrivelsen ogs̊a inkluderer retardation effek-
ter. Der udledes analytiske udtryk for de ikke-klassiske spredningskoefficienter i
udvalgte geometrier, som anvendes til at bestemme systemernes plasmoniske excita-
tioner. Resultaterne viser, at sidstnævnte, for en bred vifte af eksperimentelt relevante
parametre, medfører betydelige ikke-klassiske resonansskift (forbredninger), som er
parametriseres gennem en geometriafhængig for-faktor og den reelle (imaginære) del af
d⊥-parameteren. Den mesoskopiske formalisme anvendes p̊a en række forskellige prob-
lemstillinger med plasmon-emitter vekselvirkninger. I særdeleshed undersøges effekten
af kvantemekaniske overfladekorrektioner til den plasmoniske Purcell-forstærkning
sammen med deres indflydelse p̊a dipol-forbudte overgange, plasmon-medieret ener-
gioverførsel mellem to emittere samt to-foton emission. Resultaterne understreger
vigtigheden af at inkorporere ikke-klassiske korrektioner i kvante-plasmoniske sys-
temer; dette bliver stadigt vigtigere, i takt med at nanoplasmoniske eksperimenter
fortsætter med at udforske stadig mindre nanostrukturer og/eller kortere afstande
mellem lys-udsendende emittere og metaloverflader.
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Prof. Javier Garćıa de Abajo, and Prof. Jesper Mørk for taking time out their busy
agendas to consider this thesis and to serve on my thesis assessment committee.

On a more personal level, I would like to wholeheartedly thank my parents and
brother for all their affection and for always being there for me. Finally, my deepest

vii



Acknowledgements

thanks to Inês for her unwavering encouragement and support, for her kindness, and
for her unconditional love.

Funding: I acknowledge funding from the DTU Fotonik PhD school and from the
Center for Nanostructured Graphene. The latter is sponsored by the Danish National
Research Foundation (Project No. DNRF103). I further acknowledge financial support
from the VILLUM Investigator program supported by VILLUM FONDEN (Grant No.
16498).

viii



List of Publications

The list of papers that have been published by the author in international peer-reviewed
journals during the course of the author’s PhD studies is presented below (in inverse
chronological order), along with papers under peer-review at the time of this thesis’
submission. Publications C, H, L, M, and P are discussed in this thesis.

• Preprints submitted and under peer-review during the author’s PhD studies:

A C. Tserkezis, A. I. Fernández-Domı́nguez, P. A. D. Gonçalves, F. Todisco,
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P. A. D. Gonçalves, F. Todisco, P. Bøggild, A. Boisen, M. Wubs, N. A.
Mortensen, S. Xiao, N. Stenger,
Single-Crystalline Gold Nanodisks on WS2 Mono- and Multilayers for Strong
Coupling at Room Temperature,
ACS Photonics 6 (4), 994–1001 (2019).

ix

https://arxiv.org/abs/1907.02605
https://arxiv.org/abs/1906.09898
https://arxiv.org/abs/1904.09279
http://doi.org/10.1021/acsphotonics.8b01766


List of Publications
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L P. A. D. Gonçalves, S. Xiao, N. M. R. Peres, N. A. Mortensen,
Hybridized Plasmons in 2D Nanoslits: From Graphene to Anisotropic 2D
Materials,
ACS Photonics 4 (12), 3045–3054 (2017).
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CHAPTER 1
Introduction

Ever since the dawn of humankind our species has been continuously pursuing new
ways to tailor materials and to tame light to its advantage. In early human history, the
ages of civilization were named after the prevailing tool-making material. Even today,
our technological evolution is intimately associated with advances in materials science,
involving both the synthesis of new materials and the purposeful processing and
combination of them [1]. Along with materials innovation, since the early nineteenth
century that the understanding and ensuing exploitation of electromagnetic phenomena
has been contributing enormously—in ways that the pioneers of the field could not
possibly have fathomed at the time—to our technological and scientific revolution [2]
as well as to our general well-being.

Plasmonics—the central topic of this thesis—lies precisely at the intersection
between materials science and electromagnetism, or else between condensed matter
physics and photonics. Broadly speaking, plasmonics [3–7] is a sub-branch of physics
that focuses on the study of plasmons and plasmon-enabled phenomena. In classical
terms, plasmons are self-sustained collective excitations of the free-electron plasma
mediated by the Coulomb interaction between its charge carriers. In a quantum
mechanical picture, plasmons are often viewed as coherent intraband excitations
of electron-hole pairs around the ground-state’s Fermi level; because a plasmon is
a collective excitation, brought about by the Coulomb interactions, its energy is
considerably higher than the one associated with each individual electronic transition.
The first theoretical description of plasmons in a quantum mechanical setting is
generally attributed to Bohm and Pines [8–12], who have developed a microscopic
formalism for the dynamic response of the homogeneous electron gas that became
known as the random-phase approximation (RPA) [13–15].

At metal surfaces or in finite-sized metal structures plasmons can couple to
free-space electromagnetic waves, thereby giving rise to surface plasmon polaritons
(SPPs) [3, 4, 7]. Here, the polariton epithet is indicative of the mixing between
electronic and photonic degrees of freedom. The relative fraction of “light-like” and
“matter-like” that characterizes the SPP mode varies along its energy-wavevector
dispersion curve.

One of the most tantalizing properties of surface plasmons lies in their ability to
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provide a mean to achieve subwavelength light confinement beyond the diffraction limit
of conventional optics [16, 17]. This feature has remarkable consequences, such as, for
instance, in delivering extreme field enhancements [18, 19], subwavelength waveguid-
ing [17, 20], enhanced spectroscopy [21–23], control over the dynamics of emitters [24–
26], ultrasensitive biochemical sensing [22, 27–31], medical theragnostics [32–34], and
metamaterials [35, 36] and antenna design [37, 38] for shaping wavefronts. Although
all of these feats have now been realized, some of them have somewhat fallen short of
the community’s earnest expectations [39], in particular those concerning applications
for which a delicate control of losses is imperative [40] (curiously, for other applica-
tions, plasmon-related losses can actually act as performance-improvers [41]). In spite
of this, new research avenues and exciting opportunities have been recently recog-
nized [42], including the potential of plasmonics for enhancing nonlinearities [43, 44],
producing ink-free plasmonic colors [45–48], boosting light–matter interactions up
to the strong-coupling regime [49–52], tailoring spontaneous decay rates beyond the
dipole-approximation [53–56], and for plasmon-driven hot-electron physics and cataly-
sis [57–61], just to name a few. In parallel, the advancement of nanofabrication and
characterization techniques has brought the possibility to investigate plasmons and
plasmon-empowered phenomena in systems characterized by length scales approaching
the intrinsic quantum mechanical scales of the plasmon-supporting electron gas [62–68].
In this context, classical descriptions of plasmonics must be either abandoned [69, 70]
or augmented with nonclassical corrections [56, 71–73], which may be of semiclassi-
cal [74–81] or quantum mechanical origin [56, 67, 73, 82–86]. The study of plasmonics
beyond classical electrodynamics is what motivates and defines the vibrant field of
quantum nanoplasmonics [52, 69, 87–89].

Another enticing development in the field of plasmonics is the one concerned with
the investigation of plasmons in two-dimensional (2D) materials [7, 90–92]. The recently
renewed interest in 2D plasmonics is deeply intertwined with the advent of graphene,
a one-atom-thick carbon allotrope whose atoms are arranged in a planar honeycomb
lattice, first isolated in 2004(–2005) [93–96]. Graphene possesses remarkable electronic
properties [97], spearheaded by its peculiar low-energy linear spectrum where charge
carriers behave as massless particles governed by an effective relativistic massless
Dirac Hamiltonian [94, 97, 98], together with extraordinary mechanical [99] and
thermal properties [100]. Besides these, graphene also exhibits outstanding optical
properties [7, 90, 98, 101], namely, a nearly constant absorption of ≈ 2.3% in the visible
region [102] of the electromagnetic spectrum (which is unarguably surprisingly large
for a single atomic layer). When doped, graphene supports 2D plasmons spanning
the terahertz (THz) and mid-infrared (mid-IR) spectral regions [7, 90–92]. Strikingly,
graphene plasmons are capable of rendering light confinements that can be extremely
subwavelength [7, 90–92, 103–108]. Furthermore, and in stark contrast with SPPs
in three-dimensional (3D) metals, the frequency of graphene plasmons (GPs) can
be actively tuned either by electrostatic gating [103, 104, 109, 110] or by chemical
means [111]. Such versatility is pivotal from a technological, application-oriented
perspective. At the time of writing, the subject of graphene plasmonics has matured [7],
but it continues to expand considerably into numerous directions at an incredibly
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rapid pace.
The research presented throughout this thesis focuses on the theoretical description

of surface plasmons in a plethora of plasmon-supporting nanostructures, encompassing
not only plasmonics in three- and two-dimensional systems, but also an in-between,
transdimensional regime. The latter spans an intermediate regime between the “strictly
3D” and the “strictly 2D”. This definition, albeit somewhat loose, has recently been
used [112] to classify systems comprised of a few-atomic layers, but could, in practice,
also be extended to compound structures which simultaneously contain 3D and 2D
elements.

The present thesis is divided into two parts, Part I and Part II, where it is discussed,
respectively, the salient features pertaining to classical and quantum (or nonclassical)
theoretical treatments of plasmonics and plasmon-related nanophotonic phenomena.
In the first part, after reviewing the fundamentals of plasmonics in three- and two-
dimensions (in the latter, with special emphasis on graphene), we theoretically describe
plasmonic excitations in planar 2D nanostructures using a universal framework that is
both scale- and material-independent, being fully specified by the structure’s geometry
(i.e., its shape). This analysis shall set the stage for our subsequent investigations
pertaining to (i) the treatment of plasmon coupling and hybridization in 2D nanostruc-
tures; and (ii) the study of plasmons in nonplanar geometries, namely, of 2D channels
plasmons propagating along a triangularly-shaped wedge or groove. In the second
part of the thesis, we start by summarizing the main shortcomings of the classical
approach, chiefly, the local-response approximation, incompleteness and the omission
of Landau damping, and the assumption of abruptly-defined material interfaces (i.e.,
discontinuity). Evidently, these are not all the shortcomings associated with classical
treatments of plasmonics, but they are arguably the most important in nearly all
relevant scenarios encountered in nanoplasmonics. Next, we address the above-noted
deficiencies and develop different models to overcome them—again, both in three- and
two-dimensions—, ranging from a semiclassical account based on hydrodynamics to
more sophisticated formalisms, including the nonlocal RPA and a novel framework
for electrodynamics in the mesoscopic regime. The latter framework, in particular,
is rooted on the microscopic formalism of Feibelman d-parameters [56, 71, 73, 82]
and is capable of simultaneously remedy all the three aforementioned shortcomings;
specifically, it enables a leading-order-accurate incorporation of nonlocality, electroninc
spill-out/spill-in, and surface-enabled Landau damping. Crucially, we extend the appli-
cability of the d-parameter formalism to an unprecedented range of length scales, from
the classical, macroscopic domain down to the truly few-nanometer regime. Finally,
we further develop our mesoscopic framework and investigate the impact of quantum
surface corrections on the plasmon-enhanced light–matter interaction: we consider
a broad array of plasmon–emitter interactions ranging from dipolar and multipolar
spontaneous emission enhancement, to plasmon-assisted energy transfer between two
emitters and plasmon-enhanced two-photon emission. Our formalism for mesoscopic
electrodynamics gives a complete account of both plasmons and plasmon–emitter
interactions at the nanoscale, constituting a simple yet rigorous and general platform
to incorporate nonclassical effects in plasmon-empowered nanophotonic phenomena.
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1.1 Outline

This thesis is structured into two parts, each addressing multifaceted aspects of
classical and quantum nanoplasmonics and light–matter interactions. In both parts, we
cover three-dimensional metal nanostructures as well as two-dimensional nanosystems.
Below, we provide a succinct description of the content of each chapter.

Chapter 2 | Classical Electrodynamics of Solids

Reviews the foundations of classical electrodynamics including Maxwell’s equa-
tions and corresponding boundary conditions together with the macroscopic
constitutive relations. Next, we introduce the core elements of plasmonics in
numerous settings and establish the fundamental properties of surface plasmon
polaritons and localized surface plasmons. Finally, we provide an overview of
the electromagnetic Green’s dyadics and use it to introduce the concept of local
density of states and describe the Purcell effect.

Chapter 3 | Electronic and Optical Properties of Graphene

Gives a crash course in the physics of graphene, focusing on its electronic and
optical properties. It discusses the predominant theoretical models for describing
the optoelectronic properties of graphene and provides their derivations along
the way.

Chapter 4 | Fundamentals of Graphene Plasmonics

This chapter starts by introducing the field of graphene plasmonics in a self-
contained fashion. The salient features of graphene plasmons in both continuous
and nanopatterned graphene are reviewed. Finally, plasmon hybridization in
2D nanoslits made from different atomically-thin materials is investigated.

Chapter 5 | Two-dimensional Channel Plasmons in Nonplanar Geometries

Extends the previous treatments of plasmons (and other polaritons) in 2D
systems to nonplanar structures, i.e., configurations where the 2D material
is either folded or conformed to a pre-engineered substrate. It focuses on
nonplanar geometries based on one-dimensional, triangularly-shaped channels.

Chapter 6 | Electrodynamics of Metals Beyond the Local-Response Approx-
imation: Nonlocal Effects

Identifies the main shortcomings associated with classical descriptions of plas-
monics and introduces the most common models for addressing some of those
shortcomings. Here, we center our attention in three-dimensional metal nanos-
tructures and investigate the impact of nonlocality in the large-wavevector (for
planar systems) or small-size (for metal nanospheres) limits.

Chapter 7 | Quantum Nonlocal Effects Probed by Ultraconfined Graphene
Plasmons
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Reviews the outstanding properties of acoustic-like graphene plasmons arising
from the electromagnetic interaction between plasmons in graphene and the
screening exerted by a nearby metal. It is shown that this type of graphene
plasmons can not only be exploited for confining electromagnetic fields to
nanometer scales but can also be used as probes for revealing quantum nonlocal
effects in condensed matter systems. Whenever possible, we compare our
calculations against experimental data that has been reported in the literature.
After exploring the consequences of nonlocality and many-body interactions in
the graphene sheet alone, we then simultaneously account for nonlocal effects
in the graphene and in the metal.

Chapter 8 | Quantum Corrections in Plasmonics and Plasmon–Emitter In-
teractions

In this chapter, we develop and apply a new, mesoscopic treatment of plas-
mons and light–matter interactions in nanoplasmonics, whose applicability
encompasses an unprecedentedly wide range of length scales, and, in particular,
conveniently bridges the gap between “fully quantum” (microscopic, atomistic)
and “fully classical” (macroscopic) descriptions. This framework, rooted on
the so-called Feibelman d-parameters, facilitates a simultaneous incorporation
of electronic spill-out, nonlocality, and surface-assisted Landau damping—all
intrinsically quantum mechanical mechanisms—through the derivation of ana-
lytical mesoscopic scattering coefficients, thereby enabling the calculation of
plasmon-mediated light–matter interactions in the mesoscopic regime.

Chapter 9 | Conclusions and Outlook

Revisits and summarizes the main content of the thesis as a whole and discusses
its implications in a broader context, including potentially new opportunities
and perspectives for future investigations.
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CHAPTER 2
Classical Electrodynamics of

Solids

The main goal of the present chapter is to introduce the elementary concepts governing
the interaction of electromagnetic fields with matter, which together form the branch
of physics known as classical electrodynamics of solids (or continuous media) [113–116].
As the name suggests, it describes electromagnetic phenomena in terms of classical
physics. Nonetheless, the theory of classical electrodynamics has been remarkably
successful in predicting and explaining empiric observations in various settings, and,
even today, its impact in the field of nanophotonics remains superlative [3, 7, 117].

The theoretical framework set forth in this chapter shall provide context and
establish the foundational basis for the theories developed in the subsequent chapters.
The motivation for reviewing the fundamentals of classical electrodynamics here is
two-fold: (i) to make this thesis as self-contained as possible, by providing a summary
of the theoretical building blocks of macroscopic electrodynamics; and, (ii) to establish
a standard that can serve as a platform for comparison and that will facilitate
the interpretation of the nonclassical formalism developed in Part II. It should be
emphasized though that this succinct introduction is by no means a substitute for
an all-encompassing treatment of classical electrodynamics and condensed matter
physics, for which many authoritative works entirely devoted to these topics exist [113–
115, 118, 119].

In what follows, we introduce Maxwell’s equations—the workhorse of classical
electromagnetism—and elucidate how the electromagnetic response of solids is ac-
counted for via the so-called constitutive relations. We then enumerate the boundary
conditions associated with Maxwell’s equations at an arbitrary interface between
two different media. Next, we discuss the optical response of solids and introduce
the local-response approximation, followed by a derivation of the Drude model that
describes the response of the free-electron gas driven by an external electromagnetic
field. Finally, we provide a cursory overview on the fundamentals of plasmonics in
three dimensions, and introduce the dyadic Green’s function formalism and use it to
describe the plasmon-enhanced Purcell effect.
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2.1 Foundations of Classical Electrodynamics

2.1.1 Maxwell’s equations and constitutive relations

The macroscopic Maxwell’s equations governing classical electrodynamics read [113]

∇ ·D(r, t) = ρf(r, t) , (Gauss’ law) (2.1a)

∇ ·B(r, t) = 0 , (magnetic Gauss’ law) (2.1b)

∇×E(r, t) = − ∂

∂t
B(r, t) , (Faraday’s law) (2.1c)

∇×H(r, t) = ∂

∂t
D(r, t) + Jf(r, t) . (Maxwell–Ampère’s law) (2.1d)

In the above, E and H constitute the fundamental physical fields1, denoting, respec-
tively, the electric and magnetic fields. The vectors D and B represent the electric
displacement and the magnetic induction, respectively. Lastly, Jf stands for the (free)
current density, and ρf for the corresponding (free) charge density; these are interlinked
by the continuity equation,

∇ · Jν(r, t) + ∂

∂t
ρν(r, t) = 0 , (2.2)

where, in general, ν ∈ {f, ind, ext} (denoting free, induced, and external, respectively).
Equation (2.2), which essentially embodies charge conservation, is implicitly contained
in Maxwell’s equations (2.1) [113].

Considering monochromatic fields harmonic in time, i.e., evolving as e−iωt, the
previous equations become (or after a Fourier transform in time)

∇ ·D(r,ω) = ρf(r,ω) , (2.3a)

∇ ·H(r,ω) = 0 , (2.3b)

∇×E(r,ω) = iωB(r,ω) , (2.3c)

∇×H(r,ω) = −iωD(r,ω) + Jf(r,ω) , (2.3d)

for Maxwell’s equations, and

∇ · Jν(r,ω) = iωρν(r,ω) . (2.4)

for the continuity equation in the frequency domain.
We further note that in the preceding equations the free current density, can be

decomposed into two contributions, namely, Jf = Jind + Jext. Here, Jind represents
the induced current density driven by the electric field in the medium, whereas

1In macroscopic media, the fields E and H are assumed to be local macroscopic averages over
volumes that are large compared to the volume of the unit-cell of the crystal (or the cube of the
equivalent characteristic length).
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Jext accommodates the possible presence of external current densities in the system.
Naturally, the same holds for the associated free charge density, ρf = ρind + ρext.

In order to describe the medium’s electromagnetic response one has to invoke the
appropriate constitutive relations. These formally establish a connection between
D and E, and between B and H; such interrelations depend on the bound electric
polarization, P, and magnetization, M, according to D = ε0E+P and B = µ0H+M,
respectively, and where the quantities ε0 and µ0 denote the permittivity and the
permeability of vacuum, correspondingly.

Concretely, the constitutive relations for homogeneous, nonmagnetic, and linear
media, read [113, 119]

B(r, t) = µ0H(r, t) , (nonmagnetic medium) (2.5a)

D(r, t) = ε0

∫ ∫
ε(r, r′; t− t′)E(r′, t′)dr′dt′ , (2.5b)

Jind(r, t) =
∫ ∫

σ(r, r′; t− t′)E(r′, t′)dr′dt′ , (generalized Ohm’s law) (2.5c)

where ε and σ are the material’s response functions, dubbed as dielectric function
and free-carrier conductivity, respectively. In writing of Eqs. (2.5), isotropy has been
implicitly assumed. Nevertheless, in anisotropic media these equations possess the
same mathematical structure2 upon replacing the response functions ε and σ by their
appropriate second-rank tensors, i.e.,

↔
ε and

↔
σ. Moreover, in Eqs. (2.5b)–(2.5c) it is

also implicitly assumed that the system’s response is causal [i.e., ε(r, r′; t− t′) = 0 for
t′ > t (and similarly for the conductivity)].

Furthermore, for a medium with translational invariance one may write ε(r, r′; t−
t′) = ε(r − r′; t − t′) (and similarly for the conductivity), and the constitutive rela-
tions (2.5b)–(2.5c) acquire a particularly elegant form after carrying out a Fourier
transform both in space and in time3, leading to

D(k,ω) = ε0ε(k,ω)E(k,ω) , (2.6a)

J(k,ω) = σ(k,ω)E(k,ω) , (2.6b)

where the subscript has been dropped, for the reasons explained in the next paragraph.
Clearly, the constitutive relations in k-space (or momentum representation) amount

2Explicitly, the Cartesian components of the vectors D and Jind follow from Dα(r, t) =
ε0
∑

β

∫ ∫
εαβ(r, r′; t−t′)Eβ(r′, t′)dr′dt′ and Jα,ind(r, t) =

∑
β

∫ ∫
σαβ(r, r′; t−t′)Eβ(r′, t′)dr′dt′,

respectively.
3Throughout this work, we adopt the following convention for the Fourier transforms and

corresponding inverse Fourier transforms:

g(ω) =
∫

dt g(t) eiωt ; g(t) =
∫

dω

2π
g(ω) e−iωt ,

h(k) =
∫

drh(r) e−ik·r ; h(r) =
∫

dk
(2π)3 g(k) eik·r .
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to simple algebraic multiplications, courtesy of the convolution theorem. Although
this representation is clearly advantageous to describe electromagnetic phenomena in
infinite, homogeneous media, the simplicity of Eqs. (2.6a)–(2.6b) comes at a price in
the presence of interfaces between different media, as the application of the suitable
boundary conditions is inherently natural in a real-space formulation.

At this stage it is pertinent to stress that, in principle, one may work with either
the dielectric function or the conductivity alone, as each can be defined in such a way
that they are simply two alternative approaches to describe the same fundamental
physics. For instance, when both D and Jind are used simultaneously, Jind typically
describes the part of the response due to free-carriers (via σ) while D is left to quantify
the response arising from bound polarization charges (through ε ≡ ε∞). In insulators,
the former is identically zero, whereas in metals it describes the contribution of
the conduction electrons (or holes), with the latter accounting for the background
polarization (e.g., arising from the core electrons). Yet, the partition of the material’s
response into these two parts—one accounted for via D, and another part through
Jind—can be burdensome in many cases. Therefore, it is often more convenient in
nanophotonics to combine both the effects of bound polarization and free-carriers into
a single, total dielectric function of the form

ε(r, r′;ω) = ε∞(r, r′;ω) + iσ(r, r′;ω)
ωε0

, (2.7)

which can be defined via D(r,ω) = ε0
∫
ε(r, r′;ω)E(r′,ω)dr′ upon the replacement

D→ D + iω−1Jind. Notice that, with this new definition for the displacement vector,
Maxwell’s equations (2.3a)–(2.3a) can be rewritten as

∇ ·D(r,ω) = ρext(r,ω) , (2.8a)

∇ ·H(r,ω) = 0 , (2.8b)

∇×E(r,ω) = iωB(r,ω) , (2.8c)

∇×H(r,ω) = −iωD(r,ω) + Jext(r,ω) , (2.8d)

that is, only external charges and currents enter in the scalar ρext and the vector Jext,
since all the conduction (i.e., free-carrier) charges and currents are now embodied in
D alone. The benefit of this formulation becomes now apparent: in the absence of
external charges and currents, one simply needs to consider a single quantity, D, and
a single (total) response function, ε, which encapsulates the response of the induced
background polarization as well as the induced current due to free-carriers.

2.1.2 Boundary conditions at interfaces

Consider an arbitrary interface between two different media, separating, say, medium
1 and medium 2. The presence of the interface thus makes the material properties
of the compound system discontinuous across the boundary defined by the interface.
However, Maxwell’s equations and the constitutive relations outlined above naturally
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still hold within each domain. The relation between the fields on either side of the
interface can be determined upon imposing the appropriate boundary conditions
(derivable by considering the integral form of Maxwell’s equations, followed by the
application of the conventional pill-box arguments [113–115]); these can be written
as [113]

n̂× (E2 −E1) = 0 , (2.9a)

n̂× (H2 −H1) = K , (2.9b)

for the tangential components of the fields, and

n̂ · (D2 −D1) = % , (2.10a)

n̂ · (B2 −B1) = 0 , (2.10b)

for the field components normal to the interface. Here, n̂ is a unit vector normal to the
interface, pointing from medium 1 into medium 2, and the subscripts in the fields label
the same in each medium. It should be noted that, in practice, the imposition of the
boundary conditions for the tangential components of the fields, i.e., Eqs. (2.9a)–(2.9b),
is sufficient; this is because, in doing so, the corresponding boundary conditions for the
normal components, Eqs. (2.10a)–(2.10b), are automatically satisfied. Additionally, in
Eqs. (2.9b)–(2.10a), the quantities K and % anticipate, respectively, the hypothetical
presence of a nonvanishing surface current density, and associated surface charge
density (that together naturally satisfy the two-dimensional version of the continuity
equation, ∇ ·K + ∂t%/∂t = 0). In traditional nanophotonics such surface sources are
absent in most situations [3, 117]. However, and as we will see explicitly in Chapter 4,
it turns out that the aforementioned surface current density (and associated surface
charge density) is a convenient way to take into account the presence of two-dimensional
materials and their optical response [7].

2.1.3 Local-response approximation

As we have seen above, the constitutive relations linking the electric displacement or
the current density to the (macroscopic) electric field are in general nontrivial in real
space [cf. Eqs. (2.5b)–(2.5c)]. In particular, D can be cast, in the frequency domain,
as (and similarly for J)

D(r,ω) = ε0

∫
ε(r, r′;ω)E(r′,ω)dr′ , (2.11)

implying that the displacement field at position r depends on the electric field at all
positions r′—hence the term nonlocal—, weighted by the system’s response function
ε(r, r′;ω). This represents an obvious difficulty, which is aggravated by the fact that
the full inhomogeneous ε(r, r′;ω) is often unknown. This complication is typically
circumvented by the application of the local-response approximation (LRA) in which
nonlocal effects are neglected. It is worth noting that, albeit being somewhat drastic,
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this approximation has been able to describe and explain the vast majority of elec-
tromagnetic phenomena in nanophotonics, and in plasmonics in particular4 (see, for
instance, Refs. [3, 5, 7, 16, 17, 25, 26, 117, 120–124] and references therein). Notwith-
standing, when the characteristic dimension of the system decreases towards the
inherent electronic length scales, the electrodynamics governing the system becomes
significantly influenced by nonlocal effects, which then exhibit clear experimental
signatures. We shall return to this point in Part II, where number nonclassical effects
influencing the system’s optical response will be investigated in detail.

Mathematically, the LRA can be expressed in real space via ε(r, r′;ω) = εlra(ω)δ(r−
r′), and therefore Eq. (2.11) reduces to the familiar multiplicative relation

D = ε0εlra(ω)E ≡ ε0ε(ω)E , (2.12)

where εlra(ω) is the local, bulk dielectric function of the homogeneous system5. In the
same fashion, the current density and the conductivity in the LRA are interrelated
through

J = σlra(ω)E ≡ σ(ω)E . (2.13)

Alternatively, the same result could be obtained by starting from the momentum
space version of Eq. (2.11)—that is, Eq. (2.6a)—and then taking the k → 0 limit,
leading to ε(k→ 0,ω) ≡ ε(ω). Furthermore, this also shows that the maintenance of
the k-dependence (or spatial dispersion) of the response functions is formally equivalent
to treating the electrodynamics in a nonlocal manner in real space.

2.1.4 The Drude model of the free-electron gas

Although in principle the general concepts akin to the LRA outlined in Sect. 2.1.3
are valid irrespective of the specific model for the frequency-dependent dielectric
function and/or conductivity, the terms ’LRA’ and ’Drude model’ are often used
interchangeably in the literature6, as the latter is by far the most widely adopted
model to describe the optical response of metals. Therefore, it is instructive to present
here a succinct derivation of the AC (i.e., frequency-dependent) Drude response model
for conductors.

Within the Drude model [125], metals are treated as a free-electron gas permeating
a background formed by the immobile ions that make up the crystal’s lattice. In
this approach, the microscopic behavior of the (independent) conduction electrons

4The reason why this unarguably significant approximation works so well in many situations is
due to the large mismatch between the wavelength associated with the optical excitations and the
Fermi wavelength (i.e., λexc � λF ), resulting in a small nonlocal parameter (ξnl ∼ vF /ω) [75, 79, 80]
and thus making nonlocality relatively short-ranged [79, 80].

5In a structure made from different materials, to each domain associated with a distinct medium
it is assigned its corresponding local, bulk dielectric function [with the fields in each medium related
via the boundary conditions (2.9)].

6Although, technically, the Drude model constitutes one example of the metal’s response in the
LRA.
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2.1 Foundations of Classical Electrodynamics P. A. D. Gonçalves

subjected to an external electric field, E(t), is governed classically by Newton’s second
law, following the equation of motion [7, 118]

d

dt
p(t) = −eE(t)− 1

τ
p(t) , (2.14)

where p is the (average) momentum of the electron, e > 0 is the elementary charge, and
τ denotes the momentum relaxation-time (i.e., the average time between instantaneous
collisions of the electron with the heavier ions); thus, one may define a probability per
unit time, or scattering rate, γ = τ−1. For a time-varying field E(t) = E0e

−iωt, the
previous equation leads to (assuming that p follows the same time dependence as the
driving field)

p(t) = e

iω − γ
E(t) . (2.15)

Since the current induced by the external field can also be written as J = −enev, with
ne and v = p/m denoting the electron density and (average) velocity, then, using
Eq. (2.15) one obtains

J = e2ne
m

1
γ − iω

E , (2.16)

Comparing this result with the constitutive relation (2.13), one readily identifies the
frequency-dependent conductivity of the uniform electron gas as being given by [7, 118]

σ(ω) = e2ne
m

1
γ − iω

. (2.17)

Moreover, and recalling the interrelation (2.7), the equivalent Drude dielectric function
then reads [7, 118]

ε(ω) = ε∞(ω)−
ω2

p

ω2 + iγω
, (2.18)

where ω2
p = e2ne

mε0
is dubbed as the plasma frequency of the electron gas. In the so-called

jellium approximation the contribution of the homogeneous ionic background simply
amounts to ε∞ = 1. In practice, and when dealing with “real” metals, the frequency
dependence of ε∞(ω) is kept in order to incorporate, although ad hoc, (i) interband
transitions; and, (ii) background screening arising from lower-lying orbitals (e.g., the
d-band of noble metals). A typical way of phenomenologically taking into account
these effects is to add to the free-carrier contribution a series of Lorentz oscillators7 in
such a way that the resulting dielectric function fits the experimental data in a given
frequency window.

Despite its simplicity, the Drude model can reasonably explain the main features
of metals (specially simple, alkali metals) in the infrared and visible parts of the

7It is worth noting that other variations of the Lorentz oscillator model are also common, such
as models based on critical points and Gaussian integrals; cf. Refs. [126, 127] and Refs. [128, 129],
respectively, for details.
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2 Classical Electrodynamics of Solids

electromagnetic spectrum, provided that the frequencies of interest are below the
onset of interband transitions. This should not really constitute a surprise, since
this model effectively considers only a single band. After Drude’s seminal work
in 1900 [125], Sommerfeld further developed the model based on a semiclassical
description of the electron gas [130] (namely, by incorporating Fermi–Dirac statistics
and introducing concepts from band theory). Another prominent semiclassical model
for the conductivity is the linearized Boltzmann transport equation [119]; the latter, in
the relaxation-time approximation, reduces to Drude’s result in the zero-temperature
limit.

Figure 2.1 shows the dielectric function of silver and gold. The corresponding
Drude fits [cf. Eq. (2.18)] are presented as colored dashed lines (with the fitting
parameters detailed in the respective insets). The fits have been performed based
on Johnson and Christy’s experimental data [131] (shown in the figure as colored
circles). The outcome of the aforementioned fits echo what has been outlined in the
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Figure 2.1: Dielectric functions of selected noble metals typically used as plasmonic materials:
silver (left panel) and gold (right panel). The colored circles correspond to experimentally
determined values (from Johnson and Christy [131]). The associated Drude fits are shown as
colored dashed lines, and where obtained using the fitting parameters indicated in the respective
insets. The black lines (solid: real part; dashed: imaginary part) shown in the panel corresponding
to gold’s optical constants represent a composite fit containing the Drude model (for the free-carrier
part) augmented with a critical points model [126] (in an attempt to capture the contribution of
interband transitions).

previous paragraphs, namely: (i) the Drude model describes quite successfully the low
frequency region where the metals’ response is dominated by the intraband free-carrier

16



2.2 Fundamentals of Plasmonics P. A. D. Gonçalves

contribution; (ii) its validity rapidly declines near and above the threshold of interband
transitions [signaled by a step-like increase in Im ε(ω)].

As an example, we also show a Drude model combined with a Lorentzian-like
critical points model (superimposed black lines) fitted to gold’s experimental data.
Clearly, the fit is greatly improved for higher frequencies, owing to the (albeit ad hoc)
account of interband transitions8.

Naturally, a proper, rigorous account of the optical properties of solids requires
a quantum mechanical description of the governing physics [13–15, 119], and often
necessitates the application of ab initio computational techniques [132–134]. Still,
the simplicity and straightforward applicability of the Drude model—potentially
augmented with other terms, as discussed above—remains an important tool to model
the optical response of metals in nanophotonics.

2.2 Fundamentals of Plasmonics

After having established the theoretical foundations of classical electrodynamics in
Sect. 2.1, we are now equipped with the basic knowledge that is needed in order to
introduce the elementary concepts of classical plasmonics. Indeed, within the regime
of validity of classical electrodynamics, the plasmonic excitations in a given system
can be fully determined by applying Maxwell’s equations—along with the associated
boundary conditions—together with the specification of the materials’ (local) response.

In this section, we provide an overview of the main features of propagating surface
plasmon polaritons sustained at planar dielectric–metal interfaces, and localized surface
plasmons supported by metal particles (with spherical plasmonic nanoparticles being
the subject of special attention).

Furthermore, it should be emphasized that by summarizing here the core knowledge
that defines the field of classical plasmonics we will not only set the stage for the
topics discussed in the coming chapters, but also establish a reference point to which
nonclassical effects in plasmonics can be compared to.

2.2.1 Surface plasmon polaritons at planar interfaces

In what follows we derive the dispersion relation of surface plasmon polaritons (SPP)
propagating along flat dielectric–metal interfaces, and discuss their key properties. We
begin by considering a single dielectric–metal interface, and, subsequently, move on to
the double interface; in the latter, we introduce the concept of plasmons in thin-films
and gap-plasmons. From here, one may straightforwardly generalize these results to
arbitrary N -layer structures made from these building blocks.

8Caution should be taken, however, when attempting to draw physically meaningful conclusions
from a direct interpretation of the fitting parameters that result from such fits, because they tend to
misrepresent the actual plasma frequencies and the “resonant poles” do not necessarily correspond to
the proper interband transitions associated with the material’s bandstructure. Nevertheless, such fits
are often valuable when modeling the optical properties of metals in specific frequency windows.
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2 Classical Electrodynamics of Solids

2.2.1.1 Dielectric–metal interface

We consider a planar interface between two different media, defined by the boundary
between a dielectric half-space (z > 0) and a metal half-space (z < 0), as schematically
illustrated in Fig. 2.2. The system is assumed to be uniform along the y-direction.
We seek p-polarized9 [or transverse magnetic (TM)] solutions akin to surface electro-

dielectric

metal

Figure 2.2: Illustration of a planar
dielectric–metal interface, defined by
the z = 0 plane. The dielectric
medium is characterized by a dielectric
constant, εd (which, in principle, may
also be frequency-dependent), whereas
the electromagnetic properties of the
metal are accounted for by its frequency-
dependent dielectric function, εm(ω).

magnetic waves propagating, say, along the x-direction, and decaying exponentially
along the vertical (z-) direction. Concretely, these can be written as (a harmonic
time-dependence of form e−iωt is implicitly assumed herein)

Ed(r) = [Ex,d x̂ + Ez,d ẑ] eiqx e−κdz , (2.19a)

Hd(r) = Hy,d e
iqx e−κdz ŷ , (2.19b)

in the dielectric medium, and

Em(r) = [Ex,m x̂ + Ez,m ẑ] eiqx eκmz , (2.19c)

Hm(r) = Hy,m eiqx eκmz ŷ , (2.19d)

in the metal half-space. In the previous expressions, q denotes the SPP’s wavevector
(also known simply as propagation constant), whereas the quantities κd,m characterize
the decay of the fields along the perpendicular direction (and thus control the vertical
field confinement). The interrelations between the different components of the fields
in each medium can be found by inserting Eqs. (2.19) into Maxwell’s equations [cf.,
for instance, Eqs. (2.8)]; such a procedure leads to

Hy,j = −ω
q
ε0εjEz,j and Hy,j = −sj i

ω

κj
ε0εjEx,j , (2.20a)

Ez,j = sj i
q

κj
Ex,j , (2.20b)

9This is because SPPs sustained at traditional dielectric–metal interfaces only exist for p-
polarization [4, 7]. Incidentally, in the case of two-dimensional (doped) graphene, both p- and
s-polarized surface waves exist [7], albeit the latter exhibit weak confinement and thus are typically
of little interest; the former, on the other end, can exhibit enormous field confinement as we shall see
in Chapter 4.
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for j ∈ {d, m}, and where we have defined the auxiliary variable sj = δjd − δjm in
terms of Kronecker deltas. Additionally, we also obtain the relation

κ2
j = q2 − (ω/c)2εj . (2.21)

In the above expressions, ε0 stands for the permittivity of vacuum, and c = 1/√ε0µ0
is the speed of light in free-space (with µ0 denoting vacuum permeability).

At this point, all that is required is to match the fields at both sides of the
interface in accordance with the boundary conditions specified by Eqs. (2.9a) and
(2.9b)—expressing the continuity of the tangential components of the electromagnetic
field across the interface—which yield

Ex,d − Ex,m = 0 , (2.22a)

Hy,d −Hy,m = 0 . (2.22b)

By making use of the relations (2.20) and substituting them into the system of equa-
tions (2.22), one readily finds the following implicit condition for the SPP dispersion
relation [4, 7]:

εd
κd

+ εm
κm

= 0 . (2.23)

This equation is an implicit condition because κd,m possess an explicit dependence of
both frequency, ω, and (parallel) wavevector, q, that is, κd,m ≡ κd,m(q,ω); similarly,
the (local) dielectric function of the metal10 is frequency-dependent, εm ≡ εm(ω).

Furthermore, from Eq. (2.23) we can also determine a necessary condition for the
existence of SPPs at the interface between two different media. In particular, in order
to have an electromagnetic wave decaying along the perpendicular to the interface,
it is required that Re κd,m > 0 [cf. Eqs. (2.19)]. Hence, (the real parts of) εd and εm
must have opposite signs; for insulators, one typically has εd ≡ Re εd > 0, and thus
one must have a medium with Re εm < 0 in the opposite half-space [4, 7]. This is the
case of most metals for frequencies in the visible/near-infrared and below11.

Alternatively, with the help of Eq. (2.21), one may express the SPP wavevector in
closed-form, namely [3, 7, 121]

qspp = ω

c

√
εdεm
εd + εm

, (2.24)

which has the advantage of providing a simple link between the SPP’s wavevector and
its frequency.

10In principle, the permittivity of the dielectric medium may also exhibit frequency dependence.
We emphasize that Eq. (2.23) remains valid nevertheless.

11For some metals (like Al), however, Re εm remains negative up to the ultraviolet region [135].
On the other end, heavily-doped semiconductors can also support SPPs, albeit at significantly lower
frequencies than metals [136, 137].
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Box 2.1 — Dispersion relation of SPPs from the poles of rp.

An alternative route towards the derivation of the condition that yields the spec-
trum of SPPs is to identify the poles of the system’s scattering coefficients; for the
planar interface, these are known as Fresnel coefficients (for reflection and transmis-
sion) [113, 114, 117]. Since SPPs possess TM character, the Fresnel coefficients of
interest are the ones corresponding to p-polarized waves. Specifically, the reflection
coefficient associated with a planar interface is given by [117]

rp = ε2kz,1 − ε1kz,2
ε2kz,1 + ε1kz,2

, (2.25)

for an excitation coming from medium 1. The resonances associated with excitations
of the system are then determined by the poles of rp; these are given by the condition
ε2kz,1 + ε1kz,2 = 0. Moreover, for the dielectric–metal structure, one can make
the following identifications: {1, 2} ↔ {d, m} and kz,j = iκj . Hence, the previous
condition becomes εmκd + εdκm = 0, or, equivalently,

εd
κd

+ εm
κm

= 0 , (2.26)

which is exactly the same SPP condition given previously by Eq. (2.23).

Figure 2.3 shows the dispersion relation of the polaritonic modes supported by
a planar interface between a dielectric and a Drude metal. In the lossless case
(cf. Fig. 2.3a), there are two distinct branches of the dispersion relation. One branch,
located above the plasma frequency, corresponds to bulk plasmon polaritons (BPP);
it represents light propagating inside the metal12, where the light field is coupled
to the internal degrees of freedom of the plasma. The other branch—and this is
the one of interest—corresponds to surface plasmon polaritons (SPP), which are
surface electromagnetic waves coupled to collective oscillations of the free-carriers in
the metal. Crucially, notice that the SPP dispersion curve lies to the right of the
light line (dashed green line, defined by ω = qc/

√
εd), and, consequently, the SPPs’

electromagnetic field is effectively confined near the interface. In addition, this also
renders direct excitation of SPP by light impossible due to the mismatch between
qspp and the photon’s wavevector, and adequate coupling techniques are therefore
required (e.g., using gratings, prism-coupling, or by exploiting surface roughness,
etc) [3, 4, 7]. Moreover, the ratio between the wavelength of a photon in free-space

and that of a SPP oscillating at the same frequency is given by λ0
λspp

=
√

εdεm
εd+εm

[see Eq. (2.24)]. Hence, a particularly alluring feature of SPPs now becomes readily
apparent: since λspp/λ0 < 1, these polaritons can be exploited in order to confine

12The dispersion of BPPs follows from q(ω) =
√
εm(ω)ω

c
. In the lossless case, this relation can

be straightforwardly inverted, producing ω(q) =
√
ω2

p + (qc)2.
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Figure 2.3: Dispersion relation of plasmon polaritons at dielectric–metal interfaces. We assume
that the dielectric medium is air (εd = 1), and that the metal is well described by the Drude
model [i.e., with dielectric function given by Eq. (2.18)]. We further assume that ε∞ = 1. (a)
Lossless Drude metal (γ = 0). The dashed horizontal line indicates the nonretarded surface
plasmon frequency, ωsp = ωp/

√
ε∞ + εd. (b) Drude metal with finite damping (γ = ωp/20). The

color scale indicates the magnitude of the loss experienced by the polariton, defined here by the
figure of merit Q−1 = Im q/Re q (akin to an inverse quality factor).

the electromagnetic field below the diffraction limit [3, 7, 16, 17]. In some systems,
this effect can be quite substantial, i.e., with λspp/λ0 � 1 [3, 7, 92, 106, 138, 139].
As we shall see further ahead, this property is pivotal to manipulate electromagnetic
fields at the nanoscale and to enhance light–matter interactions. Lastly, Fig. 2.3a
further shows that the SPP dispersion asymptotically approaches the surface plasmon
frequency13 ωsp = ωp/

√
ε∞ + εd at large wavevectors (high confinement region). This

signals the realization of the quasi-static regime (or nonretarded limit); here, the mode
becomes purely longitudinal and dispersionless. This contrasts with the behavior
at low wavevectors, where q ≈ √εdω/c and the mode is essentially photon-like and
exhibits poor field localization.

Next, we relax the assumption of negligible loss and consider the case where the
metal possesses finite damping (γ 6= 0). In this spirit, Fig. 2.3b depicts the SPP
dispersion for a Drude metal with finite loss. While the basic features present in
Fig. 2.3a remain somewhat discernible, there is, however, a striking difference: the
SPP dispersion curve reaches a maximum Re q and then bends backwards14. This is a
manifestation of the fact that q is now a complex-valued quantity [3, 141]. Therefore,

13Corresponding to the solution of the SPP’s condition in the nonretarded limit: εd + εm = 0.
14This back-bending is absent if, alternatively, one would solve Eq. (2.23) for a real-valued q,

thereby obtaining a complex-valued frequency, ω = ω′ + iω′′. In this situation, the imaginary
part of the SPP frequency dictates the SPP’s life-time via τ = −1/(2ω′′). In principle, from a
theoretical standpoint, it is equally legit to either solve for a real-valued frequency or for real-valued
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in the present case the SPP travels along the dielectric–metal interface with wavelength
λspp = 2π/Re qspp, while being attenuated according to e−x Im qspp as it propagates.
In order to better quantify the impact of losses, we have plotted the SPP dispersion
using a color code that reflects the figure of merit Q−1 = Im q/Re q (inverse quality
factor). Importantly, it is clear that albeit the field confinement (∝ Re q) successively
increases as the dispersion approaches ωsp, so does the impact of damping (∝ Im q); in
the vicinity of the nonretarded surface plasmon frequency, the latter becomes indeed
prohibitive. This trade-off between field confinement and losses is a well-known feature
of plasmonics.

We finalize the discussion of the SPP’s dispersion relation by plotting it for two
prototypical plasmonic materials: gold and silver; cf. Fig. 2.4. Here, deviations
from the Drude-like behavior reflect the influence of interband transitions, which
cause damping to increase (recall Fig. 2.1). This effect is particularly significant for
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Figure 2.4: Dispersion relation of SPPs in dielectric–gold (solid golden line) and dielectric–silver
(solid gray line) planar interfaces. The dielectric medium is characterized by a relative permittivity
of εd = 2.1 (representative of SiO2). The optical constants of gold and silver were obtained by
interpolating Johnson and Christy’s experimental data [131]. The dashed horizontal lines indicate
the corresponding nonretarded surface plasmon frequencies (stemming from εm(ω) + εd = 0).

gold, in which SPPs are clearly beset by losses near its ωsp. In opposition, silver
exhibits fairly good plasmonic properties. Nonetheless, both materials remain widely
used in plasmonics, because although silver has superior plasmonic properties, it
suffers from oxidation under ambient conditions, while gold is stable, despite being
lossy. Plasmonic damping can be partly mitigated by engineering the SPP dispersion

wavevector [140, 141]. However, when applying the theoretical modeling to experiments this choice is
not arbitrary, and has to be made in conformity with the specific type of measurement being carried
out [140, 142].
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(effectively bringing the SPP resonances away from interband transitions) and/or by
exploiting other geometries (e.g., SPPs in metal-gap structures [143, 144]).

2.2.1.2 Double-interface: SPPs in DMD and MDM structures

The derivation of the spectral properties of SPPs in planar double-interfaces, namely
in the dielectric–metal–dielectric (DMD) and metal–dielectric–metal (MDM) configu-
rations15, essentially follows the same steps previously outlined in the single-interface
case. The only difference is that now, in the middle region, both growing and decaying
exponentials are allowed (see, for instance, Ref. [7]). An equally valid approach to
determine the resonances supported by a given system, is to look at the poles of the
associated scattering coefficients (recall Box 2.1). In what follows, this is the avenue
that we will pursue. We consider a three-layer system forming a double-interface as

Figure 2.5: Sketch of a planar double-
interface separating three different media.
Each medium is characterized by a dielec-
tric function εj , where j ∈ {1, 2, 3}. The
middle layer has a thickness given by d .

portrayed in Fig. 2.5. The outer media are taken as being semi-infinite, and encapsu-
late an inner slab with thickness d. As before, we assume that the whole system is
uniform along the y-direction.

The Fresnel reflection coefficient for p-polarization associated with the 3-layer
structure is given by16

r13
p = r12

p +
t21
p t

12
p r

23
p e

i2kz,2d

1− r21
p r

23
p e

i2kz,2d

=
r12
p + r23

p e
i2kz,2d

1 + r12
p r

23
p e

i2kz,2d
, (2.27)

where kz,j =
√
εjk2

0 − q2 = iκj , with k0 = ω/c. In the above, rjkp denotes the Fresnel
coefficient for p-polarized waves incident from medium j and reflected by the interface
separating the media j and k. Hence, the resonances supported by the three-layer
system with a double-interface are given by the zeros of the denominator of r13

p , that

15The dispersion of coupled SPP modes in planar DMD and MDM structures was first considered
in the late 1960s by Kliewer and Fuchs [145] and by Economou [146].

16In writing the second equality, the relations rjkp = −rkjp and tjkp = 1 + rjkp have been exploited.
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is, 1 + r12
p r

23
p e

i2kz,2d = 0. Upon substituting the explicit formulas for the individual
Fresnel reflection coefficients, we obtain (recalling that kz,j = iκj) [7]

(
ε1
κ1

+ ε2
κ2

)(
ε2
κ2

+ ε3
κ3

)
+
(
ε2
κ2
− ε1
κ1

)(
ε3
κ3
− ε2
κ2

)
e−2κ2d = 0 . (2.28)

Clearly, the coupling between opposite interfaces—via the Coulomb interaction—is
controlled by the term containing the exponential. Thus, for κ2d � 1 new hybrid
modes appear, arising from the coupling between the bare modes akin to each interface.
Contrarily, in the large thickness limit, d→∞, the uncoupled SPP dispersion for each
interface is recovered; cf. Eq. (2.23).

For symmetric environments, that is, for ε1 = ε3 (and thus κ1 = κ3), Eq. (2.28)
simplifies considerably, yielding two distinct solutions [3, 4, 7, 145, 146]:

tanh
(
κ2d

2

)
= −ε2κ1

ε1κ2
,

coth
(
κ2d

2

)
= −ε2κ1

ε1κ2
.

(2.29a)

(2.29b)

These two modes exhibit opposite symmetries: one is even and the other is odd. Which
is which in relation to Eqs. (2.29a) and (2.29b), depends on the choice of the field
component to which the symmetry is labeled after. For instance, if ones chooses to
define the symmetry with respect to Ex(z), then Eq. (2.29a) and (2.29b) are odd and
even, respectively [and vice-versa if one would choose Ez(z)].

The dispersion relation of hybrid SPPs sustained at planar DMD and MDM
structures is shown in Fig. 2.6. For the sake of clarity, we have chosen a symmetric
dielectric environment (i.e., ε1 = ε3). In both configurations, for large d the modes do
not hybridize and therefore are indistinguishable from that of a single dielectric–metal
interface (dot-dashed line). However, as the thickness of the inner medium is decreased,
the modes in opposite interface interact and hybridize, giving rise to a new set of
coupled modes: one shifting towards higher energies, while the other shifts towards
lower energies (relative to the uncoupled SPP dispersion). This mode splitting is
naturally stronger for smaller d, since the coupling strength increases with decreasing
separations. Lastly, for κ2d ≈ qd� 1, the modes decouple again because the SPP’s
field bounded to one of the interfaces decays steeply along the vertical and therefore
does not overlap with that of the SPP on the opposite interface.

Furthermore, notice that while the dispersion curves akin to DMD and MDM modes
are qualitatively different in the retarded region—i.e., for small wavevectors, near the
light line—they successively become more alike as we approach larger wavevectors.
Indeed, at sufficiently large wavevectors, the dispersion relation of hybrid SPPs modes
in DMD and MDM structures becomes identical. This is consequence of the realization
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Figure 2.6: Dispersion relation of hybrid SPP modes in planar DMD and MDM structures.
Metallic media are assumed to have a dielectric function of the Drude form with negligible
damping and ωp = 9 eV and ε∞ = 1. Dielectric media has εd = 2.1. The dashed black line
represents the light line in the dielectric media, given by ω = qc/√εd. In (b) the upper modes
enter the light cone region (and similarly in (a)), that is, to the left of the light line; we have
chosen not to plot them here because they are leaky modes.

of the nonretarded limit, for which Eqs. (2.29) reduce to17

ω(ω + iγ) = ω2
p [ε∞ + εdFh(qd/2)]−1 , (2.30)

with Fh(x) = {tanh(x), coth(x)}, and where we have assumed that the metallic media
are described by a Drude dielectric function.

In passing, we bring to the reader’s attention that each mode of the pair of hybrid
SPPs—both in the DMD and MDM configurations—are affected differently by losses
upon decreasing d [3, 7, 17, 150]. Focusing, as an example, in the DMD geometry,
one finds that the propagation length, Lp = (2 Im q)−1, associated with the upper
SPP mode [odd in Ex(z)] increases with decreasing film thickness d, whereas the
propagation length associated with the lower SPP mode [even in Ex(z)] decreases
concomitantly with decreasing film thickness. Due to this behavior, these hybrid

17In the special case of a homogeneous 3DEG in vacuum (ε∞ = εd = 1), the SPP dispersion

in DMD and MDM structures simplify further to ω±(q) = ωp√
2

√
1± e−qd (assuming negligible

damping, for simplicity). We further note that, in this limit, inverse structures exhibit complementary
resonances (for each mode profile), in the sense that they obey the sum-rule ω2

p = ω2
o + ω2

c , where
the subscripts denote the “ordinary” geometry (defined arbitrarily) and its “complementary“ (or
inverse) [147]. Here, the DMD and MDM structures are complementary (one is obtained from the
other by interchanging the material regions). Interestingly, this sum-rule can also be viewed as a
statement of Babinet’s principle [114, 148, 149].
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SPP modes are often referred to as long-range SPP and short-range SPP, respectively.
Evidently, these considerations are of paramount importance when using such coupled
SPP modes for plasmonic waveguiding and circuitry [151, 152].

2.2.2 Localized surface plasmons in metal spheres

Although the planar dielectric–metal interface can be regarded as the simplest SPP-
supporting system, other prototypical geometries are also particularly elucidative.
The most prominent member of the latter is unarguably the sphere. Naturally, the
plasmonic modes supported by metal spheres share many of the features of SPPs in
planar structures. However, plasmonic resonances in finite-sized structures—such as
the sphere—are typically known as localized surface plasmons18 (LSPs) [3, 4]. This
terminology simply highlights that, unlike SPPs in extended planar systems, these
surface plasmons do not propagate due to the obvious geometric constraint imparted
by the systems’ finite-size. Instead, when excited by an adequate source (e.g., a
plane-wave or a fast electron), the displacement of free charge carriers in response to
that stimulus creates a restoring force capable of maintaining a self-sustained collective
oscillation of the free carriers. Consequently, LSP resonances in plasmonic particles
can couple to light directly without the need of special coupling techniques [4].

In the following, we outline the optical response of plasmonic spheres to external
stimuli, focusing on the main features of LSPs (a complementary account will be also
presented in Sect. 8.2, when discussing nonclassical effects in metal spheres).

Mie theory. The appropriate theoretical description of the scattering of electro-
magnetic waves by a spherical object is known as Mie theory19 [154–157]. The
mathematical details of the theory and the derivation of the so-called Mie coefficients
are provided in the Appendix C (after taking the classical limit, since in the appendix
we provide a generalization of the traditional Mie coefficients augmented with quantum
corrections). Other good references are also Refs. [113, 115, 155, 156]. Hence, here
we focus instead on their practical role in the calculation of the optical response of
spherical metal particles, and, in particular, discuss the basic properties of the LSP
resonances supported by them.

The Mie scattering coefficients associated with light scattered by a metallic sphere

18We note that localized surface plasmons, like surface plasmon polaritons, are also polaritons.
However, the epithet ’polariton’ is often absent in literature when referring to the former. For this
reason, we adopt this designation here in order to conform with the majority of the literature.

19Despite being most commonly known as ’Mie theory’, there is, in fact, an earlier account of
the theory given by Lorenz in 1890 [153], that is, almost two decades before Mie’s seminal paper of
1908 [154].
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are given by20 [113, 115, 155, 156]

atm
l = εmjl(xm)Ψ′l(xd)− εdjl(xd)Ψ′l(xm)

εmjl(xm)ξ′l(xd)− εdh(1)
l (xd)Ψ′l(xm)

,

bte
l = jl(xm)Ψ′l(xd)− jl(xd)Ψ′l(xm)

jl(xm)ξ′l(xd)− h(1)
l (xd)Ψ′l(xm)

.

(2.32a)

(2.32b)

where the dimensionless wavevectors xj = kjR with kj = √εjω/c (j ∈ {d, m}),
have been introduced, along with the spherical Bessel and Hankel functions of the

first kind jl(x) and h
(1)
l (x), and the Riccati–Bessel functions Ψl(x) ≡ xjl(x) and

ξl(x) ≡ xh
(1)
l (x); primed functions denote their derivatives with respect to their

arguments. We stress that, in essence, Eqs. (2.32) are nothing but the spherically
symmetric equivalents of the Fresnel reflections coefficients—rp and rs, respectively—
for the planar interface. Equipped with the Mie coefficients, the electromagnetic
response of the sphere can be readily determined.

In particular, assuming that the sphere is illuminated by a monochromatic plane-
wave, the corresponding cross-sections stem from [155]

σext = 2π
k2

d

∞∑
l=1

(2l + 1) Re (atm
l + bte

l ) , (2.33a)

σscat = 2π
k2

d

∞∑
l=1

(2l + 1)
(
|atm
l |

2 + |bte
l |

2
)

, (2.33b)

σabs = σext − σscat , (2.33c)

expressing, respectively, the extinction, scattering, and absorption cross-sections. In the
above formulas, l stands for the angular momentum; hence, for metallic nanospheres,
atm
l contains a series of poles associated with LSP resonances of electric dipole (l = 1),

electric quadrupole (l = 2), etc, character [78, 155].

At this point, before evaluating and analyzing Eqs. (2.33) further, it is instructive
to study the nonretarded version of the present problem, that is, of light scattering by
a sphere in the quasi-static limit.

20For the sake of completeness, the Mie coefficients associated with the fields inside the particle
are [113, 115, 155, 156]:

cte
l =

jl(xd)ξ′l(xd)− h(1)
l

(xd)Ψ′l(xd)

jl(xm)ξ′
l
(xd)− h(1)

l
(xd)Ψ′

l
(xm)

,

dtm
l = √εmεd

jl(xd)ξ′l(xd)− h(1)
l

(xd)Ψ′l(xd)

εmjl(xm)ξ′
l
(xd)− εdh

(1)
l

(xd)Ψ′
l
(xm)

.
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Polarizability of nanospheres and LSP resonances: nonretarded limit. The
quasi-static limit is applicable whenever the characteristic dimension of the system—
here a spherical particle—is significantly smaller than the excitation’s wavelength.
Mathematically, for a spherical object, this can be expressed by the condition R� λ,
where R is the particle’s radius and λ the wavelength of the impinging electromagnetic
radiation. Within this regime, retardation effects (i.e., effects that reflect the finiteness
of the speed of light) are rendered negligible and therefore a nonretarded formulation
of the problem suffices. In practice, what this means is that, rather than solving
the scattering problem in the framework of Maxwell’s equations, one may simply
work out the solution using electrostatics by solving Poisson’s (or Laplace’s) equation
instead [113].

Figure 2.7: Sketch of a
spherical particle with ra-
dius R and dielectric func-
tion εm. The sphere is em-
bedded in a homogeneous
medium with relative per-
mittivity εd.

That can be carried out by expanding the potential inside and outside the sphere in
terms of a series of multipoles and then match the corresponding boundary conditions
at r = R. Such procedure allows the determination of the sphere’s multipolar
polarizability, αl, which encodes the system’s response to a potential of arbitrary
multipolar order l; specifically, it is given by [78, 158]

αl = 4πR2l+1 εm − εd
εm + l+1

l εd
. (2.34)

Hence, the l-th LSP resonance simply follows from the solution of

lεm + (l + 1)εd = 0 , (2.35)

which, for a Drude metal sphere, may be written as

ωl(ωl + iγ) =
ω2

p

ε∞ + l+1
l εd

(γ=0)−→ ωl = ωp√
ε∞ + l+1

l εd

. (2.36)

In the dipole limit, Eq. (2.34) reduces to the familiar dipolar polarizability [113,
155, 156] (α ≡ α1)

α = 4πR3 εm − εd
εm + 2εd

, (2.37)

that describes the dipole moment p = ε0εdαE0 set up by the sphere in response
to a constant (or slowly varying across the sphere’s size) electric field E0. From
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here, the so-called Fröhlich condition for the dipolar LSP becomes readily apparent:
εm + 2εd = 0. Therefore, for a lossless homogeneous three-dimensional electron gas
(3DEG) in vacuum, the dipolar LSP resonance occurs at ω = ωp/

√
3. Finally, the

corresponding cross-sections in the nonretarded limit take the form21 [155]

σabs = kd Imα and σscat = k4
d

6π |α|
2 , (2.38)

and where σext = σabs + σscat.

Results. Figure 2.8 summarizes the key spectral features of LSP resonances in
spherical metal particles. As discussed above, the optical response of plasmonic
spheres is dominated by set of LSP resonances with angular momentum l, which
are determined by the poles of the Mie coefficient atm

l (Fig. 2.8a). Clearly, as the

Figure 2.8: Spectral features of LSP resonances in metal spheres. (a) Localized surface plasmon
resonances for l = {1, 2, 3, 4} as a function of the particle’s radius (solid: Mie theory; dashed:
quasi-statics). (b) Extinction cross-section normalized to the geometric one, Qext ≡ σext/(πR2),
for plasmonics spheres with different radii. The black dot-dashed line corresponds to a quasi-static
calculation (for R = 5 only). The vertical gray dashed line indicates the dipole LSP resonance.
(c) Intensity plot of the (normalized) extinction cross-section for metal spheres of varying radii
under plane-wave illumination. Material setup: Drude metal sphere (ωp = 9 eV, γ = ωp/50, and
ε∞ = 1) in air (εd = 1).

sphere’s radius is reduced, the LSP resonances become dispersionless and approach
their nonretarded values [cf. Eq. (2.36)]. Incidentally, the corresponding resonance
widths become independent of l in the nonretarded regime; in that limit, they equal
Imωl = −γ/2 (see inset). Contrasting this, in the retarded regime the widths are larger
for larger spheres due to radiation damping. Furthermore, notice that the relative
contribution of each multipole for the extinction cross-section is strongly dependent on

21Neglecting the effect of radiation reaction [117, 159].
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the particle’s radius (Figs. 2.8b–c). Crucially, the contribution of higher-order LSPs to
the overall cross-section vanishes steeply upon reducing the sphere’s radius (Fig. 2.8c).
For small nanospheres, the entire cross-section is eventually dominated by the dipole
LSP (l = 1), which is simply a consequence of the dipole limit.

Here, we have presented a brief review of the salient features of LSPs in metal
spheres22 based on the workhorse that is the theory of classical electrodynamics. We
shall return to the discussion of the fundamental properties of LSPs in metal spheres
in Sect. 8.2, where we will describe the governing physics in the mesoscopic regime, i.e.,
in a framework that accommodates quantum mechanical effects such as nonlocality,
electronic spill-out, and surface-enabled Landau damping.

2.2.3 Other geometries

The planar dielectric–metal interface and the spherical metal particle constitute two
archetypal plasmon-supporting structures. Their basic, highly symmetric geometry
makes them naturally well-suited for investigating the elementary properties of plas-
monic excitations, both from theoretical and experimental viewpoints. In spite of
this, the zoo of plasmonic architectures is considerably wealthier; in fact, one may
argue that there are infinitely many plasmonic systems, and, as such, enumerating
all of them is as unforgiving as it is futile. Therefore, here we shall only enumerate
a modest selection of the most popular plasmonic architectures considered in the
scientific literature. Our aim is not to be exhaustive or utterly detailed, but rather
(i) to highlight the plethora of plasmonic systems; and (ii) to provide a listing of the
most studied plasmonic structures accompanied by references where the interested
reader may find more details about each particular geometry.

Starting from planar-like configurations, there has been a growing interest in layered
insulating–conducting structures for producing novel plasmonic crystals [160] and
plasmonic metamaterials [35, 36, 161, 162], including uniaxial metamaterials capable
of supporting hyperbolic SPPs [163–167]. Other prominent examples are Tamm
plasmons [168–170], plasmonic gratings [23, 121, 171–173] (including the ones realizing
spoof plasmons [174, 175]), and also plasmons in metal gap structures [143, 176–179]
and channel plasmons [143, 144, 180].

On the finite-sized end, there is a copious amount of different nanoparticles
capable of supporting LSP resonances [3, 5]. Other than the metal sphere studied in
Sect. 2.2.2, there have been many investigations of LSPs in plasmonic disks [181–184],
triangles [185–187], cubes [26, 188, 189], nanoplatelets [190], and nanorods [191], among
others [192–194]. Furthermore, the pairing of the said plasmonic particles can be used
to build new coupled structures which may be exploited for extending the library of
plasmon resonances further, e.g., using plasmonic dimers [19, 27, 195–198] (including
bow-ties [37, 199–201]) and oligomers [202–205], or multilayered nanoparticles [206–

22Though we have focused on plasmonic metal spheres, the theory outlined above is naturally also
applicable to spheres made out of any (local and uniform) material.
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208] such as core-shell spheres [155, 209–213]. Alternatively, the individual plasmonic
particles can be assembled periodically into plasmonic lattices [214–218], which are then
also capable of sustaining surface plasmon lattice resonances (arising from diffractively
coupled LSP resonances).

In passing, it is worthwhile to mention that analytical solutions can only be obtained
for a small subset of the above-listed plasmonic systems, primarily the ones possessing
sufficient symmetry (e.g., the planar interface, the sphere, or the cylinder). In the quasi-
static limit, an ellipsoidal particle can also be straightforwardly solved [155]. Notably,
it has recently been shown in Ref. [219] that even plasmonic particles with relatively
complicated morphologies can be parameterized quasi-analytically—though utilizing
previous knowledge obtained from numerical calculations—provided that the system is
deeply subwavelength (so that retardation effects are negligible). Notwithstanding, in
general the optical response of less symmetric systems, which arguably constitute the
majority of plasmon-supporting geometries, can only be calculated using numerical
techniques. Fortunately, in the past couple of decades, the growth in number, quality,
performance, and availability of numerical methods for nanophotonics [220] has been as
agile as the advances seen in nanofabrication and experimental techniques. Examples
of numerical treatments frequently employed in plasmonics and nanophotonics are:
the finite-difference time-domain (FDTD) method [221, 222], modal and Fourier
methods [221], the finite element method (FEM) [223], the Green’s function integral
equation method (GFIEM) [224], the boundary element method (BEM) [225–228],
discrete-dipole approximation (DDA) [229], etc. Each of the aforementioned techniques
is then rich in specialized variations depending on how the problem is considered from
a numerical analysis standpoint.

2.3 Dipole Emission: Spontaneous Decay Rate and

Optical Local Density of States

The emission of radiation by a classical oscillating electric dipole is a textbook
example for illustrating the theory of classical electrodynamics. A rigorous treatment
of light–matter interactions requires, however, a formulation in terms of quantum
electrodynamics (QED). We will return to the quantum mechanical formalism in
Sect. 8.3, and therefore in the following we concern ourselves with the classical
theory alone. Strikingly, the expression for the power emitted by a classical dipole
has the same mathematical structure23 as the spontaneous emission rate of a (two-
level) quantum emitter derived within the proper QED framework [117, 230–232].
Nevertheless, even a purely classical description of the optical interaction between
a dipole and its surroundings is useful in order to become acquainted with concepts
such as the optical local density of states (LDOS), the Purcell effect, and the dyadic

23Provided that the (classical) dipole moment µ is replaced by (twice) the quantum mechanical
matrix element, 2 〈g| µ̂ |e〉, where |g〉 (|e〉) refers to the ground (excited) state of the emitter and
µ̂ = −er̂ denotes the quantum mechanical dipole moment operator.

31



2 Classical Electrodynamics of Solids

Green’s functions’ formalism [7, 117, 159]. Moreover, as we shall see in Sect. 8.3
(and Appendix D), the Green’s functions framework provides a practical link between
classical electrodynamics and macroscopic quantum electrodynamics.

2.3.1 Electric dipole in a homogeneous medium

Power radiated by a classical dipole. Considering a current distribution with a
harmonic time-dependence, in a linear and homogeneous medium, it follows from the
Poynting’s theorem that time-averaged dissipated power due to a current density j(r)
can be calculated via [117, 231]

P = −1
2

∫
Re{j∗(r) ·E(r)}dr . (2.39)

For an ideal, point-like electric dipole source located at r0, the corresponding current
density is given by j(r) = −iωµδ(r − r0), where µ designates the electric dipole
moment. Hence, Eq. (2.39) can be cast as

P = ω

2 Im{µ∗ ·E(r0)} , (2.40)

where E(r0) is the electric field at the dipole’s position. We now invoke the electro-
magnetic dyadic Green’s function formalism to write the electric field in terms of the
dyadic Green’s function [113, 117, 231], i.e.,

E(r) = ω2µ0
↔
G(r, r0;ω) · µ , (2.41)

where the Green’s dyadic satisfies ∇×∇×
↔
G(r, r′;ω)−k2

0ε(r,ω)
↔
G(r, r′;ω) =

↔
I δ(r−r′).

Equation (2.41) describes the electric field at position r due to an electric dipole source
placed at position r0. Inserting the previous equation into Eq. (2.40) leads to

P = ω3|µ|2

2c2ε0

[
n̂µ · Im

{↔
G(r0, r0;ω)

}
· n̂µ

]
. (2.42)

where n̂µ is a unit vector describing the orientation of the dipole. In a homogeneous

medium, we have
↔
G ≡

↔
G0, where the free-space Green’s function takes the form [117]

↔
G0(r, r0;ω) =

[
↔
I + 1

k2 ∇⊗∇
]
G0(r, r0;ω) with G0(r, r0;ω) = eik|r−r0|

4π|r− r0|
.

(2.43)

Here, k =
√
εk0 (where ε denotes the medium’s permittivity) and

↔
I represents the unit

dyad. Since the imaginary part of the free-space Green’s function is Im
↔
G0(r0, r0;ω) =

k
6π

↔
I , we thus obtain (after orientation averaging24)

P0 = |µ|2

12πε0
ω3k

c2
, (2.44)

24Note that

〈
n̂µ · Im

{↔
G0(r0, r0;ω)

}
· n̂µ
〉

= 1
3 Im

{
Tr
↔
G0(r0, r0;ω)

}
= k

6π .
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which is the well-known Larmor formula for the power radiated by a classical oscillating
electric dipole [113, 117, 233].

2.3.2 Electric dipole in an inhomogeneous medium: LDOS
and Purcell enhancement

The power of the dyadic Green’s functions formalism becomes readily apparent when
dealing with inhomogeneous media. In particular, we stress that Eq. (2.42) remains
valid even in such a scenario. Hence, provided that the system’s Green’s dyadic is
known—or obtainable in some way, e.g., using normal (or quasinormal) modes—then
the calculation of the governing electrodynamics becomes relatively straightforward.

When considering a inhomogeneous environment, for reasons that will become
clear ahead, it is useful to decompose the total electric field at the dipole’s origin—i.e.,
the field that enters in Eq. (2.40)—into a primary field, E0, plus a scattered part,
namely

E(r0) = E0(r0) + Escat(r0) , (2.45)

so that

P = P0 + ω

2 Im{µ∗ ·Escat(r0)} ,

⇒ P

P0
= 1 + 6πε0ε1

|µ|2k3
1

Im{µ∗ ·Escat(r0)} , (2.46)

where k1 = √ε1k0. Notice that the presence of an inhomogeneity in the medium
changes the rate of energy’s dissipation. This is because the (total) field at r0 is the
sum of the dipole’s primary field together with the dipole’s field (produced at an
earlier time) after it has been scattered in the inhomogeneous environment.

Spontaneous emission rate and LDOS

The spontaneous decay rate of a quantum emitter normalized to its value in vacuum
is equal to the power radiated by a classical dipole normalized with respect to P0,
that is, γ/γ0 = P/P0 [117]. Thus, we may write [117]

γ

γ0
= 1 + 6πε0ε1

k3
1

1
|µ|2

Im{µ∗ ·Escat(r0)} . (2.47)

Furthermore, we note that a quantum mechanical calculation of the spontaneous
emission rate using Fermi’s golden rule establishes a connection between the former
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and the (electric25) LDOS, ρe(r0,ω). Explicitly, one finds [117]

γ = πω

3~ε0
|µ|2ρe

n(r0,ω) , (2.48)

where ρe
n(r0,ω) stands for the n-projected (or partial) LDOS at position r0 and

frequency ω. Importantly, ρe
n(r0,ω) is linked with the imaginary part of the Green’s

dyadic via [117]

ρe
n(r0,ω) = 6ω

πc2

[
n̂µ · Im

{↔
G(r0, r0;ω)

}
· n̂µ

]
. (2.49)

In vacuum, the previous two equations lead to ρe
0 = ω2

π2c3 , for the free-space LDOS,

and γ0 = ω3|µ|2
3πε0~c3 , for the spontaneous decay rate. In a inhomogeneous medium, the

normalized electric LDOS can then be written as

ρe
n(r0,ω)
ρe

0(ω) = 1 + 6π
k1

[
n̂µ · Im

{↔
Gscat(r0, r0;ω)

}
· n̂µ

]
. (2.50)

where the system’s Green’s function
↔
G =

↔
G0 +

↔
Gscat has been decomposed into a

homogeneous part,
↔
G0, and a scattered part (associated with the change in the Green’s

function due to the structured environment),
↔
Gscat.

Crucially, Eq. (2.50) represents the Purcell factor, Fp ≡ ρe
n(r0,ω)/ρ0(ω); it indi-

cates the enhancement of the spontaneous decay rate of an emitter by the environment.
Indeed, as it has been known since Purcell’s work [235], the rate of spontaneous
emission is not an intrinsic property of the emitter, and that it can be modified by
the environment [117, 231, 236–238]. The decay rate dynamics can be substantially
enhanced, for instance, for emitters near material interfaces. In the case of plasmonics,
the LDOS experienced by an emitter can be extremely large (by orders of magnitude)
due to the existence of plasmon resonances [25, 26, 239]; such plasmon-assisted Purcell
enhancement is an emblematic feature of plasmonics.

2.3.3 Electric dipole above a planar interface

We now consider an electric dipole embedded in a medium with relative permittivity
ε1, and located at a distance h above the surface of a semi-infinite substrate with
permittivity relative ε2 (which can be either a dielectric or a metal). The interface
between the two media is defined by the z = 0 plane. Here it is where the work that

25In passing, for the sake of correctness, we note that the optical (or electromagnetic) LDOS actually
has both electric and magnetic contributions, i.e., ρ(r,ω) = ρe(r,ω) + ρh(r,ω) [234]. Nevertheless,
in a nanophotonics setting, and in plasmonics in particular, the former is typically larger than the
latter by orders of magnitude, so that, effectively, ρ(r,ω) ≈ ρe(r,ω); for this reason, it is common to
refer to ρe(r,ω) as the entire LDOS. Additionally, in general emitters possess essentially an electric
dipole character and hence ρe(r,ω) is the relevant quantity.

34



2.3 Dipole Emission: Decay Rate and LDOS P. A. D. Gonçalves

we have done in the previous subsections pays off, since the LDOS enhancement can
be straightforwardly computed using Eq. (2.50). Specifically, for an emitter above a
planar interface, that equation can now be expressed as

ρe
n(r0,ω)
ρe

0(ω) = 1 + 6π
k1

[
n̂µ · Im

{↔
Gref(r0, r0;ω)

}
· n̂µ

]
, (2.51)

where
↔
Gref refers to the Green’s function associated with the reflected electric field due

to the presence of the substrate. A suitable representation for
↔
Gref(r0, r0;ω) is [117]

↔
Gref(r0, r0;ω) = i

8πk2
1

∫ ∞
0

dq
q

kz,1
ei2kz,1h

k2
1rs − k2

z,1rp 0 0
0 k2

1rs − k2
z,1rp 0

0 0 2q2rp

 ,

(2.52)
where rs and rp denote Fresnel’s reflection coefficients for s- and p-polarization, while

q and kz,1 =
√
ε1k2

0 − q2 refer to the in-plane wavevector and to the projection of the
wavevector onto the z-axis, respectively.

Spontaneous emission enhancement near a metal surface

In view of the above-noted considerations, the spectral dependence of the LDOS
experienced by an emitter with dipole moment µ and located at a height h above a
planar dielectric–metal interface can be expressed as

ρe
n(h,ω)
ρe

0(ω) = 1 + 3
4
µ2
x + µ2

y

|µ|2
Re
∫ ∞

0
du

u√
1− u2

[
rs − (1− u2)rp

]
e2ik1h

√
1−u2

+ 3
2
µ2
z

|µ|2
Re
∫ ∞

0
du

u3
√

1− u2
rp e

2ik1h
√

1−u2 , (2.53)

where we have normalized the LDOS to its value in a homogeneous dielectric medium
with relative permittivity ε1 (i.e., in the absence of the metal half-space). Note that, in
the above, we have introduced the dimensionless wavevector u ≡ q/k1 (while recalling
that k1 = √ε1k0), and rp ≡ rp(u,ω) and rs ≡ rs(u,ω) are the reflection coefficients
of the planar dielectric–metal interface. Considering separately the cases of a dipole
emitter with perpendicular and parallel dipole moments (with the respect to the
interface), we have

ρe
⊥(h,ω)
ρe

0(ω) = 1 + 3
2 Re

∫ ∞
0

du
u3

√
1− u2

rp e
2ik1h

√
1−u2 , (2.54a)

and

ρe
‖(h,ω)
ρe

0(ω) = 1 + 3
4 Re

∫ ∞
0

du
u√

1− u2

[
rs − (1− u2)rp

]
e2ik1h

√
1−u2 , (2.54b)
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respectively. The corresponding orientation-averaged LDOS is then 〈ρe〉 = 1
3ρ

e
⊥ + 2

3ρ
e
‖,

which can be particularly useful when dealing with an ensemble of randomly-oriented
dipoles (e.g., in dyes).

These equations can be used to calculate the spectral LDOS for an emitter above
an arbitrary planar interface (in fact, they even hold in the case of a multi-layered
substrate, provided that the appropriate reflection coefficients are employed). In the
specific case of a dielectric–metal interface, the LDOS is enhanced in the vicinity of
the SPP resonance occurring at the emitter’s transition frequency—cf. Fig. 2.9. In the

h

Figure 2.9: Purcell enhancement, or normalized LDOS ρE⊥/ρ
E
0 (ω), associated with the sponta-

neous decay rate of a dipole emitter with its dipole moment orientated perpendicularly to the
planar metal surface; different emitter–surface separations are considered. We assume a Drude
metal (ωp = 9 eV, γ = ωp/50, and ε∞ = 1) filling the lower half-space, while the upper half-space
is air (ε1 = 1).

previous equations, this mechanism is embodied in the poles of rp. In what follows, we
shall discriminate the role of the different processes that contribute to the modification
of the decay dynamics of an emitter near a metal surface.

Box 2.2 — LDOS in the nonretarded limit for an emitter near a metal surface.

In the nonretarded limit, and for a point-like emitter close to the metal’s surface
(i.e., h� k−1

1 ), the Purcell enhancement (2.53) takes the simpler form:

Fp = 3
2

(
µ2
⊥ + 1

2µ
2
‖

)∫ ∞
0

duu2e−2uk1h Im rp . (2.55)
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Notice that, within the local-response approximation, the nonretarded reflection
coefficient for p-polarization is simply rp = ε2−ε1

ε2+ε1 , and can thus be taken outside
the integral. In turn, in this regime, the integral admits an analytical solution:∫∞

0 duu2e−2uk1h = 2/(2k1h)3 (provided that Re k1h > 0). These considerations
therefore allow us to write (ε1 ≡ εd and ε2 ≡ εm)

Fp =
(
µ2
⊥ + 1

2µ
2
‖

)
3

8k3
dh

3 Im
{
εm − εd
εm + εd

}
,

=
(
µ2
⊥ + 1

2µ
2
‖

)
3εd

4k3
dh

3
Im εm

|εm + εd|2
, (2.56)

which exhibits the well-known Fp ∝ h−3 dependence of the Purcell enhancement
experienced by an emitter in the near vicinity of a metal surface. In the last step,
we have implicitly assumed, for the sake of clarity, that the dielectric medium is
lossless (which is often the case). Finally, notice that the LDOS diverges for h→ 0;
such behavior is evidently unphysical, and it is consequence of the local-response
approximation. In order to remedy this deficiency, a full quantum nonlocal theory
must be employed.

Excitation of surface plasmon polaritons by an electric dipole

In free-space, an excited emitter can only spontaneously decay by emitting freely
propagating photons. However, other decay channels may become available when the
emitter is placed in the neighborhood of a structured electromagnetic environment. A
prototypical example of the latter is the planar dielectric–metal interface considered
above (ε1 ≡ εd and ε2 ≡ εm). Having established that the spontaneous decay rate
of emitters can be enhanced near metal interfaces (Fig. 2.9), it is now instructive
to investigate the role of the different decay channels in the said enhancement. To
that end, it is useful to analyze the differential dissipated power (or momentum-space
power spectrum), dP/dq, hereupon defined through P =

∫∞
0

dP
dq dq, and where [233]

P = ω

8πε0εd
Re
∫ ∞

0
dq

q

kz,d

{
q2 [1 + rp e

2ikz,dh
]
µ2
⊥ + k2

d
[
1 + rs e

2ikz,dh
] 1

2µ
2
‖

+ k2
z,d
[
1− rs e2ikz,dh

] 1
2µ

2
‖

}
.

(2.57)

Focusing on the case of a perpendicular electric dipole—since this corresponds to the
configuration that maximizes the coupling to SPPs—, we have plotted in Fig. 2.10
the (normalized) differential dissipated power. As indicated in the figure, there are
three distinct channels contributing to the total dissipated power (or, equivalently, to
the total spontaneous decay rate): (i) a contribution associated with emission into
free-space photons (shaded region), (ii) a resonant channel due the emitter’s decay
into SPPs, manifesting itself as sharp peak at uspp ≡ Re qspp/kd in the q-space power
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Figure 2.10: Normalized differential dissipated power, P−1
0 (dP/du) [also, notice that this is

equivalent to (ρE0 )−1 (dρE/du)], for a vertically-oriented dipole placed in air above a flat metal
surface, for different emitter–metal separations h. The dipole emission is assumed to occur at
ω = 0.75ωSP. The material parameters and setup are the same as in Fig. 2.9. The shaded area
in gray indicates the region associated with propagating waves (photons) for which kz,d is real.
On the other hand, for u > 1 (i.e., q > k0) the wavevector kz,d becomes purely imaginary and
therefore represents modes bounded to the interface; these can be either SPPs or nonresonant
contributions due to Ohmic losses in the metal.

spectrum, and (iii) a broad, non-resonant contribution associated with the metal’s
damping pathways (e.g., phonons, impurities, etc). Clearly, the relative contribution
of each of the aforementioned channels depends strongly on the emitter–surface
separation26.

Generically speaking, the emission of radiation via photons is the dominant channel
for emitters lying far away from the metal surface. The decay into SPP is only
substantial when the emitter–surface separation is enough so that the near-field of the
dipole (that contains a distribution of large in-plane wavevectors capable of exciting
SPPs) effectively reaches the metal’s surface. If the emitter–surface separation is
reduced further, one eventually enters the regime were the decay enhancement by
lossy channels becomes dominant.

Figure 2.11 supports the interpretation described in the previous paragraph in a
more objective and quantitative fashion: it shows the fraction of the LDOS (or of
the dissipated power, or of the spontaneous decay rate) that corresponds to each one
of the three distinct channels mentioned above27. In particular, the three regimes

26Other than that, it also depends on the ratio between the emitter’s resonant frequency and the
surface plasmon frequency, and on the amount of losses.

27Here, the decomposition into the three different relaxation mechanisms is calculated using

Eq. (2.57) as follows: the integral
∫ kd

0 dq[...] is associated with the emission into photons; the

emission into SPPs can be obtained by evaluating the SPP pole contribution by computing the
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Figure 2.11: Decomposition of the LDOS (or, equivalently, of the dissipated power or of the
spontaneous decay rate) in terms of the three contributions described in the text—i.e., due
to photons, SPPs, and lossy pathways—as a function of the emitter–surface separation h. A
vertically-orientated dipole with transition frequency ω = 0.9ωSP is assumed. The setup and
material parameters are the same as in Fig. 2.9.

outlined in the preceding paragraph are well separated. Finally, the suppression of
the radiative free-space photons channel and concomitant increase of the contribution
due to SPPs, and, at extremely small separations, also due to lossy channels, is
known as quenching [24, 240, 241]. This regime is marked by the strong reduction
of the fluorescence observed in the far-field despite the the overall enhancement of
spontaneous emission rate.

integral
∫∞
kd

dq[...] in which the reflection coefficient for p-polarization has been replaced by rp ≈
2εdεm
ε2d − ε2m

qspp

q − qspp
(this has to be done judiciously in some cases though); lastly, the nonresonant lossy

contribution is whatever remains from the integral
∫∞
kd

dq[...] after the resonant SPP pole contribution

has been subtracted. Each part is then divided by the total dissipated power in order to obtain the
corresponding fractions.
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CHAPTER 3
Electronic and Optical Properties

of Graphene

3.1 Electronic Structure of Graphene

Graphene has been hailed as a “wonder material” primarily due to its remarkable,
singular optoelectronic properties. Notably, most of the awe-inspiring electronic prop-
erties of monolayer graphene can be understood from elementary considerations about
its crystal structure and through the application of standard models of bandstructure
theory (e.g., the tight-binding model or the k · p method) in two-dimensions. In this
spirit, below we provide a cursory review of graphene’s bandstructure and its basic
electronic properties [97]. These considerations will then supply us with the necessary
ingredients for determining the optical response of graphene [7].

3.1.1 Crystal structure of monolayer graphene

Graphene is a two-dimensional carbon allotrope in which the carbon atoms are arranged
in a honeycomb lattice. Being a monoelemental material, we start by recalling the
basic chemical properties of carbon. Carbon is the sixth element in the periodic
table, with a ground state atomic configuration [C] = 1s22s22p2, and it is therefore
tetravalent, that is, it has four valence electrons that can participate in the formation
of chemical bonds. Determinantely, in the presence of other atoms (e.g., like C itself,
or else, like H) it is nevertheless energetically favorable to promote a 2s electron to a
2p orbital due sp-hybridization (arising from the orbital mixing between a s orbital
and a p orbital) [98, 242–244]. In graphene, the material’s crystalline structure is
consequence of the planar sp2-hybridization1 and ensuing formation of three strong
covalent σ-bonds (mutually separated by 120°) between the carbon atoms. The last

1Specifically, the sp2-hybridization—occurring on both graphene and graphite—involves the
superposition of the 2s orbital with two 2p orbitals, say, the 2px and the 2py states. On the other
hand, the chemical bonding in diamond is due sp3-hybridization where the four chemical bonds are
equivalent (this is also the case, for instance, in methane (CH4), and in graphane (hydrogenated
graphene) [245, 246] or fluorographene (fluorinated graphene) [247, 248]).
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Figure 3.1: Crystal structure and reciprocal lattice of one-atom-thick graphene. (a) Direct
(real-space) graphene’s lattice, with the atoms corresponding to the A and B sublattices depicted
in blue and red color, respectively. The two lattice vectors a1 and a2 are also shown, along with
the crystal’s unit cell (shaded in gray). The nearest-neighbor vectors δm (where m ∈ {1, 2, 3})
are also represented. The distance between neighboring carbon atoms is acc ' 1.42 Å. (b)
Illustration of graphene’s reciprocal lattice (lattice points marked by the blue crosses), spanned
by the reciprocal lattice vectors b1 and b2. The first Brillouin zone is indicated by the shaded
hexagon. Also shown are the high-symmetry points Γ , M, K , and K ′.

unpaired valence electron in the unhybridized 2p orbital (say, the 2pz orbital), lying
perpendicular to the σ-bonds, mixes with the other 2pz orbitals of adjacent carbon
atoms thereby forming the so-called π-bonds, ultimately leading to the formation of
half-filled π-bands [97, 119]. The latter are responsible for graphene’s emblematic
low-energy electronic properties [97, 98].

The single-atom-thick honeycomb structure of graphene is depicted in Fig. 3.1a.
The graphene lattice can be viewed as the result of two offsetted triangular (sub)lattices,
or, alternatively, as a triangular lattice with a basis of two atoms per unit cell. The
primitive lattice vectors, a1 and a2, are given by

a1 = acc

2

(
3 ,
√

3
)

and a2 = acc

2

(
3 ,−
√

3
)

, (3.1)

where acc ' 1.42 Å is the distance between neighboring carbon atoms. The lattice
parameter a, hereby defined by the length of the primitive lattice vectors, is thus
a = |a1,2| = acc

√
3 ' 2.46 Å. On the other hand, the nearest-neighbor vectors are

given by

δ1 = acc (1, 0) , δ2 = acc

2

(
−1 ,
√

3
)

and δ3 = acc

2

(
−1 ,−

√
3
)

, (3.2)
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which will reveal useful when applying the tight-binding model to graphene (in
Sect. 3.1.2).

The corresponding graphene’s reciprocal lattice is portrayed in Fig. 3.1b, and it is
spanned by the reciprocal lattice vectors2

b1 = 2π
3acc

(
1 ,
√

3
)

and b2 = 2π
3acc

(
1 ,−
√

3
)

. (3.3)

Furthermore, and as it will become apparent shortly, the points at the vertices of
the first Brillouin zone—shaded hexagonal region in Fig. 3.1b—are of particular
importance. Specifically, there are two inequivalent points (each with three-fold
symmetry) located at the corners of the first Brillouin zone, denoted by K and K′:

K = 2π
3acc

(
1 ,
√

3
)

and K′ = 2π
3acc

(
1 ,−
√

3
)

. (3.4)

The low-energy physics of graphene can be described by in terms of the electronic
spectrum around these points.

3.1.2 Tight-binding description

The tight-binding model is one of the most common theoretical tools used in condensed
matter physics for computing the electronic structure of solids [118, 119, 249]. In
this regard, graphene is no exception; in fact, the tight-binding technique has been a
workhorse for describing the physics of graphene in numerous settings [97, 98, 250].
This fact becomes even more impressive in the light of the recent widespread use
of computational methods such as density functional theory (DFT) for solving the
electronic structure problem [132, 134]. The main motivation for using the tight-
binding model over more complex methods is that, despite its simplicity, the tight-
binding approach can still successfully account for the main features of the system’s
Hamiltonian, which constitutes a stepping-stone toward the calculation of many of
the system’s properties (e.g., electronic bandstructure, optical properties, electronic
transport, etc).

Specifically, graphene’s electronic structure is well described by the simple nearest-
neighbor tight-binding Hamiltonian3, which contains only one parameter describing
interaction between nearest-neighbors [97, 98, 250–253]. One can of course go further,
and also include a next-nearest-neighbors hopping term (and so on) [97, 98, 251].
However, more often than not, the economical nearest-neighbor tight-binding model
gives an excellent account of graphene’s low-energy spectrum (i.e., around the Fermi
level), which reflects the good agreement between the tight-binding description and
the ab initio calculation [254].

2These can be determined by exploiting the relationship ai · bj = 2πδij [118].
3Curiously, the first theoretical description of graphene was actually under the tight-binding

approximation, developed by Wallace in 1947 [251] in the context of the band theory of graphite,
long before the isolation of monolayer graphene in 2004(–2005) [93–96].
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The aforementioned nearest-neighbor tight-binding Hamiltonian governing 2pz
electrons in graphene can be written as4 [7, 97, 250]

Htb = −t
∑
n,m

{
|A, Rn〉 〈B, Rn + δm|+ H.c.

}
, (3.5)

where H.c. stands for the Hermitian conjugate, t ≈ 2.8 eV is the nearest-neighbor
hopping energy [97], and |A, Rn〉 denotes the Wannier state associated with a site
belonging to the sublattice A, at position Rn (i.e., in the n-th the unit cell). An
equivalent definition holds for |B, Rn + δm〉, where δm (with m = {1, 2, 3}) refers to
the nearest-neighbor vectors described earlier [cf. Eq. (3.2)]. Introducing the following
Fourier representation of the Wannier states in terms of Bloch states of wavevector k,

|A, Rn〉 = 1√
N

∑
k

e−ik·Rn |A, k〉 (and similarly for states in the B sublattice) ,

(3.6)
where N is the number of unit cells of the crystal, ones finds

Htb = −t
∑

k

{
f(k) |A, k〉 〈B, k|+ H.c.

}
with f(k) =

3∑
m=1

eik·δm . (3.7)

Equivalently, one may write the tight-binding Hamiltonian as Htb =
∑

kψ
†
k ·Hk ·ψk,

where we have introduced ψ†k =
[
|A, k〉 , |B, k〉

]
and

Hk = −t
[

0 f(k)
f∗(k) 0

]
. (3.8)

From here, the electronic spectrum of graphene is readily obtained:

Ek,s = s |f(k)|

= s

√
3 + 2 cos

(√
3kyacc

)
+ 4 cos

(
3
2kxacc

)
cos
(√

3
2 kyacc

)
, (3.9)

where s = ±1 is the band-index. Strikingly, the valence band (s = −1) and the
conduction band (s = 1) touch at the so-called Dirac points K and K′, rendering
pristine graphene gapless. Because of this, together with the fact that, in neutral
graphene, the valence band is completely filled and the conduction band is empty,
graphene is classified as a semi-metal. The electronic structure of monolayer graphene
is detailed in Fig. 3.2, where the semi-metallic behavior, as well as the famous conical
dispersion in the vicinity of the K(K′) point can be distinctly seen.

Crucially, in the vast majority of the situations of interest (including the ones
studied in this thesis), the physics of graphene is governed by its low-energy electronic
spectrum, that is, in the close neighborhood of the Dirac points. In the following, we
explore in detail some of the iconic features of graphene in this regime.

4The spin degree of freedom has been omitted here since spin-orbit effects are weak in
graphene [255, 256].

44



3.1 Electronic Structure of Graphene P. A. D. Gonçalves

a

5

Figure 3.2: Electronic
structure of graphene
within the tight-binding
approximation. (a)
Energy-momentum
relation for electrons
in graphene, obtained
from Eq. (3.9). The
inset shows a close-up of
graphene’s bandstructure
in the vicinity of one
of the six Dirac cones
[i.e., near one the K(K ′)
points], where the
dispersion relation is
approximately linear. (b)
Band diagram along the
Γ MKΓ path. Again,
notice the linear regime
around the K point. (c)
Density of states (DOS)
in graphene; AWS is the
area of the Wigner–Seitz
unit cell. The sharp
peaks at energies ±t
correspond to Van
Hove singularities [97]
associated with the M
point (saddle-point).

3.1.3 The continuum limit: massless Dirac Hamiltonian

Although in the previous section we have derived the full bandstructure (in the sense
that Eq. (3.9) provides us with the bandstructure in the entire k-space), the prevailing
processes associated with the electronic and optical properties of solids typically occur
around specific points (usually of high-symmetry) in their bandstructures—namely,
points associated with band extrema, in semiconductors5, and around the Fermi level,
in metals. Similarly, the physics of graphene is dominated by the bandstructure of
the π electrons in the vicinity of the K and K′ points, that is, the Dirac points (the
reason for this designation will become clear shortly).

Hence, motivated by this fact, we perform an expansion around the K point
by introducing the shifted wavevector q = k −K, where |q| � |K| (i.e., the con-
tinuum limit, |q| acc � 1); then, to first order in momentum, we obtain f(k) '

5This observation has contributed to the development of k ·p method. See, for instance, Ref. [257].
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− 3
2acc e

iπ/6 (qx − iqy). Therefore, the Hamiltonian (3.8) becomes6

HK ≡HK+q = ~vF

[
0 qx − iqy

qx + iqy 0

]
, (3.10)

where vF ≡ 3tacc/(2~) ≈ c/300 = 1× 106 m/s is the Fermi velocity of charge carriers
in graphene [97]. Applying the same procedure around K′ point, we get

HK′ ≡HK′+q = ~vF

[
0 qx + iqy

qx − iqy 0

]
. (3.11)

The previous effective Hamiltonians can be written more compactly in terms of Pauli
matrices, that is,

HK = ~vFσ · q , (3.12a)

HK′ = ~vFσ∗ · q , (3.12b)

with σ = (σx,σy). In the present shape, it becomes clear that these Hamiltonians have
the form of the ones associated with a relativistic massless 2D Dirac equation7 [97, 98,
258, 259]. It is for this reason that the corners of the first Brillouin zone—the K and
K′ points (or valleys)—are designated as Dirac points in the graphene literature [97].

The eigenenergies of the above Dirac Hamiltonians are straightforward to obtain,
reading

Eq,s = s~vF q , (3.13)

where, as before, s = ±1 is the band-index, and where q ≡ |q| =
√
q2
x + q2

y. This result

formally shows that the energy-momentum dispersion of charge carriers in graphene
is indeed linear near the Dirac points (as we have anticipated, though heuristically,
in Fig. 3.2). This unusual dispersion is responsible for many of graphene’s distinct
properties [7, 97, 260]. Furthermore, the eigenstates of the Dirac Hamiltonians (3.12)
take the form8

ΨKq,s = 1√
2

[
e−iθq/2

s eiθq/2

]
and ΨK

′

q,s = 1√
2

[
eiθq/2

s e−iθq/2

]
, (3.14)

6While also performing a unitary transformation of the basis to in order to exclude the e±iπ/6

phase factors (for convenience alone).
7The Dirac equation with vanishing mass is sometimes also known as the Weyl equation or the

Dirac–Weyl equation.
8This can be easily seen by writing the Dirac Hamiltonians in polar form; for instance, for the K

valley, Eq. (3.10) [or Eq. (3.12a)], transforms to:

HK = ~vF q

[
0 e−iθq

eiθq 0

]
.
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for each valley, where θq = arctan(qy/qx). In fact, the full effective Hamiltonian
describing graphene’s massless Dirac Fermions is a 4× 4 matrix with a block structure.
Specifically, it reads

HD =
[

HK 0
0 HK′

]
, (3.15)

along with the corresponding four-component wavefunctions (akin to a four-spinor)

ΨD =
[
ΨKA , ΨKB , ΨK′

A , ΨK′

B

]T
. Together, they take into account the two sublattices

and the two inequivalent Dirac cones (or valleys). The Dirac Hamiltonian (3.15) can
also be written in a more condensed form, namely

HD = ~vF (τ0 ⊗ σx qx + τz ⊗ σy qy) , (3.16)

where the τj matrices are also Pauli matrices (with τ0 denoting the identity matrix),
but acting on the subspace associated with the valley degree of freedom. This notation
is introduced here in order to better distinguish from the Pauli matrices σj , which are
assigned to the sublattice subspace instead.

Density of states of massless Dirac fermions in graphene

The unconventional linear dispersion exhibited by charge carriers in graphene naturally
makes its electronic properties different from conventional two-dimensional electron
gases (2DEGs) with parabolic dispersion. Such an example is the electronic density of
states (DOS). This quantity is given by

DOS(E) = g

A

∑
k,s

δ(E − Ek,s)
continuum−−−−−−→

limit
g

∫
dk

(2π)2 δ(E − Ek,s)

⇒ DOS(E) = 2 |E|
π(~vF )2 , (3.17)

where g is a degeneracy factor which, for graphene, amounts to g = gsgv = 4 owing
to the spin (gs = 2) and valley (gv = 2) degeneracies. We stress that this is in stark
contrast with the constant DOS = m∗

π~2 displayed by traditional 2DEGs. Moreover,
notice that although graphene is a semi-metal—i.e., it has zero bandgap—its density
of states is nevertheless zero for neutral graphene. Finally, this peculiar DOS leads
to a different dependence of the Fermi energy with carrier density. In particular,
the electronic density is calculated by integrating the DOS up to the Fermi level,
ne =

∫∞
0 DOS(E)f(E)dE, where f(E) is the Fermi–Dirac distribution. For graphene

at zero temperature (or for EF � kBT ), this leads to

ne = E2
F

π(~vF )2 ⇔ ne = k2
F

π
, (3.18)

and thus the Fermi wavevector is related to the carrier density via kF = √πne.
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Figure 3.3: Electronic structure
of graphene within the continuum
Dirac approximation, shown by the
dashed black lines superimposed to
the tight-binding calculations (col-
ored lines; they are a close-up of
the results presented in Fig. 3.2b–
c).

We end this section by comparing the Dirac approximation to the tight-binding
results obtained in Sect. 3.1.2. This is done in Fig. 3.3. Clearly, the low-energy Dirac
model provides an excellent description of graphene’s electronic properties for energies
up to . 0.6t (. 1.7 eV). Throughout this thesis—and in the vast majority of the cases
considered in the literature—we will always work well within this regime. In particular,
we will be able to make use of the Dirac approach for computing the optical response
of monolayer graphene. For energies above this threshold, deviations from conical
Dirac spectrum arise, an effect that is commonly known as trigonal warping [97, 261].

3.2 Optical Properties of Graphene

The response of a given system to external stimuli can be fully determined upon
calculating its appropriate response function(s). Prominent examples of the latter are
the dielectric function and the conductivity, although other quantities, such as the
density-density response function, are equally notorious. Evidently, all these response
functions are interlinked, and therefore the utilization of one or the other is solely a
matter of choice or convenience.

In this section we introduce the conductivity of graphene (which for the two-
dimensional graphene is a surface conductivity) within the framework of the linear-
response theory in the Dirac limit. We start by presenting the dynamical—i.e.,
frequency-dependent—conductivity of single-layer graphene in the local response
approximation, specifying both the intraband and interband contributions that make
up the overall optical conductivity. Next, we relax the assumption of a local response
and consider the full nonlocal conductivity: we do so by summarizing the main features
arising from the nonlocal Kubo formalism, which is formally equivalent to the nonlocal
dielectric function in the so-called random-phase approximation (RPA).

It should be emphasized that the knowledge of graphene’s conductivity constitutes
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a central cornerstone in graphene photonics and plasmonics, since it embodies all the
information about material’s electrodynamics, including the physics governing the
interaction between light and graphene, and the properties of the plasmonic excitations
supported by it.

3.2.1 Dynamical conductivity of graphene

The optical conductivity of graphene in the local-response approximation can be split
into two distinct contributions: one describing intraband processes, characterized by
transitions within the same band (the conduction band for electrons or the valence
band for holes), and another describing vertical interband transitions (cf. Fig. 3.4). In
this vein, we thus write:

σ(ω) = σintra(ω) + σinter(ω) . (3.19)

This separation, though unnecessary, is useful as we will see in what follows. Both
the intra- and interband terms arise naturally from the calculation of graphene’s
conductivity using the Kubo formalism, from which one obtains [7, 262–264]

σintra(ω) = σ0

π

4iEF
~ω + i~γ

[
1 + 2kbT

EF
ln
(

1 + e−EF /(kbT )
)]

, (3.20a)

for the intraband part, and

σinter(ω) = σ0

[
G(~ω/2) + i

4~ω
π

∫ ∞
0

dE
G(E)−G(~ω/2)

(~ω)2 − 4E2

]
, (3.20b)

for the interband contribution, where

G(E) = sinh [E/(kbT )]
cosh [EF /(kbT )] + cosh [E/(kbT )] .

In the previous expressions, we have introduced the universal conductivity of graphene
σ0 = e2/(4~) [7, 102, 250], whereas kb denotes the Boltzmann constant. Moreover,
EF is the Fermi energy of graphene9 (relative to the Dirac point) and γ is a phe-
nomenological scattering rate, here considered in the spirit of the relaxation-time
approximation.

In the low-temperature limit, that is, for EF � kbT , Eqs. (3.20) simplify consider-
ably, and reduce to

σintra(ω) = σ0

π

4iEF
~ω + i~γ

, (3.21a)

σinter(ω) = σ0

[
Θ(~ω − 2EF ) + i

π
ln
∣∣∣∣~ω − 2EF
~ω + 2EF

∣∣∣∣] , (3.21b)

9For hole-doped graphene, the expressions presented throughout this section are nevertheless
valid upon performing the replacement EF → |EF |.
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Figure 3.4: Pictorial illus-
tration of both intraband
processes and vertical inter-
band transitions contributing
to the dynamical conductivity
of doped graphene (at zero
temperature). The crossed
out transition is representative
of a process prevented by Pauli
blocking.

where Θ(x) stands for the Heaviside step function. These simple analytical expressions
often constitute an excellent approximation for moderately doped graphene—even
at room temperature—since kbT ' 26 meV under ambient conditions, a value that is
typically at least one order of magnitude smaller than EF in most graphene plasmonics
experiments. Now, focusing for a moment on the interband term alone (and on the zero
temperature result, for the sake of simplicity), notice that there is no absorption10 for
frequencies below 2EF , a behavior that is consequence of the so-called Pauli blocking
(named after the Pauli exclusion principle, which is the reason for it)—see Fig. 3.4.
Accordingly, long-lived graphene plasmons [7] can only exist for ~ω . 2EF ; we shall
revisit this point in more detail in Chapter 4.

Lastly, in the low-frequency regime, i.e., for ~ω � 2EF , which typically en-
compasses the terahertz (THz) window up to the mid-infrared (mid-IR) region of
the electromagnetic spectrum, the dynamical conductivity of graphene is essentially
dominated by its intraband term, thereby taking the familiar Drude-like form:

σ(ω) ≈ σ0

π

4iEF
~ω + i~γ

. (3.22)

Figure 3.5 depicts the dynamical conductivity of monolayer graphene arising from
the expressions outlined in the preceding paragraphs. Notably, both the real and
imaginary parts of graphene’s conductivity exhibit a weak temperature dependence
across a broad range of frequencies (because EF � kbT ), the only exception being in
the spectral range around the onset of vertical interband transitions (i.e., near 2EF ).
The latter behavior simply reflects the smearing out of the Pauli blocking threshold.
Furthermore, in Fig. 3.5b we show empirically that in the THz regime the optical
conductivity of graphene is well described by the Drude-type result (3.22).

10Recall that absorption is encoded in the real part of the system’s conductivity, Reσ.
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Figure 3.5: Optical conductivity of graphene in the local response approximation. (a) Real
and imaginary parts of the dynamical conductivity of extended graphene obtained from the
Kubo formula in the longwavelength limit [i.e., σ(ω) ≡ σ(q → 0,ω)]. The solid lines show the
conductivity at room temperature (T = 300 K) whereas the dashed lines represent the zero
temperature result. (b) Graphene’s dynamical conductivity in the THz spectral range, calculated
using the Kubo formula at room temperature [Eqs. (3.20), solid lines] and using the Drude-
type expression [Eqs. (3.22), dashed lines]. Material parameters: in both panels we have used
EF = 0.4 eV and ~γ = 8 meV.

3.2.2 Nonlocal conductivity of graphene and the nonlocal
RPA dielectric function

The dynamical conductivity of graphene in the local-response approximation cor-
responds to the longwavelength limit of the more general nonlocal conductivity of
graphene σ(q,ω), which is both wavevector- and frequency-dependent. In the follow-
ing, we present a minimal description of the main steps towards the computation of
the noninteracting (retarded) density-density correlation function11,12, χ0(q,ω), from
which the nonlocal conductivity of graphene and its nonlocal RPA dielectric function
can be straightforwardly obtained.

11The noninteracting density-density correlation function χ0(q,ω) also goes by the name of
noninteracting (or bare) density-density response function, or polarizability, Lindhard function [265],
or even as the bare pair-bubble diagram in the language of Feynman diagrammatics [7, 15, 266].

12The detailed derivation of the density-density response function for independent electrons is
somewhat lengthy and therefore here we simply outline the main steps and results. A thorough
derivation of the density-density response function for the noninteracting homogeneous 3D electron
gas can be found in a number of textbooks in condensed matter theory, see, for instance, Refs. [13–
15, 266, 267]. The version for a homogeneous 2D electron gas with parabolic dispersion is outlined in
Refs. [13, 267], whereas the derivation of the same quantity for graphene is presented in Refs. [7, 268,
269].
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Specifically, for massless Dirac fermions in extended, pristine graphene the nonin-
teracting density-density correlation function is given by [7, 268, 269]

χ0(q,ω) = g

(2π)2

∫
dk
∑
s,s′

f(Ek,s)− f(Ek+q,s′)
Ek,s − Ek+q,s′ + ~(ω + iη)Fs,s

′(k, q) , (3.23)

where g = gsgv = 4 is the overall degeneracy factor including both the spin and
valley degeneracies, f(Ek,s) = {exp [(Ek,s − EF )/(kbT )] + 1}−1

is the Fermi–Dirac
distribution at energy Ek,s, and Fs,s′(k, q) is a form factor that comes from the overlap
between Dirac wavefunctions, and that amounts to [7, 268, 269]

Fs,s′(k, q) = 1
2

[
1 + ss′

k2 + k · q
k|k + q|

]
, (3.24)

At zero temperature the Fermi–Dirac distributions reduce to step functions, thereby
simplifying (to some extent) the integral (3.23). The explicit evaluation of the density-
density correlation function then leads to the result13 [7, 268, 269]

χ0(x, y) = − 2kF
π~vF

+ 1
4π

kF
~vF

x2√
y2 − x2

{
−iπ + C̃

(
y + 2
x

)
− Θ

(
2− y
x
− 1
)[
C̃
(

2− y
x

)
− iπ

]
−Θ

(
y − 2
x

+ 1
)
C̃
(
y − 2
x

)}
,

(3.25)

where we have introduced the dimensionless wavevector and energy, x = q/kF and
y = ~ω/EF , respectively, and the auxiliary complex function

C̃ = x
√
x2 − 1− ln

(
x+

√
x2 − 1

)
. (3.26)

At this point, the expression for the nonlocal density-density response function of
graphene (3.25) may not look particularly elucidative. Nevertheless, as we shall see in
a moment, it is a pivotal ingredient for the description of the nonlocal optical response
of graphene. For now, it is instructive to separate the density-density response function
of doped graphene into its real and imaginary parts, i.e., χ0(q,ω) = Reχ0(q,ω) +
Imχ0(q,ω), and analyze the different regions of the (q,ω)-phase-space where χ0
exhibits different behaviors—see Box 3.1 and Fig. 3.6 for details.

Box 3.1 — Graphene’s density-density correlation function χ0(q,ω).

The real and imaginary parts of χ0(x, y) can also be written as piecewise functions

13The derivation of this result can be found in Refs. [7, 268, 269], and it relies on the use of standard
techniques of complex analysis, such as, for instance, the application of the Sokhotski–Plemelj formula:

limη→0+
∫∞
−∞

f(x)
x±iη dx = P

∫∞
−∞

f(x)
x
dx∓ iπf(0), where P denotes the Cauchy principal value.
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in terms of real functions alone [7], namely

Reχ0(x, y) =



− 2kF
π~vF

+ 1
4π

kF
~vF

x2√
y2 − x2

[
Ch

(
y + 2
x

)
− Ch

(2− y
x

)]
, in 1B

− 2kF
π~vF

, in 1A

− 2kF
π~vF

+ 1
4π

kF
~vF

x2√
y2 − x2

Ch

(
y + 2
x

)
, in 2B

− 2kF
π~vF

+ 1
4π

kF
~vF

x2√
x2 − y2

C
(2− y

x

)
, in 2A

− 2kF
π~vF

+ 1
4π

kF
~vF

x2√
y2 − x2

[
Ch

(
y + 2
x

)
− Ch

(
y − 2
x

)]
, in 3B

− 2kF
π~vF

+ 1
4π

kF
~vF

x2√
x2 − y2

[
C
(
y + 2
x

)
+ C

(2− y
x

)]
, in 3A

(3.27a)
for the real part of graphene’s 2D polarizability, and

Imχ0(x, y) =



0 , in 1B

1
4π

kF
~vF

x2√
x2 − y2

[
Ch

(2− y
x

)
− Ch

(
y + 2
x

)]
, in 1A

1
4π

kF
~vF

x2√
y2 − x2

C
(2− y

x

)
, in 2B

− 1
4π

kF
~vF

x2√
x2 − y2

Ch

(
y + 2
x

)
, in 2A

−1
4
kF
~vF

x2√
y2 − x2

, in 3B

0 , in 3A

(3.27b)

for the corresponding imaginary part. The different regions akin to each branch of
the above piecewise functions are defined schematically in Fig. 3.6. In the previous
expressions, as in Eq. (3.25), we have defined x = q/kF and y = ~ω/EF . Here, we
have also introduced the following auxiliary (real) functions:

Ch(z) = z
√
z2 − 1− arccosh(z) , (3.28a)

C(z) = z
√

1− z2 − arccos(z) . (3.28b)

Of particular importance for our considerations on graphene plasmonics is the 1B
region of the (q,ω)-phase-space (cf. Fig. 3.6), where Imχ0 = 0 and therefore in this
region plasmons in graphene can attain large life-times [7, 92, 105]. In essence, this
“damping-proofed” domain corresponds to the nonlocal extension of the Pauli blocking
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Figure 3.6: Regions of the polar-
ization function of graphene cor-
responding to the piecewise parti-
tion of the real and imaginary parts
of χ0 as described by Eqs. (3.27a)
and (3.27b), respectively. The
two different shades of gray in-
dicate the domains of the single-
particle continuum where where
intra- and interband electron-hole
excitations (broadly known as Lan-
dau damping) occur, and are associ-
ated with regions where Imχ0 6= 0
[see Eqs. (3.27a) and (3.27b)].

mechanism previously mentioned when we considered the local optical response
of graphene14. Outside this region, plasmon damping becomes non-zero because
Imχ0 6= 0, even for pristine graphene at zero temperature, due to emergence of a new
decay channel through which graphene plasmons can decay into electron-hole pair
excitations [7, 268, 269]. This mechanism of plasmon decay is referred to as Landau
damping in the literature [7, 15, 92, 266, 269, 270].

In passing, we mention that the above-noted zero temperature result(s) for the
noninteracting density-density response function can be generalized for an arbitrary
finite temperature by making use of Maldague’s result [13, 271]:

χ0(q,ω,T ) =
∫ ∞

0
dE

χ0(q,ω,T = 0)|EF =E

4kbT cosh2
(
E−µ(T )

2kbT

) (3.29)

where µ(T ) designates the system’s chemical potential at temperature T .

Nonlocal conductivity of graphene. Equipped with the expression for the non-
interacting density-density response function of graphene—see Eq. (3.25) or Eqs. (3.27)—
the nonlocal conductivity of the material is readily obtainable from the relation [7, 15]

σ(q,ω) = ie2 ω

q2χ0(q,ω) , (3.30)

14Clearly, in the longwavelength limit, i.e., q → 0 (vertical transitions only), the local version of
Pauli blocking encountered in Eqs. (3.21) and Fig. 3.4 is reinstated.
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which is derivable by making use of the continuity equation [7].
The local conductivity of graphene (3.21) corresponds to the longwavelength limit

of Eq. (3.30), that is, σ(ω) = ie2 ω
q2χ0(q → 0,ω), where the limit needs to be taken

judiciously while maintaining ω > vF q (see Refs. [13, 268]).

Nonlocal RPA dielectric function of graphene. The random-phase approx-
imation (RPA) is one of the workhorses for describing the optical properties of
solids [13–15, 267]. Historically, the linear-response RPA result has been derived in a
number of ways15 [7, 13–15, 265, 267, 279], for instance, via the self-consistent field
method [14, 279] or through the diagrammatic approach for the screened interac-
tion [14, 15, 266]. Naturally, both descriptions are ultimately equivalent.

A homogeneous electron gas subjected to an external potential, φext, develops an
induced density, ρind, that corresponds to the deviation from its original equilibrium
density. In turn, this perturbation creates an additional induced potential, φind, in
accordance with [14, 15, 266]

φind(r, t) =
∫

ρind(r′, t)
4πε0|r− r′|dr′ → φind(q,ω) = 1

e2 vq ρind(q,ω) , (3.31)

where vq is the Fourier transform of the bare Coulomb potential, and it is given by

vq =


e2

ε0q2 , in 3D

e2

2ε0q
, in 2D

, (3.32)

in three and two dimensions, respectively. The main notion behind the RPA dielectric
function is that an electron gas, when perturbed by an external potential φext, responds
to an effective total (or self-consistent) potential comprised by both φext and φind,
that is, φtot = φext + φind; then, the dielectric function is the quantity that relates the
total and external potentials, and it is defined by [14, 15, 266, 267]

ε(q,ω) = φext(q,ω)
φtot(q,ω) . (3.33)

Furthermore, the proper density-density response function χ(q,ω) establishes a relation
between the induced charge density ρind and the external potential φext via [14, 15,
266, 267]

ρind(q,ω) = e2χ(q,ω)φext(q,ω) . (3.34)

15In this context, besides the works referenced in the text, it is also just and appropriate to
mention other seminal contributions made by a number of people during the 1950s, including, for
instance, Bohm and Pines [8–12, 272], Brout and Sawada [273–275], and Nozières and Pines [276–278].
Indeed, these works established the existence of collective plasma oscillations due to the long-range
Coulomb interaction between electrons in a homogeneous electron gas, and are often considered as
the foundational bedrock for the quantum theory of plasmons. The term “plasmon” was introduced
by Pines [12] as the quantum of elementary excitation associated with such collective oscillation.
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Therefore, combining Eqs. (3.31) and (3.34) yields

φind(q,ω) = vqχ(q,ω)φext(q,ω) , (3.35)

and thus one can write

φtot(q,ω) = φext(q,ω) + φind(q,ω)
= [1 + vq χ(q,ω)]φext(q,ω) . (3.36)

From this expression, and recalling the definition (3.33), the dielectric function can be
readily identified as [14, 15, 266, 267]

ε−1(q,ω) = 1 + vq χ(q,ω) . (3.37)

Notice that in the previous expression χ(q,ω) is the proper density-density correlation
function. However, and rather unfortunately, its explicit calculation is, in practice,
an onerous task. In the RPA, the full density-density correlation function χ(q,ω) is
approximated by χrpa(q,ω) [14, 15, 266],

χrpa(q,ω) = χ0(q,ω)
1− vq χ0(q,ω) , (3.38)

which can be formulated in terms of the noninteracting density-density correlation
function χ0(q,ω) determined before [recall Eq. (3.25) or Eqs. (3.27)]. We note that in
the RPA explicit electron-electron interactions are neglected, with the exception of
screening (at the single-particle level) [14]. As such, it is expected that its applicability
is limited to the high-density limit and to weakly correlated systems [13]. Some
corrections beyond the RPA will be addressed in Sect. 7.2.

In this vein, by replacing the full density-density response function in Eq. (3.37)
by its RPA version (3.38), one finally obtains the nonlocal RPA dielectric function [7,
14, 15, 266, 267]:

εrpa(q,ω) = 1− vq χ0(q,ω) . (3.39)

Specifically, for two-dimensional graphene, one has [7]

εrpa(q,ω) = 1− e2

2ε0q
χ0(q,ω) . (3.40)

Here, we note that self-sustained plasmon excitations are given by the zeros of the
RPA dielectric function. This can also be seen by inspecting of Eq. (3.33) [from which

it is clear that φtot(q,ω) = φext(q,ω)
ε(q,ω) ], since it suggests that—under such conditions—a

finite field can persist even in the absence (or, rather, infinitesimally small) of an
external field.

Lastly, the energy-loss function of the system is typically defined by [7, 119, 280]

L(q,ω) = − Im
{

1
εrpa(q,ω)

}
, (3.41)

which, for instance, is closely related to the electron energy-loss spectrum [280, 281].
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Density-density response function in the relaxation-time approximation

So far in our discussion of the noninteracting density-density response function we
have peremptorily neglected electron scattering processes. A rigorous description
of these is, in general, not trivial. Hence, we present an extension of the previous
collisionless result were the aforementioned difficulty is bypassed by making use of
the relaxation-time approximation (RTA). It should be noted, however, that although
one may feel tempted to perform the familiar prescription ω → ω + iγ in order to
introduce collisions within the spirit of the RTA, this näıve substitution is flawed
since it fails to conserve the number of particles. As shown by Mermin [282] (see
also Ref. [283]), the correct approach is to consider that collisions relax the electronic
density to a local equilibrium (with a local chemical potential) rather than to a uniform
(global) equilibrium. Using this argument, Mermin showed that the appropriate form
of the noninteracting density-density response function in the RTA can be written
as [7, 13, 282]

χτ0(q,ω) = (1 + iγ/ω)χ0(q,ω + iγ)
1 + (iγ/ω) [χ0(q,ω + iγ)/χ0(q, 0)] . (3.42)

Evidently, the corresponding nonlocal conductivity and nonlocal RPA dielectric func-
tion in the RTA follow from Eqs. (3.30) and (3.39) simply by performing the replacement
χ0(q,ω)→ χτ0(q,ω).
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CHAPTER 4
Fundamentals of Graphene

Plasmonics

Doped graphene supports plasmonic excitations in the terahertz (THz) and mid-
infrared (mid-IR) regions of the electromagnetic spectrum1 [7, 90–92], and it is often
regarded as an excellent plasmonic material [105, 108, 139]. Some of the alluring
properties of graphene plasmons [7, 90–92] are direct consequence of graphene’s
tantalizing electronic and optical properties [7, 97], while some others are related to
its two-dimensionality alone [7, 90, 287, 288]. The latter are therefore not unique to
graphene and thus may be observed in other two-dimensional electron systems [289,
290]. Nevertheless, the unique electronic structure of graphene is of paramount
importance for many of its captivating plasmonic features [7, 90–92, 291]. Furthermore,
and on a more a practical level, the mechanical stability the graphene together with
its intrinsic atomic thickness makes it particularly appealing also from a technological
standpoint.

A key advantage of graphene plasmons—specially when compared with traditional
surface plasmons supported by three-dimensional metals (3D)—is the ability of actively
control the frequency of plasmon resonances in graphene simply by controlling its Fermi
level2, which can be routinely achieved by means of electrostatic gating [103, 104, 109]
or by chemical doping [111]. This ability is in stark contrast to conventional plasmonics
based on 3D metals, and hence this fact constitutes a significant advantage of graphene
plasmonics. In addition, another noteworthy advantage of graphene plasmonics is the
fact that plasmons in graphene can propagate while experiencing relatively low-losses

1In principle, plasmons in graphene could potentially be pushed towards the near-infrared or
even the visible provided that sufficiently high doping can be achieved (this is because, as we have
seen in Sect. 3.2, for frequencies above the interband threshold, interband Landau damping prevents
the existence of long-lived graphene plasmons). Some encouraging steps have been taken in this
direction [284–286], but reaching doping levels corresponding to Fermi energies EF & 1 eV remains
experimentally challenging.

2The relation between graphene’s Fermi energy, EF , and its electronic density, ne, is given by
EF = ~vF

√
πne [recall Eq. (3.18)]. Typical values for the carrier density in doped graphene are

ne = 1011 – 1013 cm−2 [103, 104, 109], though values as large as ne = 4× 1014 cm−2 have been
reported [284].
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when compared with traditional plasmonic materials [this is particularly true for
graphene encapsulated in hexagonal boron nitride (hBN)] [105, 108, 139].

In this chapter, we present the elementary theory describing plasmonic excitations
in graphene and graphene-based systems. We start by considering plasmons supported
by extended, continuous graphene sheets, and then move on to the treatment of
plasmons in finite-sized graphene nanostructures and in patterned graphene. Along
the way, we comment on several key features of graphene plasmons. Finally, we
note that although here particular emphasis is given to plasmons in graphene, the
theoretical description set forth in this chapter can be swiftly applied to many other
polaritonic excitations [139, 292] in the ever-increasing number3 of two-dimensional
(2D) and quasi-2D materials.

4.1 Plasmons in Extended Graphene

4.1.1 Plasmons in monolayer graphene

We consider a graphene monolayer placed at z = 0 and sandwiched between two
dielectric media, characterized by the relative permittivities ε1 and ε2, as illustrated
in Fig. 4.1. The derivation of the dispersion relation of plasmons propagating along

Figure 4.1: Illustration of a sheet of monolayer graphene sandwiched between two semi-infinite
media with relative permittivities ε1 and ε2, respectively, for z > 0 and z < 0. The graphene layer
is located in the z = 0 plane.

an extended graphene sheet essentially follows the same guidelines as in the derivation
of the classical SPP spectrum in a dielectric–metal interface (detailed in Sect. 2.2.1.1).
The crucial difference, however, is that in the present case the presence of graphene is
taken into account by introducing a nonvanishing surface current density, J2D. For a
uniform graphene layer—i.e., unstrained, unpatterned, pristine graphene—the induced
surface current due to an electric field is given by J2D = σE‖, where σ ≡ σ(q,ω) is the
(in general, nonlocal) conductivity of graphene that we have studied in Sect. 3.2, and

3At the time of writing, several hundredths of 2D materials have been identified. Most of them and
their properties can be found in “2D materials databases” such as the ones provided in Refs. [293, 294].
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E‖ is the total in-plane electric field evaluated at the position of the graphene sheet (i.e.,
at z = 0). Crucially, all the steps leading to Eqs. (2.19)–(2.21) are basically unaltered;
the exception are the boundary conditions, which now read [recall Eqs. (2.9)]:

n̂12 × (E2 −E1)|z=0 = 0 ⇒ Ex,2 − Ex,1 = 0
n̂12 × (H2 −H1)|z=0 = J2D Hy,2 −Hy,1 = σEx,1

. (4.1a)

Using the relations (2.20) between field components, the determinantal solution
associated with the previous algebraic system of equations produces the following
implicit condition for the dispersion relation of graphene plasmons [7]:

ε1√
q2 − k2

0ε1
+ ε2√

q2 − k2
0ε2

+ iσ(q,ω)
ωε0

= 0 , (4.2)

where q is the graphene plasmon’s wavevector and k0 = ω/c. In general, this dispersion
relation has to be solved by numerical means. Furthermore, by analyzing Eq. (4.2),
it is clear that confined TM graphene plasmons can only exist in regions of the
phase-space where Im σ > 0; in the longwavelength limit, this is fulfilled for energies
~ω/EF . 1.667 [7].

Box 4.1 — Scattering coefficients for a planar interface in the presence of
graphene.

The scattering coefficients associated with p-polarized, or transverse magnetic (TM),
and s-polarized, or transverse electric (TE), waves are straightforwardly derived
in the same way as the traditional Fresnel coefficients between two nonmagnetic
media [7, 117], but now augmented with the boundaries conditions for a nonvanishing
surface current density [cf. Eqs. (4.1)]. Specifically, for a system like the one
portrayed in Fig. 4.1, the scattering coefficients read [7]:

rp = ε2kz,1 − ε1kz,2 + kz,1kz,2 σ/(ωε0)
ε2kz,1 + ε1kz,2 + kz,1kz,2 σ/(ωε0) , (4.3a)

tp =
√
ε1
ε2

2ε2kz,1
ε2kz,1 + ε1kz,2 + kz,1kz,2 σ/(ωε0) , (4.3b)

for p-polarized waves, and where kz,j =
√
εjk2

0 − q2 (with Im kz,j > 0), and [7]

rs = kz,1 − kz,2 − µ0ωσ

kz,1 + kz,2 + µ0ωσ
, (4.4a)

ts = 2kz,1
kz,1 + kz,2 + µ0ωσ

, (4.4b)
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for s-polarized waves. The impinging plane-wave is assumed to come from medium
1, and q denotes the in-plane (i.e., parallel to the interface) wavevector component.

As in the case of SPPs supported by a dielectric–metal interface (see Sect. 2.2.1.1
and Box 2.1), the dispersion relation for TM graphene plasmons4 could also be
determined by inspecting the poles of the system’s reflection coefficient for p-polarized
waves, rp. This can be immediately realized from Eq. (4.3a) in Box 4.1, while noting

that kz,j = iκj ≡ i
√
q2 − εjk2

0 for confined surface waves.

0

max

Im
 r
p

D
ru

de

nonlocal R
PA

local RPA

Figure 4.2: Dispersion relation of graphene plasmons in extended graphene. The different curves
represent the graphene plasmon’s dispersion (4.2) [here plotted as ~ω vs Re q] calculated using
different models for the conductivity of graphene (in the zero-temperature limit), namely, the
Drude-type conductivity [Eq. (3.22); gray dashed line], the local RPA result [green dashed line;
Eq. (3.21)], and the full nonlocal RPA conductivity of graphene [blue solid line; Eq. (3.30)] in
the relaxation-time approximation using Mermin’s prescription [see Eq. (3.42)]. The colored
intensity plot in the background expresses the loss function via the imaginary part of the TM
reflection coefficient, Im rp, obtained within the full nonlocal RPA framework (here plotted as
log100[1 + Im rp(q,ω)], for presentation purposes alone). Material parameters: ε1 = ε2 = 1,
EF = 0.4 eV, and ~γ = 8 meV.

4In passing—and mostly for the sake of curiosity alone—we note that, unlike surface plasmon
polaritons at single dielectric–metal interfaces [3, 4], graphene is also capable of supporting TE
surface waves [7, 295]. These are, however, weakly bound modes situated very close to the light
line and therefore are of little fundamental or technological interest. For this reason, they are often
disregarded in the literature; likewise, throughout this work (with the exception of this footnote), we
consider only TM graphene plasmons.
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4.1 Plasmons in Extended Graphene P. A. D. Gonçalves

The dispersion relation of plasmons in doped graphene is shown in Fig. 4.2,
where it has been calculated using three different models for the conductivity of
graphene. The simplest of these is the Drude-like expression for the conductivity of
graphene [Eq. (3.22)], which predicts a square-root-type dispersion, ωgp ∝

√
q, for

graphene plasmons (GPs). The next step in the complexity ladder is the inclusion
of both intraband and interband contributions in graphene’s conductivity within
the framework of the local RPA [Eq. (3.21)]; here, the presence of interband effects
effectively restricts the GPs’ dispersion to energies ~ω/EF . 1.667, as discussed in the
text after Eq. (4.2). Finally, we also show the dispersion of GPs obtained by employing
the more sophisticated full nonlocal conductivity of graphene obtained within the
formalism of the nonlocal RPA [Eq. (3.30)] (together with Mermin’s particle-conserving
relaxation-time approximation). The nonlocal model imparts significant deviations of
the GPs’ dispersion from its local prediction, particularly as q/kF increases. Naturally,
this deviation is more pronounced for large wavevectors (and correspondingly larger
frequencies). Another important feature that can only be rigorously described using
the full nonlocal model is the substantial change of the GPs’ dispersion when it enters
the region associated with interband Landau damping, where GPs become short-lived
due to their ability to decay rapidly into electron-hole pairs. This aspect becomes
especially transparent through the observation of the disappearance of a well defined
plasmon branch in the color plot of Fig. 4.2, immediately after entering the interband
electron-hole continuum.

Nonretarded regime. Due to the extreme subwavelength confinement promoted by
GPs [7, 91, 92, 105, 107, 108], it transpires that the nonretarded limit (defined by the
absence of retardation effects) can be taken without any loss of accuracy in virtually
all the relevant scenarios. In fact, treating plasmons in graphene within a nonretarded
approach often constitutes an excellent approximation, as demonstrated in a number
of works [7, 92, 105, 106, 108, 296–299]. In this spirit, we take the nonretarded limit
(i.e., q � k0) of Eq. (4.2), thereby obtaining the nonretarded dispersion relation of
graphene plasmons5:

q = 2iωε0ε̄
σ(q,ω) , (4.5)

where we have introduced the quantity ε̄ = (ε1+ε2)/2 without loss of generality. Notice
that the previous equation is still an implicit condition for the GPs’ nonretarded
spectrum, due to the explicit dependence of the conductivity on both q and ω. In the
local limit, and for low-loss, one can obtain a closed-form expression for the (real part)
of the GPs’ wavevector as a function of frequency, that is,

q = 2ωε0ε̄
Im σ(ω) . (4.6)

5In fact, this expression is not only valid for plasmons in graphene, but it also holds for any
confined excitation supported by a 2D material sitting in an interface between two semi-infinite
media.
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4 Fundamentals of Graphene Plasmonics

At this point, it is instructive to carry out an explicit calculation by adopting the
Drude-like expression for the conductivity of graphene (3.22), which for negligible

losses takes the form σd(ω) ' ie2

π~
EF

~ω . Hence, and within these approximations, the
dispersion for graphene plasmons in extended graphene becomes6 [7]

~ωgp =
√

2α
ε̄
EF ~c q , (4.7)

where α = e2

4πε0~c ' 1/137 denotes the fine-structure constant. Chiefly, this result
predicts that plasmons in graphene exhibit a ωgp ∝

√
q dispersion in the local,

intraband-dominated conductivity regime. Incidentally, such square-root dependence
of the plasmon dispersion with wavevector is a manifestation of the system’s two-
dimensionality, as this behavior is also observed in conventional 2D electron gases
with a parabolic band [7, 90, 288, 300]. However, the dependence of the plasmon
energy with the carrier density is different between graphene and traditional 2DEGs.

In particular, graphene plasmon’s exhibit a ωgp ∝
√
q n

1/4
e dependence, whereas

plasmons in conventional 2DEGs exhibit a ω2deg
p ∝ √q n1/2

e scaling instead7 [7].
Evidently, this difference is ascribed to the unique linear energy-momentum dispersion
that is characteristic of graphene’s massless Dirac fermions.

In closing, let us provide a rough estimate of the maximum confinement of the
electromagnetic fields that can be achieved using plasmons in an extended, continuous
graphene sheet. With the help of Eq. (4.7), it is easy to see that the ratio between the
GP’s wavelength, λgp = 2π/qgp, and that of photon in free-space, λ0 = 2πc/ω, with
the same frequency ω, is given by

λgp

λ0
= 2α

ε̄

EF
~ω

. (4.8)

6The generalization of this result for the case of a Drude-type conductivity with finite (but weak)

damping is straightforwardly given by ωgp = 1
~

√
2α
ε̄
EF ~c q − i γ2 .

7The nonretarded dispersion relation for 2D plasmons supported by 2D electron systems can be
generically written as [cf. Eq.(4.6)]

ω2D-plasmon =

√
D

2πε0ε̄
q ,

where D is the so-called Drude weight. This quantity is defined via the Drude conductivity for an
arbitrary 2D electron system, σ(ω) = i

π
D

ω+iγ . Since the Drude weight of graphene, Dg = e2EF /~2 =
e2~−1vF

√
πne, is different than that of a parabolic 2DEG, D2deg = e2πne/m∗, this leads to 2D

plasmons whose dispersions exhibit distinct dependences as a function of the electronic density,
namely

ω2D-plasmon =

{
Cg q

1/2n
1/4
e , for plasmons in graphene

C2deg (q ne)1/2 , for plasmons in a conventional 2DEG

,

where, for the sake of completeness, the constants in the previous expressions are Cg =
√

e2
2
√
πε0 ε̄

vF

and C2deg =
√

e2
2ε0 ε̄m∗

.
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4.1 Plasmons in Extended Graphene P. A. D. Gonçalves

For graphene on a typical dielectric substrate, and for frequencies near ω ≈ EF /~
(so that one is sufficiently away from interband effects), which typically falls in the
mid-IR, one obtains λgp ≈ αλ0 ≈ 10−2λ0, that is, the GP’s wavelength can be up to
100 times smaller than that of light propagating in free-space.

4.1.2 Plasmons in double-layer graphene

We now consider two doped graphene sheets separated by a distance d. The interlayer
medium is assumed to be a dielectric medium with relative permittivity ε2, and the
whole structure is encapsulated by a substrate characterized by ε3 and a superstrate
described by ε1, as represented schematically in Fig. 4.3. Each graphene layer is

Figure 4.3: Representation of a graphene double-layer structure where the two graphene sheets
are distanced by an inner slab of thickness d and dielectric constant ε2. The upper and lower
media, with relative permittivities ε1 and ε3, respectively, are assumed to be semi-infinite for
simplicity. The two individual graphene layers are placed at the interfaces defined by the z = d
and z = 0 planes, and are characterized by the surface conductivities σ12 and σ23, correspondingly.

described by a conductivity as shown in the figure. The computation of the plasmon
dispersion for a graphene double-layer can be performed using the same principles
described in Sect. 2.2.1.2, and a detailed derivation can be found in Ref. [7].

In particular, the dispersion relation for coupled graphene plasmons in double-layer
graphene stems from the solutions of [7][

ε1
κ1

+ ε2
κ2

+ iσ12(q,ω)
ωε0

] [
ε3
κ3

+ ε2
κ2

+ iσ23(q,ω)
ωε0

]
eκ2d =[

ε1
κ1
− ε2
κ2

+ iσ12(q,ω)
ωε0

] [
ε3
κ3
− ε2
κ2

+ iσ23(q,ω)
ωε0

]
e−κ2d , (4.9)

where κj ≡ κj(q,ω) =
√
q2 − εjk2

0 with j ∈ {1, 2, 3}. From this expression, it is
clear that for small interlayer separations (i.e., such that κ2d� 1), the GPs in each
graphene layer can couple via the Coulomb interaction, which, as we shall see below,
leads to the formation of two hybrid GP modes of the whole system [7, 301–303].
Conversely, for very large separations d→∞ (or large momenta such that κ2d� 1)
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4 Fundamentals of Graphene Plasmonics

the two interfaces decouple and one recovers the two dispersion relations akin to GPs
in each one of the individual sheets.

A case of special interest—and also one that is particularly elucidative—is that of
a double-layer graphene structure in which the two graphene sheets possess the same
doping, and hence the same conductivity σ ≡ σ12 = σ23. Moreover, for a symmetric
dielectric environment ε1 = ε3 (and thus κ1 = κ3), Eq. (4.9) can be substantially
simplified. Specifically, under this assumption Eq. (4.9) yields two coupled GP modes
of opposite parity, namely [7]

ε2
κ2

tanh
(
κ2d

2

)
+ ε1
κ1

+ iσ(q,ω)
ωε0

= 0 , (4.10a)

for the optical plasmon mode, where the charge density in both graphene sheets
oscillate in-phase, and

ε2
κ2

coth
(
κ2d

2

)
+ ε1
κ1

+ iσ(q,ω)
ωε0

= 0 , (4.10b)

for the acoustic plasmon mode, in which the charge density in both graphene sheets
oscillate with opposite phase.

The dispersion diagram of the hybridized GP modes of a graphene double-layer is
displayed in Fig. 4.4. The figure shows the plasmon spectrum of the system calculated
under different approximations (in the same vein of Fig. 4.2 corresponding to monolayer
graphene). Two distinct modes can be clearly identified: an upper plasmonic branch
corresponding to the optical GP, and a lower plasmonic branch corresponding to the
acoustic GP. Furthermore, as in the single-layer case considered in Sect. 4.1.1, it can

Drude nonlocal RPAlocal RPA

Figure 4.4: Spectrum of graphene plasmons in double-layer graphene obtained using different
models for the optical response of graphene. In all panels, the graphene sheets are assumed to be
separated by a distance of d = 5 nm. The colormap in the background of each plot expresses
the loss function via the imaginary part of the TM reflection coefficient, Im rDLG

p (corresponding
to each conductivity model). Material parameters: ε1 = ε2 = ε3 = 1, E 12

F = E 23
F = 0.4 eV, and

~γ = 8 meV.
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Figure 4.5: Dispersion relation of plasmons in double-layer graphene structures with different
interlayer separations d . The optical response of graphene is modeled within the nonlocal RPA
with the Mermin-corrected relaxation-time approximation. The hatched regions denote the
single-particle continuum where Landau damping occurs. Material parameters: ε1 = ε2 = ε3 = 1,
E 12

F = E 23
F = 0.3 eV, and ~γ = 5 meV.

also be seen how the plasmon dispersion is successively affected—from the simplest to
the most sophisticated model—by the onset of vertical interband transitions, and then
by nonlocal effects (that manifest themselves as a change in the plasmon dispersion
curve and in plasmon damping due to Landau damping).

We now turn our attention to the dependence of the coupled GP’s dispersion on the
interlayer separation d. For the sake of clarity, we assume that both graphene layers
have the Fermi energy (E12

F = E23
F ) and that they are embedded in a homogeneous

dielectric medium (here assumed to be vacuum). As Fig. 4.5 plainly shows, the coupling
between GPs living in each individual graphene sheet splits the plasmon dispersion
of single-layer graphene (SLG) into an upper and a lower branch, associated with
the optical and acoustic plasmon, respectively. Predominantly, the aforementioned
splitting becomes successively more pronounced upon decreasing interlayer separation
d, owing to the correspondingly stronger interlayer Coulomb coupling. In the d→ 0
limit, the optical plasmon branch becomes indistinguishable from that of a graphene
monolayer with twice the Fermi energy, while the linear acoustic branch becomes
indistinguishable from the ω = vF q line (meaning that the GP’s velocity slows down
to the Fermi velocity of electrons in graphene; we shall revisit this point in Sect. 7.2).

67
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4.2 Plasmons in Nanostructured Graphene

The studies carried out in the previous section on the basic properties of propagating
graphene plasmons in extended graphene systems have enabled us to establish the
fundamental theory and the elementary concepts behind plasmonic excitations in
graphene. Notwithstanding, the vibrant field of graphene plasmonics is considerably
wealthier than that, going well beyond the restricted subgroup of extended graphene
structures. As such, the prime goal of the present section is to expand our previous
considerations by discussing localized plasmons in graphene nanostructures [7, 299].
These are typically fabricated by patterning an otherwise continuous graphene sheet,
and arguably constitute the most abundant subset of graphene-based plasmonic
structures considered in the literature. A primary reason for this has to do with the
fact that plasmons in nanostructured graphene can couple to light directly without the
necessity to employ special coupling techniques (a feature that they share with LSPs
in finite-sized metal particles). Examples of graphene nanostructures—considered
either in isolation or in periodic arrangements—that have been used in plasmonics
are graphene ribbons [109, 110, 270, 304–308], disks [286, 309–314], rings [310, 312],
triangles [315, 316], or anti-dots [314, 317–319], just to mention a few.

In the present section, we provide a cursory overview of plasmonic excitations in
nanostructured graphene. First, we introduce a general nonretarded formalism for
modeling plasmons in two-dimensional nanostructures of arbitrary geometries [7, 299].
We then focus on two archetypal structures for graphene plasmonics—graphene
nanoribbons and nanodisks—and compute and characterize the plasmonic resonances
supported by them. Finally, we consider the interaction and ensuing hybridization of
2D plasmons in 2D nanoslits carved in an atomically-thin crystals [298], and interpret
the corresponding results and waveguiding properties of such structures.

4.2.1 Nonretarded framework for graphene plasmons in
generic nanostructures

As mentioned above, the deeply subwavelength character of graphene plasmons renders
retardation effects negligible, and therefore a nonretarded treatment provides an
excellent description of plasmons in graphene nanostructures in nearly all relevant
scenarios. Consequently, instead of solving the full vectorial Maxwell’s equations,
one can afford to solve the corresponding electrostatic problem, whereby plasmon
excitations are governed by the Poisson equation for the (scalar) electric potential.

In what follows, we consider a generic 2D nanostructure lying in the z = 0 plane
and encapsulated by a superstrate and a substrate with relative permittivities ε1 and
ε2, respectively. Hence, one may write Poisson’s equation as

∇2Φ(r) = −ρ(r)
ε0ε̄

, (4.11)
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where, as previously, ε̄ = (ε1 + ε2)/2 is simply the average dielectric constant8 of the
media on either side of the 2D nanostructure. Both the electrostatic potential and the
charge density are herein assumed to have a harmonic time dependence of the form
Φ(r, t) = Φ(r)e−iωt and ρ(r, t) = ρ(r)e−iωt. In turn, the charge density is restricted
to the xy-plane and thus one may write ρ(r) = ρ2D(r‖)δ(z), where ρ2D is a surface
charge density and the in-plane vector r‖ is given by r‖ = x x̂ + y ŷ. Furthermore, the
induced surface charge density can be written in terms of the in-plane electrostatic
potential φ(r‖) [with φ(r‖) ≡ Φ(r‖, z = 0)] by combining Ohm’s law together with
the continuity equation, yielding the following relation9

ρ2D(r‖) = iω−1σ(ω)∇‖ ·
[
f(r‖)∇‖φ(r‖)

]
, (4.12)

where ∇‖ ≡ x̂ ∂
∂x + ŷ ∂

∂y is the in-plane 2D nabla operator and f(r‖) is an envelope
function that takes into account the geometry of the 2D nanostructure. Specifically,
it can be defined through σ(r‖,ω) ≡ σ(ω)f(r‖), where f(r‖) = 1 for r‖ within
2D nanostructure and f(r‖) = 0 otherwise10. At this point, the nonretarded optical
response can be determined in a self-consistent fashion by solving the coupled equations
(4.11) and (4.12).

We can make this more transparent by considering Poisson’s equation (4.11) in
integral form instead, namely

Φ(r) = 1
ε0ε̄

∫
dr′G(r, r′)ρ(r′)

= 1
ε0ε̄

∫
dr′‖G(r‖, r′‖; z, z′ = 0)ρ2D(r′‖)

= iσ(ω)
ωε0ε̄

∫
dr′‖G(r‖, r′‖; z, z′ = 0)

{
∇′‖ ·

[
f(r′‖)∇

′
‖φ(r′‖)

]}
, (4.13)

where G(r, r′) is the Green’s function that satisfies the differential equation associated
with Eq. (4.11), that is, ∇2G(r, r′) = −δ(r− r′). Crucially, notice that the previous

8We emphasize that this result is not a näıve “effective medium” approximation, but it is in fact
an exact description of dielectric screening for a planar interface within the nonretarded regime.

9This can be shown explicitly by noting that the 2D version of the continuity equation ∇‖ ·J2D +
∂
∂t
ρ2D = 0 can be cast as ∇‖ · J2D = iωρ2D, and thus we have

ρ2D(r‖) = (iω)−1∇‖ · J2D

i= (iω)−1∇‖ ·
[
σ(r‖,ω)E‖(r‖)

]
= (iω)−1σ(ω)∇‖ ·

[
f(r‖)E‖(r‖)

]
ii= iω−1σ(ω)∇‖ ·

[
f(r‖)∇‖φ(r‖)

]
,

where, in particular, Ohm’s law J2D = σE‖ and the relation E‖ = −∇Φ(r‖, z = 0) ≡ −∇φ(r‖) have
been used, respectively, in steps (i) and (ii).

10In this way, it is implicitly assumed that the 2D structure is homogeneously doped. Nevertheless,
in general, f(r‖) does not have to be defined in such a step-like fashion; in fact, that assumption can be
relaxed so that the formalism considered here can be straightforwardly extended to inhomogeneously
doped 2D nanostructures as well (see, for instance, Refs. [320, 321] for examples).
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equation tells us that the potential in the entire space can be deduced provided that the
in-plane potential within the 2D nanostructure is known [this is the only contribution
since outside the material f(r‖) = 0]. To that end, we now evaluate the previous
equality at z = 0, so that one obtains the following self-consistent integro-differential
equation for the potential within the 2D nanostructure:

φ(r‖) = iσ(ω)
ωε0ε̄

∫
dr′‖ g(r‖, r′‖)

{
∇′‖ ·

[
f(r′‖)∇

′
‖φ(r′‖)

]}
, (4.14)

with g(r‖, r′‖) ≡ G(r‖, r′‖; z = 0, z′ = 0). Equation (4.14) becomes particularly

elucidative (and useful) by writing it in terms of dimensionless quantities: introducing
r̃‖ = r‖/L and ∇̃‖ = L∇‖, where L is some appropriate characteristic length of the
structure under consideration, the above equation can be recast as

Λφ(r̃‖) = −2
∫
dr̃′‖ g(r̃‖, r̃′‖)

{
∇̃′‖ ·

[
f(r̃′‖)∇̃

′
‖φ(r̃′‖)

]}
,

where Λ = 2iωε0ε̄L
σ(ω) ,

(4.15a)

(4.15b)

which is now clearly scale-invariant. This is because the integral has been stripped of
any reference to the structure’s size upon introducing the above-noted dimensionless
spatial variables. Moreover, there is no frequency or any material dependencies left
in the right-hand side of Eq. (4.15a), and thus that term has a purely geometrical
meaning. Consequently, this formalism can in fact be applied to any 2D material that
is capable of supporting plasmonic resonances (or other collective modes, e.g., phonon
polaritons or exciton polaritons).

Naturally, the usefulness of the general scale-independent integro-differential equa-
tion epitomized by Eq. (4.15a) relies on one’s ability to solve it. In general, this cannot
be done analytically and hence one has to rely on numerical methods. In spite of
this, it is still possible to solve Eq. (4.15a) using semi-analytical techniques [7, 299].
Broadly speaking, the idea behind such semi-analytical methods is typically to expand
the electric potential φ(r̃‖) using a suitable set of basis functions. Throughout this
section, we choose to base our semi-analytical framework on an expansion using a
basis containing orthogonal polynomials11 [7, 296, 298, 320, 322–326]. The specific
type of orthogonal polynomials [327] is intimately related to the particular geometry of
the nanostructure under consideration. In any case, by performing such an expansion
of the potential figuring in Eq. (4.15a) followed by the use of the appropriate orthogo-
nality relation [327], the integro-differential equation (4.15a) can be transformed into
a standard matrix eigenvalue problem

∞∑
m=0

U (ν)
nmc

(ν)
m = Λνc(ν)

n ⇒ Uνcν = Λνcν , (4.16)

11See Ref. [7] for an all-encompassing introduction on the use of this method for calculating
plasmonic excitations in several graphene nanostructures.
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where the index ν categorizes the plasmon resonance. Lastly, the diagonalization of
the square-matrix U(ν) yields the system’s plasmon eigenfrequencies via

Λν(ων) = λν ⇔ 2iωνε0ε̄L
σ(ων) = λν , (4.17)

where λν denotes the eigenvalues of U(ν). On the other end, the corresponding
eigenvectors allow the construction of the in-plane potential in the 2D nanostructure
and thus the mode profile associated with the plasmon eigenfrequency ων . From
here, one can also compute the induced charge density within the 2D material using
Eq. (4.12), or to determine the potential in the entire three-dimensional space through
Eq. (4.13) [the corresponding electric field then simply follows from E(r) = −∇Φ(r)].
Notice that either one of those calculations does not require a significant amount of
labor, since they only contain derivatives or integrals of functions involving polynomials
and simple weighting functions (typically either an exponential, a Gaussian, or a
polynomial).

Before applying this formalism to any particular 2D plasmonic structure, it is
enlightening to substitute graphene’s Drude conductivity in Eq. (4.17) and thereby
establish an explicit connection between the eigenfrequencies ων and the eigenvalues
λν . Hence, assuming low-loss (i.e., ων � γ), one finds the relation

ων '
1
~

√
2α
ε̄
EF ~c

λν
L
− iγ2 , (4.18)

which bears close resemblance to the dispersion relation of GPs in extended graphene
[cf. Eq. (4.7)], where the role previously played by the wavevector is now transferred
to λνL

−1. Notably, this result formally validates the intuitively expected behavior
ω ∝

√
1/L, that here is now appropriately weighted by the eigenvalue λν that accounts

for the particular geometry of the graphene nanostructure.

Plasmons in two-dimensional nanoribbons. In the context of graphene plasmon-
ics, studies using the ribbon geometry proliferate in the literature [7, 109, 110, 270, 304–
308], thereby making it a prototypical system to study plasmons in two dimensions.
Below, we provide an economical overview of the application of the nonretarded
framework outlined above to the specific case of the ribbon geometry.

In what follows, we consider a 2D nanoribbon of finite width W = 2a (along the
x-axis) and that is translational invariant along the y-direction. Hence, the electric
potential in such a system can be written as Φ(r) = Φ(x, z)eikyy [and similarly for
the charge density]; thus the wavevector parallel to the ribbon’s edges, ky, can be
used to parameterize the plasmon modes of the ribbon. Concretely, in the language
of Eq. (4.15), the in-plane potential φ(r̃‖) and the function g(r̃‖, r̃′‖) are found to

be given by φ(r̃‖) = φ(x̃) eiβỹ and g(x̃, x̃′) = (2π)−1K0(β|x̃ − x̃′|) [7], where K0 is
the zero-th order modified Bessel function of the second kind, and where we have
introduced the dimensionless variables (x̃, ỹ) = (x/a, y/a) and normalized wavevector
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λ
[n]
β = cn1β + cn2 + cn3β

1 + cn4β + cn5β
2

n cn1 cn2 cn3 cn4 cn5

0 0.8216 0 -12.397 233.56 -9.6187
1 0.8106 1.1541 0.2760 0.5905 1.5169
2 1 2.7402 0.1302 0.3411 0.1928
3 1 4.2980 0.2383 0.2633 0.0667
4 1 5.8731 0.2856 0.2069 0.0336
5 1 7.4389 0.3055 0.1683 0.0200
6 1 9.0120 0.3138 0.1413 0.0131
7 1 10.579 0.3151 0.1211 0.0092
8 1 12.152 0.3119 0.1057 0.0068
9 1 13.732 0.3044 0.0933 0.0052

Table 4.1: Fits to the eigenvalues describing the spectrum of plasmons in a 2D nanoribbon.
Analytical fitting function [330] (top row) written as a linear term plus a Padé approximant of
the form [1/2], followed by the corresponding fitting constants obtained by fitting the analytical
formula to the calculated data presented in Fig. 4.6.

β = kya. Likewise, since we have assigned L ≡ a (i.e., half of the ribbon’s width),
the dimensionless parameter (4.15b) is then Λ = 2iωε0ε̄a/σ(ω). Having specified all
the ingredients entering in the integro-differential equation (4.15), the next step is to
expand the potential φ(x̃) using a suitable basis in terms of orthogonal polynomials. For
the ribbon geometry, such an expansion takes the form φ(x̃) =

∑∞
n=0 cnPn(x̃), where

Pn(x̃) denotes the Legendre polynomials. Finally, substituting the aforementioned
expansion into Eq. (4.15a) and exploiting the orthogonality relation of the Legendre
polynomials12 yields an eigenproblem in the familiar form of Eq. (4.16).

The plasmon spectrum of 2D nanoribbons calculated using the method described in
the previous paragraph is shown in Fig. 4.6. As depicted in Fig. 4.6a, the eigenvalues

λβ = {λ[0]
β ,λ[1]

β ,λ[2]
β , ...} are parameterized by β and form a manifold of plasmon

bands indexed by n, where n = 0 corresponds to the monopolar eigenmode, n = 1 to
the dipolar eigenmode, and so on. Each band therefore describes a ribbon plasmon
propagating along the y-direction with (normalized) wavevector β and exhibiting
quantization (for n ≥ 1) across the ribbon’s width13.

12Explicitly:
∫ 1
−1 dx̃Pn(x̃)Pm(x̃) = 2δnm/(2n+ 1).

13This standing-wave-like, quantized behavior is thus suggestive of the condition knxW = nπ. It
turns out, however, that the computed spectrum is only reasonably well described if one augments
this elementary picture by allowing a n-dependent “reflection phase-shift”, i.e., knxW + ϕn = nπ.
This kind of analysis has been explored in some works [328, 329], but caution should be taken when
attempting to attribute a direct physical origin for such fitted phase-shifts.
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Calculated

Fitted

Calculated

Plasmons in 2D Nanoribbons

Figure 4.6: Plasmons in an individual 2D nanoribbon of width W = 2a. (a) Eigenvalues
associated with plasmons of a 2D nanoribbon calculated using the semi-analytical method
described in the text (colored solid lines) and corresponding fits (black dashed lines). (b)
Dispersion relation of the plasmonic eigenmodes supported by 2D nanoribbons, obtained using
the calculated eigenvalues and assuming a Drude-type conductivity [see Eqs. (4.17) and (4.18)].

Here, we have defined ωa =
√

D
2πε0 ε̄

a−1, where D is the Drude weight of the 2D electron system

(DG = e2EF/~2 for graphene, and D2DEG = e2πne/m∗ for a conventional 2DEG). (c–f) Spatial
profiles of the charge density across the ribbon associated with the four lowest-frequency plasmon
eigenmodes, for a fixed β = ky a = 1.5. The quantities in each panel are normalized with respect
to their absolute maxima. All results [(a–f)] were obtained by truncating the eigensystem with
N = 20 [cf. Eq. (4.16)], which provides converged results for the depicted modes.
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In addition to our semi-analytical results (shown as colored solid lines), we have
also superimposed analytical fits (represented by the black dashed lines) to the
corresponding data, and whose fitting parameters are listed in Table 4.1. Similarly,
Fig. 4.6b shows the same results, but where a Drude-like conductivity has been

assumed, thereby allowing us to write the plasmon dispersion diagram as ω
[n]
β =

ωa

√
λ

[n]
β [cf. Eq. (4.18)], where ωa = ~−1

√
(2α/ε̄)EF ~c a−1 for the case of a graphene

nanoribbon.

Figures 4.6c–f portray the calculated charge density profiles that are associated
with the four lowest-frequency eigenmodes, and empirically endorse the standing-wave-
like picture mentioned previously. Notwithstanding, in the limit of large β = kya,
the plasmon bands indicated in Figs. 4.6a–b can be divided into two groups based
on their asymptotic behavior: one containing the two lowest-frequency eigenmodes,

characterized by λ
[n≤1]
β , and another containing the modes defined by λ

[n≥2]
β . In

particular, the dispersion curves associated with the monopolar and dipolar ribbon
eigenmodes become degenerate and asymptotically approach the dispersion of quasi-1D

edge plasmons supported by a half-sheet, specifically limβ→∞ λ
[n≤1]
β = λhs β, where14

λhs ≈ 0.8216. This observation can be intuitively understood by noting that these
two modes are highly—and solely—confined to the ribbon’s edges. On the other hand,
the dispersion curves corresponding to eigenmodes affiliated with the second group
(containing the set of higher-order modes with n ≥ 2) pile-up at the line defined by

λ
[n≥2]
β = β, when β →∞. As such, they acquire a successively more bulk-like behavior

with growing β, and their dispersion becomes ω
[n≥2]
β → ω

[n≥2]
ky

= ~−1√(2α/ε̄)EF~c ky,
and thus indistinguishable from that of plasmons in an extended, infinite graphene
sheet [cf. Eq.(4.7)].

Plasmons in two-dimensional nanodisks. Like the ribbon, the disk geometry is
also one of the most prominent nanostructures for investigating plasmons in nanos-
tructured graphene, a fact that is reflected by the vast number of works devoted to
this configuration [7, 286, 309–314]. In the following, we outline the key points for
applying the nonretarded formalism introduced in this section to describe plasmon
resonances supported by a conductive 2D nanodisk (e.g., a doped graphene nanodisk).

Let us consider a single 2D disk of radius R made from an atomically-thin material.
In the present case, by virtue of axial symmetry, we can express the potential as
Φ(r) = Φ(x, z)eilθ, where an analogous relation holds for the corresponding induced
charge density. Therefore, we anticipate that the plasmon eigenmodes can be classified
in terms of their angular momentum l, each containing a further subset of radial
eigenindexes n that allocate the mode’s type of radial confinement. Moreover, since
the natural length scale of a disk is its radius, we adopt L ≡ R, so that we have

14The value λhs ≈ 0.82155866 stems from the application of the Wiener–Hopf technique for
calculating the dispersion of edge plasmons in a half-sheet. Explicitly, it is given by the root of the

equation
∫ π/2

0 ln
(
[λhs sin(x)]−1 − 1

)
dx = 0 [331].
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n = 1 n = 2 n = 3

λ
[n]
l=1 1.0978 4.9141 8.1338

λ
[n]
l=2 1.9943 6.2456 9.5456

λ
[n]
l=3 2.8557 7.5125 10.899

Table 4.2: Computed eigenvalues λ
[n]
l corresponding to different {l , n} eigenmodes that classify

the plasmon resonances in individual 2D nanodisks (cf. Fig. 4.7).

Λ = 2iωε0ε̄R/σ(ω) and the in-plane potential becomes φ(r̃‖) = φ(r̃)eilθ, where r̃ =
r/R. Additionally, the dimensionless function g(r̃‖, r̃′‖) admits a representation of

the form g(r̃, r̃′) = 1
2
∫∞

0 dpJl(pr̃)Jl(pr̃′), where Jl is the Bessel function of the first
kind of order l. Next, we expand the radial potential inside the disk—associated
with an angular momentum l—using a basis in terms of Jacobi polynomials, that

is, specifically, φ(r̃) =
∑∞
n=0 cnr̃

lP
(l,0)
n (1 − 2r̃2), where P

(l,0)
n denotes the Jacobi

polynomials. Lastly, using the orthogonality relation of Jacobi polynomials15, the
integro-differential equation for the potential (4.15) can be converted into a standard
eigenvalue problem as in Eq. (4.16). Curiously—and perhaps rather surprisingly—in
the present case the matrix associated with this eigenproblem possesses analytical
matrix elements16.

The eigenvalues λ
[n]
l characterizing the spectrum of plasmon resonances in 2D

nanodisks are depicted in Figs. 4.7a–b as a function of the angular momentum l (where
the l = 0 modes have been omitted, and where the color is used to indicate eigenmodes
with the same radial eigenindex n). Like in the ribbon configuration, the spectrum
shows a manifold of eigenmodes whose energies increase with increasing eigenindex n;
however, and contrasting the ribbon geometry, these do not form “bands”, courtesy
of the azimuthal quantization l that has no equivalent in the ribbon structure. The
nature of the disk’s eigenmodes with distinct combinations of {l,n} pairs becomes
readily apparent upon inspecting the corresponding induced charge density profiles,

as shown in Fig. 4.7c. The associated eigenvalues λ
[n]
l are referenced in Table 4.2 for

the reader’s convenience. Unsurprisingly, the charge density profiles are naturally
reminiscent of the displacement ascribed to the normal modes of a vibrating circular
membrane, where the “quantum numbers” l and n classify the quantization along the
azimuthal and radial directions, respectively.

15Explicitly:
∫ 1

0 dr̃ r̃2l+1P
(l,0)
n (1− 2r̃2)P (l,0)

m (1− 2r̃2) = 1
2

δnm
2n+l+1 .

16This fact was noted by Fetter in Ref. [323], where he used the same method for expanding the
charge density instead of expanding the potential. Naturally, such a formulation is tantamount—and
ultimately equivalent—to the one described here. In any case, and perhaps more important for
practical matters, we stress that the approach we follow here also admits a matrix with analytical
matrix elements.
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l=1

l=2

l=3

n=1 n=2 n=3nlc

Plasmons in 2D Nanodisks

Figure 4.7: Plasmons in an individual 2D nanordisk of radius R. (a) Eigenvalues for l ≥ 1
associated with plasmon resonances of a 2D nanodisk obtained using the nonretarded framework
described in the text (colored circles; the dashed lines connecting the circles are only for visual
guidance). (b) Corresponding dispersion curves in the case where the 2D material’s optical
response is well described by a conductivity of the Drude kind [see Eqs. (4.17) and (4.18)]. Here,

ωR =
√

D
2πε0 ε̄

R−1, where D is the Drude weight of the 2D electron system. (c) Spatial profiles

of the normalized induced charge density for eigenmodes with different {l , n} pairs. All results
[(a–c)] were obtained by truncating the expansion to N = 100.
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The disk’s eigenmodes of dipole character, i.e., with l = 1, are of particular impor-
tance in what regards their excitation and interaction with plane-waves, since they
can couple strongly to these. Evidently, in the nonretarded limit the fundamental
dipole mode {1, 1} dominates the optical response of the system under plane-wave
illumination, and whose absorption cross section has been shown to be quite substan-
tial [299, 311].

4.2.2 Hybridized plasmons in two-dimensional nanoslits

The nonretarded framework set forth in Sect. 4.2.1 constitutes a versatile theoretical
tool to describe plasmons in graphene nanostructures, or, more generally, collective
modes supported by any nanostructured atomically-thin material. As demonstrated
in the examples given above, this semi-analytical technique provides an accurate
and reliable description of the spectral features of such self-sustaining collective
modes (e.g., plasmons), along with the corresponding spatial distributions of the
potential, charge density, and electric field. However, it should be noted that the
two prototypical nanosystems considered in the aforementioned section constitute
only two species (albeit particularly distinguished ones) of a vast zoo of plasmonic
nanostructures. Additionally, by combining different structures one can further
augment the set of available plasmon resonances through plasmon hybridization [298,
332, 333], which results in new hybrid modes of the mingled system. Motivated
by this, in Publication L [298] we have theoretically investigated plasmon coupling
and hybridization in 2D nanoslits—obtained by removing a ribbon of an otherwise
continuous 2D material—and extend our previous semi-analytical treatment also to
anisotropic 2D crystals. The goal of the present section if therefore to provide an
overview of the results reported in that publication [298].

Theoretical background. The setup under consideration—i.e., a 2D nanoslit
carved out of an arbitrary atomically-thin material—is sketched in Fig. 4.8. No-
tice that a 2D nanoslit of width W = 2a can be thought of as two co-planar, parallel
half-sheets separated by that distance. It should be stressed that although in the
following we focus on plasmonic excitations, the formalism presented herein is also
readily applicable to other polaritonic modes [139, 292], such as exciton polaritons in
transition metal dichalcogenides (TMDCs) or phonon polaritons in hexagonal boron
nitride (hBN).

As mentioned above, we describe the governing physics using the nonretarded
formalism outlined in Sect. 4.2.1 adapted to the present geometry (and, later on,
generalized also to anisotropic 2D media). Owing to the systems’ translational
invariance along the y-direction, we can express the electrostatic potential as Φ(r) =
Φ(x, z)eikyy [and the charge density admits a similar decomposition, i.e., ρ(r) =
ρ(x, z)eikyy], and thus Poisson’s equation takes the form[

∂2

∂x2 + ∂2

∂z2 − k
2
y

]
Φ(x, z) = −ρ2D(x)

ε0ε̄
δ(z) , (4.19)
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• waveguiding
• plasmonic sensing
• optical manipulation
• quantum control
• ...

TMDCs BN

BP

Figure 4.8: Illustration of two-dimensional nanoslits of width W = 2a made from different 2D
crystals, including doped graphene, transition metal dichalcogenides (TMDCs), black phosphorus
(BP), and hexagonal boron nitride (hBN). For instance, doped graphene and BP supports plasmon
polaritons, TMDCs can sustain exciton polaritons, and hBN supports phonon polaritons. Although
only monolayers are portrayed, our framework is also applicable to their few-layer counterparts as
long as a 2D conductivity can be attributed to them.

where the fact that ρ(x, z) = ρ2D(x)δ(z) has been used. Then, in the spirit of
Sect. 4.2.1, one can work out an integro-differential equation for the potential in the
form of Eq. (4.15). Before explicitly doing so, we first note that it is advantageous
to exploit the mirror symmetry of our structure with respect to the plane bisecting
the slit (defined by x = 0). In particular, we can divide the solutions into even and
odd eigensolutions and then solve for the eigenpotential in one side of the system
alone, say, for x > 0. With this in mind, one arrives to the following self-consistent
integro-differential equation17:

2iωε0ε̄ a
σ(ω)︸ ︷︷ ︸

Λ

φ+(x̃) = − 1
π

{∫ ∞
1

dx̃′Kη(β; x̃, x̃′)
[
∂2φ+(x̃′)
∂x̃′2

− β2φ+(x̃′)
]

+ ∂φ+(x̃)
∂x̃

∣∣∣∣
x=1
Kη(β; x̃, 1)

}
, (4.20)

with the integral Kernel Kη(β; x̃, x̃′) = K0(β|x̃− x̃′|)+ηK0(β|x̃+ x̃′|), where η = 1 for
even eigensolutions and η = −1 for odd eigensolutions. As in the ribbon case, we have

17See Supporting Information of Publication L for further details.
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defined the dimensionless quantities x̃ = x/a, x̃′ = x′/a, and β = kya. We then proceed
by expanding the potential φ+(x̃) using a basis containing Laguerre polynomials, i.e.,
φ+(x̃) = e−β(x̃−1)∑∞

n=0 cnLn(2β[x̃− 1]), where the aforementioned polynomials are
denoted by Ln, and satisfy the orthogonality relation

∫∞
0 e−tLn(t)Lm(t)dt = δnm.

Again, such a procedure then leads to an eigenvalue problem [cf. Eq. (4.16)], where the
specific matrix elements are described in the Supporting Information of Publication L.

Plasmon dispersion. The dispersion of the eigenmodes propagating along the 2D
nanoslit follows from the implicit condition

2iωνε0ε̄a
σ(ων) = λν , (4.21)

where λν , with ν = {β, η}, refers to the eigenvalues18 stemming from the solution of
the eigensystem obtained using Eq. (4.20) together with the expansion just described
in the preceding paragraph.

Assuming, for purposes of definiteness alone, that the 2D nanoslit is made of
graphene with a frequency-dependent conductivity well described by the Drude model,

namely, σ(ω) = ie2EF

π~2ω (assuming negligible losses), then the dispersion relation of the
system’s eigenmodes is given by:

ω(β) = ωa
√
λβ,η , (4.22)

which—for a given β—yields a pair of eigenfrequencies, each ascribed to η = ±.
Here, ωa is the nonretarded dispersion of plasmons propagating in extended, con-
tinuous graphene with wavevector ky = a−1, that is, ωa = ~−1

√
(2α/ε̄)EF~c a−1.

For a traditional 2DEG, the formula (4.22) is unchanged upon employing ωa =√
(2πα/ε̄)(ne/m∗)~c a−1 instead, where ne and m∗ stand for the carrier density and

the effective mass, respectively.
The reader should appreciate that, despite its simple and compact form, Eq. (4.22)

[or the more general Eq. (4.21) for that matter] entails a comprehensive description of
the effect of the nanoslit’s width in the coupling and ensuing hybridization of the modes
sustained at opposite edges of the structure. Such information is naturally embodied
in the eigenvalues λβ,η, which essentially depend on the dimensionless parameter
β = kya, or, in other words, on the slit width to plasmon wavelength ratio. Therefore,
the complete knowledge of the plasmonic spectrum can be fetched by diagonalizing
the matrix U for a set of β-values, and then inserting the determined eigenvalues
into Eq. (4.22). The outcome of that operation is shown in Fig. 4.9. As a guide
to the eye, we have also included the dispersion of edge plasmons supported by an
individual 2D half-sheet (green dashed line), as well as the plasmon dispersion of the
2D plasmon in the unpatterned, pristine 2D host material (black dashed-dotted line).

18We warn the reader than their definition here is slightly different from the one we used in
Publication L [mainly to be consistent with the one adopted when writing Eqs. (4.15)–(4.16)]. The
results in the end are naturally fully equivalent.
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Due to the electrostatic scaling law epitomized by Eq. (4.21), we stress that the results
presented in Fig. 4.9a are valid for an arbitrary dielectric environment, nanoslit width,
and irrespective of the host (isotropic) 2D crystal (upon choosing the appropriate
ωa, as discussed above). Crucially, the figure plainly shows that the hybridization
between the edge modes of the two half-planes results in a splitting of the unperturbed
half-sheet edge plasmon into a pair of new hybrid eigenmodes. These arise from
antisymmetric and symmetric hybridizations of the bare edge plasmons, giving rise
to a bonding and an antibonding branch, lying below and above, respectively, the
plasmon band of a single half-sheet—see Figs. 4.9a–b. As the name suggests, in the
case of the bonding mode the induced charge density in opposite half-planes oscillates
in anti-phase (odd symmetry), whereas for the antibonding mode such oscillations are
in-phase (even symmetry). Naturally, these resonances occur at different frequencies
(for a fixed propagation constant), hence giving rise to the aforementioned energy
splitting. We further illustrate this by drawing a plasmon hybridization scheme—
see Fig. 4.9c—where the calculated eigendensities are also depicted.

Figure 4.9b shows the solution of the condition (4.21) for a specific structure: a
50 nm-wide graphene nanoslit where the optical response of graphene has been modeled
using Kubo’s formula for the conductivity at finite temperature [cf. Eqs. (3.20)]. In
addition, we compare the results of our semi-analytical theory against data obtained
from numerical full-wave electrodynamic simulations using a commercially available
finite-difference eigenmode (FDE) solver [334]. The observed agreement between both
techniques is outstanding. Such a fact unambiguously demonstrates the ability of our
nonretarded semi-analytical framework to rigorously and accurately describe plasmonic
excitations in 2D nanoslits. All of this with the added advantage a semi-analytical
method provides in portraying a clear and intuitive picture of the underlying physics,
and, importantly, without the necessity of relying on often time-consuming numerical
simulations.

It is also worth noting that for large wavevectors (in relation to the momentum-
scale introduced by a−1, i.e., for kya � 1) the dispersion associated with both
eigensolutions asymptotically converge to that of an edge plasmon in an individual
half-plane (cf. Fig.4.9a). In this limit, the Coulomb interaction between the neighboring
edges falls off rapidly and therefore the two half-sheets become effectively decoupled.
Indeed, in that regime, we recover the dispersion of the edge plasmon of a single
half-sheet, due to the fact that limβ→∞ λβ,η = λhs β ≈ 0.8216β (cf. footnote 14 and
related discussion; a slightly different19—and more concrete—analysis in also given in
Publication L).

Finally, we portray in Fig. 4.10 the semi-analytically calculated electric field
distributions for the coupled modes supported by a 2D nanoslit. The distinct nature
of the hybridized plasmon modes is striking, with a dipole-like bonding mode and a
monopole-like antibonding mode clearly visible. Also worthy of notice is the high degree

19Specifically, in Publication L we define the parameter Λ and the matrix U in such a way that in
the β →∞ limit the corresponding eigenvalue becomes a constant [298] (as opposed to becoming
linearly dependent on β). Evidently, both approaches are fully equivalent and a simple matter of
choice.
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-1                                              1
-1               0                1

bonding
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Figure 4.10: Electric field distributions in the xz- (uζ)-plane corresponding to the two hybrid
edge plasmon modes of a 2D nanoslit, computed using the semi-analytic theory described in
the text (for β = ky a = 0.4). Here, the dimensionless spatial variables read: u = β(x̃ − 1) and
ζ = ky z = βz̃. The black solid line indicates the 2D plasmonic material. The three uppermost
panels display the electric field of the bonding mode, whereas the ones at the bottom depict the
same quantities for the antibonding mode. The vector plots superimposed onto the two main
panels illustrate the full 2D vector field, E(u, ζ) = Ex (u, ζ)ux + Ez(u, ζ)uz , while the background,
in rainbow colors, shows the y -component of the electric field (i.e., the component parallel to the
edges of the nanoslit). The length of the arrows is proportional to the norm of the electric-field
vector at that point, |E(u, ζ)|, in logarithmic scale. Each individual panel is normalized with
respect to their own maximum values, and the region depicted in the smaller panels has the same
dimensions as the main plots.

of field confinement delivered by the eigenmodes of the 2D nanoslit—particularly in
the vicinity of the slit’s edges—, which, for that reason, makes this geometry specially
well-suited for deep subwavelength waveguiding [7, 296, 297, 305] and plasmonic
circuitry [151], or else for plasmonic sensing [110, 308] and surface-enhanced Raman
spectroscopy (SERS) [21]. Other potential applications also include the control of
the decay rate of quantum emitters (via the Purcell enhancement) [25, 26, 56, 236] or
quantum information processing [89, 335, 336].

Nanoslits made from anisotropic 2D materials. So far, we have implicitly
assumed that the conductivity of the 2D material was isotropic. This is indeed the
case for unstrained graphene and group-VI TMDCs such as MoS2, WS2, or MoSe2.
Nevertheless, that remains a particular case of a broader picture. Notably, there
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has been a growing interest in the plasmonics of anisotropic 2D materials, either
as a platform to enhance and tune their inherent optical birefringence [337–339] or
in the context of hyperbolic nanophotonics [340, 341]. Examples of anisotropic 2D
materials include black phosphorus (BP) [342, 343], trichalcogenides like TiS3 [339,
344], and group-VII TMDCs (for instance, ReS2) [345]. Among these, few-layer
black phosphorus and its monolayer version—dubbed as phosphorene—have been the
subject of remarkable attention from the nanophotonics community, owing both to
its high carrier mobility and attractive optical properties [343]. For these reasons,
in the following we investigate 2D nanoslits made from anisotropic 2D crystals,
and, subsequently, we focus and discuss the case of doped phosphorene (which is a
semiconductor).

The key aspect differentiating this case from the isotropic scenario considered
above, lies in the fact that the surface conductivity of the atomically-thin material is
now a tensor; specifically, it can be written as20

σbp(ω) = σiso(ω)
(
m−1
xx 0
0 m−1

yy

)
, (4.23)

where mxx ≡ m∗x and myy ≡ m∗y are, respectively, the effective masses of the charge
carriers along the x- and y-direction (that will be oriented along the crystallographic
axis of high-symmetry). Clearly, the anisotropy of the optical response will be
controlled the the different effective masses. Additionally, in the above formula,

σiso(ω) = ie2

ω
ne

m0
is the conductivity of an isotropic 2DEG with parabolic dispersion,

where ne stands the carrier density and m0 is the electron rest mass.
Conveniently, one can still profit from the work performed earlier in the isotropic

setting by implementing a few basic modifications in order to contemplate the medium’s
anisotropy. We shall refrain ourselves from enumerating the mathematical details here,
but they are provided in the Supporting Information of Publication L. The corollary
of such procedure is an eigenvalue problem resembling the one encountered previously,
but where now the matrix that would be equivalent to U is supplemented by the
addition of another matrix that accounts for the system’s anisotropy. Naturally, as
before, the dispersion of the plasmon eigenmodes of the anisotropic 2D nanoslit are
determined by the eigenvalues of the total matrix. Denoting these by ξ, we find that
the spectrum of the guided modes in a doped phosphorene nanoslit follows from

ωbp(β) = ωa
√
ξβ,η , (4.24)

which is entirely analogous to Eq. (4.22) but with distinct eigenvalues. All the details
of the anisotropy and specificities of the 2D crystal are therefore contained in such
“anisotropic eigenvalues”, ξ.

Figure 4.11 shows the dispersion relation of anisotropic plasmons supported by an
electron-doped phosphorene nanoslit. Two different cases are considered: one where

20The low-energy bandstructure of monolayer BP can be approximated by that of an ordinary
parabolic 2D semiconductor, whose conductivity can be constructed in terms of the carrier effective
masses along the high-symmetry directions (here, the zigzag and armchair directions) [340, 342, 343].
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zigzag slit armchair slit

Figure 4.11: Dispersion of coupled, hybridized plasmon modes propagating along an electron-
doped phosphorene nanoslit. Both the case of a nanoslit patterned along the zigzag and the
armchair directions is shown. We have assigned negative values of ky to represent the hybrid
plasmonic modes sustained at a zigzag slit, and positive values of ky to identify the eigenmodes
of an armchair nanoslit. In our calculations, we take the following parameters for the (anisotropic)
electron effective masses: mZZ = 0.7m0 and mAC = 0.15m0 [342, 343], for the electronic bands
along the zigzag and armchair directions, respectively.

the edges of the slit run along the zigzag direction (left panel), and another in which
the nanoslit runs along the armchair direction (right panel)—see the figure’s insets.
Although it is clear that the qualitative features already observed in the isotropic case
remain—namely the existence of a bonding and an antibonding mode, respectively
below and above the dispersion curve of the half-sheet plasmon—the spectrum in the
anisotropic case is quantitatively very different depending on the orientation of the 2D
nanoslit with respect to the phosphorene’s crystal axes. The dramatic contrast between
the plasmon dispersion and hybridization in the two cases depicted in Fig. 4.11 reflects
the strong anisotropy of black phosphorus (which in turn stems from its puckered
honeycomb lattice). Indeed, while the dispersion curves associated with the hybrid
modes of a zigzag slit are barely indistinguishable from each other (and also from the
half-sheet and bulk phosphorene plasmon), the splitting between the bonding and
antibonding modes of an armchair phosphorene nanoslit is substantial. This arises
because, for instance in the latter case, the charge carrier effective mass is significantly
smaller along the slit’s armchair edges and it is larger in the direction perpendicular
to it (evidently, the situation is reversed in the case of a zigzag nanoslit).

We remark that the semi-analytical results presented in Fig. 4.11 were benchmarked
and subsequently validated by rigorous electrodynamic numerical calculations based
on the finite-element method (a comparison is shown in the Supporting Information
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of Publication L) [346]. Therefore, in this manner, we have demonstrated that our
semi-analytical model is extensible to nanoslits made from anisotropic 2D materials
as well. This further emphasizes the applicability and versatility of our method to
describe plasmonic excitations in a wide variety of nanostructured 2D plasmonic
materials, both with and without anisotropy [347]. In this regard, the same formalism
used for here for phosphorene call also be straightforwardly applied to other anisotropic
materials, or even otherwise isotropic materials under the application of uniaxial strain,
which effectively breaks the isotropy.

We believe that this investigation contributes with a new building block—a one-
atom-thick nanoslit—to the 2D toolkit of hybrid plasmon resonances, thereby expand-
ing our freedom and capabilities for designing new tunable plasmonic systems based
on flatland plasmonics.
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CHAPTER 5
Two-dimensional Channel

Plasmons in Nonplanar
Geometries

The ability to effectively guide electromagnetic radiation below the diffraction limit
is of the utmost importance in the prospect of all-optical circuitry. In this regard, a
great deal of hope [39, 138] has been deposited in plasmonics due to the ability of
surface plasmon polaritons (SPPs) to squeeze electromagnetic fields into subwavelength
dimensions. Indeed, one of the most prominent applications of SPPs for optoelectronic
technologies is the use of plasmonic waveguiding structures to route electromagnetic
radiation below the diffraction limit [17, 152, 348]. An example of a class of such
structures is the one involving the use of gap-SPPs (i.e., SPP modes sustained
at dielectric gaps separating two metal surfaces), which are particularly appealing
candidates for SPP-based waveguides due to their favorable balance between losses and
field confinement [151, 349–353]. A variation of this configuration is a V-shaped groove
carved into a metallic substrate. Within this geometry, the corresponding propagating
SPP modes are generally referred to as channel plasmon polaritons (CPPs) [349–351].
Over the last couple of decades, a plethora of fundamental explorations [124, 354, 355]
and proof-of-concept experiments have been carried out demonstrating the usage of
noble metal CPPs in plasmonic interferometers [20, 356], waveguides [357–361], ring-
resonators [20], and for nanofocusing [362]. Additionally, in the context of quantum
plasmonics [89], CPPs have also been explored for the control of the emission properties
of quantum emitters [363].

On the other hand, the rise of graphene as a novel plasmonic material has attracted
a great deal of attention owing to the prospect of long-lived, gate-tunable graphene
plasmons (GPs) that are capable of producing large field confinements in the THz
and mid-IR [7, 90–92]. Nonplanar graphene plasmons have recently gained interest [7,
364–366], but the investigation of graphene channel plasmons still remains largely
unexplored. Only very recently, research on the plasmonic properties of graphene
wedges and grooves has been conducted [296, 297, 367, 368].

In this chapter, we provide a comprehensive theoretical description of the salient
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wedge

groove

guided GP

Figure 5.1: Pictorial representation of
a guided graphene plasmon (GP) mode
propagating along a dielectric wedge.
Herein, we denote the system as a wedge
(groove) if the medium filling the inner
side of the triangularly-shaped channel
possesses a higher (lower) relative per-
mittivity.

features of graphene plasmons guided along the apex of a graphene-covered triangular
wedge or groove. The structure under consideration is sketched in Fig. 5.1. An
important advantage of this configuration is that it does not involve any nanopatterning
of the graphene sheet: it simply consists in depositing graphene onto a V-shaped wedge
or groove previously sculpted in the receiving substrate or by controlling the folding of
a 2D material using state-of-the art techniques1,2. In this way, graphene remains nearly
pristine and free from fabrication-induced defects or edge-roughness (which are often
present in other waveguiding graphene nanostructures, such as graphene ribbons [270]),
both of which have a negative impact on the GPs propagation losses. Furthermore,
by taking advantage of the third dimension one departs from the conventional flat-
graphene geometries and effectively produces a one-dimensional channel which not
only confines light in the vertical direction that bisects the channel, but is also capable
of producing lateral confinement of the electromagnetic radiation.

In what follows, we determine the spectrum and ensuing plasmonic properties of
guided GPs eigenmodes supported by a structure like the one illustrated in Fig. 5.1
(the theory described below is also applicable to other 2D materials capable of hosting
collective resonances). We describe the underlying physics using two different theoret-
ical approaches: (i) one that involves an extension of the semi-analytical orthogonal
polynomial expansion technique previously introduced in Sect. 4.2.1, and (ii) a sec-
ond one based on a generalization of the so-called effective-index method originally
designed for noble-metal CPPs [350]. The entire content of these two methods have

1The patterning of the substrate can be done, for instance, by employing the same techniques
used to fabricate metallic grooves [349], followed by the deposition of graphene or, alternatively, even
growing it on a pre-configured copper substrate [369]. Other possibilities include folding a graphene
layer or by exploring the formation of wrinkles (either naturally occurring [370–372] or deliberately
formed [369, 373, 374]).

2We bring to the reader’s attention that the (at first sight idealized) triangularly-shaped structure
proposed here (see Fig. 5.1) has actually been realized experimentally with graphene and other 2D
materials in a different context [369, 371, 373, 374] (albeit those studies have focused primarily on
electronic properties and strain-engineering).
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been published by the author in Publications P and M, respectively, for the (i) and
(ii) approaches. Hence, our aim here is to provide a succinct description of the main
findings reported in those publications.

5.1 Graphene Plasmons in Triangular Channels: Wedge

and Groove Configurations

We consider an idealized geometry in which a graphene monolayer is sandwiched
between a triangular dielectric wedge (or groove) with relative permittivity ε2 and an
outer dielectric material with relative permittivity ε1, as depicted in Fig. 5.2. As it
will become apparent later, our model is completely general irrespective of the specific
values for the dielectric constants of the cladding insulators. However, for the sake of
definiteness, we shall refer to a wedge whenever ε2 > ε1 and vice-versa to denote a
groove.

Figure 5.2: Cross section of the triangular
channel depicted in Fig. 5.1 with the specifi-
cation of the chosen (cylindrical) coordinate
system. The channel forms an angle of 2ϕ,
where the 2D material lies at the two semi-
infinite planes defined by θ = ±ϕ. The inner
and outer media are characterized by the rel-
ative permittivities ε2 (for −ϕ ≤ θ ≤ ϕ) and
ε1 (for ϕ ≤ θ ≤ 2π − ϕ), respectively.

Before outlining the details of the quasi-analytic theory developed to describe
guided GPs in triangular wedges and grooves, we highlight that one can treat the
cases of even and odd symmetry—defined after the potential or, equivalently, after
the induced charge density, and in relation to the line bisecting the channel’s cross-
section—separately, as this makes the problem more amenable to handle. In particular,
for the case of even symmetry (i.e., when the induced charges are symmetric in the
graphene half-planes which constitute the V-shape), we have found that such even
parity modes are not highly confined near the apex of the wedge/groove, with their
dispersion being virtually the same as the one of GPs in a flat, planar graphene
(see Fig. S2 in the Supporting Information of Publication P). Contrasting this, as it
will become clear ahead, the corresponding odd eigensolutions exhibit strong field
confinement near the apex of the wedge (or groove), and therefore hereafter we limit
our analysis exclusively to eigenmodes of odd parity. Moreover, by virtue of the high
degree of localization of the field near the apex, we note that although we assume (for
simplicity) an infinitely long V-shape, the theory developed here remains adequate in
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the description of V-shaped structures of finite height (or depth) as long as their size
is larger than the region spanned by the field distribution along the axis of symmetry.

As mentioned in the previous chapter, the extremely large wavevectors (when
compared with light’s free-space wavevector, k0 = ω/c) attained by graphene plasmons
allow us to treat plasmonic excitations in graphene within the electrostatic limit with
high accuracy. In this regime, the electric potential associated with GPs must satisfy
Poisson’s equation, which in cylindrical coordinates (cf. Fig. 5.2) can be written as[

∂2

∂r2 + 1
r

∂

∂r
+ 1
∂r2

∂2

∂θ2 − q
2
]

Φ(r, θ) = −ρ(r, θ)
ε0

, (5.1)

where we have written the scalar potential as Φ(r) = Φ(r, θ)eiqz, owing to the system’s
translational invariance along the z-axis (an implicit time-dependence of the form
e−iωt is assumed herein). This effectively reduces our initial 3D problem into a 2D one,
and will allow us to parameterize the dispersion relation of the guided modes in terms
of the propagation constant q. Hence, the solutions of Eq. (5.1) essentially render
guided wedge graphene plasmons (WGPs) or groove graphene plasmons (GGPs) that
propagate along the longitudinal direction (i.e., the z-direction). The solution of this
equation in the medium j = {1, 2} can be formally written as3

Φ(r, θ) = iσ(ω)
ω

∫ ∞
0

dr′Gj(r, θ; r′,ϕ)
[
∂2

∂r′2
− q2

]
Φ(r′,ϕ) , (5.2)

where σ(ω) is the dynamical conductivity of graphene (or of an arbitrary atomically-
thin medium), and Gj(r, θ; r′,ϕ) is the Green’s function associated with Eq. (5.1) in
that medium. Its explicit form is somewhat cumbersome, but the interested reader
may find it (along with its derivation) in the Supporting Information associated with
Publication P. Also, we further note that when writing the preceding equation we have
expressed the charge density as ρ(r, θ) = −en(r)δ(θ − ϕ)/r, and where the 2D carrier
density, n(r), has been written in terms of the electrostatic potential by combining
the continuity equation together with Ohm’s law. Finally, notice that we only need
to determine the potential in, say, the upper-half space (i.e., for 0 ≤ θ ≤ π), by
exploiting the above-noted symmetry. In the spirit of Sect. 4.2.1, we set θ = ϕ in
Eq. (5.2) and expand the potential at the graphene layer, φ(r) ≡ Φ(r,ϕ), as φ(r) =∑
n cnL

(0)
n (qr)e−qr/2, with L

(0)
n denoting the generalized Laguerre polynomials [327].

Making use of the appropriate orthogonality relations [327], it is then possible to
translate the self-consistent integro-differential equation (5.2) into a standard linear
algebra eigenproblem, namely

iω

qσ(ω)cm =
∞∑
n=0

Umncn , (5.3)

3We warn the reader in advance that throughout this section the definitions of the Green’s
function, the parameter Λ, etc, are slightly different that the ones adopted in Sect. 4.2.1.
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where the matrix elements Umn read

Umn =
∫ ∞

0
dr̃

∫ ∞
0

dr̃′G(r̃,ϕ; r̃′,ϕ)e−
r̃+r̃′

2 L(0)
m (r̃)

×
[

3
4L

(0)
n (r̃′)− L(2)

n−2(r̃′)− L(1)
n−1(r̃′)

]
. (5.4)

We note that the double integration over the dimensionless variables r̃ = qr and r̃′ = qr′

can be performed analytically, thereby making the computation of the matrix elements
extremely fast4. Also, note that we have dropped the subscript j in the Green’s function
because the boundary condition at θ = ϕ enforces that G1(x,ϕ; y,ϕ) = G2(x,ϕ; y,ϕ),
and thus one can choose either Green’s function arbitrarily without any loss of
generality.

The eigenvalue problem (5.3) can be solved numerically, and, as before, the
eigenvalues of U, denoted below by ϑ̃, determine the spectrum of WGPs (or GGPs)
via

iωϕ
qσ(ωϕ) = ϑ̃ϕ

or, equivalently,−−−−−−−−−−→ 2iωϕε0ε̄
σ(ωϕ)

1
q

= ϑϕ , (5.5)

where we have defined, for convenience, ϑϕ ≡ 2ε0ε̄ ϑ̃ϕ, with ε̄ = (ε1 + ε2)/2. For a
given opening angle 2ϕ, Eq. (5.5) returns a discrete set of WGP (or GGP) eigenmodes.
Crucially, all the wavevector and frequency dependence stems from the left-hand
side of the previous equation. Therefore, the eigenvalues ϑϕ ≡ ϑ(ϕ) carry a purely
geometric meaning, since they depend uniquely on the configuration of the system
(i.e., namely the opening angle and cladding dielectrics5).

In particular, using graphene’s Drude-like conductivity with negligible damping
[cf. Eq. (3.22)], one obtains the following “universal scaling law” for the dispersion
relation of graphene plasmons in triangular wedges and grooves:

ωϕ(q) = ωflat(q)
√
ϑϕ , (5.6)

where ωflat(q) = ~−1
√

2α
ε̄ EF~c q is simply the dispersion relation of GPs in flat

graphene [recall Eq. (4.7)]. Importantly, we stress that once the eigenvalues ϑϕ are
obtained, the entire spectrum [i.e., in the whole (q,ω)-space] is fully determined; all of
this by performing a single computation, once and for all. In fact, one may even plot
the dispersion of distinct 2D materials that support SPPs modes from such (single)
computation, since the eigenvalues ϑϕ do not depend on the 2D conductivity that
characterizes the specific 2D material under consideration [see Eq. (5.5)].

4There is, however, a one-dimensional numerical integration that still needs to be carrier out
(whose integral is embedded in the definition of the Green’s function; see Supporting Information of
Publication P for details).

5Recall that, for the planar structures discussed in Sect. 4.2.1, the eigenvalues stemming from
the corresponding nonretarded framework where independent of the specific value of the neighboring
dielectrics. That was because, in the strictly planar case, the substrate and the superstrate contributed
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Figure 5.3: Dispersion relations of graphene plasmons in triangular wedges and grooves (odd-
parity modes). Spectrum of WGPs [upper row; (a)–(c)] and GGPs [first two bottom panels;
(d)–(e)] associated different graphene-covered triangular configurations, with different opening
angles, 2ϕ (indicated in the insets), as given by Eq. (5.6) [we take EF = 0.4 eV]. The solid
black line represents the dispersion of GPs in a flat interface and serves as a guide to the eye,
while the straight yellowish dashed line indicates the light line. The colored symbols 5, ©,
and 4, in the upper row correspond to the results for the WGP dispersion as obtained from
full-wave numerical simulations (COMSOL’s finite-element method [346]). The insets’ shading

represents a dielectric with εd = 4, whereas the white regions denote a dielectric medium with
εd = 1 (e.g., air). (f) Spectrum of GPs guided along a V-shaped graphene channel embedded in
a homogeneous medium with ε1 = ε2 = ε̄ = 2.5 (shaded in the inset as ).

on equal footing to the rescaling of the in-plane (nonretarded) Coulomb interaction. In the nonplanar
case studied here, that is no longer the case, which is then reflected in eigenvalues that depend on
the dielectric functions ε1,2.
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The computed dispersion relation of graphene plasmons guided along the apex of
different triangular wedges and grooves is shown in Fig. 5.3. The spectrum contains a
discrete set of well-defined eigenmodes, whose number depends on the opening angle
2ϕ (indicated in the insets). Moreover, the figure plainly shows that, for the same
frequency, smaller angles yield correspondingly larger plasmon wavevectors, which
is an indication of stronger field confinement near the apex of sharper wedges (or
grooves). In addition, notice the large distance between the dispersion of the WGPs
and GGPs eigenmodes and the light line in the dielectric (which is almost vertical and
extremely close to the y-axis). This fact reflects the extremely high field localization
provided by the aforementioned eigenmodes, which push further graphene’s capability
of rendering plasmons that are deeply subwavelength. On a side note, this also justifies
the high accuracy of our nonretarded framework, as retardations effects are negligible.

Furthermore, note the outstanding agreement between the semi-analytical theory
detailed above and the electrodynamic simulations performed using the finite-element
method (FEM) technique (whose data is depicted in the figure as colored symbols).
This constitutes further evidence of the ability of our semi-analytic method to render
accurate results, and at the same time it provides a deeper and more transparent
fundamental understanding of the scaling properties of WGPs and GGPs.

Strikingly, the results plotted in Fig. 5.3 also convey a stark contrast between
the dispersion curves akin to WGPs and GGPs, demonstrating the superiority of
the former in squeezing light below the diffraction limit (because they attain larger
wavevectors for the same angle of the structure). We further note that one can
transform a wedge into a groove and vice-versa either by swapping the values of ε1 and
ε2, or by applying the angular transformation ϕ→ π−ϕ (this essentially interchanges
the Green’s functions G1 and G2). For the sake of completeness, in Fig. 5.3f we have
portrayed the spectrum of GPs guided along a triangular channel embedded in a
homogeneous dielectric medium with the same average relative permittivity as its
wedge and groove counterparts shown in the figure. It can be observed that—for the
same angle—each of the modes attain increasingly larger wavevectors as we move
from a groove, embedded, and wedge configuration (in this order). This observation
hints us that the ability to reach deep subwavelength regimes strongly depends on the
ε2/ε1 ratio, for a fixed (acute) angle. Such an educated guess is supported by the data
shown in Fig. 5.4, where it can be observed that the geometrical scaling factor entering
in Eq. (5.6) decreases monotonically with increasing ε2/ε1. In turn, this translates
into higher effective indexes, neff ≡ q/k0, for larger quotients ε2/ε1. As an example,
at a frequency of 20 THz, the fundamental WGP eigenmode in Fig. 5.3 exhibits an
effective index of neff ' 72. This already large effective index increases even further at
higher frequencies (for instance, for the CO2 laser wavelength of λ0 = 10.6 µm (around
28.3 THz) this value climbs to neff ' 100).

Naturally, the higher amount of field localization promoted by the WGPs or
GPPs comes hand in hand with slightly larger absolute propagation losses, a trait
that is well-known in plasmonics. Nevertheless, we have found that the number of
plasmon oscillations relative to the plasmon’s propagation length—which is basically
a quality factor—remains unchanged when comparing between different mode orders
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flat GSPs

grows WGPs
GGPs

Figure 5.4: Dependence of the scaling
factor

√
ϑ, for eigenvalues associated

with the fundamental mode, as a func-
tion of the ratio ε2/ε1. In computing
the data in blue we have fixed ε1 = 1
while varying ε2, and vice-versa for the
red data points. The vertical green
dashed line indicates the point where
ε1 = ε2 = 1, whereas the horizontal
gray dashed line sets the upper bound
corresponding to the flat GSP dispersion.
We further note that the specific value
of ϑ is naturally sensitive to the absolute
value of the dielectric constant that is
kept constant. For all configurations we
take 2ϕ = 25°.

or plasmons in flat, unfolded graphene6.

In closing, we recall that once the potential evaluated in the 2D material has been
determined—using the expansion coefficients provided in the eigenvectors associated
with the eigenvalue problem (5.3)—one can construct the scalar electric potential in
the whole coordinate space using Eq. (5.2). From here, the corresponding induced
electric field follows directly via E(r) = −∇Φ(r). The cross-sectional potential and
electric field distributions (computed semi-analytically) associated with the two lowest-
frequency WGPs in a representative 2ϕ = 25° dielectric wedge are shown Fig. 5.5. The
figure exhibits telling evidence of the remarkable confinement that WGP modes are
able to deliver near the apex of the wedge (the results for the groove are qualitatively
similar, albeit with slightly less localization for the same resonant frequency); this can
be observed from either the potential or from the corresponding electric field. The
vertical confinement, with respect to the channel’s apex, decreases rather rapidly as we
move from the fundamental resonance to the higher-order branches of the plasmonic
spectrum. For the parameters and configuration portrayed in Fig. 5.5 the lowest
energy mode essentially remains localized within the first 200 nm (which is substantial,
given that the corresponding free-space wavelength is λ0 ' 15 µm), whereas for the
second order mode that distance grows to about 3.6 µm. Moreover, Fig. 5.5 also serves
to support our previous claim that, despite the inherent simplifications in our theory,
it can still be applied to realistic wedges (grooves) of finite height (depth), provided

6This feature is a direct consequence of the “universal scaling” epitomized by Eqs. (5.5)–(5.6),
and can be clearly seen from Eq. (5.5) by noting that

q(ω) =
2iωε0ε̄
σ(ω)

1
ϑϕ

⇒ # plasmon osc. =
Lp

λwgp
=

1
4π

Re q
Im q

(independent of ϑ) (5.7)

which is clearly independent of the eigenvalue ϑ [and thus the quality factor for WGPs and GGPs is

the same as for plasmons in flat graphene at the same frequency (also, note that Re q
Im q

= Imσ
Reσ )].
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Figure 5.5: Two-dimensional col-
ormaps of potential, Φ(x , y), and
electric field distributions, E(x , y) =
−∇2DΦ(x , y), ascribed to the funda-
mental (upper panels) and second order
(lower panels) WGPs modes, for a res-
onant frequency of f = 20 THz. Note
that the electric field in Cartesian co-
ordinates can be fetched from its polar
version by applying a rotation matrix,
namely [Ex , Ey ]T = R(ϕ)[Er , Eθ]T. The
plotted region is the same in each pair of
2D plots, where the axes of the panels on
the left are written in dimensionless units
(normalized to the corresponding prop-
agation constants) and the axes of the
panels on the right are given in nanome-
ters. The colormaps in the background
of the electric field plots correspond to
the (normalized) Ey (x , y), which is dom-
inant in most of the plotted spatial re-
gions. Material setup: EF = 0.4 eV,
ε1 = 1, and ε2 = 4.

that that height (depth) is larger that the tail of the potential and of the electric field.

The behavior of the spatial distributions displayed in Fig. 5.5 is qualitatively
maintained throughout most of the dispersion curve (and similarly for different angles),
the only important difference being the degree of confinement in the whereabouts of the
apex. Therefore, an infinitely vast number of triangularly-shaped configurations—with
different angles, heights or depths—can be engineered depending on the required level
of localization and/or frequency window of interest. In this regard, our theoretical
model can be readily applied in the design of tailored nanophotonic devices that
meet a priori the requirements in terms of operating frequency range and physical
dimensions. We thus expect that this work will fuel future experimental realizations
of WGPs/GGPs, as we believe that such modes may hold interesting implications for
future all-photonic circuitries at the nanoscale
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5.2 Effective-index Description of Channel Plasmons

in Two-dimensional Materials

In the previous section (Sect. 5.1) we have developed a rigorous theoretical model
to describe 2D channel plasmons supported by triangular wedges or grooves, and, in
particular, to calculate their spectral features and plasmonic properties, focusing on
their capabilities for achieving deep subwavelength waveguiding.

Here, we present an alternative (approximate) method for describing 2D channel
plasmons guided along the apex of a triangularly-shaped sheet of a 2D plasmon-
supporting material (like graphene, a conventional 2DEG, a highly-doped TMDC,
ultrathin metal films, etc). As it will become apparent in what follows, our perturbative
approach has been designed to provide accurate results for triangular channels with
small opening angles, while maintaining an inexpensive theoretical description of the
underlying electrodynamics. More specifically, the approach developed here follows in
part the effective-index framework previously applied to CPPs occurring in traditional
3D metals7 [350, 375, 376].

Figure 5.6: Conceptual illus-
tration of the effective-index
description of 2D CPPs. Two-
dimensional material (here
represented by a graphene
monolayer) folded into a V-
shaped channel and embedded
in a dielectric medium with
relative permittivity ε. The
channel width as a function
of the z-coordinate follows
w(z) = 2z tan(θ/2) for a tri-
angular cross-sections like the
one sketched here.

Briefly, the concept behind the effective-index method (EIM) is that, at each height
(with respect to the bottom of the channel), one can identify a one-dimensional (1D)
dielectric–graphene–dielectric–graphene–dielectric (DGDGD) waveguide in which the
core dielectric has a width given by w(z). The combination of such 1D waveguide
configurations—i.e., DGDGD slabs stacked together—can then be used to construct the
whole two-dimensional channel waveguide akin to graphene CPPs; see Fig. 5.6. Below,
we demonstrate that this conceptually intuitive picture can be used to determine

7Interestingly, the effective-index method for plasmonic structures based on customary 3D metals
provides closed-form, analytical results for the 3D CPPs’ dispersion and mode profiles. As we detail
below, and to the best of our knowledge, for 2D CPPs this is not the case anymore (with the reason
for that essentially being the more complex form of the plasmon dispersion of the corresponding flat
interface).
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the dispersion of CPPs and corresponding electric field distributions by solving a
Schrödinger-like equation whose eigenvalues depend only on the angle θ of the channel.
Finally, the results obtained using this unified description are then benchmarked
against the ones calculated using more rigorous theories, like the one described in
Sect. 5.1 [296].

We consider an atomically-thin material folded into V-shape forming an angle θ,
as illustrated in Fig. 5.6; we assume henceforth that θ � 1 in order for the EIM to
be valid. Within this limit, one can make use of the transverse magnetic (TM) and
electric (TE) representations, and seek TM-like solutions in which the main component
of the electric field lies along the x-axis. Recall that the underlying idea behind the
EIM applied to the description of CPPs in V-grooves is to model the inner region
as two coupled 1D waveguides. This foundational principle does not change when
considering a dielectric V-channel covered with graphene (or any other 2D material).
However, the corresponding equations will be quite different, asserting the natural
differences between the two materials (e.g., 3D metal and 2D graphene). With the
above-noted considerations in mind, the (x-component) of the field can be factorized
as [350, 375, 376]

Ex(r) = X(x, z)Z(z)eiqy , (5.8)

where q denotes the propagation constant of the 2D material’s channel plasmon. With
this ansatz, one readily obtains the coupled waveguide equation [derivable from the
Helmholtz equation for the electric field (5.8)]:

∂2X(x, z)
∂x2 +

[
εk2

0 −Q2(z)
]
X(x, z) = 0 , (5.9a)

∂2Z(z)
∂z2 +

[
Q2(z)− q2]Z(z) = 0 , (5.9b)

with k0 = ω/c, and where Q2(z) acts as a separation constant (see Supplementary
Material of Publication M [297]). We note that in writing the above equations, we
have neglected the ∂2X/∂z2 and ∂X/∂z derivatives, whose contribution is small in
the regime where θ � 1 [375]. Notice that Eq. (5.9a) is essentially an equation for
a 1D waveguide, parameterized by Q(z). The specific form of Q(z) is, in general,
nontrivial. Therefore, our strategy here consists in developing from the GP condition
at a planar graphene double-layer with the same dielectric media—DGDGD—, which,
for the mode with the sought-after symmetry, is given by8 [7]

1 + coth
[
w(z)

2 κQ

]
+ iσ(ω)

ωε0ε
κQ = 0 , (5.10)

with κQ =
√
Q2(z)− εk2

0, and where w(z) = 2z tan(θ/2) ≈ θz is the gap-width as
a function of the z-coordinate. Here, σ(ω) is the dynamical surface conductivity of

8The interested reader might want to revisit Sect. 4.1.2, and, in particular, Eq. (4.10b).
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graphene (or any conducting 2D medium). A closed-form expression for Q2(z) is
obtainable by expanding the previous equation for small widths9, which yields [297]

Q2(z) = εk2
0 + ε2

2f2
σ

[
1 + 4fσ

εw(z) +

√
1 + 8fσ

εw(z)

]
, (5.11)

where we have introduced the function fσ(ω) = Im{σ2D}/(ωε0) for short-hand notation.
In the specific case of graphene, fσ(ω) = 4α~c EF

(~ω)2 materializes the assumption

that the conductivity is given by its Drude-like expression with negligible damping
[cf. Eq. (3.22)]. In possession of an explicit relation for Q2(z), a solution for the
coupled waveguide equations (5.9) may be fetched. The solution to the first equation
is trivial, simply being X(x, z) = A cosh

(
[Q2(z)− εk2

0]1/2x
)

in the inner region, where
A is a constant. The remaining differential equation (5.9b) is not as straightforward.
We can make such equation more affordable by defining the wavevector q0 = 2ε/fσ
associated with plasmons propagating in the planar (i.e., unfolded) 2D material [7],
while at the same time introducing the dimensionless variable ζ = θq0z. Performing
these transformations, we arrive at a dimensionless eigenvalue equation10

− θ2 ∂
2Z(ζ)
∂ζ2 + V (ζ)Z(ζ) = EθZ(ζ) , (5.12a)

which clearly resembles a Schrödinger equation with an “energy potential”

V (ζ) = −8 + ζ +
√
ζ2 + 16ζ

8ζ , (5.12b)

where the 2D CPP dispersion relation q2 = εk2
0 − Eθq2

0 is given in terms of the di-
mensionless eigenvalue Eθ. Interestingly, notice that Eθ mimics an “effective dielectric
function” that is entirely determined by the geometry—namely the angle θ—of the
channel. We stress that the solution of Eq. (5.12) yields the eigenfunctions and
propagation constants akin to the respective CPP eigenmodes. Crucially, this eco-
nomical treatment paints a clear picture of the underlying physics, in which smaller
angles leads to concomitantly deeper “energy potentials” and consequently modes with
larger wavevectors q (and thus, in turn, stronger field confinement). Furthermore, the
“universal scaling” found previously also emerges here in an equally natural fashion,
where—as before—the 2D CPP wavevector depends entirely on the geometry of the
V-channel.

The differential equation Eq. (5.12) can be solved effortlessly using standard
numerical methods. In this regard, the results presented in the following were obtained
by solving Eq. (5.12) by employing the so-called shooting method [377].

9In fact, more rigorously, for w(z)/2[Q2(z)− εk2
0 ]1/2 � 1.

10In writing Eq. (5.12a) we have approximated the width (for small angles) as w(z) ≈ θz, for the
sake of clarity. The expression using the exact form is recoverable upon making the replacement
θ → 2 tan(θ/2) (we have used the exact expression in all our results).
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Figure 5.7: Calculated field distributions
along the height of the channel, Zn(ζ), as-
sociated with the first three 2D CPPs eigen-
modes in a triangular channel with θ = 15°.
We have plotted the eigenfunctions in an en-
ergy diagram along with the potential V (ζ)
(black line), to highlight the similarity with
typical quantum mechanical problems. The
vertical axis for each Zn starts at the position
of the corresponding eigenvalue E (n)

θ .

The eigenfunctions Z(z) resulting from the numerical solution of Eq. (5.12) are
depicted in Fig. 5.7, and correspond to the vertical profile of 2D CPP modes in a
V-shaped channel with θ = 15°. They are clearly reminiscent of bound modes in a
potential well like the ones encountered in typical quantum mechanical problems. The
fundamental 2D CPP eigenmode is highly confined within the bottom of the groove
(i.e., near the apex of the channel), while the successively higher order modes tend
to be concomitantly more spread along the vertical direction of the channel [here,
corresponding to the (ζ-) z-direction].

The corresponding two-dimensional field distributions inside the channel simply
follow from Eq. (5.8). These are shown in Fig. 5.8 for V-shaped graphene channels with
different opening angles and excited at different resonant frequencies. The top panels
illustrate the modal distributions for the fundamental [Fig. 5.8a] and second-order
[Fig. 5.8b] graphene CPP eigenmodes, whose main features naturally echo the ones
previously observed in Fig. 5.7. The influence of the groove angle is reflected in the
two bottom panels, with smaller opening angles delivering correspondingly higher field
confinements near the channel’s apex, a behavior that is directly attributable to the
stronger “confining potential” for CPPs in sharper V-shaped structures.

We now revisit the dispersion relation of the 2D CPPs, but now calculated within
the EIM, that is, using Eq. (5.12). Figures 5.9a–c show the obtained dispersion
relations of 2D CPP in representative triangular channels. The dispersion curves
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Figure 5.8: Spatial distri-
butions of the electric field
magnitude, |E (n)

x (x , z)|, for
graphene CPPs in various
triangularly-shaped channels:
fundamental (a), (c)–(d),
and second-order (b) guided
plasmonic eigenmodes. The
resonant frequencies and
opening angles are explicitly
indicated in each panel. The
field is depicted only in the
inner region. Material pa-
rameters: EF = 0.5 eV and
ε = 2.1.

akin to graphene CPPs lie to the right of their corresponding flat GP counterpart,
thereby indicating the higher amount of field localization attained by the former when
compared to the latter. The degree of subwavelength localization of the electromagnetic
field is even more dramatic for smaller angles (compare Fig. 5.9b with Fig. 5.9c).

In order to gauge the level of fidelity of the perturbative effective-index approach
outlined above we have also included the dispersions obtained using the rigorous
method described in Sect. 5.1 (dashed lines in Figs. 5.9a–c). The results obtained
using both methods exhibit a very good agreement; this illustrates that, despite its
inherent simplicity, the EIM framework can still provide consistent results, thus being
a very valuable tool in judging the salient features of 2D CPPs. Unfortunately, the
EIM does not capture the higher-order modes in the case of θ = 25° (not shown); the
justification for this lies in the breakage of the small-argument expansion performed
in the cotangent figuring in Eq. (5.10). Still, we note that for smaller angles (e.g.,
θ = 15°) the second-order CPP eigenmode is already well described by the EIM owing
to the smaller angle.

A more transparent analysis can be performed by exploiting the universal scaling
of the 2D CPPs spectrum. In this spirit, Fig. 5.9d shows the geometrical scaling factor,
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Figure 5.9: (a)–(c) Dispersion relationd of guided graphene CPPs in a V-shaped channels
embedded in homogeneous dielectric environments with different dielectric constants ε, for two
different opening angles; see figure’s labels. As an eye-guide, the solid black lines indicate the
dispersion of GPs in the corresponding flat interface. We assume a Fermi energy of EF = 0.5 eV in
the calculations. For comparison, the dashed lines show the dispersion relation of CPPs obtained
using the nonperturbative theory described in Sect. 5.1 [296]. (d) Universal scaling exhibited by
2D CPPs, namely

√
−Eθ ' q/q0, as a function of the angle θ (EIM). The results obtained using

the approach outlined in Sect. 5.1 [296] (Full) are also plotted for comparison. The dashed lines
indicate the point where the EIM seems to surpass its regime of validity. The EIM curves follow a
simple analytical expression of the form an + bnθ

−1 with an = {0.33, 0.36} and bn = {28.7, 14.1}
(where n refers the mode order).

q/q0 '
√
−Eθ (since q, q0 � k0) as a function of the channel’s angle, together with the

equivalent quantity computed using the more general theory discussed in Sect. 5.1.
Figure 5.9d demonstrates quite remarkably the EIM’s ability to correctly determine
the properties of 2D channel plasmons. Strikingly, in the case of the fundamental
mode, the agreement is maintained even beyond the small angle regime. On the other
hand—as we have already discussed above—the description of the higher-order modes
is restricted to smaller angles.

Figure 5.9d plays the role of an epilogue: it plainly shows the universal scaling of
the 2D CPP’s propagation constant as a function of the angle—valid independently of
the frequency, 2D conductivity, or dielectric constant—while at the same time outlining
the regime of validity of the EIM. Finally, we have found that the curves plotted in
the figure follow a simple analytical expression, in the form of a+ b θ−1, to which we
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have fitted the constants a and b (whose values are stated in the figure’s caption).
This feature should be convenient for designing such nanostructures, functioning as a
“ruler” or “recipe” to architecture 2D CPPs with tailored plasmonic properties.
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CHAPTER 6
Electrodynamics of Metals

Beyond the Local-Response
Approximation: Nonlocal Effects

The well-established theory of classical electrodynamics allows us to describe the optical
response of metals, and their subsequent plasmonic properties, in most settings—a
cursory account of classical plasmonics in terms of classical electrodynamics has been
provided in Chapter 2. Broadly speaking, it relies on the macroscopic formulation of
Maxwell’s equations and corresponding boundary conditions, together with the premise
that the materials’ response to external stimuli is local in nature (cf. Sect. 2.1.3).
However, this oversimplified picture—albeit undeniably accurate enough in most
scenarios—inevitably fails to account for the proper electrodynamics governing the
optical response of (truly nanometric) nanostructures, including processes that involve
large momentum transfers and/or optical interactions in the extreme near-field regime.

In this chapter, we shall remedy some—though not all—of the inaccuracies related
with the classical, local response treatment of plasmonics. Here, we will concern
ourselves primarily with the incorporation of nonlocality, which is formally equivalent
to consider response functions that include both frequency and wavevector depen-
dencies, and discuss how this augmentation modifies the predictions pertaining to
the local-response approximation (LRA). Specifically, we will introduce the hydrody-
namical model for plasmonics in order to describe the lowest-order corrections due
to nonlocality. We then close the chapter by going one step further and discuss the
nonlocal and quantum features of the optical response of a three-dimensional (3D)
homogeneous electron gas within the framework of the nonlocal random-phase approx-
imation (RPA)—also known as the Lindhard dielectric function of the free-electron
gas. It should be noted that both of the above-noted extensions are nevertheless still
based on homogeneous, bulk-like descriptions of the plasmon-supporting electron gas,
accompanied by “hard-wall” material boundaries that prevent the electronic density to
spill over across dielectric–metal interfaces. We shall return to this point in Chapter 8,
were we will present a mesoscopic formalism that remedies that deficiency, while at
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the same time incorporates nonlocality and other quantum mechanical processes.

Shortcomings of the Classical Descriptions of Plasmonics

Before moving on to the actual description of nonlocal effects in plasmonics, it is
instructive to summarize a selection [82] of the most prominent idealizations associated
with a description of plasmonics rooted in classical theories.

(i) Locality | Conventional considerations of plasmons and plasmon-mediated phe-
nomena rely on the assumption that the materials’ electromagnetic response
is embodied through local constitutive relations, as pointed out in Sect. 2.1.3.
In reality, however, the constitutive relations are nonlocal, as clearly stated by
Eqs. (2.5)–(2.6), in which the response at position r is ultimately dependent on
the perturbation at all1 points r′ at an earlier time. In momentum space, this
observation translates into wavevector-dependent response functions, which is
often used interchangeably in the literature (and here) with terminologies such
as nonlocality or spatial dispersion.

(ii) Incompleteness | Classical treatments of the optical response of metals only
account for a restricted, finite subset of all available transitions, namely, electronic
intraband processes described by the Drude model, potentially augmented by the
ad hoc addition of vertical interband transitions (recall Sect. 2.1.4). Importantly,
even in the simple case of a single-band jellium metal, the local optics description
inevitably fails to include single-particle excitations, which contribute to a
particularly important mechanism of plasmon decay, by which high-momentum
plasmons experience damping due to the generation of electron-hole pairs. This
mechanism is commonly known as Landau damping, and it is intertwined with
a nonlocal description of the electron gas.

Finally, the LRA also fails to account for bulk plasmon photoexcitation [71,
82]: even though that, in a homogeneous medium, transverse and longitudinal
electromagnetic waves do not couple, this is not longer true in the presence of
an interface, through which transverse and longitudinal waves can actually mix.
Therefore, electromagnetic waves of frequency ω > ωp can in principle excite
bulk normal modes [6, 378, 379] following ω2

bp ' ω2
p + β2q2, with β2 = 3

5v
2
F . In

finite-sized metallic nanostructures these longitudinal excitations can then give
rise to a manifold of quantized bulk plasmons [74–78, 380–383].

(iii) Discontinuity | The customary assumption of an abruptly defined, piecewise
dielectric function across material boundaries, say, a planar dielectric–jellium
interface (at z = 0), combined with the boundary condition that ensures the
continuity of the normal component of the displacement field, automatically

1Leading-order corrections are sufficiently well captured by considering a finite set of those, since
they are typically dominated by the neighboring points r’ within the spatial extend around r defined
by the nonlocal length parameter ξnl ∼ vF /ω [75, 79, 80].
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implies that the normal component of the electric field is discontinuous, i.e.,

Ez(0−) = εd
εm
Ez(0+). Imperatively, hand in hand with this discontinuity is

the materialization of an induced surface charge density, that for a vacuum–
jellium interface takes the form: ρind(r) = ε0 [Ez(0+)− Ez(0−)] δ(z) [82]. This
divergent behavior is clearly unphysical (inasmuch as the discontinuity of Ez is
unphysical too)2. However, at the microscopic level there must be a transition
region where ρind is peaked, but finite (and Ez varies continuously). Intuitively,
one expects that the extent of this surface region to be roughly on the order of
the screening length or the Fermi wavelength, which are typically on the order
of a couple of angstroms (∼ Å). This is indeed the case, as shown by various
theoretical calculations [56, 71, 73, 82, 384–386]. We shall see this explicitly
when revisiting this point in Chapter 8.

In closing, we note that the above-stated division is arguably somewhat ambiguous,
in the sense that a strict separation between points (i)–(iii) is not always unequivocal
because there is a substantial overlap between them. Nevertheless, this conceptual
categorization is advantageous and facilitates the identifications of the shortcom-
ings that a given nonclassical formalism remedies (and the issues that potentially
remain). Lastly, we comment on the fact the issues listed above are not—by all
means—exhaustive. For example, in extremely small metallic clusters [69, 387, 388]
or nanoparticles [62, 66, 69, 389], the manifestation of quantum finite-size effects or
features related with the atomic structure eventually lead to the breakdown of the
jellium picture [69–71]. In that regime, atomistic [390, 391] or ab initio methods such
as DFT [132] or TDDFT [392] need to be employed.

6.1 Hydrodynamic Theory of an Electron Gas

The origin of the hydrodynamic description of the electron gas is commonly attributed
to Bloch [393], and subsequently elaborated upon by Jensen [394] and others [378, 395].
Over the last couple of decades, the topic has resurfaced and has seen alternative
derivations and further extensions [75, 78, 81, 396–402]. In broad strokes, the concept
behind the hydrodynamic model (HDM) relies on the description of the inhomogeneous
electron gas through the appropriate equation of motions (obtained, e.g., via Hamilton’s
equations) coupled with the electromagnetic field [74]. The macroscopic hydrodynamic
theory of the electron gas has been formulated in a number of ways, ranging from
rigorously applying analytical mechanics to the quantum many-body Schrödinger
equation [378, 395, 399, 400], to semiclassical treatments that incorporate both classical
and quantum contributions [74, 75, 396, 398, 401, 402]. Herein, we mostly follow

2The discontinuity of Ez and the associated divergent behavior of ρind have practical repercussions,
e.g., in electromagnetic phenomena driven by strong near-field interactions, where the LRA tends to
flagrantly overestimate the strength of processes mediated by large momentum-transfers [56, 82].

107



6 Nonlocal Effects in Plasmonics

the latter approach, and simply highlight the most important steps of the derivation
rather than presenting an overly detailed account of it3.

Under the HDM, the dynamics of the electrons are governed by the continuity
equation jointly with Cauchy’s momentum equation, that is,

∂n

∂t
+ ∇ · (nv) = 0 , (6.1a)

mn

[
∂

∂t
+ (v ·∇)

]
v = −en [E + v×B]−mnγv− n∇δG[n]

δn
, (6.1b)

respectively. In the previous equations, n ≡ n(r, t) is the particle density, v ≡ v(r, t)
denotes the macroscopic particle velocity, γ is a phenomenological relaxation rate, and
G[n] is a density-dependent functional through which quantum mechanical effects are
included (e.g., internal kinetic energy and/or xc terms). In its simplest version, G[n]
is modeled by the Thomas–Fermi functional [13]

G[n(r, t)] ≈ Ttf[n(r, t)] = 3~2

10m
(
3π2) 2

3

∫
n

5
3 (r, t) dr (6.2)

and thus only the internal kinetic energy of the noninteracting electron gas is taken
into account. Hence, in this case, the n∇δG[n]/δn term amounts to a generalization
of the density-dependent pressure gradient, and thus this term will be responsible to
take into account the Fermi degeneracy pressure of the electron gas. Performing the
functional derivative, one then obtains

δG[n]
δn

= ~2

2m
(
3π2) 2

3 n
2
3 = EF

(
n

n0

) 2
3

(6.3)

where we have identified ~2(3π2n0) 2
3 /(2m) = ~2k2

F /(2m) = EF , with n0 being the
equilibrium (i.e., unperturbed) electron density. As they currently stand, the hydro-
dynamic equations (6.1) contain nonlinearities; thus, in the spirit of linear response
theory, we assume that the external perturbation is small in such a way that the various
quantities can be split into a equilibrium part (which is static and homogeneous)
and a out-of-equilibrium part (representing dynamic and inhomogeneous quantities).
Explicitly, this translates into writing n = n0 + n1 and v = v1 (and where the fields
are obviously first-order only). With these considerations in mind, the linearization of
Eqs. (6.1) produces

∂ρ1

∂t
+ ∇ · J1 = 0 , (6.4a)

∂J1

∂t
= e2n0

m
E1 − γJ1 − β2∇ρ1 , (6.4b)

3In that respect, the interested reader may consult, for instance, Refs. [74, 75, 378, 395, 401] and
references therein.
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where we have introduced the induced charge density, ρ1 = −en1, and the induced
current density, J1 = −en0v1. Importantly, we have also made the identification
β2 = 1

3v
2
F , where β is a velocity. At this point, a remark is in order: this value for β

holds in the low-frequency regime where ω � γ, but in plasmonics we are interested
in the opposite, high-frequency regime where ω � γ. In the latter, the appropriate4

value for β is given by β2 = 3
5v

2
F , thereby coinciding with the leading-order nonlocal

correction resulting from the expansion of the Lindhard function of a 3DEG. For this

reason, we take β =
√

3
5vF hereafter.

Now, by combining the linearized equations of motion (6.4), one finally arrives to
(where the subscripts have been dropped) [75, 405]

β2

ω(ω + iγ)∇ [∇ · J(r,ω)] + J(r,ω) = σ(ω)E(r,ω) , (6.5)

after converting to the frequency domain. Notice that, in the absence of nonlocality
we have β = 0, and thus the familiar LRA result J(r,ω) = σ(ω)E(r,ω) is promptly
recovered in the β → 0 limit. The HDM result (6.5) supplemented with Maxwell’s
wave equation

∇×∇×E(r,ω)− k2
0ε∞E(r,ω) = iωµ0J(r,ω) , (6.6)

then form together a closed set of coupled equations describing the electrodynamics of
the electron gas within the framework of the hydrodynamic model.

Furthermore, with the hydrodynamic differential equation (6.5) comes the need
of an additional boundary condition [74, 75, 406]. For an arbitrary dielectric–metal
interface ∂Ω, and assuming that the metal’s equilibrium electron density exhibits a
step profile (i.e., being constant inside the metal and zero in the dielectric region), the
aforementioned additional boundary conditions reads [75]

J · n̂|r∈∂Ω = 0 , (6.7)

at the boundary ∂Ω with associated unit normal vector n̂. Equation (6.7) therefore
enforces that the normal component of the induced current density is zero at the
interface, and thus it is continuous across the same. This “hard wall” boundary
condition is therefore tantamount to the assumption of an infinite work function, and
hence electronic spill-out effects are inherently overlooked in the HDM.

4The proper value of β—the “speed of propagation of [the] hydrodynamic disturbance in the
electron gas” [378]—has been discussed extensively in the literature—see, for instance, Refs. [74, 396,
401, 403, 404]. Among these, a particularly elegant result has been presented by Halevi in Ref. [396],

where he derived the result βHalevi(ω) =
√

3
5ω+ 1

3 iγ
ω+iγ vF . This frequency-dependent, complex-valued

β stems from the exploitation of the Mermin-corrected Lindhard function [13, 282] in the limit of
weak spatial dispersion.
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6 Nonlocal Effects in Plasmonics

Box 6.1 — Longitudinal and transverse fields in the HDM.

The two coupled equations (6.5) and (6.6) may be combined to yield [75, 81, 405]

∇×∇×E(r,ω)− k2
0εm(ω)E(r,ω) = k2

0 ξ
2
nl∇ [∇ ·E(r,ω)] , (6.8)

where ξnl is a nonlocal length defined via

ξ2
nl = ε∞

ω(ω + iγ)β
2 . (6.9)

Equation (6.8) can be thought as a generalized nonlocal wave equation within the
HDM [405].

Next, it is instructive to consider longitudinal and transverse fields separately.
Starting from the latter, and noting that a transverse electric field is divergence-free
(∇ ·Et = 0), then from Eq. (6.8) we see that

∇×∇×Et − k2
0εm(ω)Et = 0 , (6.10)

and thus, assuming plane-wave solutions, one finds the bulk wavevector

k2
t = k2

0εm(ω) , (6.11)

which is the familiar dispersion relation of light propagating in homogeneous medium
(here a metal) with dielectric function εm(ω). On the other hand, a purely longitu-
dinal electric field is curl-free (∇×El = 0), and thus Eq. (6.8) yields

ξ2
nl∇2El + εm(ω)El = 0 , (6.12)

where the identity ∇ (∇ · F) = ∇×∇×F + ∇2F has been used. Hence, the bulk
wavevector associated with the longitudinal electric field is

k2
l = εm(ω)

ξ2
nl

. (6.13)

Crucially, these considerations reveal that the nonlocal correction in the frame-
work of the HDM only affects longitudinal waves, and leaves transverse waves
unchanged. Therefore, all nonlocal effects under the hydrodynamic approach can
only enter via the presence of a longitudinal part of the electric field [74, 75, 405, 407].

6.2 Nonlocal Optical Response of Metals

Having established the underpinnings of the hydrodynamic theory of the electron
fluid in Sect. 6.1, we are now in position to apply the HDM and investigate nonlocal
effects in plasmonic systems. Below, we provide an overview of the key modifications
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6.2 Nonlocal Optical Response of Metals P. A. D. Gonçalves

to LRA-predicted plasmonic response of a planar dielectric–metal interface and of
metallic spheres.

6.2.1 Nonlocal effects in the SPP dispersion at a planar
dielectric–metal interface

We consider a prototypical planar dielectric–metal interface, reminiscent to the one
previously depicted in Fig. 2.2, but where now the metal occupying the z > 0 half-space
exhibits a nonlocal response in accordance with the premises of the HDM.

dielectric

metal
Figure 6.1: Schematic representation of a
planar dielectric–metal interface, where the
boundary between the two media is defined
by the z = 0 plane. The system is assumed
to be uniform along the y -direction.

In order to determine the nonlocal SPP dispersion relation, we shall look for
p-polarized surface electromagnetic waves that satisfy Maxwell’s equations both in
the dielectric and in the metal [and, in the latter, that further satisfy Eq. (6.5)]. The
electromagnetic field in the dielectric half-space (z < 0) is purely transverse, and may
thus be written as

Ed(r,ω) = [Ex,d, 0,Ez,d] eκdzei(qx−ωt) , (6.14a)

Hd(r,ω) = [0,Hy,d, 0] eκdzei(qx−ωt) , (6.14b)

where κd =
√
q2 − k2

d, with kd = k0
√
εd, and together with the relations5

Ez,d = −i q
κd
Ex,d , (6.15a)

Ex,d = κd

iωε0εd
Hy,d , (6.15b)

Ez,d = − q

ωε0εd
Hy,d . (6.15c)

In the metal region (z > 0), both transverse and longitudinal waves (i.e., divergence-
free and curl-free waves, respectively) are allowed; hence, we have

Et/l
m (r,ω) =

[
Et/l
x,m, 0,Et/l

z,m

]
e−κm/nlzei(qx−ωt) , (6.16a)

Hm(r,ω) = [0,Hy,m, 0] e−κmzei(qx−ωt) , (6.16b)

5Stemming from Maxwell’s equations ∇×Ed(r,ω) = iωµ0Hd(r,ω) and ∇ ·Ed(r,ω) = 0.
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where6

κm =
√
q2 − k2

m with km = k0
√
εm , (6.17a)

κnl =
√
q2 − k2

nl with knl = β−1
√
ω(ω + iγ)− ω2

p/ε∞ . (6.17b)

Notice that the magnetic field remains purely transverse and thus we do not need the
superscripts to distinguish the two types of waves. The relations between the fields’
amplitudes can be found using Maxwell’s equations. Explicitly, these are:

Et
z,m = i

q

κm
Et
x,m , (6.18a)

Et
x,m = iκm

ωε0εm
Hy,m , (6.18b)

Et
z,m = − q

ωε0εm
Hy,m , (6.18c)

El
z,m = i

κnl

q
El
x,m . (6.18d)

We now proceed by invoking the boundary conditions, which are now three:
the two ubiquitous Maxwell’s boundary conditions, ẑ × (Em −Ed) |z=0 = 0 and
ẑ × (Hm −Hd) |z=0 = 0, plus a third one stated by Eq. (6.7). The latter can be
equivalently expressed as

(ε∞Em · ẑ− εdEd · ẑ) |z=0 = 0 . (6.19)

Putting together Eqs. (6.14)–(6.18) jointly with the corresponding boundaries condi-
tions, leads to the following determinantal equation (where, for convenience, we have
defined Ēl

x,m = iωε0E
l
x,m)
− 1
ε∞

1

κd

εd

1
εm

−1

κm

εm

−κnl

q2

0

−1



Ēl
x,m

Hy,m

Hy,d


= 0 . (6.20)

Finally, the implicit condition for the nonlocal SPP’s dispersion then follows from
equating the determinant of the previous matrix to zero, which yields [74, 407]

1 + εmκd

εdκm
+ δnl = 0 , (6.21a)

6Recall Box 6.1, with the identifications between both notations being kt ≡ km and kl ≡ knl.
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where the nonlocal correction δnl amounts to

δnl = q2

κnlκm

εm − ε∞
ε∞

. (6.21b)

Equation (6.21a) determines the dispersion relation of SPPs at an interface between
a dielectric and a metal, taking into account nonlocal effects within the framework
of the HDM. The LRA SPP condition (2.23) is naturally recovered upon taking the
limit δnl → 0.
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Figure 6.2: Surface plasmon po-
lariton dispersion in a flat dielectric–
metal interface. The dielectric
is assumed to be air (εd = 1)
and the metal is modeled within
the HDM as a lossless Drude-like
metal with ε∞ = 1 and γ = 0.
Here, β =

√
3/5 vF with vF =

1.4× 106 m s−1, which is adequate
for silver and gold [118]. The inset
shows in detail the region marked
by the shaded area in the main plot.

In the nonretarded limit, Eqs. (6.21) become

1 + εm
εd

+ δnr
nl = 0 with δnr

nl = q

κnl

εm − ε∞
ε∞

. (6.22)

Moreover, in the specific case of a vacuum–jellium interface with negligible loss (i.e.,
εd = ε∞ = 1 and γ = 0), the solutions of Eqs. (6.22) take the form

ω(q) = 1√
2

√
ω2

p + β2q2 + βq
√

2ω2
p + β2q2 . (6.23)

The solutions of Eqs. (6.21)–(6.22) are shown in Fig. 6.2. The corresponding
LRA-solutions are also plotted for comparison. It is apparent from the figure that
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for large wavevectors there is a clear deviation from the LRA prediction towards
higher frequencies; this blueshift of the SPP resonance—for a fixed SPP wavevector
q—becomes particularly evident upon inspection of the figure’s inset. Notably, notice
that in the presence of nonlocality the SPP dispersion even crosses the dispersionless
nonretarded surface plasmon resonance associated with the LRA, i.e., ωsp = ωp/

√
2.

Lastly, it also transpires that in the nonlocal case the SPP group velocity remains
finite, which is in stark contrast with the LRA prediction.

6.2.2 Nonlocal plasmonic response of metallic nanospheres

Like the planar dielectric–metal interface, the spherical metal sphere corresponds to
another archetypal plasmonic structure. In the following, we give a concise description
of nonlocality in plasmonic nanospheres within the HDM description7.

As we have seen in Sect. 2.2.2, the gold standard for theoretically modeling the
electromagnetic response of a spherical particle is through the application of Mie
theory. The first attempt to generalize Mie’s theory by incorporating nonlocal effects
was set forth by Ruppin [76, 382] in the 1970s. As we have just seen in the case of the
planar interface, the hydrodynamic description for a metal sphere also involves the
incorporating of a curl-free (or irrotational) wave [78, 115].

In particular, the Mie scattering coefficients within the HDM are given by [78]

atm
l = εmjl(xm)Ψ′l(xd)− εdjl(xd)Ψ′l(xm) [1 + δhdm

l ]
εmjl(xm)ξ′l(xd)− εdh(1)

l (xd)Ψ′l(xm) [1 + δhdm
l ]

, (6.24a)

bte
l = jl(xm)Ψ′l(xd)− jl(xd)Ψ′l(xm)

jl(xm)ξ′l(xd)− h(1)
l (xd)Ψ′l(xm)

, (6.24b)

where the nonlocal correction in the case of a metal sphere takes the form [78]

δhdm
l = l(l + 1) jl(xm)

Ψ′l(xm)
jl(xnl)

xnl j′l(xnl)
εm − ε∞
ε∞

, (6.25)

with xj = kjR for j ∈ {d, m, nl} (and where the wavevectors are defined in the same
way as in Sect. 6.2.1). The definitions of Riccati–Bessel functions Ψl and ξl are the
same as in Sect. 2.2.2. Notice that the TE Mie coefficient bte

l does not exhibit any
nonlocal correction; this should not be surprising, since TE-polarized waves do not
couple to the longitudinal component of the electric field that is responsible for the
introduction of nonlocality in the HDM. Again, in the β → 0 limit the nonlocal
correction vanishes and the conventional LRA Mie coefficients (2.32) are reinstated.

In possession of the hydrodynamic Mie coefficients (6.24), the optical response
of metal spheres to an impinging plane-wave can be unambiguously calculated using
the formulas for the extinction, scattering, and absorption cross-sections given by
Eqs. (2.33).

7A detailed account is given, for instance, in Refs. [78, 408].
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Figure 6.3: Colormap of the normalized extinction cross-section of plasmonic nanopheres,
Qext ≡ σext/(πR2). (a) Local Mie theory and (b) nonlocal hydrodynamic Mie theory for metallic
spheres of varying radii. (c) Local and nonlocal extinction spectra for metal nanoparticles with
five different radii. Parameters: εd = ε∞ = 1, ωp = 10 eV, ~γ = 0.1 eV, and β =

√
3/5 vF with

vF = 1.4× 106 m s−1.

The outcome of the application of the nonlocal Mie theory—i.e., in accordance
with Eqs. (6.24)—is depicted in Fig. 6.3. In particular, Figs. 6.3a–b show, respectively,
the local and nonlocal normalized extinction cross-sections, Qext ≡ σext/(πR2), for
metal spheres of varying radii. Its main features are clearly evocative of the ones
exhibited by the SPP dispersion in the planar case, cf. Fig. 6.2, but where the role of
the in-plane wavevector is now played by the inverse of the sphere’s radius, R−1. The
observed blueshift of the LSP resonances is reiterated in Fig. 6.3c, for five different
radii. For small, deeply subwavelength nanospheres the classical result for the dipole
LSP approaches the nonretarded limit of ωl=1 = ωp/

√
ε∞ + 2εd; contrasting this,

the HDM prediction crosses this value and continues to blueshift towards higher
frequencies (again, mimicking the nonlocal correction previously seen for the planar
dielectric–metal interface).

Furthermore, owing to the intrinsically finite size of a sphere, there are also higher-
order (multipolar) LSP resonances at higher frequencies, one of which (l = 2) can
readily seen in Fig. 6.3 for spheres of moderate size. In larger spheres—which we do
not consider here—such higher-order LSPs can give rise to rather strong resonances
(recall Fig. 2.8), which are then progressively suppressed as the radius decreases (a
signature of the so-called dipole limit). Nevertheless, the LSPs associated with l ≥ 2,
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like their dipole sibling, also undergo blueshifts in the hydrodynamically-corrected
setting.

Before concluding, we briefly comment on the fact that the HDM also predicts
the existence of “confined” bulk plasmons for frequencies above the screened plasma
frequency ωp/

√
ε∞, which have no parallel in the LRA [78]. They are, however,

extremely challenging to observe experimentally due to their inherently weak response.

6.3 Nonlocality at a Planar Interface between a Di-

electric and Lindhard Metal

One of the most famous properties of SPPs is their ability to confine the electromagnetic
field below the diffraction limit of conventional optics [3, 7, 17], and thus plasmonics
constitutes a route towards extreme photonics and plasmon–emitter interactions [26,
51, 52, 56, 236, 409]. However, in the extremely deep subwavelength regime, and, in
particular, when the surface plasmon’s wavevector approaches the intrinsic length
scales associated with the electron’s dynamics, a description of the underlying physics
in terms of classical electrodynamics inevitably breaks down [71, 73, 87] (as we have
discussed in the beginning of the present chapter). In the previous section, we have
studied nonlocal effects within the simplest version of the hydrodynamic model, which
is able to capture the leading-order nonlocal correction impacting electrodynamics of
the electron gas. Nevertheless, for q & kF (or, perhaps more accurately, for q & ω

vF
),

the small-momentum expansion that is at the heart of the HDM invariably becomes
insufficient. Going further, it should be also mentioned that, despite its merits [65, 75],
the HDM is still a crude approximation, in particular in what Landau damping
is concerned. Indeed, this rather important mechanism of nonlocal damping—that
accounts for the possibility of plasmon decay into excited electron-hole pairs—is utterly
overlooked8 in the HDM.

To address the above-mentioned shortcomings, we shall describe the electrodynamic
problem using the full dielectric function of the electron gas. Concretely, we treat
the metal’s response at the level of the nonlocal RPA [13, 267] which is equivalent
to the use of the Lindhard dielectric function of the homogeneous 3DEG [265] (its
explicit form is indicated in Appendix A). To that end, in the following we employ the
so-called specular reflection model (SRM) [6, 233] together with the concept of surface
impedance to construct a generalized reflection coefficient for p-polarized waves that

8In fairness, some attempts to include nonlocal damping phenomenologically in the hydrodynamic
theory of the electron gas have been put forth, e.g., the Kreibig model [410] for size-dependent bulk
damping and the semiclassical generalized nonlocal optical response (GNOR) [81] framework that
includes electron diffusion. The former phenomenologically modifies the Drude-type bulk damping
according to γ → γ +A vF

R
for small spheres (and where A is a fitting constant), whereas the latter

can be obatined from the HDM simply by performing the replacement β2 → β2 − iD(ω − γ) (where
D is too a fitting constant). Nevertheless, an accurate of account of Landau damping can only
be administered by using quantum mechanics, where the actual electronic transitions are properly
included.
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incorporates the nonlocal effects through the Lindhard dielectric function [13, 265].
The mathematical details of this formalism are described in Appendix B and thus we
shall avoid repeating them here; instead, we will simply state the relevant expressions,
commenting along the way. Finally, we end this section with an explicit calculation of
the surface plasmon dispersion obtained using the SRM.

The optical response of the system can be uncovered from the structures’ scattering
coefficients. In the case of a planar dielectric–metal interface, the poles of the
reflection for p-polarization indicate the existence of surface plasmons. A slightly less
conventional way to write rp is to exploit the notion of surface impedance9, defined as
Zp = E‖/

(
H‖ × n̂in

)
[116, 233, 414] where the subscript in the fields denotes their

component tangent to the interface and n̂in is a unit vector normal pointing inwards
(i.e., into the metal). In particular—as shown in Appendix B—the reflection coefficient
for p-polarized waves can be written in terms of the corresponding surface impedance
via [233]

rp =

kz,d
εdk0

− Zp/Z0

kz,d
εdk0

+ Zp/Z0

, (6.26)

where the quantity Z0 =
√
µ0/ε0 is the impedance of free-space and k2

z,d = εdk
2
0 − q2.

Inserting the expression for the surface impedance, given by Eq. (B.18), one finds [233]

rp =
kz,d − i

2εd
π

∫ ∞
0

dkz
q2 + k2

z

[
q2

εl(k,ω) + k2
z

εt(k,ω)− (q2 + k2
z)/k2

0

]
kz,d + i

2εd
π

∫ ∞
0

dkz
q2 + k2

z

[
q2

εl(k,ω) + k2
z

εt(k,ω)− (q2 + k2
z)/k2

0

] , (6.27)

where k = |k| =
√
q2 + k2

z .
In the electrostatic limit—which typically coincides with the regime where nonlocal

effects are more pronounced—the previous expression simplifies considerably to [6, 233]

rp = 1− 2π−1εd I(q,ω)
1 + 2π−1εd I(q,ω) , (6.28a)

with

I(q,ω) = q

∫ ∞
0

dkz
q2 + k2

z

1
εl

(√
q2 + k2

z ,ω
) . (6.28b)

The nonlocal dispersion relation of surface plasmons at a planar dielectric–metal
interface, computed using the nonretarded SRM result (6.28a), is shown in Fig. 6.4.
Specifically, the figure’s colormap depicts the loss function via Im rp; the surface

9The introduction of the concept of surface impedance is generally attributed to Leontovich [411],
although both Shchukin [412] and Rytov [413] have also made significant contributions [414]. It
has been widely applied to describe the so-called skin effect in metals at low frequencies [414], the
penetration depth of the magnetic field in superconductors [116], and metasurfaces [415, 416].
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Figure 6.4: Loss function Im rp showing the nonretarded surface plasmon dispersion at a planar
dielectric–metal interface calculated according to the specular reflection model with the Lindhard
dielectric function (including Mermin’s RTA correction). The colormap is plotted in logarithmic
scale. The white dashed curve represents the surface plasmon dispersion predicted by the HDM,
and thus contains only the lowest-order nonlocal correction to the LRA. The horizontal black
dashed line indicates the nonretarded LRA surface plasmon frequency ωp/

√
ε∞ + εd. The hatched

region marks the electron-hole continuum of a bulk 3DEG. Material parameters: jellium metal
with ε∞ = 1 and a Wigner–Seitz radius of rs = 3 (in units of the Bohr radius), which corresponds
to a plasma frequency of ~ωp = 9.07 eV. We further take a Drude-type damping ~γ = 20 meV
and assume that the dielectric medium is air (εd = 1).

plasmon dispersion is therefore registered by the continuous peak in the loss function
(indicated by the darker band starting at ωp/

√
ε∞ + εd and subsequently blueshifting

towards higher frequencies). In addition, we have plotted the dispersion curve cal-
culated within the simpler HDM (dashed white line) for comparison. Markedly, the
HDM prediction provides a good approximation to the surface plasmon dispersion
up to about q/kF . 0.4. Beyond this point it progressively deteriorates, particularly
failing to a great extent when it approaches the region of bulk intraband Landau
damping—starting at ~2q2/(2m) +~vF q—after which it practically ceases to exist due
to the presence of this nonlocal damping mechanism. In fact, in the case of a semi-
infinite metal, and as opposed to the case of an infinite, bulk metal, the region of finite
Landau damping (even in the collisionless case!) extends down to low wavevectors
due to the lack of translational invariance along the direction normal to the metal’s
surface [233], as can be readily recognized upon inspecting Eqs. (6.28).
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CHAPTER 7
Quantum Nonlocal Effects

Probed by Ultraconfined
Graphene Plasmons

The remarkable degree of field confinement brought about by graphene plasmons makes
them particularly well-suited for studying and enhancing light–matter interactions,
and, from a practical viewpoint, can be regarded as an appealing platform for delivering
miniaturized nanophotonic devices. We have seen in Chapter 4 that plasmons in
extended graphene can attain wavelengths about ∼ α−1 ∼ 102 times smaller than
that of a photon of the same frequency, and that this already quite extraordinary
confinement can be pushed even further by patterning graphene into plasmonic
nanoresonator structures. Yet another route is to exploit the lower frequency acoustic
plasmon of double-layer graphene formed by plasmon hybridization (cf. Sect. 4.1.2),
since this mode reaches increasingly larger wavevectors as the separation between the
graphene layers is decreased. Unfortunately, this comes hand in hand with the difficulty
of exciting such graphene acoustic plasmons from the far-field owing to (i) the deep
subwavelength nature of the mode itself, and (ii) to the symmetry of its field distribution
(induced charges in opposite graphene layers are in anti-phase [7]). Recently, this
adversity has been circumvented by using a van der Waals heterostructure [417]—
composed of graphene encapsulated in hexagonal boron nitride (hBN)—placed onto a
metal gate [106, 107, 418]. Crucially, the latter, besides enabling active control over the
Fermi level of graphene, also screens the collective charge oscillations (plasmons) in the
graphene monolayer that lies just above the metal, thereby yielding graphene plasmons
whose properties are reminiscent of acoustic plasmons in a graphene double-layer [419].

In the present chapter we provide a comprehensive overview of the electrodynamics
governing these ultraconfined acoustic-like plasmons supported by a graphene mono-
layer lying at a small distance d from a metal substrate. Most notably, their deeply
subwavelength nature makes them highly susceptible to nonlocal effects, and thus the
aforementioned modes may be used to uncover the nonlocal response of the system
and to probe the quantum mechanical features of the graphene electron liquid [106]
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(and of the metal [419, 420]). We begin our considerations first by analyzing quantum
nonlocal effects ascribed to the electrodynamics of graphene alone, and then move on
towards the general case where both the graphene and the metal are treated beyond
the local-response approximation.

7.1 Acoustic-like Graphene Plasmons in a Nutshell

Before invoking quantum mechanical effects beyond the framework of the nonlocal1

RPA it is instructive to analyze the salient features of the acoustic-like graphene
plasmons (AGPs) using the theoretical foundations already established in Chapter 3
and also with the benefit of hindsight on the fundamental properties of graphene
plasmons studied in Chapter 4.

The pioneering experimental works [106, 418] that have reported the excitation
and corresponding observation of acoustic-like graphene plasmons used a setup like
the one schematically illustrated in Fig. 7.1; it consists in hBN-encapsulated graphene
deposited onto an underlying metal gate (typically made of gold with a thin titanium
adhesion layer). For graphene–metal separations d below the penetration length of the
graphene plasmon’s electric field, the screening exerted by the nearby metallic gate
gives rise to the above-noted AGPs. The spectral properties of the latter are then
measured using a scanning near-field optical microscope (SNOM), either in scattering
or in photocurrent mode2.

air

hBN

Au

hBN

Figure 7.1: Illustration of the configura-
tion in which acoustic-like graphene plas-
mons can be realized. The heterostruc-
ture consists in hBN-encapsulated
graphene where the latter is separated
from the bottom metal gate by a dis-
tance d . A thin (to be accessible by the
SNOM) hBN slab of thickness d ′ then
protects the entire structure.

From a theoretical standpoint, the spectral properties of AGPs can be determined
by solving the associated electrodynamic problem or, alternatively, solving the quasi-
static Poisson equation since the nonretarded regime is a very good approximation here.
We have performed both3 calculations and the results were indistinguishable, and thus
we will focus on the simpler case of electrostatics in what follows. Furthermore, our
calculations have shown that in the THz regime considered here the metal gate is well

1Throughout this Chapter, whenever we mention the random-phase approximation (RPA) we
implicitly mean its nonlocal version [cf. Sect. 3.2.2].

2See Refs. [106, 418] and references therein for details on the experiments.
3For the sake of explicitness, we have solved the full electrodynamic problem using the transfer-

matrix method (TMM) [7] and analyzed the poles of the heterostructure’s reflection coefficient for
p-polarized waves.
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approximated by a semi-infinite perfect electric conductor. With these assumptions in
mind, the dispersion of these screened graphene plasmons can be fetched from the
zeros of the RPA dielectric function

εRPA(q,ω) = 1− V (q,ω)χτ0(q,ω) , (7.1)

where, as before, χτ0(q,ω) is the Mermin-corrected graphene’s polarization function
[cf. Eq. (3.42)], and V (q,ω) describes the dressed Coulomb interaction akin to the
layered geometry depicted in Fig. 7.1, in particular [418]

V (q,ω) = νq
tanh ∆+ + sinh ∆−

cosh ∆+
+ 1√

εxεz

(
1− cosh ∆−

cosh ∆+

)
√
εxεz + tanh ∆+

, (7.2)

where νq = e2

2ε0q is the bare Coulomb interaction, and we have defined the auxiliary

functions ∆± ≡ ∆±(q,ω) = q(d± d′)
√
εx/εz with d and d′ being the thicknesses of

hBN slabs below and above the graphene sheet, respectively. Moreover, in the previous
expression, εx ≡ εx(ω) and εz ≡ εz(ω) correspond to the in-plane and perpendicular

components of the hBN dielectric tensor, i.e.,
↔
εhBN(ω) = diag [εx(ω), εx(ω), εz(ω)].

Notice that the frequency dependence of V (q,ω) comes solely from the hBN’s optical
phonons.

Drude

RPA

Exp. data

Figure 7.2: Dispersion rela-
tion of acoustic-like graphene
plasmons. The blue solid line
represents the nonlocal RPA
calculation and the corre-
sponding local limit under the
Drude model is represented
by the gray dashed line. The
experimental data is taken
from Alonso-González et
al [418]. The colormap in the
background shows the loss

function via − Im
{

1
εRPA(q,ω)

}
[cf. Eq. (3.41)]. The green
shaded region denotes the in-
traband electron-hole contin-
uum. Parameters [418]: d =
42 nm, d ′ = 13 nm, EF =
0.123 eV, ~γ = 2.07 meV;
the hBN dielectric function
is taken from Ref. [105].

The dispersion relation of AGPs obtained from the zeros of the corresponding RPA
dielectric function (7.1) is shown in Fig. 7.2, and it is represented by the blue solid
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curve; the colormap in the background indicates the loss function via − Im
{

1
εRPA(q,ω)

}
.

The LRA, Drude-type result is also represented as a gray dashed line for comparison
purposes. Notice that for the parameters considered here—chosen in accordance with
the experimental setup described in Ref. [418]—nonlocal effects are relatively weak,
although the nonlocal RPA result seems to correlate better with the experimental
data (depicted in the figure in the form of red circles). Lastly, notice that AGP’s
dispersion exhibited in the figure is clearly more linear-like and contrasts with the
familiar ∝ √q behavior of conventional graphene plasmons.

7.2 Nonlocal and Quantum Graphene Plasmonics

In the previous section we have seen that by placing a graphene sheet in the vicinity of
a metallic substrate it is possible to excite acoustic-like plasmons (i.e., with an approx-
imately linear dispersion) in graphene. As previously mentioned, this is achievable due
to the screening exercised by the metal, in which image charges build up in response
to the induced charge oscillations associated with the graphene plasmons: the result
are screened graphene plasmons exhibiting a linear dispersion, in close resemblance to
the lower plasmon branch in double-layer graphene [7].

Crucially, due to the character of their dispersion relation, AGPs have the potential
to achieve extremely large wavevectors. At the same time, the corresponding plasmon
(group) velocity, vp, can be tailored by controlling the distance d between the graphene
layer and the metallic gate. This can be done with atomic precision since the distance
d amounts to the thickness of the lower hBN slab, and thus may in principle be chosen
with single-atom definiteness. This feature therefore makes the system considered
here a unique playground to study nonlocal and quantum effects in condensed matter
systems, where they can be probed and subsequently inferred from the material’s
plasmonic response [106].

Before embarking in calculations containing corrections to the RPA formalism,
let us first demonstrate the concept outlined in the preceding paragraph with the
theoretical tools that we have already learned so far. In Fig. 7.3 we explicitly show how
the dispersion of graphene plasmons can be tailored by tuning the graphene–metal
separation d (the setup under consideration is portrayed in Fig. 7.3a). Notably, the
plasmon velocity becomes increasingly slower as the graphene–metal spacing is reduced
(Fig. 7.3b), a feature that is accompanied by a significant change of the plasmon
dispersion towards larger wavevectors (Fig. 7.3c). Furthermore, although the classical
result qualitatively captures the above-noted trends, it incurs in significant quantitative
deviations from the proper nonlocal plasmon dispersion. Moreover—and perhaps more
troubling—is the fact that, when the graphene–metal separation is on the order of
a few nanometers, the classical theory predicts plasmon dispersion diagrams falling
within the electron-hole continuum and corresponding plasmon velocities that fall
below the Fermi velocity of electrons (or holes) in graphene. Clearly, such behavior is
prohibited by the full nonlocal theory, the reason lying in the divergent feature of the
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density-density correlation function χ0(q,ω) as q → ω/vF .

vF

vp

metal

air
graphene

a

b

c

d

Figure 7.3: Transition from the local to the nonlocal response regime by controlling the thickness
d of the dielectric separating a graphene layer from a metal substrate. (a) Pictorial representation
of the graphene–dielectric–metal heterostructure under consideration. (b) Plasmon velocity
vp ≡ ∂ω/∂q as a function of the graphene–metal separation d (for a resonant frequency of
ω/(2π) = 5 THz). (c) Dispersion curves of graphene plasmons supported by the graphene–
dielectric–metal system for four different graphene–metal separations (indicated in the plot).
The dispersion of conventional (“unscreened”) graphene plasmons is shown by the solid black
line to facilitate the comparison and the interpretation of the results. Setup parameters: εd =√
εhBN

x (0)εhBN
z (0) ' 4.884, ne = 1× 1012 cm−2 (which roughly amounts to EF = 0.1166 eV, for

vF = 1× 106 m s−1); the metal is assumed to be well approximated by a perfect electric conductor
in the THz regime.

The calculations of the AGPs spectral properties presented in Fig. 7.3 underscore
the importance of employing an adequate nonlocal description of plasmonic excitations
in such a graphene–metal configuration, particularly when the separation between the
metallic substrate and the graphene sheet enters the few-nanometer regime. In what
follows, we exploit the tunability and flexibility of this heterostructure—provided by
the control over the separation d, but also over the carrier density ne—to investigate
electron-electron interactions in graphene.

Signatures of many-body interactions revealed by acoustic
graphene plasmons

The RPA is arguably the most widely used model to describe the optical response
of graphene and it provides a quite accurate account of the electrodynamics of the
material in nearly all scenarios that are relevant for plasmonics. In spite of this, one
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should be aware that the RPA framework is still an approximation of the full quantum
mechanical picture and therefore has also limitations [13–15]. One of which is the
complete lack of exchange terms, as well as the neglect of electron-electron correlations
(the only “correlation” that is included is screening through an effective average
potential). A detailed, all-encompassing description of the many-body interactions in
an electron liquid goes beyond the scope of this thesis—indeed, in the words of Giuliani
and Vignale, “it quickly becomes very difficult to go beyond the simple RPA” [13]—and
thus, following Ref. [106], below we simply give a cursory overview of the many-body
corrections experimentally reported by Lundeberg et al. [106].

Renormalization of vF . The manifestation of nonlocal effects in plasmonics is
expected typically when the plasmon wavelength approaches the electronic Fermi
wavelength, or, likewise, when q & kF . In conventional 3D metals, kF is essentially
fixed and the only way is to increase q (e.g., by exploiting high diffraction orders
using gratings [421] or reducing the system’s dimensions [75, 80, 89]). However, in
graphene, the Fermi wavevector kF = √πne can be tuned easily by controlling the
carrier density ne using a gate. Thus, by exploiting graphene’s acoustic plasmons,
which attain large wavevectors q, in combination with relatively low carrier densities,
one may straightforwardly increase the q/kF ratio across a relatively broad parameter
space. The net effect is the slow down of the plasmon velocity close to the Fermi
velocity of electrons, together with the exacerbation of nonlocal and quantum effects.
For graphene at low carrier densities, one of the most important contributions for the
latter is the renormalization of vF owing to many-body interactions4 [250, 422–428],
which results in values for the Fermi velocity larger than the conventional value of
vF ≈ 1× 106 m s−1 [97]. In particular, according to first-order perturbation theory
the (renormalized) Fermi velocity in graphene varies logarithmically with the carrier
density [250, 422–428]

vF (ne) = v0
F

[
1 +A ln

(
Λ
ne

)]
, (7.3)

where Λ is a cut-off and A is proportional to the effective coupling constant [250, 422]
which also depends on the screening of the Coulomb interaction. Following Ref. [422],
here we take v0

F = 0.85× 106 m/s as the “bare” Fermi velocity for graphene structures
with weak electron-electron interactions, whereas the remaining quantities are obtained
by fitting Eq. (7.3) to the results of the microscopic calculations provided in Ref. [106].
We emphasize that the ne-dependence of the Fermi velocity arises from interaction-
induced deviations from the conic energy-momentum dispersion of graphene’s massless
Dirac fermions, and hence the RPA is not actually “changed” per se in this case (in
contrast to the compressibility correction below); instead, it solely changes the value
of vF that enters in the RPA.

4This is consequence of the divergent character of the screening length at the charge neutrality
point, and thus electron-electron correlations become important. At moderate to high doping levels,
these correlations become screened and the picture of a gas of noninteracting fermions is recovered.
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Compressibility correction. As we have remarked earlier, in many-body condensed
matter physics going beyond the RPA quickly becomes rather demanding. Fortunately,
the concept of many-body local field factors enables the introduction of exchange
and correlation corrections to the RPA while maintaining the simple mathematical
structure of the latter [13]. The main concept is to augment the effective field of
the RPA with a local effective potential accounting for such effects. Concretely, the
generalization of the density-density response function including a local field factor,
G(q,ω), follows from5 [13]

1
χ(q,ω) = 1

χ0(q,ω) + V (q,ω)G(q,ω) . (7.4)

Naturally, the usefulness of this approach depends on whether or not one can provide an
approximate expression for G(q,ω) with physical meaning. In what follows, following
Ref. [106], we will introduce a local field factor in order to correct the compressibility
of the electron liquid. In doing so, we further assume that the dynamical field factor
can be well approximated by its frequency-independent version, i.e., G(q,ω) ' G(q, 0)
(this is the case where one expects the spectra of χ(q,ω) and χ0(q,ω) to behave
qualitatively similarly [13]), which can be written as [106]

G(q, 0) = − 1− κ0/κ

V (q, 0)χ0(q, 0) , (7.5)

so that the relation χ(q, 0)/χ0(q, 0) = κ/κ0 holds. The ratio κ/κ0 has to be calculated
using a suitable microscopic theory [423, 424, 429, 430]; alternatively, it can also
be measured experimentally [430–432]. Here, we will use the data from the results
reported in Ref. [106]. Inserting the previous expression into Eq. (7.4), one finally
obtains

χ(q,ω) =
[
χ−1

0 (q,ω)− V (q,ω)
V (q, 0)

1− κ0/κ

χ0(q, 0)

]−1
, (7.6)

where the ne-dependence of χ0(q,ω) [thereby including the renormalization of vF ]
and κ0/κ is implicitly assumed in the above expression. From here, the “interaction
corrected” plasmon dispersion then stems from the zeros of ε(q,ω) = 1−V (q,ω)χ(q,ω).

Results and discussion. Having outlined the specific many-body corrections we
have set out to address, we have now all the ingredients necessary to theoretically model
the experimental work performed by Lundeberg et al. [106]. In that experiment, the
configuration of the setup is essentially the same as the one illustrated in Fig. 7.1, that
is, an air–hBN–graphene–hBN–metal heterostructure. Three samples, with different

5Note that, in terms of a dielectric function, it transpires from the result (7.4)

that ε(q,ω) = 1−
V (q,ω)χ0(q,ω)

1 + V (q,ω)G(q,ω)χ0(q,ω)
. Clearly, the RPA dielectric function

εrpa(q,ω) = 1− V (q,ω)χ0(q,ω) is appropriately recovered upon neglecting the many-body
local field factor.
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graphene–metal separations (controlled by the thickness of the bottom hBN slab)
were studied, namely with d = 27 nm, d = 14.5 nm, and d = 5.5 nm. Making use of
the theoretical framework detailed above, we have calculated the dispersion—and
related properties—of the acoustic-like graphene plasmons in those structures, where
the parameters were taken in conformity to the experiment. The results of such
undertaking are summarized in Fig. 7.4.

We have calculated the AGPs ne-dependent spectral properties starting from the
simplest LRA using the Drude-type conductivity of graphene up to the nonlocal RPA
(with and without interaction corrections). In the latter, we have firstly considered the
nonlocal RPA without interactions, and subsequently added the many-body corrections
in succession, i.e., the Fermi velocity renormalization (VR) and the compressibility cor-
rection (CC). The results exhibited in Fig. 7.4 further endorse our previous conclusions
[cf. Fig. 7.3] that a nonlocal response formulation is needed in order to satisfactorily
determine the AGPs’ dispersion in structures where the graphene–metal separation
is small. However, notice how for low carrier densities the nonlocal RPA has to be
further modified in order to include many-body corrections, especially in the devices
with shorter graphene–metal distances. Finally, it should be noted that the effect
of the so-called compressibility correction term seems to be negligible6, the main
effect being the renormalization of the Fermi velocity of graphene. Strikingly, this
hints that the RPA (with a ne-corrected vF ) remains a fairly accurate formalism to
describe plasmons in graphene, since the influence of the many-body local field factor
is seemingly unimportant. Naturally, for moderate and high carrier densities, the RPA
with the usual nominal (and constant) value of vF = 1× 106 m s−1 provides a good
account of the electrodynamics of graphene.

As a minor point of criticism we would like point out that, in principle, the optimal
approach would be to use the actual, experimentally-measured vF (ne), rather than
the one obtained through microscopic calculations, in order to eliminate the possibility
of introducing artifacts. Ideally, one would also ought to experimentally measure the
dielectric function of that particular hBN sample that encapsulates the graphene sheet,
since it too can affect the calculated AGPs’ dispersion as well. However, the latter is
likely to be nontrivial due to the geometry of the sample.

Here, our considerations regarding nonlocal and quantum effects are limited to the
graphene layer itself, while the metal gate is treated as being as a perfect conductor
or as exhibiting a local response [as in our TMM calculations (not shown)]. This
assumption will be relaxed in the next section, where we shall model the optical
response of the metal under the nonlocal framework provided by the hydrodynamic
model described in Sect. 6.1.

6In the data provided by Lundeberg et al. [106], the deviation due to the compressibility correction
is even within the experimental error-bar.
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d e f

Figure 7.4: Quantum nonlocal effects in the spectral properties of acoustic-like graphene plasmons.
(a)–(c) Plasmon wavenumber as a function of graphene’s carrier density (i.e., Re q/(2π) versus ne)
for various device geometries (see parameters below). The hatched regions indicate wavenumbers
beyond the intraband electron-hole continuum. (d)–(f) Plasmon velocity vp ≈ ω/Re q versus
electronic density for the same devices; the colormap in the background represents the calculated
loss function − Im{ε−1

RPA+VR+CC(q,ω, ne)}. The sample configuration is an air–hBN–graphene–
hBN–metal heterostructure like the one portrayed in Fig. 7.1. In accordance with the experiments
carried out by Lundeberg et al. [106], we take ω/(2π) = 3.11 THz together with the following
parameters for the three different samples: (i) d = 27 nm and d ′ = 9 nm; (ii) d = 14.5 nm and
d ′ = 15.5 nm; and (iii) d = 5.5 nm and d ′ = 5.5 nm. The metal gate is assumed to be a perfect
conductor (we have also calculated the full electrodynamic theory with the experimental optical
constants of gold in the THz [433] using the transfer-matrix method, but we have found negligible
differences when compared with a the perfect conductor approximation), and the component
of the hBN dielectric tensor are εhBN

x = εhBN
y = 6.7 and εhBN

z = 3.56 [106]. The density-density
response function of graphene (under different approximations) is computed within the RTA with
~γ = 8.271 meV (corresponding to a τ = 500 fs) [106].

7.3 Probing the Nonlocal Response of Metals with

Graphene Plasmons

In our investigations so far we have treated the metal at the bottom of the dielectric–
graphene–dielectric–metal heterostructure within the LRA. The justification for doing

127



7 Quantum Nonlocal Effects Probed by Ultraconfined Graphene Plasmons

so has been that the dynamics affecting the graphene plasmons in the considered
system are dominated by the electrodynamics of the graphene itself. Nevertheless,
given the high momenta attained by the AGPs studied here, at some point the nonlocal
response of the metal will need to be accounted for. In what follows, we shall depart the
LRA picture for the metal and consider its nonlocal response within the hydrodynamic
model previously introduced in Sect. 6.1. In particular, we will derive the dispersion
relation of graphene plasmons in the aforementioned configuration taking into account
the nonlocal local response of both the graphene and the metal.

Hereafter, we consider a planar, layered dielectric–graphene–dielectric–metal het-
erostructure as depicted in Fig. 7.5.

metal

Figure 7.5: Illustration of the
considered dielectric–graphene–
dielectric–metal planar heterostruc-
ture. The graphene monolayer
is located in the z = −d plane,
and it is sandwiched between
two dielectric media with relative
permittivities ε1 and ε2 as indicated
in the figure.

Dispersion relation. The derivation of the graphene plasmon dispersion in the
layered heterostructure under consideration is reminiscent of the steps detailed in
Sect. 6.2.1. For this reason, we ask the reader to indulge our concise derivation below,
where we only highlight the main steps leading to the determination of the implicit
condition for the dispersion of AGPs sustained by the system.

We seek TM surface wave solutions, which in the half-space spanned by z < −d
take the form

E1(r,ω) = [Ex,1, 0,Ez,1] eκ1(z+d)ei(qx−ωt) , (7.7a)

H1(r,ω) = [0,Hy,1, 0] eκ1(z+d)ei(qx−ωt) , (7.7b)

where κ1 =
√
q2 − ε1k2

0, and the fields’ amplitudes are connected via the interrelations

Ex,1 = κ1

iωε0ε1
Hy,1 and Ez,1 = − q

ωε0ε1
Hy,1 . (7.8)

On the other hand, in the metal region (z > 0), we write the electromagnetic field as

Et/l
m (r,ω) =

[
Et/l
x,m, 0,Et/l

z,m

]
e−κm/nlzei(qx−ωt) , (7.9a)

Hm(r,ω) = [0,Hy,m, 0] e−κmzei(qx−ωt) , (7.9b)
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where, as in Sect. 6.2.1, κm =
√
q2 − εmk2

0 and κnl =
√
q2 − β−2[ω(ω + iγm)− ω2

p/ε∞],
and where

Et
x,m = iκm

ωε0εm
Hy,m and Et

z,m = − q

ωε0εm
Hy,m , (7.10a)

El
z,m = i

κnl

q
El
x,m . (7.10b)

Lastly, in the dielectric region defined by −d < z < 0, both growing and decaying
exponentials are allowed, and thus one may write the electromagnetic field in the
dielectric slab characterized by the relative permittivity ε2 as

E2(r,ω) =
{[
E+
x,2, 0,E+

z,2
]
eκ2z +

[
E−x,2, 0,E−z,2

]
e−κ2z

}
ei(qx−ωt) , (7.11a)

H2(r,ω) =
{
H+
y,2e

κ2z +H−y,2e
−κ2z

}
ŷei(qx−ωt) , (7.11b)

with κ2 =
√
q2 − ε2k2

0, and where the following relations hold

E±x,2 = ± κ2

iωε0ε2
H±y,2 and E±z,2 = − q

ωε0ε2
H±y,2 . (7.12)

In the present case, we now have two sets of boundary conditions: one for at
z = −d, and a second set at z = 0 (recall that both the dielectric with ε1 and the
metal are assumed to be semi-infinite). Explicitly, we have

Ex,1 = E+
x,2e
−κ2d + E−x,2e

κ2d , (7.13a)

Hy,1 = H+
y,2e
−κ2d +H−y,2e

κ2d + σEx,1 , (7.13b)

at z = −d, together with

E+
x,2 + E−x,2 = Et

x,m + El
x,m , (7.14a)

H+
y,2 +H−y,2 = Hy,m , (7.14b)

E+
z,2 + E−z,2 = ε∞

ε2

(
Et
z,m + El

z,m
)

, (7.14c)

at z = 0. Using the relations Eqs. (7.8), (7.10) and (7.12) to rewrite Eqs. (7.13)–(7.14)
in terms of the amplitudes Hy,1, H±y,2, Hy,m, and Ēl

x,m = iωε0E
l
x,m, one arrives to the

following equation for the determinant akin to the aforementioned linear system:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−κ1

ε1

κ2

ε2
e−κ2d −κ2

ε2
eκ2d 0 0

1 + κ1

ε1

iσ

ωε0
−e−κ2d −eκ2d 0 0

0 κ2

ε2
−κ2

ε2

κm

εm
−1

0 1 1 −1 0

0 1
ε∞

1
ε∞

− 1
εm

κnl

q2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 , (7.15)
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whose solution yields the implicit condition for the dispersion relation of acoustic-like
graphene plasmons supported by the heterostructure, that is [419](

ε1
κ1

+ ε2
κ2

+ iσ

ωε0

)(
1 + εmκ2

ε2κm
+ δnl

)
=
(
ε1
κ1
− ε2
κ2

+ iσ

ωε0

)(
−1 + εmκ2

ε2κm
− δnl

)
e−2κ2d ,

(7.16a)

where, as before,

δnl = q2

κnlκm

εm − ε∞
ε∞

. (7.16b)

Crucially, the transcendental equation posed by the condition (7.16a) determines the
dispersion relation of AGPs in planar dielectric–graphene–dielectric–metal structures7

(see Fig. 7.5) including nonlocal effects in graphene as well as in the metal. In the
former, these are accounted for via a suitable expression for the material’s surface
conductivity, i.e., σ ≡ σ(q,ω), whereas in the latter nonlocality enters within the scope
of the HDM through the nonlocal correction parameter δnl.

Before proceeding further, it is instructive to take a closer look at Eq. (7.16). We
note that the term on the left-hand side is simply the multiplication of the ”bare”
dispersion relations of the uncoupled interfaces: that of graphene cladded by two
dielectric media with relative permittivities ε1 and ε2 times that of a dielectric–metal
interface [recall Eq. (4.2) and Eq. (6.21), respectively]. On the other hand, the term
figuring on the right-hand side of Eq. (7.16a) mediates the interaction between the
two interfaces. Clearly, in the limit of large separations between the graphene and the
metal, or, more precisely, when κ2d→∞ (corresponding to qd� 1 in the nonretarded
regime), the two interfaces effectively decouple.

Lastly, we conclude by bringing to the reader’s attention that the condition (7.16)
that determines the spectrum of AGPs simplifies considerably in the nonretarded
regime, where it reduces to(

ε1 + ε2 + iσ

ωε0
q

)(
1 + εm

ε2
+ δnr

nl

)
=
(
ε1 − ε2 + iσ

ωε0
q

)(
−1 + εm

ε2
− δnr

nl

)
e−2qd ,

(7.17)
with δnr

nl = q κ−1
nl (εm − ε∞)/ε∞.

Results and discussion. In possession of the implicit condition that yields the
dispersion relation of graphene plasmons screened by a nearby metal [i.e., Eq. (7.16)],
we can now investigate the impact of the nonlocal response on the plasmonic spectrum
associated a planar dielectric–graphene-dielectric–metal system (recall Fig. 7.5).

7If the dielectric media that encapsulate the graphene sheet are uniaxial
↔
ε j = diag

[
εxj , εxj , εzj

]
(like, for instance, hBN) the corresponding AGPs’ dispersion relation is nevertheless readily obtainable

from Eq. (7.16) upon making the following replacements: εj → εxj and κj →
√

(εxj /ε
z
j )q2 − εxj k

2
0

for j ∈ {1, 2}. This setting is considered in Publication H, together with the hybridization of the
acoustic-like graphene plasmons with the optical phonons in hBN [419].
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Figure 7.6 shows the AGPs’ spectrum computed using three different approaches:
(i) both the graphene and the metal are modeled within the LRA (this plays the role
of a “base-line”), (ii) the graphene electrodynamics are described within the nonlocal
RPA, whereas the metal’s optical response is still treated within the LRA, and, finally,
(iii) the latter assumption is relaxed further and nonlocality in the metal is taken into
account under the framework of the HDM. The results unambiguously demonstrate
that the incorporation of nonlocality in the metal’s optical response imparts an
additional blueshift to the AGPs’ dispersion. In particular, the magnitude of the
blueshift is proportional to the velocity of the hydrodynamic plasma pressure wave
β =

√
3/5 vF ,m and inversely proportional to the metal’s plasma frequency8 (not shown;

see Publication H). Hence—and provided that all other parameters are well-known
experimentally—we envision that one could use the theoretical framework outlined
above in order to shed light about the metal’s nonlocal response, e.g., deducing the
value of β by comparing the experimentally-measured and the theoretical spectra [107,
419, 434]. A perhaps more appropriate reasoning, that squarely rests on the microscopic
formalism of the Feibelman d-parameters [56, 73, 82] (more on this in Chapter 8), is
to establish a connection between the value of β and the position of the centroid of
the induced charge density with respect to the dielectric–metal interface (given by
Re d⊥, and where d⊥ is the main Feibelman d-parameter); we will return to this point
in more depth in Sect. 8.4 and thus at the time being we shall refrain ourselves from
pursuing this premise any further.

Next, in Fig. 7.7 we examine the dependence of the nonlocal hydrodynamic blueshift
on the graphene–metal separation9 d. For the parameters considered in the figure
(well within reach of current experimental capabilities10 [106, 107]), the nonlocal
response of the metal can lead to quite significant blueshifts of the AGPs’ dispersion
for d . 5 nm. This can be understood by realizing that AGPs attain increasingly
larger wavevectors—and therefore are more sensitive to nonlocality in general—upon
decreasing d. Furthermore, for graphene–metal separations of only a few-nanometers,
d becomes comparable to the penetration length of the electric field into the metal
promoted by the smearing of the electronic density and concomitant “inward spill”
of the screening charges due to nonlocality [72, 79, 80, 84, 435–437]. Hence, in this
regime the sizable manifestation of nonlocal effects should not constitute a surprise. In
particular, this notion has been exploited to theoretically describe plasmonic dimers by

8We note that in the semiclassical Sommerfeld theory of the free-electron gas [118] the Fermi

velocity vF ,m and the plasma frequency ωp are not independent, namely vF ,m = ~
m

(
9π
4

) 1
3 1
rs

and

ωp = 3e2
4πmε0r3s

, respectively, where rs denotes the Wigner–Seitz radius. Nevertheless, the approach

taken in Fig. 7.6—varying vF ,m while keeping ωp fixed—is still legit, and simply corresponds to
metals with different carrier densities (controlled by rs) and effective masses m→ m∗. For the sake
of explicitness, the metal parameters adopted in the making of the aforementioned figure correspond
to {(m∗, rs)} ' {(1.644m0, 2.555), (0.8951m0, 3.129), (0.5814m0, 3.613)}, with m0 referring to the
electron’s rest mass and the pairwise list is written in increasing order of vF ,m.

9Do not confuse it with the d-parameter mentioned in the previous paragraph.
10Indeed, even the extreme case of d = 0.7 nm [the thickness of a single-layer of hBN (chosen as

twice the value of its bulk interlayer separation)] has been achieved experimentally [107].
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7 Quantum Nonlocal Effects Probed by Ultraconfined Graphene Plasmons

Figure 7.6: Nonlocal plasmonic response exhibited by acoustic-like graphene plasmons sustained
at a dielectric–graphene–dielectric–metal heterostructure (cf. Fig. 7.5). The red solid line shows
the calculation of the AGPs’ spectrum in the scenario where nonlocal effects are taken into
account in the optical response of graphene alone (via the nonlocal RPA with Mermin’s RTA) and
the metal is still treated within LRA. The blue dashed lines shows the AGPs’ dispersion computed
using full nonlocal electrodynamics, that is, where the optical response of the graphene and the
metal are described using the nonlocal RPA and the nonlocal HDM, respectively. In the latter, we
take β =

√
3/5 vF ,m with vF ,m = {1, 1.5, 2} × 106 m/s (where darker shades of blue correspond

to larger values of the Fermi velocity associated with the metal’s conduction electrons). The
opposite case, where both materials are treated within the simplest LRA is represented by the
gray dot-dashed line (for the purpose of comparison). The hatched region indicates the domain
associated with intraband Landau damping in the graphene. Setup parameters: ε1 = 1, ε2 = 4,
and d = 2 nm; the graphene is modeled with the parameters EF = 0.4 eV and ~γ = 8 meV; the
metal is modeled in accordance with εm = 1− ω2

p/(ω2 + iωγm) with ~ωp = 9 eV, ~γm = 20 meV
(and β =

√
3/5 vF ,m for the HDM).

replacing the actual dimer separation d0 (which plays a similar role to the graphene–
metal separation d in our geometry) by an “effective separation”11 deff 6= d0 in order to

11Notice that deff is both model- and material-dependent. In the HDM description, owing to its
inherently “hard-wall” nature, the model always predicts deff ≥ d0 (which is at times conflicts with
experiment).
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Figure 7.7: Dependence of the nonlocal plasmonic response of acoustic-like graphene plasmons
for varying graphene–metal separations d (indicated in the plot with matching colors). The
response of graphene is evaluated at the level of the nonlocal RPA in all cases shown here. As for
the metal’s optical response, we consider two distinct models: the local response approximation
(solid lines) and nonlocal hydrodynamic model (dashed lines). Setup parameters: same as in
Fig. 7.6 but with fixed β =

√
3/5 vF ,m, where vF ,m = 1.4× 106 m s−1 (as in gold or silver).

capture (albeit rather coarsely) the above-noted nonlocal shift of the induced surface
charges [84, 107, 419, 435].

One of the main virtues of the simple HDM is that it enables the incorporation of
nonlocal electrodynamics in a tractable fashion. In many ways, it may be viewed as a
semiclassical first approximation to the quantum description of the uniform electron
gas (e.g., via the more sophisticated RPA or Lindhard dielectric function of a 3DEG).
However, as pointed out before (check Sect. 6.3), the HDM flagrantly neglects Landau
damping despite its contribution for nonlocal plasmon damping, and which becomes
increasingly important as q approaches the lower boundary of the intraband (bulk)
electron-hole continuum12 (notice that the latter is typically reached prior to the
electron-hole continuum of graphene, as vF ,m > vF for most metals). In order to
address the aforementioned neglect, one possibility is to use the reflection coefficient
that we have derived in Sect. 6.3 [cf. Eqs. (6.27)–(6.28a)] and use it as a building block

12This is actually the case in Fig. 7.7 for the d = 0.7 nm, where the AGPs’ dispersion lies just
before the boundary of the (bulk) metal’s electron-hole continuum.
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7 Quantum Nonlocal Effects Probed by Ultraconfined Graphene Plasmons

to construct the reflection coefficient of the overall dielectric–graphene–dielectric–metal
heterostructure, from which the plasmonic response of the system can be computed.
This approach has recently been pursued theoretically [420]. In the next chapter—more
concretely in Sect. 8.4—we will present an alternative theoretical model for describing
the plasmonic excitations supported in the same dielectric–graphene–dielectric–metal
system and that is capable of incorporating nonlocality, surface-enhanced Landau
damping, as well as the shift of the centroid of induced charge density.
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CHAPTER 8
Quantum Corrections in

Plasmonics and Plasmon–Emitter
Interactions

Classical descriptions of photonic and plasmonic systems rely on the knowledge of the
materials’ local, bulk dielectric functions (or conductivities) [3, 7]. These, together
with the specification of the structure’s geometry—i.e., size and shape—constitute the
sole ingredients required for computing the electromagnetic response of the system and
its collective excitations [3, 7, 73]. Moreover, in the deeply subwavelength regime, the
scale-invariance associated with electrostatics renders the aspect of size expendable
(as we have seen in Sect. 4.2.1), and thus only the materials’ shape1 and bulk response
are required for describing plasmon resonances within a nonretarded local-response
framework. Notwithstanding, as the characteristic dimension of metallic nanostructures
reaches the few-nanometer regime (which is empirically found to somewhere below
. 10 – 20 nm [73]), the accurateness of traditional descriptions in terms of classical
electrodynamics rapidly declines owing to the emergence of nonlocal and quantum
mechanical effects [62, 66, 69, 71–73, 82, 89, 387, 388, 419].

In general, the exact computation of the optical response of a quantum nanoplas-
monic system is an extremely challenging task due to the complex nonlocal and
many-body dynamics that govern the plasmon-supporting electron gas. One approach
relies on the use of ab initio time-dependent density functional theory (TDDFT) [392]
in an attempt to describe systems’ response in a quantum mechanical setting (where
the effects that are included naturally depend on the approximation(s) employed when
solving the many-body problem). Nonetheless, techniques fully based on TDDFT are
in practice limited to very small systems like metal clusters, whose radii typically falls
below . 3 nm (for instance, a Na cluster with around 1000 atoms would span a radius
of only about 2 nm [69]). However, the vast majority of nanoplasmonic structures of
interest possess characteristic length scales that are significantly larger than that, yet

1Note that the shape remains of paramount importance in order to properly describe the Coulomb
interaction, e.g., instated through the Green’s function associated with the corresponding Poisson’s
equation [7, 113, 438] (recall, also, Sect. 4.2.1).
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8 Quantum Corrections in Plasmonics and Plasmon–Emitter Interactions

not sufficiently macroscopic in order to be satisfactorily described in terms of classical
electrodynamics alone. Hence, it becomes clear that there is a high-demand for the
development of suitable theoretical methods for quantum nanoplasmonics that are
capable to treat quantum and nonlocal effects rigorously while at the same time being
relatively simple and versatile to implement.

In this chapter, we introduce and extend a mesoscopic formalism for quantum
nanoplasmonics that addresses the above-noted predicament. A significant part of the
material covered in this chapter derives from Publication C. Specifically, we extend and
further develop the formalism of Feibelman d-parameters [71, 82] in order to bridge
the “classical to quantum boundary”; see Fig. 8.1. This framework is rooted on the
introduction of quantum surface-response functions—here obtained using TDDFT—
dubbed as Feibelman d⊥- and d‖-parameters. These account for the dynamics of
the surface region where the electron gas is inhomogeneous, whereas the bulk is still
described in terms of classical (local) response functions.

The formulation in terms of the d-parameters can therefore take into account, to
leading-order, intrinsically quantum mechanical effects such as nonlocality, electronic
spill-out (or “spill-in”), and surface-enabled Landau damping (i.e., plasmon decay into
electron-hole pairs), while preserving an amenable theoretical treatment that is general
and that can be practically implemented in a plethora of plasmonic nanostructures [56,
73, 85].
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Figure 8.1: Nonclassical mesoscopic electrodynamics via d-parameters. The nonclassical surface
response functions—the Feibelman d-parameters—rigorously incorporate quantum mechanical
effects in mesoscopic electrodynamics, bridging the gap between the purely quantum (microscopic)
and the purely classical (macroscopic) domains. Inset: d⊥-parameter of an rs = 4 jellium metal
computed from TDDFT [73]; in this case the corresponding d‖-parameter vanishes (owing to
charge-neutrality [71]).
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Box 8.1 — Feibelman d-parameters.

The complex-valued Feibelman d-parameters, d⊥ and d‖, can be defined from
the quantum mechanical induced charge density, ρ(r) ≡ ρ(z)eiqx, and associated
induced current density, J(r) ≡ J(z)eiqx (frequency-dependence suppressed, but
implicit) [71, 73, 82]:

d⊥ =
∫∞
−∞ z ρ(z) dz∫∞
−∞ ρ(z) dz

and d‖ =
∫∞
−∞ z ∂zJx(z) dz∫∞
−∞ ∂zJx(z) dz

,

here, for an interface spanning the xy-plane at z = 0. It is apparent from the
previous expressions that d⊥ corresponds to the centroid of the induced charge
density (cf. Fig. 8.1), while d‖ corresponds to the centroid of the normal derivative
of the tangential current (which is identically zero for charge-neutral interfaces) [71].
Unlike the bulk permittivity that characterizes a single material, the d-parameters
are surface-response functions that depend on the two materials that make up the
interface (including, in principle, their surface terminations). In short, the essential
appeal of the d-parameters is their facilitation of a practical introduction of the
important electronic length scales associated with the dynamics of the electron gas
at an interface.
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Figure 8.2: Spectral dependence of the Feibelman d-parameters for jellium metals with
different Wigner-Seitz radius, rs = {2, 4} (in units of the Bohr radius), and for silver (Ag).
We note that a jellium with rs = {2, 4} is resemblant to aluminum (Al) and sodium (Na),
respectively. For silver (Ag), we normalize the frequencies to the screened plasma frequency,
ω∗p ' 3.81 eV. The circles represent data obtained from TDDFT calculations by Christensen
et al. [73] and the solid lines are the corresponding interpolations. The dielectric medium
interfacing the metal is assumed to have εd = 1.

Figure 8.2 shows the Feibelman d-parameters obtained previously in Ref. [73]
through TDDFT calculations within the jellium model for the interacting electron
gas. The figure depicts the d-parameters for simple metals with different electronic
densities, defined by the Wigner–Seitz radius rs = {2, 4} (in units of the Bohr
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8 Quantum Corrections in Plasmonics and Plasmon–Emitter Interactions

radius, ab), via rsab = (3/4πne)1/3. The corresponding plasma frequency is thus

ωp =
√

3e2
4πε0m

1
(rsab)3 . It should be noted that the d-parameters are microscopic

surface-response functions that obey Kramers–Kronig relations and specific sum-
rules [439]. The TDDFT data presented here is for air–metal (or vacuum–metal)
interfaces (i.e., for εd = 1); we note that, as mentioned above, the specific values of
the d-parameters depend on the dielectric medium next to the metal [71, 86], since
it changes the screened interaction. Lastly, we emphasize that although in Fig. 8.2
we have d‖ 6= 0 for silver (last panel in Fig. 8.2) in this case silver is of course still
charge-neutral. The finiteness of d‖ here is merely a consequence of the methodology
used to incorporate valence-band screening in the TDDFT calculation [73] (see
Refs. [71, 73] for additional details).

In what follows, we begin by reviewing the concepts underpinning the d-parameter
formalism in the nonretarded regime and use it to derive the mesoscopic nonretarded
reflection and transmission coefficients of a planar dielectric–metal interface [71, 73, 82].
Using this knowledge, we then extend our considerations to the retarded regime by
introducing a set of d-parameter-corrected mesoscopic boundary conditions [56, 67, 85].
Next, we discuss the spherically symmetric case, i.e., that of a metal sphere, and derive
the corresponding mesoscopic Mie coefficients [56]. In both configurations—the planar
interface and the sphere—we calculate the quantum corrections to the corresponding
plasmon dispersion, epitomized by emergence of nonclassical spectral shifts and surface-
enabled Landau damping [56, 73]. Finally, in possession of the analytical mesoscopic
scattering coefficients that describe the electromagnetic response of those systems,
we extend and apply our formalism for mesoscopic electrodynamics to investigate
plasmon–emitter interactions at the extreme nanoscale [56]. In particular, we study
the impact of quantum surface corrections incorporated via the d-parameters in the
context of plasmon-empowered light–matter interactions such as the modification of
the dynamics of emitters in the vicinity of plasmonic nanostructures—encompassing
both dipole-allowed and dipole-forbidden transitions—and plasmon-mediated energy
transfer between two emitters.

8.1 Quantum Plasmonics at Planar Interfaces: Feibel-

man d -parameters

8.1.1 Nonretarded reflection and transmission coefficients
and surface plasmon dispersion

We consider that a planar dielectric–metal interface—portrayed in Fig. 8.3—is per-
turbed by an external potential of the form φext(r) = eiqxeqz, representing an excitation
(a harmonic time-dependence of the form e−iωt is assumed throughout) impinging on
the planar interface from the dielectric side and parameterized by a wavevector q. This
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8.1 Quantum Plasmonics at Planar Interfaces P. A. D. Gonçalves

perturbation drives the system out of equilibrium, which responds to the perturbation
by setting up a (surface-confined) charged density deviation ρ(r) = ρ(z)eiqx. Therefore,

dielectric

metal

surface region

metal

uniform positive 
background

Figure 8.3: Illustration of a planar dielectric–metal interface, here defined by the z = 0 plane. In
the asymptotic regions, i.e., for |z| ≥ |z1,2|, the cladding dielectric is characterized by a dielectric
constant εd whereas the electromagnetic properties of the metal are accounted for by its (local)
bulk dielectric function εm(ω). In the surface region, quantum mechanical features lead to a
nonuniform equilibrium electron density, n0(z), and an induced charge density, ρ(z) (that arises
due to the system’s response to an external perturbation). As indicated schematically in the
figure, the Feibelman d⊥-parameter can be regarded as the position of the centroid of the induced
charge density with respect to the positive background edge (also dubbed as jellium edge).

the associated induced electrostatic potential then follows from Coulomb’s law2 [113]

φind(r) = 1
4πε0

∫ ∞
−∞

ρ(r′)
|r− r′|dr′ = eiqx

2qε0

∫ ∞
−∞

ρ(z′)e−q|z−z
′|dz′ , (8.1)

and thus, noting that φind(r) = φind(z)eiqx, one finds

φind(z) = 1
2qε0

∫ z2

z1

ρ(z′)e−q|z−z
′|dz′ . (8.2)

Notice that in the previous expression we have replaced the limits of integration by
[z1, z2], that is, the z-coordinates that enclose the induced charge density and induced
potential. This is permitted because those quantities effectively vanish for |z| > |z1,2|,
by definition [71]. Performing an expansion in Eq. (8.2) around qz′ = 0, which is
justifiable since φind(z) is surface-peaked, we obtain

φind(z) = 1
2qε0

∫ z2

z1

dz′ρ(z′)
{

1 + sgn(z)qz′ +O[(qz′)2]
}
e−q|z|

≡ e−q|z|

2qε0
ρs
{

1 + sgn(z)qd⊥ +O[(qZ)2]
}

, (8.3)

2We note that in writing Eq. (8.1) the following results
∫∞
−∞ dx̄ e−iqx̄√

x̄2+ȳ2+z̄2
= 2K0

(
q
√
ȳ2 + z̄2

)
and

∫∞
−∞ dȳ K0

(
q
√
ȳ2 + z̄2

)
= π

q
e−q|z̄| have been used [440].
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where Z is a small (by assumption) length scale, and we have defined

ρs =
∫ z2

z1

ρ(z) dz , (8.4)

while also introducing the perpendicular Feibelman parameter d⊥ [71, 73, 82]:

d⊥ = 1
ρs

∫ z2

z1

z ρ(z) dz . (8.5)

The quantities denoted by ρs and d⊥ correspond, respectively, to the effective quantum
mechanical surface charge density and its first moment. The latter can also be
interpreted as the position of the centroid of the induced charge density (with respect
to the jellium edge). In addition, we note that d⊥ has the form of a dipole moment3.
In fact, this resemblance was exploited in a recent computational work by Yan et
al. [85].

Nonretarded scattering coefficients of a planar dielectric–metal interface.
In the following, our goal is to derive the leading-order quantum surface corrections
to the reflection and transmission coefficients for the planar dielectric–metal geometry.
To that end, we now introduce the asymptotic potentials [71, 73]

φ∞+ (z > 0) ≡ eqz − re−qz , (8.6a)

φ∞− (z < 0) ≡ teqz , (8.6b)

which are valid away from the interface, that is, in the regions defined by |z| ≥ |z1,2|.
Naturally, these must agree with the actual potential φext(z) + φind(z) beyond the
surface region, thereby establishing the following relations:

r = − ρs

2qε0
(1 + qd⊥) , (8.7a)

t = 1 + ρs

2qε0
(1− qd⊥) . (8.7b)

The sought-after coefficients r and t can be determined by imposing the adequate
boundary conditions. However, the usual boundary conditions of classical optics that
relate the asymptotic (classical) potentials are of no use here due to the inclusion of
microscopic (quantum mechanical) surface features. In particular, subtracting the
components of the classical potential on either side of the interface produces

φ∞+ (z = 0+)− φ∞− (z = 0−) = 1− r − t = ρs

ε0
d⊥ ,

⇒ 1− r − t = ρs

ε0
d⊥ , (8.8)

3Indeed, ρs and d⊥ may be regarded as a monopole and a dipole moment, respectively. In
particular, the reader may recognize that the expansion that led to Eq. (8.3) has effectively introduced
a multipole expansion. Generically, one could in principle include an arbitrary number of higher-
order multipoles, albeit such endeavor would necessarily make the ensuing mathematical analysis
burdensome.
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where in the last step we have made use of Eqs. (8.7). Similarly, considering the
derivatives of the potential, one finds

∂φ∞+
∂z

∣∣∣∣
z=0+

−
∂φ∞−
∂z

∣∣∣∣
z=0−

= q(1 + r)− qt = −ρs

ε0
,

⇒ 1 + r − t = − ρs

qε0
. (8.9)

Combining Eqs. (8.8) and (8.9) yields our first effective boundary condition [71, 73]:

(1 + qd⊥)− r(1− qd⊥)− t(1 + qd⊥) = 0 , (8.10)

where any explicit reference to ρs is now absent.
In order to arrive to the second modified boundary condition, it is useful to introduce

an auxiliary charge density and a corresponding auxiliary current density, ρ∞(r) and
J∞(r), respectively, which naturally obey the continuity equation, ∇ · J∞ = iωρ∞.
Moreover, as in the case of φ∞± , these classical charge- and current-densities must
match the proper quantum mechanical charge- and current-densities, ρ(r) and J(r),
in the asymptotic regions |z| ≥ |z1,2|. Noting that J∞(x, z) = [J∞x (z)x̂ + J∞z (z)ẑ]eiqx
and ρ∞(x, z) = ρ∞s δ(z)eiqx, it follows from the continuity equation that

iωρ∞s δ(z) = iqJ∞x (z) + ∂

∂z
J∞z (z) ,

which upon integrating from z = 0− to z = 0+ leads to

iωρ∞s = iq

∫ 0+

0−
dzJ∞x (z)︸ ︷︷ ︸
=0

+J∞z (0+)− J∞z (0−) ,

⇒ iωρ∞s = J∞z (0+)− J∞z (0−) , (8.11)

where the integral over J∞x (z) vanishes since the classical current is nonsingular (i.e.,
weakly-varying) across the infinitesimal domain [73]. Furthermore, since by construc-
tion the asymptotic currents are generated by the asymptotic fields via the correspond-
ing classical bulk conductivities, that is, J∞x (0±) = σE∞x (0±) = −σ∂xφ∞x |z=0± , and
noting that σd,m = −iωε0(εd,m − 1), one can cast the previous equation as

ρ∞s
qε0

= (εd − 1)(1 + r)− (εm − 1)t . (8.12)

this expression interrelates ρ∞s with the scattering amplitudes r and t and with the
(local) bulk dielectric functions (which characterize the media in the asymptotic regions
defined by |z| ≥ |z1,2|). The usefulness of Eq. (8.12) depends on our ability to establish
a connection between the charge- and current-densities in the far-field and the actual
microscopic charge- and current-densities. To that end, we proceed in a similar fashion
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to the one that led to Eq. (8.11), namely, integrating the continuity equation but now
over an extended domain around the interface up to the asymptotic regions

iωρs = iq

∫ z2

z1

dz Jx(z) + Jz(z2)− Jz(z1) , (8.13a)

iωρ∞s = iq

∫ z2

z1

dz J∞x (z) + J∞z (z2)− J∞z (z1) . (8.13b)

Subtracting the above equations while at the same time realizing that, by definition,
Jz(z1,2) = J∞z (z1,2), renders

ρs − ρ∞s = q

ω

∫ z2

z1

dz [Jx(z)− J∞x (z)] ,

= q

ω
d‖
[
J∞x (0−)− J∞x (0+)

]
. (8.14)

where we have introduced the parallel Feibelman d-parameter [71, 73, 82]:

d‖ ≡
∫ z2
z1
dz [Jx(z)− J∞x (z)]

J∞x (0−)− J∞x (0+) . (8.15)

Utilizing a similar argument to the one that prompted us from Eq. (8.11) to the
result (8.12), we can rewrite Eq. (8.14) as

ρs − ρ∞s
qε0

= qd‖ [(εd − 1)(1− r)− (εm − 1)t] . (8.16)

On the other hand, the combinations of Eqs. (8.9) and (8.12) enables us to obtain the
relation

ρs − ρ∞s
qε0

= tεm − (1 + r)εd . (8.17)

Finally, equating the previous two expressions grants us with the second effective
boundary condition, which reads [71, 73]:

εd(1 + qd‖)− qd‖ + r
[
εd(1− qd‖) + qd‖

]
− t
[
εm(1 + qd‖)− qd‖

]
= 0 . (8.18)

In possession of the two effective boundary conditions—epitomized by Eqs. (8.10)
and (8.18)—we can now solve the coupled system constituted by those two expressions,
thereby determining the nonretarded mesoscopic reflection and transmission coefficients
within the d-parameter formalism [71, 73, 82]:

r =
εm − εd + (εm − εd)q(d⊥ + d‖)
εm + εd − (εm − εd)q(d⊥ − d‖)

, (8.19a)
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and

t = 2εd
εm + εd − (εm − εd)q(d⊥ − d‖)

, (8.19b)

where for consistency we have only kept terms which are linear in qd⊥,‖. These
two equations therefore include the lowest-order quantum surface corrections to the
classical reflection and transmission amplitudes. Notice that the latter are recovered
by taking the limit of vanishing Feibelman d-parameters, i.e., d⊥,‖ → 0, yielding the
well-know classical results [7]

rcl = εm − εd
εm + εd

and tcl = 2εd
εm + εd

, (8.20)

for a planar dielectric–metal interface.

The determination of the nonretarded Feibelman scattering coefficients rnr and tnr is
pivotal for describing nonlocal quantum surface corrections to, for instance, the surface
plasmon dispersion [56, 71, 73, 82, 441], the enhancement of the optical local density of
states (LDOS) experienced by an emitter in the vicinity of a metal surface [56, 233, 441],
or their role in the van der Waals interaction [233, 441–443]. We will return to this
point in Sect. 8.3.

Nonretarded surface plasmon dispersion. Equipped with the nonclassical re-
flection coefficient—cf. Eq. (8.19a)—, the corresponding surface plasmon dispersion for
a planar interface is determined from the poles of r ≡ r(q,ω). Hence, the nonclassical
surface plasmon spectrum stems from

εm + εd − (εm − εd)q(d⊥ − d‖) = 0 . (8.21)

Clearly, a closed-form expression for the dispersion in the form of q versus ω can be
found; explicitly, it reads

qsp = εm + εd
εm − εd

1
d⊥ − d‖

. (8.22)

On the other hand, writing an explicit solution in closed-form for the surface plasmon
frequency as a function of the wavevector, i.e., ω versus q, is not possible4 due to
the implicit frequency-dependence of the d-parameters. Nevertheless, starting from

Eq. (8.21) one may work towards a perturbative solution, herein denoted by ω
(1)
sp . In

particular, for the exemplary case of a homogeneous 3DEG—that is, a jellium metal

4At any rate, assuming a Drude-type dielectric function εm(ω) = ε∞ − ω2
p/(ω2 + iωγ) for the

metal, one obtains

ω = −i
γ

2
+

1
2

√
4ω2

p
1− q(d⊥ − d‖)

ε+ + ε−q(d⊥ − d‖)
− γ2 , (8.23)

where ε± ≡ εd ± ε∞. Note, however, that this is still an implicit equation due to the frequency-
dependence of the d-parameters (and, possibly, of ε∞ and/or εd).
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so that ε∞ = 1 (in this case one would have d‖ = 0, but we shall retain it here for the
sake of generality and because it can be used to model, e.g., overlayers, adsorption, or
surface roughness [71, 73, 444])—interfacing vacuum εd = 1, we find to first-order in
qd⊥,‖ (and for ωp � γ) [71, 73, 82]

Re ω(1)
sp ' Re ω(0)

sp

[
1− 1

2 qRe
(
d

(0)
⊥ − d

(0)
‖

)
︸ ︷︷ ︸

electronic
spill-out/spill-in

]
, (8.24a)

− Im ω
(1)
sp '

γ

2︸︷︷︸
classical
bulk
damping

+1
2 Re ω(0)

sp q Im
(
d

(0)
⊥ − d

(0)
‖

)
︸ ︷︷ ︸

surface-assisted
Landau damping

, (8.24b)

where Re ω(0)
sp = ωp/

√
2 is the classical nonretarded surface plasmon frequency and

d
(0)
α ≡ dα(Re ω(0)

sp ) for α = {⊥, ‖}.
At this point, the reader may appreciate that, despite being only approximate,

Eq. (8.24a) delivers a clear message: to lowest-order, the direction of the frequency
shift due to nonlocal quantum surface phenomena ultimately depends on the sign of
Re
(
d⊥ − d‖

)
. Specifically, for a fixed frequency, these nonclassical corrections lead to

red (blue) shift of the surface plasmon resonance—relative to its classical value—if
Re
(
d⊥ − d‖

)
> 0 (< 0). Furthermore, for charge-neutral surfaces one has d‖ = 0 [71].

Recalling the interpretation of d⊥ as the centroid of the induced charge density, then
one may associate the positiveness or negativeness of d⊥, respectively, to a spill-out or a
spill-in of the electron density with respect to the fixed ionic background of the metal [56,
71, 73, 82]. Concomitantly, the aforementioned nonclassical resonant frequency shift
is accompanied by increased broadening of the surface plasmon resonance; the latter
is embodied in the imaginary part of the d-parameters and takes into account surface-
assisted Landau damping [56, 71, 73, 82].

Figure 8.4 shows the nonretarded surface plasmon dispersion relation for a ho-
mogeneous 3DEG and for silver. The figure clearly underscores the statements set
forth in the previous paragraph, i.e., that the surface plasmon dispersion undergoes
either a redshift, for Re deff > 0, or a blueshift, for Re deff < 0; here, deff ≡ d⊥ − d‖.
We emphasize that for jellium metals (e.g., simple metals, such as the ones belonging
to the alkali group) Re deff is typically positive around the surface plasmon reso-
nance [71, 387, 446–452]. However, silver (and other noble metals) typically exhibits
negative values for Re deff in experiments [62, 65, 66, 71, 453, 454]; this behavior is
attributed to the influence of the (substantial) d-band screening (by virtue of the core
electron’s contribution to the background polarizability) [71, 455, 456].

Finally, we also mention here in passing that for metal structures beyond the planar
interface, e.g., metallic nanoparticles with different shapes, the predicted direction of
the nonclassical frequency shift (amount of nonclassical broadening) depends not only
on the sign of Re deff (magnitude of Im deff) but also on their interplay with a set of
geometry-dependent shape factors [73].
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Figure 8.4: Nonretarded surface plasmon dispersion for vacuum–metal interfaces calculated
using the formalism of the Feibelman d-parameters [by solving Eq. (8.21) numerically]. The
d-parameters’ data is taken from TDDFT calculations performed by Christensen et al. [73, 445].
(a) Nonclassical surface plasmon dispersion for a vacuum–jellium interface [with Wigner–Seitz
radius rs = 3 (in units of the Bohr radius); corresponding to ~ω = 9.07 eV, ε∞ = 1, and
d‖ = 0] where we have assume a Drude-type damping of γ = ωp/100. The dispersionless gray
line indicates the classical result, whereas the black dot-dashed line represents the perturbative
solution (8.24a). (b) Same as in (a) but now for a vacuum–silver interface. Here, we have
defined deff = d⊥ − d‖ [the fact that d‖ 6= 0 is simply due to the semiclassical account of silver’s
nontrivial d-band screening, and not a statement about charge-neutrality; see Ref. [73] (and
Ref. [71]) for details]. We describe silver using Johnson and Christy’s experimental data [131]
for εm(ω), parameterized according to the prescription described in the supplemental material of
Ref. [73] (in order to be consistent with their TDDFT implementation).

8.1.2 Surface plasmon polaritons: Quantum surface
corrections incorporated via d-parameters

After having determined the mesoscopic nonretarded reflection and transmission
coefficients—and ensuing nonretarded surface plasmon dispersion—for the planar
interface, we now revisit the same dielectric–metal configuration taking retardation
effects into account. To that end, we introduce a set of modified, mesoscopic boundary
conditions [56, 67, 85] that differ from the classical, macroscopic ones by a term
proportional to the d-parameters. From these, we obtain the corresponding nonclassi-
cal retarded reflection and transmission coefficients and investigate the influence of
quantum surface corrections on the surface plasmon polariton (SPP) dispersion.

Mesoscopic boundary conditions. In the absence of external charges and currents,
the elementary boundary conditions of macroscopic electrodynamics at an interface
separating two media are n̂× (E2 −E1) = 0 and n̂× (H2 −H1) = 0, enforcing the
continuity of the tangential component of the electric and magnetic fields, respectively.
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However, as we have seen in Sect. 8.1.1, the introduction of the d-parameters renders the
above boundary conditions inapplicable. Hence, a revised set of boundary conditions
which reflect the presence of the d-parameters is required. These can be encoded
through (normally-oriented) surface polarization and (tangentially-oriented) surface
current terms, herein denoted, respectively, by P(r) = π(r)δ(r − r∂Ω) and J(r) =
K(r)δ(r− r∂Ω), which are nonzero only at the interface, i.e., for r = r∂Ω. Specifically,
the surface polarization and current densities can be defined in terms of the d-
parameters as [56, 67, 85]

π ≡ ε0d⊥ [n̂ · (E2 −E1)] n̂ , (8.25a)

K ≡ iωd‖ [n̂× (D2 −D1)× n̂] . (8.25b)

After some manipulations, these surface polarizations and currents can be self-
consistently absorbed into a revision of the conventional boundary conditions5

n̂× (E2 −E1) = n̂×
[
−ε−1

0 ∇s (π · n̂)
]

= −d⊥n̂× [∇n̂ · (E2 −E1)] , (8.26a)

n̂× (H2 −H1) = iωd‖ [n̂× (D2 −D1)× n̂] (8.26b)

where ∇s is the nabla operator that lives in the two-dimensional surface which defines
the interface. It is more elucidating, nonetheless, to split the fields into parallel
and perpendicular components (with respect to the interface), so that the previous
equations become

E2,‖ −E1,‖ = −d⊥∇‖ (E2,⊥ − E1,⊥) , (8.27a)

H2,‖ −H1,‖ = iωd‖
(
D2,‖ −D1,‖

)
× n̂ . (8.27b)

Clearly, and as we have anticipated, the incorporation of the Feibelman d-parameters
introduces discontinuities in the parallel components of the (classical, or asymptotic)
electric and magnetic fields. The magnitude of such discontinuities is naturally
proportional to the d-parameters.

Modified Fresnel coefficients with Feibelman d-parameters. In possession of
the boundary conditions personified by Eqs. (8.27), we now have all that is required for
deriving the nonclassical equivalents of Fresnel’s reflection and transmission coefficients
for a planar dielectric–metal interface. In what follows, we adopt the same coordinate
system and conventions as in Sect. 8.1.1 (see also Fig. 8.3).

We seek transverse magnetic (TM) solutions, in the dielectric and metal half-spaces,
of the form:

5While the boundary conditions on the tangential parts of E and H is fully sufficient to uniquely
couple solutions across the interface, the complementary set of boundary conditions—on the normal
components of B and D—is occasionally more convenient. The boundary condition for the normal
components of B, is unchanged from its classical counterpart, i.e. n̂ · (B2 −B1) = 0; for the normal
components of D, it is n̂ · (D2 −D1) = d‖∇‖ · [n̂× (D2 −D1)× n̂] [67].
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Dielectric half-space (z > 0):

Hd =
(
e−ikz,dz + rpe

ikz,dz
)
ei(qx−ωt) ŷ , (8.28a)

Ed = [Ex,d(z) x̂ + Ez,d(z) ẑ] ei(qx−ωt) , (8.28b)

where kz,d =
√
εdk2

0 − q2, and

Ex,d(z) = − kz,d

ωε0εd

(
e−ikz,dz − rpeikz,dz

)
, (8.29a)

Ez,d(z) = − q

ωε0εd

(
e−ikz,dz + rpe

ikz,dz
)

, (8.29b)

as determined by Maxwell’s equations.

Metal half-space (z < 0):

Hm = tpe
−ikz,mzei(qx−ωt) ŷ , (8.30a)

Em = [Ex,m(z) x̂ + Ez,m(z) ẑ] ei(qx−ωt) , (8.30b)

where kz,m =
√
εmk2

0 − q2, and

Ex,m(z) = − kz,m

ωε0εm
tpe
−ikz,mz , (8.31a)

Ez,m(z) = − q

ωε0εm
tpe
−ikz,mz . (8.31b)

Making use of the modified boundary conditions (8.27), which for a planar interface
take the form

Ex,d(0)− Ex,m(0) = −iqd⊥ [Ez,d(0)− Ez,m(0)] , (8.32a)

Hy,d(0)−Hy,m(0) = −iωd‖ [Dx,d(0)−Dx,m(0)] , (8.32b)

one obtains the following linear system:

kz,d

εd
(rp − 1) + kz,m

εm
tp = iq2d⊥

[
1
εd

(1 + rp)−
1
εm
tp

]
, (8.33a)

1 + rp − tp = −id‖ [kz,d(rp − 1) + kz,mtp] . (8.33b)

After some somewhat lengthy but straightforward algebraic manipulations, one finally
arrives to the nonclassical reflection and transmission coefficients for p-polarization,
reading [56, 71, 82, 86]

rp =
εmkz,d − εdkz,m + (εm − εd)

[
iq2d⊥ − ikz,dkz,md‖

]
εmkz,d + εdkz,m − (εm − εd)

[
iq2d⊥ + ikz,dkz,md‖

] , (8.34a)
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and

tp = 2εmkz,d

εmkz,d + εdkz,m − (εm − εd)
[
iq2d⊥ + ikz,dkz,md‖

] , (8.34b)

where only terms up to linear-order in qd⊥,‖ have been kept.
Proceeding in a similar fashion for s-polarized [or transverse electric (TE)], the

corresponding nonclassical reflection and transmission coefficients are given by [56, 71,
82]

rs =
kz,d − kz,m + (εm − εd)ik2

0d‖

kz,d + kz,m − (εm − εd)ik2
0d‖

, (8.35a)

ts = 2kz,d

kz,d + kz,m − (εm − εd)ik2
0d‖

. (8.35b)

Consistently, in the electrostatic limit (c → ∞) one has kd,m → iq , thereby
recovering the nonretarded reflection and transmission amplitudes for p-polarized
waves given by Eqs. (8.19a) and (8.19b).

Surface plasmon polariton dispersion with Feibelman d-parameters. The
retarded dispersion relation of surface plasmon polaritons at a planar dielectric–metal
interface can be fetched from the poles of the associated scattering coefficients—see
Eq. (8.34). Thus, the nonclassical SPP spectrum within the framework of Feibelman’s
d-parameters stems from the implicit condition:

εmkz,d + εdkz,m − (εm − εd)
[
iq2d⊥ + ikz,dkz,md‖

]
, (8.36)

or, equivalently, while noting that kz, = iκd,m with κd,m =
√
q2 − εd,mk2

0,

εd
κd

+ εm
κm
− (εm − εd)

[
q2

κdκm
d⊥ − d‖

]
= 0 . (8.37)

Equation (8.37) determines the retarded dispersion relation of SPPs taking Feibelman’s
quantum surface corrections into account (to leading-order), namely nonlocal effects
and damping of these collective excitations via their decay into electron-hole pairs [71,
82, 441]. Recall that in this formulation εm ≡ εm(ω) is still the local bulk dielectric
function of the metal; therefore the above-mentioned nonclassical corrections enter
via the d-parameters alone. Returning to Eq. (8.37), it is clear that the well-know
classical result εd/κd + εm/κm = 0 [cf. Eq. (2.23)] is obtained by letting d⊥,‖ → 0.
Additionally, in the electrostatic limit one has κd,m → q and the nonretarded surface
plasmon resonance, given by Eq. (8.21), is recovered.

Figure 8.5 shows the nonclassical spectral properties of plasmons in a planar
vacuum–jellium interface, contrasting the retarded and nonretarded regimes, as well as
the classical and nonclassical behaviors. Three (inverse) length scales characterize the
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Figure 8.5: Nonclassical spectral properties of SPPs in a planar vacuum–jellium interface
computed via the d-parameters’ formalism [corresponding to the roots of Eq. (8.37)]. The
d-parameters’ data is taken from TDDFT calculations performed by Christensen et al. [73, 445].
The material parameters are the same as in Fig. 8.4a. (a) Surface plasmon polariton dispersion
relation and (b) corresponding resonance widths. (c) Nonclassical spectral shifts and resonant
broadenings (including retardation effects).

plasmonic dispersion in the planar system: the free-space wavevector k0, the plasmon
wavevector q, and the inverse centroid of induced charge d−1

⊥ . The plasmon dispersion,
consequently, spans up to three distinct regimes, namely a classical, retarded regime
q ∼ k0 � |d⊥|−1, a deeply nonclassical, quasi-static regime q ∼ |d⊥|−1 � k0, and
an intermediate regime. Figures 8.5a–b demonstrate that each of these regimes are
well-realized in the planar rs = 3 jellium: (i) at small wavevectors, nonclassical effects
are negligible; (ii) at large wavevectors, they substantially redshift and broaden the
plasmonic dispersion, manifesting the spill-out characteristic of simple metals (i.e.,
Re d⊥ > 0) and surface-enhanced Landau damping, respectively, consistent with earlier
findings [71, 83, 84, 387, 388]; and (iii) at intermediate wavevectors, both retardation
and nonclassical corrections are non-negligible, and therefore need to be taken into
account simultaneously. Intriguingly, the existence of a well-defined intermediate
regime demonstrates that the transition from classical to nonclassical response is
intrinsically multiscale.

In the same spirit, we present in Fig. 8.6 the salient features of SPPs sustained
at a vacuum–silver interface. In this case—and as we have seen when studying
Fig. 8.4c—the incorporation of quantum surface corrections via the d-parameters’
mesoscopic theory leads to a blueshift of the SPP frequency for moderate-to-larger
wavevectors, courtesy of electronic spill-out (i.e., Re deff < 0). We further remark that
in silver the dynamics of the (conducting) 5s electrons are strongly influenced by core
electrons in the (filled) 4d band, which, semiclassically, amounts to a complex-valued,
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Figure 8.6: Nonclassical dispersion re-
lation of surface plasmon polaritons in a
planar vacuum–silver interface. The d-
parameters’ data is taken from TDDFT
calculations performed by Christensen
et al. [73]. The material parameters are
the same as in Fig. 8.4b.

frequency-dependent background dielectric function ε∞ ≡ ε∞(ω). Incidentally6, this
affects the magnitude of the nonclassical corrections to the SPPs spectral features
depending simultaneously on the frequency-dependence of ε∞ and deff .

8.2 Quantum Nonlocal Response of Plasmonic Spheres

8.2.1 Multipolar polarizability of a nanosphere including
Feibelman d-parameters

Let us consider the response of a small (i.e., R� λ) spherical nanoparticle of radius R
due to a quasi-static multipolar field; henceforth, all dynamic quantities are implicitly
assumed to evolve as e−iωt. The aim of the present section is to determine the
multipolar polarizability of a metallic nanosphere, from which the system’s optical
response and associated localized surface plasmon resonances can be unambiguously
calculated.

In the quasi-static (or nonretarded) limit, the scalar electrostatic potential is
governed by Laplace’s equation, ∇2Φ(r) = 0, and therefore admits an expansion in a

6On a more technical note, this also makes a TDDFT implementation strictly based on the
jellium approximation inapplicable. This can be partly circumvented by accounting for d-band
screening semiclassically—see, for instance, Refs. [71, 73]—, albeit it is reasonable to expect a loss in
accuracy when comparing with the predictions for “true jellium metals”. Hence, ideally, a TDDFT
implementation with a more sophisticated account of the atomic orbitals and atomic structure should
be employed [69, 392].
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series of multipoles [113], for instance

Φ(r, θ,φ) =
∑
lm

ϕl(r)Y ml (θ,φ) , (8.38)

where due to symmetry considerations one may to separate the electrostatic potential
as a product of a radial part, ϕl(r), and an angular part, Y ml (θ,φ). The latter are the
spherical harmonics while the former read ϕl(r) = Alr

l + Blr
−l−1 [113]. Since the

electric potential inside the nanosphere needs to remain finite, we have

Φin(r, θ,φ) =
∑
lm

cl

( r
R

)l
Y ml (θ,φ) , (8.39)

whereas in the region outside the spherical particle we write

Φout(r, θ,φ) =
∑
lm

[( r
R

)l
− al

(
R

r

)l+1
]
Y ml (θ,φ) . (8.40)

In the above expressions, the coefficients al and cl play the role of ”reflection” and
”transmission” amplitudes for a given multipole of order l (they do not depend on
m, however, due to azimuthal symmetry7). Once al and cl are determined, the
electromagnetic response of the metal sphere—including its LSP resonances, optical
cross-sections, LDOS, etc—can be readily computed.

In order to find the so far unknown al and cl coefficients, one has to invoke
the appropriate boundary conditions. Within the local response approximation, in

the absence of external charges and currents, these are
(

Eout
‖ −Ein

‖

)∣∣∣
r∈∂V

= 0 and

n̂ ·
(

Dout
‖ −Din

‖

)∣∣∣
r∈∂V

= 0, which simply state the continuity of the potential and

the discontinuity of its derivative (weighted by the permittivities on each side) across
an interface, ∂V . However—and as we have already seen in Sect. 8.1—within the
mesoscopic formalism of the Feibelman d-parameters these are modified and read
instead (recall the discussion at the start of Sect. 8.1.2):

Eout
‖ −Ein

‖ = −d⊥∇‖
(
Eout
r − Ein

r

)
, (8.41a)

r̂ ·
(
Dout −Din) = d‖∇‖ ·

[
r̂×

(
Dout −Din)× r̂

]
. (8.41b)

where the subscript “‖” simply denotes the components that are parallel to the
nanosphere’s surface at given point (and whose normal unit vector is radially-oriented).
Thus, ∇ ≡ (∇r, ∇‖). Now, making use of the connection between the electric field

7In fact, for this reason one could, alternatively, set m = 0 right from the start and describe the
angular part of the potential using the Legendre polynomials alone [113].
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and the corresponding potential, i.e., E = −∇Φ, Eqs. (8.41) yield8

1− al − cl + l
d⊥
R

[
1 + l + 1

l
al − cl

]
= 0 , (8.42a)

εmcl − εd
[
1 + l + 1

l
al

]
+ (l + 1)

d‖

R
[εmcl − (1− al)εd] = 0 . (8.42b)

Solving for al, one obtains (to linear-order in R−1d⊥,‖)

al =
(εm − εd)

[
1 + ld⊥R

−1 + (l + 1)d‖R−1]
εm + (εm − εd)(l + 1)d‖R−1 + (1 + 1/l) [εd(1 + ld⊥R−1)− εmld⊥R−1] . (8.43)

Finally, the sough-after multipolar polarizability then reads (αl = 4πR2l+1al)

αl = 4πR2l+1
(εm − εd)

[
1 + l

R

(
d⊥ + l + 1

l
d‖

)]
εm + l + 1

l
εd − (εm − εd) l + 1

R

(
d⊥ − d‖

) . (8.44)

This expression therefore includes quantum surface corrections incorporated via Feibel-
man’s mesoscopic theory. Equation (8.44) can then be straightforwardly employed to
compute the corresponding nonclassical cross-sections, LDOS, and LSP dispersion,
in the nonretarded regime. Furthermore, it is apparent from this equation that the
classical multipolar polarizability [5, 78],

αcl
l = 4πR2l+1 εm − εd

εm + l + 1
l
εd

. (8.45)

is reinstated [cf. Eq. (2.34)] in the limit of vanishing d-parameters. Lastly, the well-
known Clausius–Mossotti dipolar polarizability [3, 117], that is, αcm = 4πR3 εm−εd

εm+2εd ,
immediately follows from the previous expression upon setting l = 1.

Nonretarded LSPs: quantum corrections. In the planar configuration, we have
obtained the surface plasmon dispersion condition from the poles of the corresponding
reflection coefficient for p-polarized waves. Likewise, for a metallic nanosphere, its
localized surface plasmon resonances follow from the poles of the associated multipolar
polarizability (8.44). Hence, the dispersion of LSP resonances—parameterized by the
angular momentum l—stem from the implicit condition:

εm + l + 1
l
εd − (εm − εd) l + 1

R

(
d⊥ − d‖

)
. (8.46)

8Here it is useful to recall the spherical harmonic differential equation [457]:

1
sin θ

∂

∂θ

(
sin θ

∂Yml
∂θ

)
+

1
sin2 θ

∂2Yml
∂φ2 = −l(l + 1)Yml .
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Moreover, if the metal’s optical response in the asymptotic region is given by a
Drude-like dielectric function of the form εm = ε∞ − ω2

p/(ω2 + iωγ), one finds

ω(ω + iγ) = ω2
p

1− (l + 1)(d⊥ − d‖)R−1

ε∞ + εd(l + 1)/l − (ε∞ − εd)(l + 1)(d⊥ − d‖)R−1 (8.47)

which, nonetheless, remains an implicit equation for the LSP dispersion because the
d-parameters are frequency-dependent (and, potentially, ε∞ and/or εd may be too).

In the same spirit of Eqs. (8.24), it is instructive to determine from Eq. (8.46) the
approximate expressions for the real and imaginary parts of the first-order spectral

correction, ω
(1)
l ≡ ω(0)

l + δωl +O
([
ωl − ω(0)

l

]2), which, for the particular case where
εd = ε∞ = 1, read [56, 73]

Re ω(1)
l ' Re ω(0)

l

[
1− l + 1

2R Re
(
d

(0)
⊥ − d

(0)
‖

)]
, (8.48a)

− Im ω
(1)
l ' γ

2 + Re ω(0)
l

l + 1
2R Im

(
d

(0)
⊥ − d

(0)
‖

)
, (8.48b)

where Re ω(0)
l = ωp/

√
1 + (l + 1)/l is the lth-order classical nonretarded LSP fre-

quency and d
(0)
α ≡ dα(Re ω(0)

l ) for α = {⊥, ‖}. Equations (8.48a) and (8.48b) capture
the leading-order nonclassical LSP frequency shift and broadening, respectively, for

LSP frequencies around ω
(0)
l . In addition, by comparing Eqs. (8.48) with their planar

counterparts (8.24) it becomes apparent that (l + 1)/R plays the role of an effective
wavevector; for large l, this effective wavevector tends to ∼ l/R as expected from simple
standing-wave arguments. Furthermore, it is interesting to note that the incorporation
of quantum mechanical effects breaks the scale-invariance that usually characterizes the
classical nonretarded limit, wherein plasmon resonances ωcl are scale-independent (e.g.
Re ωcl = ωp/

√
1 + εd and Re ωcl = ωp/

√
1 + 2εd for the surface and dipole plasmon

of a planar and spherical jellium interface, respectively). Here, the introduction of the
electronic length scale(s) associated with d⊥,‖ breaks this scale-invariance, producing
finite-size corrections parameterized by either qd⊥,‖ or d⊥,‖/R,

In the quasi-static regime the l-dependent LSP resonances for deeply subwavelength
metal nanospheres follow from the solutions of Eq. (8.46). Figure 8.7a shows the
calculated LSP resonances—associated with the first five multipoles—of an rs = 4
jellium sphere with diameter of 2R = 6 nm and embedded in a homogeneous host
medium with εd = 1. The difference between the classical and quantum predictions
is striking in a number of ways. Firstly, the account of quantum mechanical spill-
out leads to LSP resonances that are systematically redshifted with respect to the
classical predictions. Secondly, the frequency of the classical LSP resonances increases
monotonically with the eigenindex l—from the dipolar LSP at Re ωcl

l=1 = ωp/
√

3 up to
the asymptotic limit Re ωcl

l→∞ = ωp/
√

2 where they “pile up”—, contrasting with the
nonmonotonic behavior exhibited by the nonclassical LSPs. Lastly, while the classical
framework heralds a fixed, l-independent broadening (and, perhaps more disturbing,
also size-independent) amounting to − Im ωcl

l = γ/2, the quantum mechanical theory

153



8 Quantum Corrections in Plasmonics and Plasmon–Emitter Interactions

jellium sphere (rs=4)

2R=6 nm

b c

dipolar LSP in silver spheres

nonclassical shift nonclassical 
broadening

Figure 8.7: Spectral properties of nonretarded LSPs in metal nanospheres calculated via Eq. (8.46).
The d-parameters’ data was obtained from TDDFT calculations performed by Christensen et
al. [73]. The nanoparticles are assumed to be embedded in a host environment with dielectric
constant εd = 1. (a) Classical (gray circles) and quantum (red circles) multipolar LSP resonances
of a 2R = 6 nm metal nanosphere (specifically, an rs = 4 jellium; ~ω = 5.89 eV, ε∞ = 1,
~γ = 0.1 eV, and d‖ = 0). The circle’s radius is proportional to the resonance’s width. (b) [(c)]
Nonclassical shift [broadening] of the dipolar LSP resonance for silver nanospheres of varying
radii. We describe the bulk dielectric function of silver by a Drude-type expression of the form
εm(ω) = ε∞(ω) − ωp/(ω2 + iωγ) with ~ωp = 9.02 eV and ~γ = 22 meV and ε∞(ω) is taken
from Johnson and Christy’s experimental data [131] (by subtracting the aforementioned Drude
contribution).

predicts increased broadening for higher-order LSP multipoles, in agreement the
experiment [65, 458].

Figure 8.7b–c portrays the size-dependent nonclassical shift and broadening of
the dipolar (l = 1) LSP resonance for silver spheres of varying radii. The latter is
consequence of the inward spill (Re deff < 0) of the induced density whereas the latter
reflects the presence of a new decay channel (namely, surface-assisted electron-hole
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pair creation).

8.2.2 Generalized Mie theory with Feibelman d-parameters

In the preceding section we have analyzed the quasi-static response of small (i.e.,
R � λ0) spheres taking into account nonlocal and quantum surface corrections
incorporated via the d-parameters’ formalism. Here, we extend our previous treatment
to spheres of arbitrary size by developing a generalized Mie theory that incorporates
mesoscopic length-scales of the plasmon-supporting electron gas—that are omitted in
a classical, LRA-description—through the Feibelman d-parameters.

While the mesoscopic reflection coefficients of the planar system have been deter-
mined by Feibelman [82], the corresponding scattering coefficients of the spherically
symmetric system—the so-called Mie coefficients atm

l and bte
l [155]—have remained

unknown until recently (see Publication C), despite their significant practical util-
ity, e.g., for calculating the sphere’s LSP resonances, optical cross-sections, Purcell
enhancements, near-field interactions, etc.

Mesoscopic Mie coefficients. We have derived the mesoscopic generalization of
Mie’s theory by incorporating the Feibelman d-parameters through a generalization
of the usual electromagnetic boundary conditions [56, 67] [cf. Eqs. (8.27)]. The
mathematical details are somewhat lengthy and are thus provided in Appendix C
(and also in the Supplementary Information of Publication C). As such, we shall not
repeat them here and we will rather focus our discussion on the observables akin to
the optical response of metal spheres.

Specifically, for a metallic sphere of radius R, the generalized, nonclassical TM
and TE Mie coefficients are9 [56]:

atm
l =

εmjl(xm)Ψ′l(xd)− εdjl(xd)Ψ′l(xm) + ∆num
⊥,‖

εmjl(xm)ξ′l(xd)− εdh(1)
l (xd)Ψ′l(xm) + ∆den

⊥,‖

, (8.49a)

where

∆num
⊥,‖ = (εm − εd)

{
jl(xd)jl(xm) [l(l + 1)] d⊥ + Ψ′l(xd)Ψ′l(xm) d‖

}
R−1 , (8.49b)

∆den
⊥,‖ = (εm − εd)

{
h

(1)
l (xd)jl(xm) [l(l + 1)] d⊥ + ξ′l(xd)Ψ′l(xm) d‖

}
R−1 , (8.49c)

and

bte
l =

jl(xm)Ψ′l(xd)− jl(xd)Ψ′l(xm) +
(
x2

m − x2
d
)
jl(xd)jl(xm) d‖R−1

jl(xm)ξ′l(xd)− h(1)
l (xd)Ψ′l(xm) +

(
x2

m − x2
d
)
h

(1)
l (xd)jl(xm) d‖R−1

, (8.49d)

9The two remaining mesoscopic Mie coefficients cte
l and dtm

l , associated with the internal (or
transmitted) fields, can be found in Appendix C (and in the Supplementary Information of Publica-
tion C).
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with dimensionless wavevectors xj ≡ kjR, spherical Bessel and Hankel functions of

the first kind jl(x) and h
(1)
l (x), and the Riccati–Bessel functions Ψl(x) ≡ xjl(x) and

ξl(x) ≡ xh(1)
l (x); primed functions denote their derivatives.

Notice that the quantum mechanical TE Mie coefficient bte
l is independent of the

perpendicular Feibelman d-parameter, d⊥ (a featured naturally shared with its planar
kin, the TE reflection coefficient rs). This should not really constitute a surprise,
since for a TE wave the electric field is purely tangential to the particle’s surface and
therefore has no perpendicular component capable of inducing a displacement of the
charge density along the normal to the sphere’s surface. On the other hand, the TM
Mie coefficient atm

l describes TM waves, whose electric field in general possesses both
radial and tangential components, and, consequently, both d⊥ and d‖ are present in
these coefficients.

Finally, we comment that in the small-radius limit, xj � 1, a small-argument
expansion of spherical Bessel and Hankel functions produces the nonretarded equiv-
alent of the TM Mie coefficient atm

l , i.e., the mesoscopic multipolar polarizability
[cf. Eq. (8.44)] previously derived in Sect. 8.2.1.

Quantum corrections to the optical response of plasmonic spheres. A par-
ticularly alluring feature of the theoretical formalism set forth here, it that the
mathematical structure of the usual expressions for the cross-sections, LDOS, etc,
is unchanged; that is, the nonclassical optical response is obtained using the very
same textbook expressions, simply by replacing the classical Mie coefficients by the
quantum mechanical Mie coefficients presented in Eqs. (8.49). For instance, the
extinction cross-section for a metal sphere illuminated by a monochromatic plane-wave
is therefore given—as before [cf. Eqs. (2.33)]—by

σext = 2π
k2

d

∞∑
l=1

(2l + 1) Re{atm
l + bte

l }, (8.50)

For relatively small metal spheres, the optical response is dominated by a series
of peaks originating from the excitation of LSP resonances. The latter occur at
frequencies for which atm

l has pole, as illustrated in Fig. 8.8. A LSP resonance is
said to be of electric dipole character for l = 1, of electric quadrupole character for
l = 2, and so on. It is also apparent from Fig. 8.8 that the dipole resonance (l = 1)
contributes the most (at least for subwavelength spheres) for the cross-section, with
the successively higher-order resonances becoming increasingly negligible (note the
logarithmic scale). The TE Mie coefficients bte

l are essentially featureless and their
contribution for the extinction cross-section is several orders of magnitude smaller
than the one associated with TM Mie coefficients atm

l of the same order. The impact of
quantum nonlocal effects, i.e., a redshift owing to spill-out (Re d⊥ > 0) and broadening
due to surface-enabled Landau damping, can be clearly observed in Fig. 8.8 as well. It
is also interesting to note that the TE Mie coefficients are unchanged by such effects,
which can be understood by the fact that here d‖ = 0 [check Eq. (8.49d)].
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Figure 8.8: Real parts of the Mie coefficients for a R = 5 nm jellium sphere with rs = 4. The
metal particle is assumed to be embedded in vacuum (εd=1). The d-parameters are obtained
using the TDDFT data provided by Christensen et al. [73], and a Drude-type broadening of
~γ = 0.1 eV is assumed. (a) Real part of the Mie coefficient associated with TM polarization,
aTM

l , for different angular momenta, l (the line-connected circles indicate their respective maxima).
(b) Real part of the Mie coefficient associated with TM polarization, bTE

l , for different angular
momenta, l .

Spectral features of LSPs and quantum nonlocal effects. Figures 8.9a–d
outline the plasmonic features of metal spheres as a function of their radii. In
most respects, they mirror the qualitative conclusions drawn for the planar case (see
Fig. 8.5), but with the inverse radius R−1 playing the role of an effective wavevector10.
Concretely, and focusing on the dipole LSP, Figs. 8.9a–b plainly show the shortcomings
of the classical theory for jellium spheres with dimensions below 2R ∼ 20 nm. For
extremely small spheres, the nonretarded limit (Sect. 8.2.1) reproduces the nonclassical
redshift and broadening well. Again, we observe an intermediate region where both
retardation and nonclassical effects are of comparable magnitude. Incidentally, this
region corresponds to the regime probed by several experiments that investigated
nonclassical plasmons [62, 65, 66, 459]. Our results therefore underscore the necessity
of simultaneously accounting for retardation and quantum effects when interpreting
experimental data. Finally, in Figs. 8.9c–d we present the normalized extinction cross-
sections of jellium spheres under plane-wave illumination. Besides reproducing the
main features already observed in Figs. 8.9a–b, they also exhibit extra resonances due
to higher-order LSP modes (chiefly, the l = 2). The cross-section of these higher-order
LSPs, however, fall off rapidly with decreasing radii owing to the realization of the
dipole limit. In the nonclassical case this reduction is amplified further, as higher-order
LSPs are progressively impacted by surface-induced Landau damping [cf. Eqs. (8.48)].

10Increased losses at large radii are due to radiation damping.
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Qext

Figure 8.9: Nonclassical spectral properties of LSPs calculated taking into account quantum
nonlocal surface corrections. (a) Dipole LSP resonance frequency, and (b) associated resonance
widths, for metal spheres of varying radii (notice the inverted scale). (c) Classical and (d)
quantum extinction cross-sections for plasmonic spheres in air normalized to their geometrical
cross-sections, Qext ≡ σext/(πR2). The white dashed lines mark the classical nonretarded dipole
resonance at ωp/

√
3. Material parameters: jellium metal (rs = 4 and ~γ = 0.1 eV) and εd = 1.

These predictions are in good agreement with experimental data [65, 71, 83, 387, 388,
458].

The formalism and results presented in the preceding sections—i.e., Sects. 8.1 and
8.2—establish the fundamental foundations governing plasmon-enhanced nanophotonic
phenomena in the mesoscopic regime. In the following, we exploit this understanding
to assess plasmon–emitter interactions at the nanoscale.

8.3 Plasmon–Emitter Interactions at the Nanoscale

The exceedingly rapid growth of plasmonics has been largely motivated by the ability
of surface plasmons to squeeze electromagnetic fields into deep subwavelength dimen-
sions [17], thereby boosting the strength of light–matter interactions in nanoscale
environments [42, 52, 460]. Plasmon-enabled phenomena include strong field enhance-
ments [89, 107, 434], the modification of the emission/absorption of emitters via the
Purcell effect [24, 26, 49, 199, 235, 236], surface-enhanced Raman scattering [21, 22],
ultrasensitive biochemical sensing [30, 31, 51], and plasmon-driven chemistry [57, 59],
just to mention a few.

Indeed, the interaction between light and matter in free-space is an intrinsically
weak process. Strikingly, this interaction strength can be enormously enhanced near
material interfaces. This is especially true in plasmonics [17, 42, 49, 51, 52, 460]: for
an emitter separated from an interface by a subwavelength distance h, the decay rate
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is increased by a factor ∝∼h−3 in the classical, macroscopic theory [recall Box 2.2].
However, as the separation—or the characteristic dimensions of the plasmonic system
itself—is reduced to the nanoscale (. 10 – 20 nm), the classical theory is rendered invalid
due to its neglect of all intrinsic quantum mechanical lengths scales in the plasmonic
material. Thus, to ascertain the ultimate limits of plasmon-mediated light–matter
interactions, the classical theory must be augmented. Here, we apply the mesoscopic
formalism introduced in Sects. 8.1 and 8.2 and investigate the impact of leading-order
quantum mechanical corrections in a broad range of prominent plasmon-mediated
light–matter interaction phenomena. First, we study two narrowband single-emitter
phenomena: the Purcell enhancement of a dipole emitter [25, 26, 236, 239], associated
with the enhancement of the local density of states (LDOS), and the enhancement of
dipole-forbidden multipolar transitions [54, 461, 462]. Finally, and going beyond the
single-emitter setting, we investigate plasmon-mediated energy transfer between two
emitters [463–465], which can be either narrow- or broadband.

8.3.1 Nonclassical LDOS: Purcell enhancement

A hallmark of plasmonics is its ability to support extreme field enhancements and
correspondingly large Purcell factors [26, 51, 236], enabling unprecedented control
over the emission properties of emitters. At its core, this is a manifestation of the re-
shaping of the LDOS spectrum, which is enhanced near plasmon resonances [466–469].
Importantly, the Purcell enhancement is generally maximized at short emitter–surface
separations, i.e. exactly where nonlocality and quantum effects become important.
Thus, as we show in what follows, a rigorous description of the governing electro-
dynamics that incorporates nonclassical effects is not only necessary, but ultimately
essential.

The LDOS, ρe
n̂, experienced by an emitter with orientation n̂ (and incorporating

both radiative and nonradiative contributions) is proportional to the imaginary part of
the system’s Green’s dyadic, which in turn is expandable in the previously introduced
scattering coefficients (recall Sect. 2.3) [117, 470, 471]. The expressions are succinctly
presented in Box 8.2. We exploit this fact to directly incorporate nonclassical surface
corrections into the LDOS, by simply adopting the mesoscopic scattering coefficients,
Eqs. (8.34)–(8.35) or (8.49), instead of their classical equivalents.

Box 8.2 — LDOS expressions in terms of the system’s scattering coefficients.

The LDOS experienced by a point-like dipole emitter embedded in a dielectric
medium with dielectric constant εd and located at a distance h above a metal
half-space is given by (derived in Sect. 2.54 and reproduced here again for the
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convenience of the reader) [117, 231]

ρe
⊥
ρe

0
= 1 + 3

2 Re
∫ ∞

0

u3
√

1− u2
rp e

2ikdh
√

1−u2 du,

ρe
‖

ρe
0

= 1 + 3
4 Re

∫ ∞
0

u√
1− u2

[
rs −

(
1− u2)rp]e2ikdh

√
1−u2 du,

for an emitter with its dipole moment oriented perpendicularly (⊥) or tangentially
(‖), respectively, to the dielectric–metal interface (here assumed to be defined by
the z = 0 plane). The perpendicularly oriented dipole only couples to TM modes,
whereas the dipole in the parallel configuration couples to both TM and TE modes.
At short emitter–metal separations, however, the TM contribution dominates,
regardless of orientation. Moreover, since plasmonic excitations are TM polarized,
the TM contribution is the main quantity of interest for plasmon-enhanced LDOS.

For an emitter at a distance h from the surface of a metallic sphere of radius R,
the LDOS can be evaluated via [78, 472]

ρe
⊥
ρe

0
= 1 + 3

2
1
y2

∞∑
l=1

(2l + 1)l(l + 1) Re
{
− atm

l

[
h

(1)
l (y)

]2}
,

ρe
‖

ρe
0

= 1 + 3
4

1
y2

∞∑
l=1

(2l + 1) Re
{
− atm

l

[
ξ′l(y)

]2 − bte
l

[
ξl(y)

]2},

for an emitter with its dipole oriented along the radial (⊥) or tangential (‖) directions,
respectively. Additionally, we have introduced the dimensionless radial emitter
position y ≡ kd(R+ h) for brevity of notation.

The above expressions also highlight a key feature exploited in all our calculations:
conveniently, in order to calculate the quantum mechanically corrected LDOS within
the d-parameters framework one only needs to replace the standard Mie coefficients
by their generalized nonclassical counterparts, Eqs. (8.49). The same also holds
for the familiar Fresnel reflection coefficients and their nonclassical counterparts,
Eqs. (8.34)–(8.35).

In Figs. 8.10a–b we show the classical and quantum LDOS, normalized to the
free-space LDOS, ρe

0, near a planar metal interface as a function of the emitter–metal
separation h, for a normally-oriented emitter (see the Supplementary Information of
Publication C for the parallel and orientation-averaged cases). The enhancement of
the LDOS near the surface plasmon frequency is markedly sharper in the classical case
and less pronounced in the nonclassical one at shorter separations. This observation
is particularly evident in Fig. 8.10b, which shows the plasmon-enhanced LDOS for
different emitter–metal separations. In the classical formulation, the peak in the
LDOS remains relatively sharp, approaching the nonretarded plasmon frequency
ωp/
√

2 at small separations. Contrasting this, in the nonclassical framework the LDOS
peak redshifts (consistent with the spill-out characteristic of jellium metals) with
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h

h

Figure 8.10: Quantum corrections to the Purcell enhancement in nanoplasmonics. Normalized
LDOS, ρE/ρE0 , experienced by a normally-oriented emitter near a planar metal surface [(a)–(b)],
and a metal sphere [(c)–(e)]. (a) Normalized LDOS map as a function of the emitter’s frequency
and separation from the planar jellium surface. The horizontal line marks the classical nonretarded
surface plasmon frequency, ωp/

√
2. (b) Plasmon-mediated LDOS enhancement at different

emitter-surface separations. The vertical line marks the position of ωp/
√

2. (c) Density plot of the
normalized LDOS map near an R = 5 nm jellium sphere as a function of the emitter’s frequency
and h/R ratio. The horizontal lines marks the classical nonretarded dipole and quadrupole LSP
frequencies, ωp/

√
1 + (l + 1)/l , for l ∈ {1, 2}. (d) Plasmon-mediated LDOS enhancement near

an R = 5 nm nanosphere for distinct emitter-surface distances. Vertical lines mark the l = 1,
l = 2, and l =∞ classical nonretarded LSPs. (e) Normalized LDOS for plasmonic spheres with
various radii at a fixed h = 10 nm emitter-surface separation. Material parameters as in Fig. 8.9.

decreasing h, and evolves into a broad spectral feature at very small emitter–metal
distances. This behavior reflects the nonclassical corrections to the plasmonic spectrum
outlined in Sect. 8.1. Evidently, the most significant impact of nonclassicality here is
the substantial reduction (notice the logarithmic scale) of the maximum-attainable
LDOS in the nonclassical case, particularly for h . 10 nm. Lastly, it is interesting
to observe the emergence of a broad spectral peak at frequencies above ωp/

√
2 that

is absent in the classical setting. This feature is a manifestation of the so-called
surface-multipole plasmon or Bennet mode [473] that originates due to the finite-size
of the inhomogeneous surface region [71]; mathematically, it corresponds to a pole
in d⊥(ω); physically, it represents an out-of-plane oscillation confined to the surface
region.

Figures 8.10c–d show the LDOS of a radially-oriented emitter placed at a distance
h from the surface of an R = 5 nm metal sphere. The LDOS enhancement in the
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spherical geometry is richer in features, partly because the sphere, unlike the plane,
has an intrinsic length scale (its radius R), and partly because it hosts a series of
l-dependent multipolar LSPs. The LDOS enhancement is centered around these LSP
frequencies. In the nonclassical case, we again observe redshifted and broadened
spectral features relative to their classical counterparts. The impact of Landau
damping is amplified by the order of the LSP mode, cf. Eq. (8.48); as a result, only the
dipole and quadrupole modes are discernible in the nonclassical case (in the classical
case, a faint l = 3 LSP remains identifiable). Next, in Fig. 8.10e we investigate
the LDOS enhancement’s dependence on the sphere’s radius R for a fixed emitter–
sphere separation of h = 10 nm. In particular, the impact of nonclassical effects—
particularly its reduction of the maximum LDOS—is more pronounced at smaller radii,
in agreement with the ∝∼ (l + 1)R−1 scaling previously derived in Eq. (8.48). In fact,
for very small metal spheres, only the LDOS enhancement associated with the dipole
plasmon remains identifiable in the nonclassical case, due to surface-enabled Landau
damping. Crucially, although deviations from classicality are most pronounced for
spheres with radii . 10 nm, even relatively large spheres (that would otherwise be
considered within the classical regime, e.g. 2R = 50 nm) exhibit significant nonclassical
corrections at small emitter–metal separations. Indeed, this constitutes an example of
a multiscale regime where both retardation (a classical effect) and quantum effects
must be addressed in concert.

8.3.2 Dipole-forbidden electric multipolar transitions

The set of optical transitions associated with the emission of radiation by atoms is
in practice limited due to the mismatch between the atom’s size and the wavelength
of the radiation emitted by it. This fact leads to the selection rules for dipole-
allowed transitions that originate from the so-called dipole approximation [474]. Such
transitions, however, constitute only a fraction of a much richer spectrum. Nevertheless,
transition rates other than the dipole-allowed are simply too slow (by several orders of
magnitude) to be accessible in practice and are consequently termed “forbidden” [475,
476]. Recently, it has been shown that it is possible to increase the effective light–
matter coupling strength for such transitions by exploiting the shrinkage of the
wavelength of light brought about by surface plasmons [53, 54, 56]. Notwithstanding
this, a satisfactory framework for describing the impact of nonclassical effects in the
plasmonic enhancement of forbidden transitions remains somewhat elusive. Below, we
pursue a remedy for this by extending our formalism of mesoscopic electrodynamics
to the class of dipole-forbidden transitions of electric multipolar character [56], which
can be exploited to probe even larger plasmon momenta. These are transitions
in which the orbital angular momentum of the emitter changes by more than one;
hereafter denoted En with n = 2, 3, 4, . . . (thus, E1 denotes a dipole transition, E2
a quadrupole transition, and so on). It should be emphasized that although in the
following we consider hydrogenic systems—for the sake of definiteness—the theory
presented here can be readily applied to any point-like emitter (e.g., atoms, quantum

162



8.3 Plasmon–Emitter Interactions at the Nanoscale P. A. D. Gonçalves

dots, nitrogen-vacancy centers, or dyes).
Let us consider an emitter located at a distance h from a planar metal surface

(Fig. 8.11a), and treat the light–matter interaction in its vicinity using a formulation
of macroscopic quantum electrodynamics (detailed in Appendix D) which enables a
rigorous account of the quantum nature of the emitter and of the plasmon, as well as
the inherent presence of loss [477, 478]. Within this framework, the multipolar decay
rates, ΓEn, can be evaluated as [54, 56] (see Appendix D)

ΓEn = 2α3ω0

[
(k0aB)n−1

(n− 1)!

]2

Ξ
∫ ∞

0
u2ne−2uk0h Im rp du , (8.51)

where u ≡ q/k0, aB denotes the Bohr radius, α is the fine-structure constant, and
the dimensionless quantity Ξ is related to the matrix element associated with the
transition. In the previous expression, the quasi-static limit is assumed, valid for
k0h� 1. Nonetheless, in our calculations we use the retarded reflection coefficient to
accurately incorporate the plasmon pole’s spectral position. Moreover, in this limit
Γtot

En = Γ0
En + ΓEn ' ΓEn since the free-space contribution Γ0

En is many orders of
magnitude smaller [475, 476].

In Fig. 8.11b we plot the En decay rates associated with the 6{p, d, f, g, h} → 2s
transition series in hydrogen (δ-transitions of the Balmer series). While at relatively
large distances from the metal the spontaneous emission rates of higher-order mul-
tipolar transitions are several orders of magnitude slower than E1, this difference is
dramatically reduced at smaller emitter–metal separations. Interestingly, at nano-
metric separations the higher-order multipolar rates can exceed the E1 free-space
rate, signaling a breakdown of traditional dipole-allowed selection rules. In addition,
the inclusion of nonclassical effects via d-parameters increases the multipolar decay
rates relative to the classical predictions (Fig. 8.11b, inset) by roughly one order of
magnitude at the smallest separations. To understand the physical mechanism for this
additional enhancement, we show in Figs. 8.11c–e the integrand of Eq. (8.51) for the
first three multipolar orders, each evaluated at three distinct atom-metal separations.
Two main contributions can be readily identified: (i) a sharp, resonant contribution
corresponding to the plasmon pole embodied in Im rp at the transition frequency (i.e.
at the intersection of the blue and red lines in Fig. 8.11a), associated with emission
into plasmons; and (ii) a broad, non-resonant contribution associated with quenching
by lossy channels in the metal, e.g. Landau damping, disorder, phonons, etc. The
relative contribution of (i) and (ii) to the overall decay rate depends strongly on
the emitter–metal separation (due to the u2ne−2uk0h scaling of the integrand), with
loss-related quenching dominating over plasmon emission at very small emitter–metal
separations. This effect is more pronounced for higher-order multipolar transitions
since the integrand of Eq. (8.51) initially grows with u2n. With the above-mentioned
considerations in mind, the additional nonclassical enhancement can now be under-
stood: it is a direct result of an increased non-resonant, loss-related contribution due
to surface-enabled Landau damping. Finally, the dotted lines in Figs. 8.11b,f indicate
regions in which a significant fraction of ΓEn is accumulated at very large wavevectors
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Figure 8.11: Enhancement
of dipole-forbidden electric
multipole transitions for an
emitter near a metal sur-
face. (a) Position of
the transition frequencies
corresponding to (b)–(e)
(dashed blue) and to (f)–
(i) (dashed green). (b)
Rates for multipolar transi-
tions, ΓEn, associated with
the 6{p, d, f, g, h} → 2s
series of transitions in hy-
drogen (~ω0 = 3.02 eV).
The dashed lines indicate
the classical rates whereas
the solid lines represent the
predictions within the d-
parameter formalism. The
dashed gray horizontal line
marks the E1 rate in free-
space, for comparison. The
inset shows the relative
rates, ΓEn/Γcl

En. c–e Differ-
ential rates dΓEn/du [inte-
grand of Eq. (8.51)] for var-
ious atom–surface separa-
tions: h1 = 10 nm, h2 =
5 nm, and h3 = 2.5 nm. (f)
and (g)–(i) are the respec-
tive equivalents of (b) and
(c)–(e), but now assuming
that the transitions occur
at ω0 = 0.97ωp/

√
2. The

dotted lines correspond to
regions where our nonclas-
sical formalism is extrapo-
lated (we set the threshold
for its validity when more
than 10% of the contribu-
tion for the rates comes
from wavevectors beyond
qth Re d⊥ = 1/3).

where the condition qRe d⊥ � 1 is only approximately valid; evidently, at the smallest
separations and at large transitions orders n, our mesoscopic framework is pushed
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beyond its range of validity.
Figure 8.11f considers a similar transition in a hydrogen-like atom, but now

occurring at a higher frequency—i.e. closer to ωp/
√

2—and therefore able to probe
larger plasmon wavevectors. We assume, for simplicity, that the magnitude of the
matrix elements in Eq. (8.51) still equal those in the 6{p, d, f, g, h} → 2s hydrogen
series. The enhancement of the En rates is qualitatively similar to the previous case,
albeit with some quantitative differences: for instance, as shown in Figs. 8.11g–i, the
resonant plasmon contribution now peaks at larger u, a simple consequence of the
increased plasmon momentum at this higher transition frequency. This is in principle
beneficial because even a small increase in confinement can result in a huge increase
of the decay rates due to the u2n scaling of dΓEn/du. However, plasmon losses tend
to increase concomitantly with increasing confinement, resulting in broader plasmon
peaks (cf. Figs. 8.11g–i). Lastly, we observe that the nonclassical multipolar decay
rates no longer consistently exceed the classical predictions at this higher frequency,
contrasting our findings in Fig. 8.11b. This difference reflects a more complicated and
substantial nonclassical modification of the plasmonic response at such frequency (see
Fig. 8.5), namely, that the overall impact on ΓEn ultimately results from an nontrivial
interplay between the modified scattering response Im rp and the scaling u2ne−2uk0h.

In summary, these calculations demonstrate that quantum surface corrections
substantially modify the multipolar decay rates from those predicted using classical
electrodynamics. Radiation from such electric multipolar transitions can be delivered
to the far-field by outcoupling the SPPs via gratings or antennas. Moreover, even in
the regime dominated by non-resonant enhancement, the breakage of the conventional
selection rules should still have clear experimental signatures [54], with potential
implications for photovoltaic devices [57] or hot-electron physics [57, 59].

8.3.3 Energy transfer between two emitters near a metal
surface

The interaction between emitters in optical cavities or near plasmonic structures is
instrumental to many scientific disciplines, ranging from quantum optics [479] to
chemical physics and the life sciences [480, 481]. A prominent example is energy
transfer (ET) between two fluorophores: the fundamental process by which an excited
flourophore (the donor) lowers its energy by transferring it to another flourophore
(the acceptor). The signature of this mechanism is the observation of fluorescence
emitted by the acceptor. In free-space, the ET between the two emitters takes place
primarily via dipole–dipoles interaction and is typically short-ranged; in this limit, it
is commonly referred to as Förster resonant energy transfer (FRET). In this context,
the integration of emitters with plasmonic nanostructures can enhance the emitter–
emitter ET rate, herein denoted by ΓET, through the introduction of a new, plasmonic
near-field channel between the donor (D) and the acceptor (A) [482–484].

The calculation of ΓET involves the system’s Green’s function [117, 463–465, 467],
which in turn depends on the system’s scattering coefficients. More concretely, the
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ET rate from a donor located at rD to an acceptor placed at rA can be determined
via [117, 463–465, 467]

ΓET =
∫ ∞

0
wET(rD, rA,ω)f em

D (ω)fabs
A (ω) dω , (8.52a)

where the kernel wET(rD, rA,ω) is the energy transfer amplitude that governs the
medium-assisted interaction, and it is given by

wET(rD, rA,ω) = 2π
~2

(
ω2

ε0c2

)2 ∣∣∣µ∗A · ↔G(rD, rA;ω) · µD

∣∣∣2 . (8.52b)

Here, f em
D (fabs

A ) stands for the donor’s emission (acceptor’s absorption) spectrum,
and µD (µA) the corresponding dipole moment. Notice that all the information about
the nanophotonic environment is embodied in the Green’s dyadic. Therefore, if the
Green’s tensor is either known or can be calculated for the system under consideration,
then the rate of energy transfer can be determined by evaluating Eq. (8.52). For the
half-plane and sphere plasmonic structures, the nonclassical energy transfer rates are
then straightforwardly obtained by substituting the classical scattering coefficients by
their corresponding mesoscopic counterparts (namely, Eqs. (8.34a) and (8.35a) for the
planar interface, and Eqs. (8.49a) and (8.49d) for the sphere).

At this point it is also instructive to note that, contrary to the computation of
the LDOS where the (imaginary part of the) Green’s dyadic is evaluated at the same
point (r = r′ = r0), the rate of energy transfer depends on the (absolute square of the)
Green’s function taken at the positions of the donor and of the acceptor. Additionally,
the total (broadband) energy transfer rate depends on the overlap between the emission
spectrum of the donor, f em

D (ω), and the absorption spectrum of the acceptor, fabs
A (ω).

zAzDz
x

Rx

Figure 8.12: Illustration of two dipoles in the vicinity of a planar metal surface. The dipole–surface
separation is given by zD (zA) for the donor (acceptor), and its dipole moment is characterized by
µD (µA). Without loss of generality, we have chosen our coordinate system so that Rx = |xD−xA|.

Planar interface. We now consider two electric point-dipoles (e.g., each a generic
two-level system) above a planar metal surface, as illustrated in Fig. 8.12. Therefore,
according to Eqs. (8.52) the enhancement (with respect to the energy transfer rate
in same medium but without the metal half-space, Γ0

ET) of the energy transfer rate
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between the donor and the acceptor can be calculated as

ΓET

Γ0
ET

=

∫∞
0 dω ω4

∣∣∣n̂A ·
[↔
G0(rD, rA;ω) +

↔
Gref(rD, rA;ω)

]
· n̂D

∣∣∣2f em
D (ω)fabs

A (ω)∫∞
0 dω ω4

∣∣∣n̂A ·
↔
G0(rD, rA;ω) · n̂D

∣∣∣2f em
D (ω)fabs

A (ω)
,

(8.53)

where
↔
G0(rD, rA;ω) and

↔
Gref(rD, rA;ω) are the Green’s dyadics associated with

the homogeneous medium and with the reflected part owing to the metal surface,
correspondingly. The explicit form of the former has been written in Eq. (2.43)
whereas the components of the latter—for the geometry considered here–are presented
in Box 8.3. In Eq. (8.53), n̂A and n̂D are unit vectors denoting, respectively, the
orientation of the acceptor and donor dipole moments.

Box 8.3 — Components of the
↔
Gref (rD,rA;ω) dyadic.

For the geometry portrayed in Fig. 8.12, the explicit form of the elements of the

Green’s tensor
↔
Gref(rD, rA;ω) is given by:[↔

Gref(rD, rA;ω)
]
zz

= i

4πk2
d

∫ ∞
0

dq
q3

kz
rp J0(qRx) eikz(zD+zA) ,

[↔
Gref(rD, rA;ω)

]
xx
yy

= i

8π

∫ ∞
0

dq
q

kz
rs [J0(qRx)± J2(qRx)] eikz(zD+zA)

− i

8πk2
d

∫ ∞
0

dq qkz rp [J0(qRx)∓ J2(qRx)] eikz(zD+zA) ,

[↔
Gref(rD, rA;ω)

]
xz
zx

= ± 1
4πk2

d

∫ ∞
0

dq q2 rp J1(qRx) eikz(zD+zA) ,

where kd = √εdω/c and kz =
√
k2

d − q2, and Jn designate the n-th order Bessel
function of the first kind. All the remaining elements vanish for the configuration
under consideration (Fig. 8.12).

Having established the theoretical foundations describing the energy transfer
between two electric dipoles, we now investigate the impact of nonclassical corrections
to plasmon-mediated ET between two emitters near a planar metal surface. In what
follows, we restrict our analysis to the specific configuration depicted in Fig. 8.13a.

Figures 8.13b–e show the ET amplitude wET(R,ω) (evaluated at zA = zD ≡ h with
a donor–acceptor separation R ≡ |rA− rD| = Rx) normalized to its value in free-space
w0

ET(R,ω). The advantage of such procedure is that this ratio is emitter-independent,
facilitating a discussion on the impact of the plasmonic response (also, for aligned
narrowband emitters where f em

D (ω)fabs
A (ω) ∼ δ(ω − ω0), this simply amounts to the
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(e.g., via plasmons)

direct path (free-space like)a

b

Figure 8.13: Quantum corrections to plasmon-
mediated energy transfer near a planar metal.
(a) Two emitters transfer energy through free-
space and metal-mediated channels (mutual
separation R ≡ |rA − rD|, metal–interface off-
set h = zD = zA, and normally-oriented, i.e.
µA ‖ µD ‖ ẑ). (b) Spectral dependence of
the (normalized) ET amplitude, wET/w 0

ET, for
varying emitter–emitter distances. (c) (d) Nor-
malized transfer amplitude as a function of R
(h), for fixed h (R) (see labels). (e) Contours
of the classical and nonclassical energy trans-
fer amplitudes at ω0 = 0.97ωp/

√
2. (f) Plas-

monic enhancement of ET rates (h = 5 nm and
R = 50 nm) for broadband emitters of vary-
ing Q = ω0/∆ as a function of (joint) emitter
frequency ω0 (inset: finite-Q emitters only).
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total ET rate enhancement ΓET/Γ0
ET; we shall return to this point below). Our results

demonstrate that the omission of quantum mechanical effects leads to a significant
overestimation of the normalized ET amplitudes, across a broad parameter space.
This discrepancy is particularly pronounced for emitter–metal separations of about
h . 10 – 15 nm, and spans a wide range of donor–acceptor separations, R. The ET
dependence on R is particularly interesting and spans several distinct regimes: (i) for
large R relative to the SPP’s propagation length, Lp, the metal’s impact is negligible
[the emitters are simply too far away for the ET to be mediated by SPPs (i.e., a
SPP excited by the donor will be dissipated long before it reaches the acceptor)];
(ii) for R ∼ Lp, the ET enhancement reaches its maximum, whose position and value
are dictated by the spectral properties of the SPP, and therefore is affected both by
the nonclassical spectral shift and broadening; and (iii) for R� h, the interaction is
dominated by the free-space channel, rendering the metal’s impact negligible again.

Furthermore, for emitters of sufficient spectral width, the ET can assume a
broadband11 aspect: we explore this in Fig. 8.13f by computing ΓET/Γ0

ET for a

Gaussian donor–acceptor overlap f em
D (ω)fabs

A (ω) = e−(ω−ω0)2/2∆2
/
√

2π∆, centered at
ω0 and with a (joint) width ∆ and quality factor Q ≡ ω0/∆. Figure 8.13f shows the
normalized classical and nonclassical broadband integrated ET rates for several Q as a
function of the center frequency ω0. Clearly, the maximum of ΓET/Γ0

ET decreases with
Q, with a concomitant broadening and redshifting of the central peak. Interestingly,
though the highest ET rate enhancements are obtained at large Q, and for ω0 near
the SPP’s resonance, this shows that spectrally misaligned emitters can benefit from
small Q factors, as this extends their spectral tails into the resonant region. More
importantly, our results show that nonclassicality remains important even in the case
of broadband emitters, and that nonclassical deviations persist (after being broadband
integrated) even when the joint spectral width is larger that the nonclassical plasmon
resonance shift.

Finally, Fig. 8.13 plainly demonstrates the importance of accounting for nonclassical
effects when calculating energy transfer rates, as they impose limits to the maximum-
attainable plasmon-enhanced energy transfer rate between emitters.

8.3.4 Plasmon-enhanced two-photon emission

The emission of light by an excited emitter is generally very well-described by first-
order perturbation theory in the light–matter interaction of quantum electrodynamics
(this includes every process considered so far). However, at higher order in the
interaction, the possibility of two- and multi-photon spontaneous emission emerges.
While two-photon spontaneous emission was predicted in the 1930s [486], it eluded

11When fem
D fabs

A (ω) in Eq. (8.53) extends above ωp, it becomes necessary to evaluate d⊥(ω)
for ω > ωp as well. Direct calculation via TDDFT is cumbersome above ωp, since the induced
potential extends into the bulk; instead, following Refs. [439, 485], we extrapolate d⊥(ω) for ω > ωp
by enforcing exact sum-rules and asymptotic limits on a fit of d⊥(ω) over frequencies below ωp (see
Supporting Information of Publication C for further details).
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observation for decades in both atomic and solid-state systems [487, 488], due to the
exacerbated weakness of the interaction at second order. Despite this, two-photon
emission is in principle an attractive process due to the correlated nature of the
emitted photons (entangled in, for instance, in energy and in angular momentum). In
this context too, the extreme nanoscale confinement of plasmons in metals provides
new opportunities to enhance two-photon emission dramatically [489] (in the form
of two-plasmon emission), with recent work identifying potential opportunities to
enhance two-photon emission to be as strong [54], or even far stronger [490], than
single-photon emission. Nevertheless, with these enticing possibilities being enabled
essentially by extreme nanoscale confinement, it is legitimate to anticipate a sizable
impact of nonclassical effects.

A minimal model of two-photon spontaneous emission is shown in Fig. 8.14a, where
we illustrate an emitter at a distance h from a semi-infinite metallic interface. To
isolate the parts of two-photon emission that depend on the metallic interface, as
opposed to the detailed atomic level structure, we consider two-photon transitions
between the s-states of a simple hydrogenic atom. This subgrouping includes the
most prominent example of two-photon emission: the 2s→ 1s transition in hydrogen,
with level separation ω0 = ω2s − ω1s ≈ 10.2 eV. The level separation ω0 restricts the
frequencies of the two emitted photons to ω ∈ ]0,ω0[ and ω′ ≡ ω0−ω (reflecting energy
conservation) but otherwise leaves their difference unconstrained. The emission process
is consequently inherently broadband, with the total rate ΓTPE resulting from the
sum over all energy-allowed (ω,ω′)-partitions12: ΓTPE =

∫ ω0
0
(
dΓTPE/dω

)
dω, where

dΓTPE/dω is the differential decay rate for two-photon emission into frequencies ω
and ω0 − ω. As an example, for the 2s → 1s transition of hydrogen in free-space,
dΓ0

TPE/dω, exhibits a broad peak around the equal ω = ω′ = ω0/2 splitting, as
shown in Fig. 8.14b. Its integral, corresponding to the decay rate, is about 8.3 s−1,
nearly eight orders of magnitude slower than the 2p→ 1s dipole-allowed single-photon
transition (≈ 6.3× 108 s−1) [475].

In the presence of a metallic interface, the situation can change quite drastically
due to a strongly enhanced LDOS. Importantly, two-photon emission benefits “twice”
from an enhancement of the LDOS, as can be appreciated in the following nonretarded
expression [490] describing the enhancement of the differential decay rate dΓTPE/dω
for an s→ s transition in a hydrogenic atom, relative to its free-space value dΓ0

TPE/dω
(see Supporting Information of Publication C):

dΓTPE/dω

dΓ0
TPE/dω

= 1
2

(
ρE
⊥(ω)
ρE

0 (ω)

)(
ρE
⊥(ω0 − ω)
ρE

0 (ω0 − ω)

)
. (8.54)

Each fraction is a Purcell factor; thus, the order of magnitude two-photon differential
enhancement is roughly the square of the one-photon enhancement (Fig. 8.10). To be
more precise, the differential two-photon enhancement is directly and simply related

12For ω0 > ωp, ΓTPE =
∫ ω0

0 (dΓTPE/dω) dω requires the evaluation of d⊥(ω) for frequencies

above ωp, and thus here we also employ the strategy described in footnote 11.
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to the one-photon enhancement: it is (half) the Purcell enhancement at ω multiplied
by its reflection about ω0/2.

Figures 8.14c–d contrast the classical and nonclassical predictions of the differential
two-photon emission enhancement near a metal surface for different values of the
(hydrogen-like emitter’s) transition frequency, its separation from the surface, and
emission frequency. For separations & 10 nm nonclassical effects modify the physics
quantitatively (notice the logarithmic scale), but not qualitatively. Deviations from
classicality substantially increase at the separation of 5 nm, with clear signatures
of nonclassical broadening in particular. At a 1 nm separation, the classical and
nonclassical predictions differ qualitatively: at the transition frequency ω0 = 1.2ωp
(Fig. 8.14c) the peak-structure and position is mostly dissimilar (as can be understood
and expected from Fig. 8.10b, where the LDOS peak is similarly displaced from
the classical prediction); at ω0 = 1.4ωp (Fig. 8.14d), classical and nonclassical peak

Classical Quantum

h

b

c

a

d

ωp/√2

e

Figure 8.14: Non-
classical corrections
to two-photon emis-
sion enhancement.
a Two-photon emission
(s → s transition) of
a hydrogenic atom
above a planar metal–air
interface. b Differential
decay rate for the
2s → 1s two-photon
transition in hydrogen,
as a function of ω/ω0.
c [(d)] Enhancement of
the differential decay rate
dΓTPE/dω, Eq. (8.54), as
a function of frequency
for different emitter–
interface separations at
a transition frequency
of ω0 = 1.2ωp [1.4ωp].
Solid lines correspond
to our quantum pre-
dictions; dashed lines
to classical predictions.
e Enhancement of the
integrated two-photon
decay rate ΓTPE, as a
function of transition
frequency and emitter
surface separation.
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positions still coincide but the nonclassical spectrum is far broader.
Finally, the impact of nonclassicality on the enhancement of the total (i.e., in-

tegrated) two-photon decay rate is shown in Fig. 8.14e. For small separations, the
classical prediction can be quantitatively inaccurate by an order of magnitude. How-
ever, as also seen in the case of the LDOS, the classical prediction does not necessarily
lead to an overestimation of the decay rates: for some transition frequencies, the
nonclassical decay rate is higher, due to a redistribution of LDOS into regions in which
the classical LDOS was low. Due to the quadratic dependence of two-photon emission
enhancement on the LDOS, this process is much more sensitive to deviations from
classicality. The considerations about two-photon emission provided in this section
constitutes yet another example of the substantial impact of nonclassical effects in
nanoscale plasmon–emitter interactions.

8.4 Graphene–Dielectric–Metal Structures: Application

of the d -parameters’ Formalism

Before concluding the present chapter, we return to the dielectric–graphene–dielectric–
metal (DGDM) heterostructure studied in Chapter 7—and, more concretely, in
Sect. 7.3—and apply the d-parameter formalism developed above to account for
the quantum nonlocal response of the metal substrate. This will allow us to extend
our previous hydrodynamic-theory considerations to a significantly broader scope,
wherein quantum mechanical surface corrections can be readily incorporated through
the Feibelman d-parameters’ formalism. For instance—and as we have already seen in
the preceding sections—the latter includes surface-assisted Landau damping, which is
overlooked in the HDM, and electronic spill-out, which is inherently forbidden in the
standard HDM treatment (due to the its “hard-wall” character).

t
metal

Figure 8.15: Schematic representation of
the planar dielectric–graphene–dielectric–
metal structure considered in the text. The
graphene–metal separation is controlled by
the thickness of the dielectric in the inner
region with thickness t.

The spectrum of the plasmonic excitations supported by the DGDM heterostructure—
shown in Fig. 8.15—is obtainable by analyzing the poles of the system’s scattering
coefficients for p-polarized waves. For the three-layered (two interfaces) geometry
considered here, these are given by

1 − r2|G|1
p r2M

p ei2kz,2t = 0 , (8.55)

where r
2|G|1
p and r2M

p are, respectively, the p-polarization reflection coefficients associ-
ated with the reflection from the graphene (for waves incoming from the dielectric
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medium with ε2) and with the reflection from the metal. The complex exponential
naturally takes into account multiple reflections within the slab of finite thickness
t. Substituting the aforementioned reflection amplitudes one arrives to the implicit
condition:[

ε1
κ1

+ ε2
κ2

+ iσ

ωε0

] [
εmκ2 + ε2κm −

(
εm − ε2

)(
q2d⊥ − κ2κmd‖

)]
=[

ε1
κ1
− ε2
κ2

+ iσ

ωε0

] [
εmκ2 − ε2κm +

(
εm − ε2

)(
q2d⊥ + κ2κmd‖

)]
e−2κ2t , (8.56)

where, as before, κj =
√
q2 − εjk2

0 for j ∈ {1, 2, m}.
For jellium metals, where d‖ = 0 due to charge-neutrality [71], and for the particular

case where εd ≡ ε1 = ε2, the previous expression reduces to[
1 + 2εd

κd

ωε0
iσ

] [
εmκd + εdκm −

(
εm − εd

)
q2d⊥

]
=[

εmκd − εdκm +
(
εm − εd

)
q2d⊥

]
e−2κdt . (8.57)

The dispersion relation of the system’s plasmonic excitations stems from the
solutions of Eq. (8.56) [or its simpler sibling Eq. (8.57)]. As we have seen in Chapter 7,
the screening exerted by the metal leads to graphene plasmons that are acoustic-like
and that emerge at lower frequencies (for the same wavevector) than the ones associated
with conventional graphene plasmons. Importantly, we note that the frequency regime
that is relevant for graphene plasmonics (cf. Chapter 4) typically spans the THz and
the mid-IR spectral window; this corresponds to frequencies well below the plasma
frequency of 3D metals.

Conveniently, in the ω � ωp regime the d⊥-parameter can be well approximated
by an expression of the form

d⊥(ω) ' ζ + i
ω

ωp
ξ (for ω � ωp) , (8.58)

as shown by Persson et al. [439, 485] by exploiting Krammers–Kronig relations and the
response’s asymptotic limits. In the jellium approximation, the parameters ζ ≡ ζ(rs)
and ξ ≡ ξ(rs) are constants that depend uniquely on the density parameter rs. Hence,
Eq. (8.58) states that, for ω � ωp, Re d⊥ is constant and that Im d⊥ grows linearly
with frequency. Indeed, this behavior can be seen empirically upon inspecting the
TDDFT data for the d⊥-parameter shown in Fig. 8.2. In the following, we pursue this
understanding to calculate dispersion of acoustic-like graphene plasmons, which can
then be used to ascertain the impact of quantum mechanical effects on the metal’s
electromagnetic response.

Figure 8.16 exhibits the spectrum of AGPs calculated using three distinct models
(contrasting in levels of complexity) for the system’s response. In brief, the figure
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is built in the same vein as Fig. 7.6, but now with the metal’s response described
within the Feibelman d-parameter formalism instead of the HDM. In particular,
Fig. 8.16a shows that—for a fixed wavevector—the AGP’s resonance redshifts when
describing the nonlocal response of the metal using the mesoscopic framework of the
d-parameters, which is in accordance with fact that Re d⊥ > 0 (electronic spill-out)
for jellium metals. This is behavior is the opposite of the one predicted by the HDM
where the result is always a blue-shift due to the neglect of spill-out effects. On the
other hand, Fig. 8.16b depicts the imaginary part of the AGP’s wavevector (that
characterizes the mode’s propagation length); it shows that the incorporation of
Feibelman d-parameters consistently leads to larger values for the imaginary part,
presumably due to the inclusion of Landau damping in the metal’s response. However,
the modification of Im q is not independent of the corresponding Re q and thus an
isolated analysis of the former alone can be misleading (this is the case, for instance,
when comparing the “fully LRA” curve with the graphene described at the RPA level).
Hence, a perhaps more fair comparison of the effect of the overall losses is to do so by
defining a quality factor Q ≡ Re q

Im q . We pursue this approach in Fig. 8.16c where the
“fully classical” case unsurprisingly delivers the largest quality factors because it only
accommodates Drude-type damping. The incorporation of quantum mechanical effects,
first in the graphene alone, and then both on the graphene and metal, consecutively
reduces the quality factors exhibited by the AGPs. Nonetheless, the impact of metal-
related losses is barely significant; indeed, this is highlighted by the fact that the black
dashed and red solid curves are barely indistinguishable in Fig. 8.16c. The overall
behavior of the AGP’s dispersion upon including quantum surface corrections via
Feibelman d-parameters can be understood by noting that (i) forω � ωp, i.e., the
regime considered here, Re d⊥ tends to a finite, non negligible value and thus leads to
a redshift (blueshift) if Re d⊥ > 0 (Re d⊥ < 0) of the AGP’s dispersion; and (ii) in
the ω � ωp limit, Im d⊥ is very small (even going to zero in the static limit) and
therefore only incurs in a negligible increase to Im q, which remains dominated by
losses intrinsic to the graphene sheet alone. Quite remarkably, this line of reasoning is
able to explain the experimental observations reported by Iranzo et al. [107] where
AGPs were excited using a metallic grating, and the graphene–metal separation was
only about t = 0.7 nm (approximate thickness of an one-atom-thick hBN layer).

The investigations set forth in the present section entail a particularly interesting
feature which is ought to be experimentally-relevant: assuming that all other experi-
mental parameters are known, by measuring the AGP’s dispersion one could indirectly
assess the low-frequency behavior of the metal’s nonclassical response, and, chiefly,
reveal whether it leads to an outward or to an inward spill of the induced electron
density about the metal’s surface region. The concept we propose is illustrated in
Fig. 8.17; it plainly shows the impact of d⊥(0) ≡ Re d⊥(ω � ωp), that is, the position
of the centroid of the metal’s induced charge with respect to the classically-sharp
metal boundary, on the dispersion relation of AGPs. Specifically, the magnitude of the
shift imparted to the AGP’s dispersion is proportional to the absolute value of d⊥(0),
whereas the direction of the shift depends on its sign (towards the red if positive and
towards the blue if negative). Similarly, the impact of Im d⊥ could in principle be
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Figure 8.16: Influence of quantum surface corrections, arising from the metal’s response, on
the dispersion relation of acoustic-like graphene plasmons. The latter is calculated considering
three different levels of sophistication: (i) both materials are assumed to exhibit a response of the
Drude kind [gray dot-dashed line]; (ii) the graphene’s response is modeled at the nonlocal RPA
level, while the metal is still considered to exhibit a Drude-type response [black dashed line]; and
(iii) graphene remains treated at the level of the nonlocal RPA whereas the metal’s response is
modeled within the d-parameters’ formalism described in the text [red solid line]. The values for
the parameters ζ and ξ figuring in Eq. (8.58) are taken from Ref. [439]; explicitly, ζ = 1.41 Å and
ξ = 0.33 Å, corresponding to a density parameter of rs ≈ 3.97 (~ω ' 5.95 eV). (a) Dispersion
diagram [ω/(2π) versus Re q] of AGPs computed within three distinct approximations. (b)
Imaginary part of the AGP’s wavevector corresponding to the dispersion plotted in (a). (c) AGPs’
quality factor, defined as Q ≡ Re q/ Im q. The inset show a ×10 zoom of the region spanned
by the small rectangle indicated in the figure. Remaining setup parameters: EF = 0.2 eV and
~γ = 8 meV for graphene, and ~γm = 0.1 eV for the metal; the graphene–metal separation is
taken as t = 1 nm, and εd = 1 [the latter is assumed here in order to be consistent with the
d-parameter data (that has been calculated assuming vacuum next to the metal surface [439])].

inferred by measuring Im q at different frequencies to determine the slope associated
with the imaginary part of Eq. (8.58).
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Figure 8.17: Impact of d⊥(0) ≡ Re d⊥(ω � ωp) on the dispersion exhibited by acoustic-like
graphene plasmons. The parameters [with the exception of d⊥(0)] are the same as in Fig. 8.16.
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CHAPTER 9
Conclusions and Outlook

Throughout this thesis we have investigated and discussed the salient features plas-
monics and light–matter interactions in various contexts and material platforms. Our
theoretical studies have been concerned with three- and two-dimensional plasmonic
materials and their nanostructures, and our considerations have comprised a diverse
toolkit of classical, semiclassical, and quantum mechanical treatments. Special empha-
sis has been given to the incorporation of quantum surface corrections for rigorously
modeling the emergence of nonclassical behavior in the nanoscopic limit.

In closing, we shall summarize the content of each chapter, followed by a brief
discussion about new and potentially interesting opportunities arising from this work.

Chapter 2 | Classical Electrodynamics of Solids

The central purpose of this chapter was to provide a general and self-contained
(as far as possible) introduction to the core elements that form the theoretical
foundations that will be either exploited or further elaborated upon in the
subsequent chapters.

Chapter 3 | Electronic and Optical Properties of Graphene

Like Chapter 2, this chapter served an essentially introductory purpose wherein
the fundamentals of graphene physics—focusing on its electronic and optical
properties—have been detailed in a cohesive fashion. In particular, and from a
purely practical standpoint, the different models describing the conductivity
of graphene constitute key quantities for unraveling the plasmonic response of
graphene-based systems.

Chapter 4 | Fundamentals of Graphene Plasmonics

Here we have focused our efforts on the description of plasmons in graphene,
starting from elementary considerations and then evolving towards more so-
phisticated descriptions. We have seen that plasmons in two-dimensional (2D)
graphene differ from plasmons in conventional three-dimensional (3D) conduc-
tors in a number of ways; typically, such differences can be ascribed either
to graphene’s reduced dimensionality or to its curious conical bandstructure
(exhibiting a linear energy-momentum dispersion in the relevant energy range
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for graphene plasmonics). After analyzing the plasmonic excitations in con-
tinuous, unpatterned graphene we have explored the effect of nanostructuring
the graphene on the same. To that end, we have developed a nonretarded
semi-analytical framework for calculating plasmon resonances and their spec-
tral features in arbitrarily-shaped 2D nanostructures (made of graphene or
otherwise); we then illustrated this by explicitly considering two archetypal
graphene nanostructures (i.e., the ribbon and disk geometries). We have found
that the nanostructure’s shape can be used as an extra tuning knob—on top of
the one provided by the material’s electrical tunability—to tailor 2D plasmon
resonances even further. Moreover, using the approach we have just described,
we have theoretically studied plasmon coupling and ensuing hybridization in 2D
nanoslits (i.e., the inverse structure of a nanoribbon). We have shown that this
system supports two plasmonic modes of opposite parity which result from sym-
metric and antisymmetric hybridizations between the two edge plasmons of the
constituent half-sheets. Finally, we have abandoned a graphene-centered view
and considered the case of 2D nanoslits based on anisotropic atomically-thin
crystals (latter specifying on monolayer black phosphorus for definiteness).

We believe our work on hybridized plasmons in 2D nanoslits could catalyze fu-
ture studies based on this system. One possibility is to exploit the 2D nanoslit’s
plasmon resonances for subwavelength waveguiding, biochemical sensing [110],
optical manipulation [491] and trapping of nanosized particles [492], or even
for quantum technologies based on quantum optics [335] and quantum infor-
mation [336]. Several interesting open questions arise from this work; here we
enumerate two: the first is pertained with the role of edge effects associated
with the edge terminations of the slit [390, 391, 493]; the second is concerned
with the breakdown of Babinet’s principle for complementary structures and
whether or not a sum rule relating the resonant frequencies of complementary
2D structures is derivable (in 3D, it has been shown that such a sum rule does
exist [147]). Lastly, we note that many extensions can readily follow from our
theoretical approach, such as the exploration of complex coupled resonances
stemming from the pairing of 2D slits with other 2D nanostructures (e.g.,
ribbons, other slits, etc) or the study of magnetoplasmons in 2D nanoslits (see,
for instance, Publication E for a study of magnetoplasmons in a half-sheet with
anisotropic conductivity).

Chapter 5 | Two-dimensional Channel Plasmons in Nonplanar Geometries
In this chapter we have proposed the exploitation of the folding of an otherwise
planar graphene sheet—or any other plasmon-supporting 2D material—into an
(out-of-plane) triangular-like shape as a mean to achieve deep subwavelength
waveguiding and light localization using the plasmon modes guided along the
apex of the structure. We have developed two distinct theoretical techniques
for calculating the spectral properties of the system’s 2D channel plasmons: one
is a rigorous method based on a modification of the semi-analytical framework
presented in Section 4.2.1, whereas the other relies on a perturbative approach
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known as effective-index method (EIM). Strikingly, we have found that the
dispersion relation of 2D channel plasmons propagating along a Λ- (V-)shape
wedge (groove) follows the same functional dependence as their planar-graphene
plasmon counterparts, but now scaled by a (purely) geometric factor in which
all the information about the system’s geometry is contained. Moreover, when
computing the dispersion the associated field distributions are concurrently
obtained. Both methods are extremely computationally efficient, in stark
contrast with commercially available full-wave numerical codes which tend to
be computationally demanding and time-consuming.

In this context, the semi-analytical investigation of 2D-material-based wedges
with other types of cross-sections could also be potentially interesting and it
remains largely unexplored. This could in principle be achieved by adapting
our formalism with minor extensions [494, 495] or, alternatively, by employing
techniques from transformation optics [496–498].

Chapter 6 | Electrodynamics of Metals Beyond the Local-Response Approx-
imation: Nonlocal Effects

We describe the electrodynamic response of 3D metals and metal-based nanos-
tructures beyond the conventional local-response approximation (LRA). We
start by introducing one of the most prominent frameworks for incorporation
nonlocal effects in the metal’s optical response, that is, the hydrodynamic
model (HDM) of the free-electron gas. We analyze its implications for the
nonlocal plasmonic response of a planar dielectric–metal interface and of metal-
lic spheres. In both platforms, the HDM predicts a blueshift of the plasmon
resonances that is parameterized by the hydrodynamic velocity parameter β
and it is proportional to the surface plasmon’s wavevector (inverse radius) in
the planar (spherical) configuration. Recognizing the limitations of the HDM,
e.g., the omission of Landau damping, we move towards an account of the
optical response of the metal based on the full, nonlocal Lindhard dielectric
function of the uniform electron gas). We have seen that the latter includes
the full q-dependence of the dielectric function, and, importantly, the presence
of Landau damping.

Based on the theoretical foundations set forth in this chapter, it should be
relatively straightforward to extend or approach to other closely-related nonlocal
models, e.g., the quantum infinite and finite barrier models [233] or the image
potential model proposed by Chulkov and co-workers [499–501]. We further
note that although many of this pioneering work has been known since the
1980s and/or 1990s, only very recently those theoretical frameworks have been
applied to describe nonequilibrium emitter–surface interactions in the presence
of spatial dispersion [502–504] and to heterostructures based on 2D materials
and 3D metals [420].
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Chapter 7 | Quantum Nonlocal Effects Probed by Ultraconfined Graphene
Plasmons

Here we have theoretically investigated the intricate electromagnetic interaction
of plasmons supported by a graphene sheet placed in the close vicinity of
a metal substrate. We have found that the strong screening exhibited by
metals in the terahertz (THz) regime leads to the emergence of acoustic-
like graphene plasmons (AGPs) resembling the acoustic plasmon mode in
double-layer graphene. We have seen that AGPs are able to render ultradeep
subwavelength field confinement reflecting the large plasmon wavevectors that
characterize them. For this reason, they constitute formidable candidates
to investigate simultaneously the frequency- and wavevector-dependence of
the system’s response (or, at the distance of a Fourier transform, the full
spatiotemporal response). In agreement with a previous report [106], our
results—based on the theory introduced in Ref. [106]—have shown that the
AGP’s dispersion can only be well described if nonlocal effects in the graphene
are included, and that, at low carrier densities, many-body effects must be
accounted for on top of those. Going beyond previous work, we have refined
prior theoretical descriptions by considered nonlocality not only in graphene
but also including it in the metal’s response. Our approach was based on
the HDM model and it revealed that AGPs can indeed be used to probe the
nonlocal response of the underlying metal substrate when the graphene–metal
separation is small (i.e., ∼ few-nm).

Further research can spur from the work detailed here. One example is to
consider the same heterostructure but where the metal has been replaced by
a superconductor, and investigate if and how can we use the extraordinary
properties of AGPs to assess indirectly the electrodynamic response of the
superconductor. Other extensions that have been recently proposed include
the exploitation of other 2D conductors [505] and the exploration of AGPs for
ultrasensitive sensing capabilities [506, 507].

Chapter 8 | Quantum Corrections in Plasmonics and Plasmon–Emitter In-
teractions

In this chapter we have considered the impact of nonclassical corrections in
nanoplasmonics using a mesoscopic scattering framework that incorporates
quantum nonlocal effects via quantum-informed surface-response functions
known as Feibelman d-parameters. Specifically, we developed and applied
our theoretical formalism for calculating leading-order-accurate quantum me-
chanical corrections in the spectral properties of surface plasmons in metal
nanostructures and in a varied range of plasmon-enhanced light–matter interac-
tion processes. The former include the prototypical planar and spherical systems
(but it can be generalized to arbitrary geometries via the d-parameter-modified
mesoscopic boundary conditions presented here) whereas the latter include
spontaneous dipole and multipole emission, energy transfer between emitters,

180



9 Conclusions and Outlook P. A. D. Gonçalves

and spontaneous two-photon emission. Our findings elucidate and contextualize
the main physical mechanisms responsible for deviations from the classical
response in light–matter interactions at the nanoscale: spectral shifting and
surface-enabled Landau damping, manifesting the joint impact of spill-out and
nonlocality. For deeply nanoscale emitter–surface separations, the deviations
can be order-of-magnitude, thereby completely invalidating any quantitative
prediction of the classical approach. Crucially, our formalism can be reliably
employed from the classical regime (wavelength scales, local response) all the
way down to the quantum mechanical domain (electronic length scales), and
provides an unifying link across the blurred boundary between classical and
quantum realms. In particular, we derived analytical expressions for the nonclas-
sical scattering coefficients through which quantum mechanical effects—namely,
nonlocality, electronic spill-out/spill-in, and surface-assisted Landau damping—
are conveniently incorporated. These coefficients constitute the building blocks
for determining the dynamics governing a plethora of nanophotonic phenomena,
making the theory set forth here particularly well-suited for rigorously taking
into account nonclassical effects in nanoplasmonics.

We believe that there are several enticing opportunities and open questions
arising from this work: Firstly, while here we have employed d-parameters
calculated from jellium TDDFT, other models—simpler or more sophisticated—
can be readily applying using the very same mesoscopic scattering coefficients
presented here. An example of an approach beyond the jellium approximation
would be the of use atomistic TDDFT for investigating the role of atomic
structure and valence-bound screening (which should be particularly relevant
for noble metals like silver or gold). In this vein, it would be extremely valuable
to compile databases of d-parameters at various dielectric–metal interfaces,
analogous to the existing databases of local bulk permittivities [508] or of
2D materials [293, 294]. Note that our equations are general, and thus re-
main valid irrespective of the method employed in the computation (or of
the experimentally-measured value [67]) of the d-parameters. Secondly, our
approach can be readily extended to other prominent light–matter interaction
processes, such as near-field radiative heat transfer [509], electron energy-loss
spectroscopy [65, 66], or van der Waals [441, 510] and Casimir–Polder inter-
actions [511]. Thirdly, we anticipate the extremely interesting—from both a
fundamental and an experimental viewpoint—application of our mesoscopic
d-parameter formalism for light–matter interactions beyond the point-dipole
approximation of the emitter; this should not pose significant extra difficulties,
based on what is known in the context of quantum dots integrated in nanopho-
tonic systems [53, 512–517]. Lastly, we speculate on a possible extension of the
d-parameter formalism to two-dimensional systems (e.g., for describing edge
plasmons and for a facilitated treatment of edge states).

Realizing the promise of plasmon-enhanced light–matter interactions inevitably
involves multiscale plasmonic architectures, combining both macroscopic and nanoscale
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features in synergy. The development of the next generation of nanoscale optical
devices consequently requires theoretical tools that incorporate the salient features
of both the classical and quantum domains in a tractable manner. It is the author’s
hope that the theoretical frameworks presented in this thesis may constitute such
tools, and, potentially, be valuable in the pursuit of the aforementioned developments.

182



APPENDIX A
Lindhard Dielectric Function of a

Homogeneous 3DEG

The longitudinal dielectric function of the non-interacting free-electron gas in three-
dimensions, within the random-phase approximation (RPA), is given by [15, 267]

εRPA(q,ω) = 1− e2

ε0q2χ0(q,ω) , (A.1)

where χ0(q,ω) is the non-interacting polarizability (also known as density-density
correlation function or the bare pair-bubble diagram) and follows from [13, 15, 267]

χ0(q,ω) = 2
V

∑
k

f0(Ek)− f0(Ek+q)
~ω − Ek+q + Ek + iη

, (A.2)

where Ek = ~2k2

2me
are the single-particle energies, f0(E) the Fermi-Dirac distribution

function, and η is an infinitesimally small factor to ensure the analytical properties of
χ0(q,ω) in the complex ω plane (i.e., here χ0(q,ω) is a retarded function [15]).

The RPA dielectric function of a non-interacting 3DEG is also commonly referred to
as the Lindhard dielectric function, owing to its derivation by Lindhard in 1954 [265].

Explicit form of the RPA dielectric function for a 3DEG

The explicit calculation of Eqs. (A.1) and (A.2)—which can be found in several many-
body condensed matter physics textbooks; see, for instance Refs. [13, 15, 267]—gives

Re εRPA(q,ω) = 1 + q2
TF

2q2

{
1 + kF

2q

{ [
1−

(
~ω + Eq
~vF q

)2
]

ln
∣∣∣∣~ω + ~vF q + Eq
~ω − ~vF q + Eq

∣∣∣∣
+
[

1−
(
~ω − Eq
~vF q

)2
]

ln
∣∣∣∣~ω − ~vF q − Eq
~ω + ~vF q − Eq

∣∣∣∣
}}

,

(A.3a)
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for the real part, and

Im εRPA(q,ω) =
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0 , Eq + ~vF q < ~ω ∧ q > 2kF

,

(A.3b)

for the imaginary part. In the above, q ≡ |q|, Eq = ~2q2/(2me), and qTF stands for

the Thomas-Fermi wavevector, qTF =
√

e2

ε0
mekF

π2~2 [267].

Introducing the dimensionless variables x = q/kF and y = EF , the previous
expressions can be written as

Re εRPA(x, y) = 1 + C 2
π

1
x2

{
1 + 1

2x

{ [
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(
y + x2

2x

)2]
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ln
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}}

,

(A.4a)

and

Im εRPA(x, y) =


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(A.4b)

where we have defined the dimensionless variable C = αmec
2

~c kF
for short-hand notation,

with α ' 1/137.036 denoting the fine-structure constant. Figure A.1 shows the regions
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where Landau damping is present owing to single-particle particle excitations (i.e.,
regions where Im εRPA 6= 0).
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Figure A.1: Electron-hole continuum
of a non-interacting 3DEG. The hatched
regions show the areas of the phase-
space where Im εRPA(x , y) is finite due
to Landau damping.

The relaxation-time approximation in the RPA

In order to include electronic scattering within the relaxation-time approximation
(RTA) in the RPA formalism, we employ Mermin’s prescription (in order to maintain
local particle number conservation), that is [13, 282]

εRPA
γ (q,ω) = 1 +

(ω + iγ)
[
εRPA(q,ω + iγ)− 1

]
ω + iγ

εRPA(q,ω + iγ)− 1
εRPA(q, 0)− 1

(A.5)

where γ = τ−1 characterizes the scattering rate experienced by the charge carriers
(and where τ is the corresponding relaxation-time).
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APPENDIX B
Derivation of the Specular

Reflection Model for Nonlocal
Plasmonics

Surface plasmon-polaritons (SPPs) are surface electromagnetic waves resulting from
collective excitations of the free electron gas in conductors [3, 7]. The simplest system
capable of sustaining SPPs is a planar dielectric–metal interface, with the dielectric
and the metal filling each half-space, as depicted in Fig. B.1.

dielectric

metal

Figure B.1: Illustration of a planar
dielectric–metal interface, defined by
z = 0 plane. The dielectric half-space
is characterized by a relative permit-
tivity, εd, whereas the electromagnetic
properties of the metal are accounted
for by a dielectric function of the form,
εαβ(k,ω).

Here, we provide a detailed derivation of the the specular reflection model (SRM)
for nonlocal plasmonics. In contrast to the simpler hydrodynamic model, here we
employ the SRM together with Lindhard’s dielectric function [13, 265, 267] in order
to (i) incorporate the full wavevector dependece of the nonlocal dielectric funciton,
and (ii) to account for Landau damping.

B.1 Reflection coefficient for TM waves in terms of

surface impedance

In the case of p-polarization—or transverse magnetic (TM) solutions—the electromag-
netic field in the semi-infinite dielectric medium (filling the z > 0 half-space) can be
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written as

Hd(r, t) = Hy,d(z) ei(qx−ωt) ŷ
=
(
e−ikz,dz + rp e

ikz,dz
)
ei(qx−ωt) ŷ , (B.1a)

Ed(r, t) = [Ex,d(z) x̂ + Ez,d(z) ẑ] ei(qx−ωt)

= − 1
ωε0εd

{
kz,d

(
e−ikz,dz − rp eikz,dz

)
x̂

+ q
(
e−ikz,dz + rp e

ikz,dz
)

ẑ
}
ei(qx−ωt) , (B.1b)

where kz,d =
√
εdk2

0 − q2, and k0 = ω/c denotes the wavevector of light in free-space.
Since we are interested in the case in which the metal is nonlocal, it is convenient

to introduce the concept of surface impedance, Zp, defined via [116, 233, 414]

Zp = Et

n̂out ×Ht
, (B.2)

where the subscript stands for the fields’ tangential components (with respect to the
interface), and n̂out is a unit vector normal to the interface and pointing outwards (i.e.,
away from the metal). The surface impedance can also be regarded as a boundary
condition, so that the electromagnetic field outside the metal can be determined
without considering the electromagnetic field inside the metal [116, 233].

In particular, the surface impedance associated with the electromagnetic field (B.1),
is given by

Zp = − Ex
Hy

∣∣∣∣
z=0−

= − Ex
Hy

∣∣∣∣
z=0+

, (B.3)

where in the last step we made explicit use of the fact that Et and Ht are continuous
across the interface1. Then, using Eqs. (B.1), we obtain an expression for the reflection
coefficient for p-polarized waves in terms of the corresponding surface impedance,
namely

rp =

kz,d
ωε0εd

− Zp
kz,d
ωε0εd

+ Zp

. (B.4)

Alternatively, the previous equation can also be cast as

rp =

kz,d
εdk0

− Zp/Z0

kz,d
εdk0

+ Zp/Z0

, (B.5)

where the quantity Z0 =
√
µ0/ε0 is the impedance of free-space.

1That is, the tangential fields evaluated just inside the metal must be match the fields evaluated
just outside the metal surface (see Refs. [116, 233, 414] for a more in-depth discussion).
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B.2 Surface impedance in a nonlocal medium: Spec-

ular reflection model

Let us consider a homogeneous nonlocal medium. We seek TM solutions, that can be
written as

H(r) = Hy(z) eikxx , (B.6a)

E(r) = [Ex(z) x̂ + Ez(z) ẑ] eikxx , (B.6b)

where a harmonic time dependence of the form e−iωt is implicitly assumed herein.
Using these together with macroscopic Maxwell’s curl equations—i.e., Faraday’s and
Ampère’s law—one finds

∂

∂z
Ex(z)− ikxEz(z) = iωµ0Hy(z) , (B.7a)

∂

∂z
Hy(z) = iωDx(z) , (B.7b)

kxHy(z) = −ωDz(z) . (B.7c)

Now, combining Eqs. (B.7a) and (B.7c), yields

− k2
xEz(z)− ikx

∂

∂z
Ex(z) + ω2µ0Dz(z) = 0 , (B.8)

and differentiating Eq. (B.7a) with respect to the z-coordinate gives

∂2

∂z2Ex(z)− ikx
∂

∂z
Ez(z) + ω2µ0Dx(z) = 0 , (B.9)

where we have made use of Eq. (B.7b).
We now introduce the central assumption behind the specular reflection model

(SRM). As the name suggests, within this framework it is assumed that the electrons
are specularly reflected at z = 0, implying that [518]

Ex(z) = Ex(−z) and Ez(z) = −Ez(−z) . (B.10)

Hence, the fields in a metal half-space are identical to the ones in an infinite metal
with a source current sheet at the surface of the former2. As it will become apparent
later, since we are dealing with a nonlocal metal here, it is useful to work in the
Fourier space (i.e., momentum space). To that end, we Fourier transform Eqs. (B.8)
and (B.9); doing so3, we obtain (using integration by parts)

− k2
xEz(kz) + kxkzEx(kz) + ω2µ0Dz(kz) = 0 , (B.12)

2For a technical discussion on the SRM model, the reader is advised to consult Refs. [233, 518].
3We define the Fourier transform and its inverse, for an arbitrary function F (z), as

F (kz) =
∫ ∞
−∞

dzF (z) e−ikzz and F (z) =
∫ ∞
−∞

dkz

2π
F (kz) eikzz . (B.11)
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and

−k2
zEx(kz) + kxkzEz(kz) + ω2µ0Dx(kz) = −2

[
∂

∂z
Ex(z)− ikxEz(z)

]∣∣∣∣
z=0−

= −2iωµ0Hy(0−) , (B.13)

respectively. In the previous expression, the right-hand side arises from the disconti-
nuities of Ez(z) and ∂Ex(z)/∂z at z = 0 [cf. Eq. (B.10)], and in the last step we have
used Eq. (B.7a).

The advantage of working in k-space now becomes apparent, since the constitutive
relation (real-space representation) D(r) = ε0

∫
dr′↔ε (r, r′) ·E(r′) reduces to a simple

multiplication in momentum-space, specifically, D(k) = ε0
↔
ε (k) ·E(k). Therefore, for

a p-polarized wave like the one represented by Eq. (B.6), we may write

Dx(kz) = ε0εxxEx(kz) + ε0εxzEz(kz) , (B.14a)

Dz(kz) = ε0εzxEx(kz) + ε0εzzEz(kz) , (B.14b)

where it is implicit that here εαβ ≡ εαβ(k). Upon substituting these in Eqs. (B.13)–
(B.12), one can solve the ensuing equations for Ex(kz)/Hy(0+), which produces

Ex(kz)
Hy(0−) = −2iωµ0

k2
0εzz − k2

x

(k2
0εxx − k2

z) (k2
0εzz − k2

x)− (k2
0εxz − kxkz) (k2

0εzx − kxkz)
.

(B.15)
Instead of writing this relation in terms of the Cartesian components of the dielectric
function, it is more useful to represent the latter in terms of longitudinal and transverse
components. Noting that εαβ(k,ω) = kαkβ/k

2εl(k,ω) +
(
δαβ − kαkβ/k2) εt(k,ω) [7,

519] we have

εxx = k2
x

k2 εl + k2
z

k2 εt , (B.16a)

εzz = k2
z

k2 εl + k2
x

k2 εt , (B.16b)

εxz = εzx = kxkz
k2 (εl − εt) , (B.16c)

where k2 = k2
x + k2

z . In possession of these identities, Eq. (B.15) becomes

Ex(kz)
Hy(0−) = −2iωµ0

k2k2
0

[
k2
x

εl
+ k2

z

εt − k2/k2
0

]
, (B.17)

which is almost the surface impedance (B.3). Indeed, all that it is left in order to
determine Zp is to Fourier transform Eq. (B.17) back to real-space and take the
appropriate z → 0 limit. Such a procedure then leads to following result for the
surface impedance for p-polarization:

Zp = −Ex(0−)
Hy(0−) = 2i

π

Z0

k0

∫ ∞
0

dkz
k2

[
k2
x

εl(k,ω) + k2
z

εt(k,ω)− k2/k2
0

]
, (B.18)
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where we have made explicit use of the fact that the integrand is an even function of
kz to write the integral only over the positive part.

We have therefore derived a closed-form (albeit non-trivial) expression for the
surface impedance within the framework of the specular reflection model, describing a
general nonlocal medium characterized by a general dielectric function of the form,
εαβ(k,ω) = kαkβ/k

2εl(k,ω) +
(
δα,β − kαkβ/k2) εt(k,ω). The explicit form for the

longitudinal and transverse components of the dielectric function of the homogenous
3DEG can be found, for instance, in Ref. [267].

B.3 Reflection coefficient and nonlocal plasmons within

the specular reflection model

In possession of Eq. (B.18), the reflection coefficient for a nonlocal metal is then given
by [see Eq. (B.5)]

rp =
kz,d − i

2εd
π

∫ ∞
0

dkz
k2

[
k2
x

εl(k,ω) + k2
z

εt(k,ω)− k2/k2
0

]
kz,d + i

2εd
π

∫ ∞
0

dkz
k2

[
k2
x

εl(k,ω) + k2
z

εt(k,ω)− k2/k2
0

] , (B.19)

where we recall here that k has an explicit dependence on kz, i.e., k2 = |k|2 = k2
x + k2

z .
Also, in the language of Sect. B.1, we note that kx ≡ q, whereas kz,d =

√
εdk2

0 − q2

(subjected to Im kz,d ≥ 0).
The dispersion relation of plasmons supported by the dielectric–metal interface

follows from the poles of rp. Hence, the nonlocal plasmonic spectrum can be constructed
out of the nonlocal plasmon condition:

1 + i
2εd
π

1√
εdk2

0 − q2

∫ ∞
0

dkz
k2

[
q2

εl(k,ω) + k2
z

εt(k,ω)− k2/k2
0

]
= 0 . (B.20)

In the electrostatic limit, the above expression considerably simplifies to

1 + q
2εd
π

∫ ∞
0

dkz
q2 + k2

z

1
εl

(√
q2 + k2

z ,ω
) = 0 . (B.21)

191





APPENDIX C
Mie Theory with d -parameters

In the present appendix, we provide a detailed account of the generalized Mie theory
introduced in Sect. 8.2.2, and, in particular, the derivation of the mesoscopic Mie
coefficients incorporating Feibelman d-parameters. These constitute the fundamental
building-blocks for calculating the response of the scattering object—here a metallic
sphere—to any external perturbation (in a basis of spherical vector waves).

Theoretical Framework

Wave equation in spherically symmetric systems. In a linear, isotropic, and
homogeneous medium the electric and magnetic fields must satisfy their respective
vector wave equations,

∇2E(r,ω) + k2
jE(r,ω) = 0 and ∇2H(r,ω) + k2

jH(r,ω) = 0 , (C.1)

where kj ≡
√
εjk0. The electric and magnetic fields in spherical coordinates can be

constructed in terms of vector harmonics, Mν(r) and Nν(r), which in turn are defined
in terms of a pilot wave c and a generating scalar function ψν(r) that obeys the
(scalar) Helmholtz equation ∇2ψν(r) + k2

jψν(r) = 0 [155]. Strictly speaking, the pilot
vector c should be a constant vector. However, and rather fortunately, in spherical
coordinates and in this case alone, it turns out that we can take c = rr̂; this enables
us to construct a tangential solution Mν(r) (though Nν(r) is not purely normal) [115].
This is desirable because it allows us to associate each of the vector harmonics Mν(r)
and Nν(r) with TE and TM waves, respectively.

Therefore, the vector harmonics Mν(r) and Nν(r)—which are two independent
solutions of the vector wave equation in spherical coordinates—may be written as [115,
155]

Me/o
lm (r) ≡ ∇× r̂ rψe/olm (r) , (C.2a)

Ne/o
lm (r) ≡ k−1

j ∇×∇× r̂ rψe/olm (r) , (C.2b)
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where the generation function is

ψ
e/o
lm (r, θ,φ) ≡ zl(kjr)Pml (cos θ)

{
cos(mφ)
sin(mφ)

}
, (C.2c)

and where the radial part zl(kjr) is either a spherical Bessel or Hankel function of the

first kind, jl(kjr) and h
(1)
l (kjr), respectively representing incoming and outgoing waves.

Furthermore, the “quantum numbers” l and m are integers with values in the range
l ∈ [1,∞[ and m ∈ [0, l], and Pml denote the associated Legendre polynomials [327].

The explicit form of the solenoidal (i.e., divergence-free) vector waves Me/o
lm (r) and

Ne/o
lm (r), obtained via Eqs. (C.2), reads1

Me/o
lm (r) =



0

mzl(ρj)
Pml (µ)
sin θ

{
− sin(mφ)
cos(mφ)

}

−zl(ρ)∂P
m
l (µ)
∂θ

{
cos(mφ)
sin(mφ)

}


, (C.3a)

and

Ne/o
lm (r) =



l(l + 1)
ρj

zl(ρj)Pml (µ)
{

cos(mφ)
sin(mφ)

}
1
ρj

[ρjzl(ρj)]′
∂Pml (µ)
∂θ

{
cos(mφ)
sin(mφ)

}
m

ρj
[ρjzl(ρj)]′

Pml (µ)
sin θ

{
− sin(mφ)
cos(mφ)

}


, (C.3b)

where ρj ≡ kjr and µ ≡ cos θ, and the prime denotes differentiation with respect to
ρj .

The spherical vector harmonics Me/o
lm (r) and Ne/o

lm (r) may be regarded as funda-
mental solutions of the vector wave equation in spherical coordinates. Hence, the
electric and magnetic fields can be constructed from an expansion in terms of such
vector waves.

Incident plane-wave in terms of vector spherical harmonics. Let us assume
an incident plane-wave traveling along the positive z-direction and polarized along x̂,

1For the radial component of Ne/o
lm

(r) we have made use of the Legendre differential equation [457]
whose solutions are the associated Legendre polynomials.
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namely2

Einc = E0e
ikdzx̂ = E0e

ikdr cos θ

sin θ cosφ
cos θ cosφ
− sin θ

 . (C.4)

We now want to cast the incident field, not as in Eq. (C.4), but rather in terms of
the vector spherical waves introduced earlier, that is

Einc =
∞∑
l=1

l∑
m=0

∑
σ={e,o}

(
Atm,σ
lm Nσ

lm +Ate,σ
lm Mσ

lm

)
, (C.5)

where the expansion coefficients Atm,σ
lm and Ate,σ

lm follow from [155]

Atm,σ
lm =

∫ 2π
0 dφ

∫ π
0 dθ sin θEinc ·Nσ

lm∫ 2π
0 dφ

∫ π
0 dθ sin θ |Nσ

lm|
2 , (C.6a)

Ate,σ
lm =

∫ 2π
0 dφ

∫ π
0 dθ sin θEinc ·Mσ

lm∫ 2π
0 dφ

∫ π
0 dθ sin θ |Mσ

lm|
2 . (C.6b)

Carrying out the explicit calculations and exploiting the orthogonality relations of the
sine and cosines functions, one finds that Atm,o

lm = 0 and Atm,e
lm ∝ δm1, and, similarly,

that Ate,e
lm = 0 and Ate,o

lm ∝ δm1. The calculation of these coefficients then leads to

Einc =
∞∑
l=1

El0

(
−iNe [d]

l1 + Mo [d]
l1

)
, (C.7)

where the extra superscript “[d]” indicates that the radial function is zl(ρd) ≡ jl(ρd)
because the impinging field has to remain finite at the origin, and we have also defined
El0 = il 2l+1

l(l+1)E0. From here, the corresponding incident magnetic field follows from

Faraday’s law, yielding

Hinc = − kd

ωµ0

∞∑
l=1

El0

(
iNo [d]

l1 + Me [d]
l1

)
, (C.8)

where the properties of the vector spherical harmonics have been used [115, 155].
Equations (C.7) and (C.8) thereby reflect the expansion of the incident plane-wave

in terms of vector spherical waves.

Internal and scattered fields. In possession of the incident electromagnetic field
expansion, Eqs. (C.7) and (C.8), we now express in a similar fashion the internal and

2Note that x̂ = sin θ cosφ r̂ + cos θ cosφ θ̂ − sin θ φ̂.
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scattered fields using vector spherical waves. In this spirit, we write the fields inside
the sphere as

Em =
∞∑
l=1

El0

(
−idtm

l Ne [m]
l1 + cte

l Mo [m]
l1

)
, (C.9a)

Hm = − km

ωµ0

∞∑
l=1

El0

(
icte
l No [m]

l1 + dtm
l Me [m]

l1

)
. (C.9b)

where now the superscript “[m]” highlights that the radial function is zl(ρm) ≡ jl(ρm)
because it must to remain finite at the origin.

Outside the sphere, both spherical Bessel functions jl and yl are permitted and
therefore we shall use the spherical Hankel function of the first kind for the radial

part of the generating function. Specifically, we choose zl(ρd) ≡ h(1)
l (ρd) owing to its

appropriate asymptotic behavior at large ρd [155], i.e., corresponding to an outgoing
spherical wave (which is what we expect for the asymptotic scattered field). Within
this reasoning, we therefore express the scattered fields as

Escat =
∞∑
l=1

El0

(
iatm
l Ne [s]

l1 − b
te
l Mo [s]

l1

)
, (C.10a)

Hscat = kd

ωµ0

∞∑
l=1

El0

(
ibte
l No [s]

l1 + atm
l Me [s]

l1

)
, (C.10b)

where this time the superscript “[s]” indicates that the radial function is h
(1)
l (ρd) as

we have just mentioned.
The amplitudes atm

l , bte
l , cte

l , and dtm
l are the so-called Mie coefficients of the

scattered and internal (i.e., transmitted) kind, in TM and TE flavors, respectively.
These can be determined once the adequate boundary conditions are imposed (at the
sphere’s surface).

Nonclassical Mie coefficients

The Mie coefficients essentially entail all the relevant physics describing the electro-
magnetic response of a sphere of arbitrary size and material constitution. In the
following, we derive closed-form expressions for the mesoscopic (i.e., nonclassical) Mie
coefficients within the formalism of Feibelman d-parameters. In order to proceed, we
need to invoke the appropriate boundary conditions, reading [cf. Eqs. (8.27b)], in
spherical coordinates,(

Einc
Ω + Escat

Ω −Em
Ω
)∣∣
r=R = −d⊥∇Ω

(
Einc
r + Escat

r − Em
r

)∣∣
r=R , (C.11a)(

Hinc
Ω + Hscat

Ω −Hm
Ω
)∣∣
r=R = iωd‖

(
Dinc

Ω + Dscat
Ω −Dm

Ω
)
× r̂
∣∣
r=R , (C.11b)
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with Ω = {θ,φ} denoting the angular components (i.e., the components that are
parallel to the sphere’s surface). Equations (C.11), after some algebra, produce the
following set of equations:

h
(1)
l (xd)bte

l + jl(xm)cte
l = jl(xd) , (C.12a)[

ξ′l(xd) + d⊥h
(1)
l (xd)

]
atm
l +

[
Ψ′l(xm) + d⊥jl(xm)

] kd

km
dtm
l = Ψ′l(xd) + d⊥jl(xd) ,

(C.12b)[
h

(1)
l (xd) + d‖ξ

′
l(xd)

]
atm
l +

[
jl(xm) + d‖Ψ′l(xm)

] km

kd
dtm
l = jl(xd) + d‖Ψ′l(xd) ,

(C.12c)[
ξ′l(xd)− x2

dd‖h
(1)
l (xd)

]
bte
l +

[
Ψ′l(xm)− x2

md‖jl(xm)
]
cte
l = Ψ′l(xd)− x2

dd‖jl(xd) ,
(C.12d)

with xj = kjR. Additionally, the Riccati-Bessel functions Ψl(x) = xjl(x) and ξl(x) =
xh

(1)
l (x) have been employed, and the prime denotes the functions’ derivatives with

respect to their argument. Lastly, for shorthand notation, we have also introduced
the dimensionless quantities

d⊥ ≡ l(l + 1)d⊥
R

and d‖ ≡
d‖

R
. (C.13a)

Solving the system of equations posed by Eqs. (C.12), we obtain the mesoscopic
generalization of the Mie coefficients incorporating the Feibelman d-parameters:

atm
l =

εmjl(xm)Ψ′l(xd)− εdjl(xd)Ψ′l(xm) + (εm − εd)
[
jl(xd)jl(xm)d⊥ + Ψ′l(xd)Ψ′l(xm)d‖

]
εmjl(xm)ξ′l(xd)− εdh(1)

l (xd)Ψ′l(xm) + (εm − εd)
[
h

(1)
l (xd)jl(xm)d⊥ + ξ′l(xd)Ψ′l(xm)d‖

] ,

(C.14a)

bte
l =

jl(xm)Ψ′l(xd)− jl(xd)Ψ′l(xm) +
(
x2

m − x2
d
)
jl(xd)jl(xm)d‖

jl(xm)ξ′l(xd)− h(1)
l (xd)Ψ′l(xm) +

(
x2

m − x2
d

)
h

(1)
l (xd)jl(xm)d‖

, (C.14b)

for the coefficients associated with the scattered outgoing wave, and

cte
l =

jl(xd)ξ′l(xd)− h(1)
l (xd)Ψ′l(xd)

jl(xm)ξ′l(xd)− h(1)
l (xd)Ψ′l(xm) +

(
x2

m − x2
d

)
h

(1)
l (xd)jl(xm)d‖

, (C.15a)

dtm
l =

√
εmεd

[
jl(xd)ξ′l(xd)− h(1)

l (xd)Ψ′l(xd)
]

εmjl(xm)ξ′l(xd)− εdh(1)
l (xd)Ψ′l(xm) + (εm − εd)

[
h

(1)
l (xd)jl(xm)d⊥ + ξ′l(xd)Ψ′l(xm)d‖

] ,

(C.15b)

for the coefficients associated with the internal fields. As in the planar case, we have
only kept terms up to linear order in the d-parameters. We have also added tm and
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te as superscripts in the Mie coefficients to highlight the character of the associated
waves.

To the best of our knowledge, such quantum mechanical Mie coefficients with the
incorporation of nonlocal and quantum surface corrections via Feibelman d-parameters,
given above by Eqs. (C.14) and (C.15), have not been derived before. Thus, these
results could open new perspectives for the investigation of nonlocal and quantum
effects in the context of light–matter interactions in nanophotonics with metal spheres.
With this in mind, they constitute a springboard to study phenomena beyond the
classical regime, namely the influence of quantum nonlocal effects on the cross-sections,
localized surface plasmon (LSP) resonances, electromagnetic LDOS, etc, for spherical
metal particles of arbitrary size.

Quasi-static multipolar polarizability and nonretarded LSPs. In the electro-
static limit, the Mie coefficients akin to scattered outgoing waves reduce to a single
quantity: the quasi-static multipolar polarizability, αl. Since in the nonretarded
regime we have ωR/c→ 0, then one may perform small-argument expansions of jl(z),
h

(1)
l (z), and of the derivatives of the Riccati-Bessel functions, thereby yielding the

following relation between the Mie coefficient atm
l and the multipolar polarizability:

lim
ωR/c→0

atm
l = −ix2l+1

d
(l + 1)(2l + 1)
l [(2l + 1)!!]2

αl
4πR2l+1 . (C.16)

Taking the ωR/c→ 0 limit, one finds

αl = 4πR2l+1
(εm − εd)

[
1 + l

R

(
d⊥ + l + 1

l
d‖

)]
εm + l + 1

l
εd − (εm − εd) l + 1

R

(
d⊥ − d‖

) , (C.17)

which agrees with the expression (8.44) obtained through a strictly nonretarded
calculation (Sect. 8.2.1).
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APPENDIX D
Macroscopic Quantum

Electrodynamics and Multipolar
Decay Rates

Atom-field Hamiltonian. In the context of quantum electrodynamics (QED) we
consider atom-field interactions whose dynamics are governed by the following nonrel-
ativistic Hamiltonian:

H = Ha +HEM +Hint , (D.1a)

Ha =
∑
n

(
p2
n

2m −
e2

4πε0
1
rn

)
, (D.1b)

HEM =
∑

j={x,y,z}

∫
dr
∫

dω ~ω
[
f†j (r,ω)fj(r,ω) + 1

2

]
, (D.1c)

Hint =
∑
n

[ e

2m (pn ·A(rn) + A(rn) · pn) + e

2mA2(rn)
]

, (D.1d)

where Ha is the atom Hamiltonian (or, more generically, of an emitter, e.g., a quantum
dot, etc), HEM is the Hamiltonian of the electromagnetic (EM) field, and Hint stands
for the Hamiltonian governing the atom-field interaction. As written above, the
matter Hamiltonian Ha is treated at the Hartree-Fock level (consisting of a kinetic
part together with the Coulomb potential), that is, electron-electron interactions,
spin-orbit coupling, etc, will be neglected in what follows. Naturally, in any case
these could in principle be incorporated here. Moreover, the Hamiltonian akin to
the EM field is just like the one of a typical quantum harmonic oscillator, where
the operator f†j (r,ω) (fj(r,ω)) creates (annihilates) a field excitation at position r
with frequency ω and oriented along the direction j. For the part of the Hamiltonian
describing the interaction between the atom and the field, Hint, we take the so-called
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minimal-coupling interaction Hamiltonian1. Finally, A(r) is the vector potential
associated with the EM field, from which both the electric and magnetic fields stem,
in particular, E(r) = − ∂

∂tA(r) and H(r) = µ−1
0 ∇×A(r) [113, 117]. Notice that we

have implicitly assumed that the scalar potential is identically zero (in our gauge). It
should be noted that such vector and scalar potentials are simply useful mathematical
entities/abstractions and, unlike E(r) and H(r), do not represent per se real physical
quantities.

Below, we will be dealing with (linear) dispersive and dissipative media and there-
fore the common canonical quantization based on modal expansion is unsuitable.
Ergo, we shall employ instead the formalism of macroscopic quantum electrodynam-
ics [477, 478].

Dyadic Green’s functions and macroscopic QED. From Maxwell’s equations,
the following wave equation is immediately apparent (assuming linear, isotropic, and
nonmagnetic media) [113]:

∇×∇×E(r,ω)− ω2

c2
ε(r,ω)E(r,ω) = iωµ0j(r,ω) . (D.2)

The solution of Eq. (D.2) can then be written in terms of the associated dyadic Green’s
function; in particular

E(r,ω) = iωµ0
↔
G(r, r′;ω) · j(r,ω) , (D.3)

where the Green’s dyadic satisfies

∇×∇×
↔
G(r, r′;ω)− ω2

c2
ε(r,ω)

↔
G(r, r′;ω) =

↔
I δ(r− r′) . (D.4)

Furthermore, we note the following useful properties of the Green’s tensor [477]:

↔
G∗(r, r′;ω) =

↔
G(r, r′;−ω∗) , (D.5a)

↔
G(r′, r;ω) =

↔
GT (r, r′;ω) , (D.5b)

ω2

c2

∫
dx Im{ε(x,ω)}

↔
G(r, x;ω) ·

↔
G†(r′, x;ω) = Im

↔
G(r, r′;ω) , (D.5c)

where the first and second identities reflect, respectively, the analytical properties
of the Green’s dyadic and reciprocity. Lastly, the relation (D.5c) is, in essence, a
statement of the fluctuation-dissipation theorem.

Furthermore, the current j(r,ω)—representing a dynamic variable of the system
composed by the EM field and the medium—may be written as [477, 478]

ji(r,ω) = ω

√
~ε0
π

Im ε(r,ω)fi(r,ω) , (D.6)

1If spin-orbit coupling is considered, then Hint would also have an extra term, e~
2mσ ·B(r) (where

σ denotes the Pauli matrices), responsible for the interaction of the particle’s spin with the magnetic
field of the EM radiation.
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where the bosonic field operators obey the commutation relations:[
fi(r,ω), f†j (r′,ω′)

]
= δijδ(r− r′)δ(ω − ω′) , (D.7a)

[fi(r,ω), fj(r′,ω′)] = 0 . (D.7b)

Hence, using Eqs. (D.3) and (D.6), one obtains

E(r,ω) = i
ω2

c2

√
~
πε0

∫
dr′
√

Im ε(r′,ω)
↔
G(r, r′;ω) · f(r′,ω) , (D.8)

so that, while realizing that in our gauge E(r,ω) = iωA(r,ω), we find

A(r,ω) = ω

c2

√
~
πε0

∫
dr′
√

Im ε(r′,ω)
↔
G(r, r′;ω) · f(r′,ω) . (D.9)

From here, and noting that A(r) =
∫

dωA(r,ω) + H.c., we now write the components
of the vector potential operator figuring in the interaction Hamiltonian (D.1d) as

Ai(r) =
√

~
πε0

∫
dω

ω

c2

∫
dr′
√

Im ε(r′,ω)Gij(r, r′;ω)fj(r′,ω) + H.c. , (D.10)

where summation over repeated indices is implicitly assumed (Einstein’s summation
notation).

Fermi’s Golden Rule and first-order processes. In what follows, we consider
electronic first-order processes alone. This means, for instance, that we neglect the
second term of the minimal-coupling Hamiltonian (D.1d) [i.e., the term proportional
to A2 ≡ A ·A]. Moreover, for definiteness, we assume that the emitter is a Hydrogen
atom. Hence, the atom-field interaction Hamiltonian then becomes

Hint = e

2m [p ·A(r) + A(r) · p] . (D.11)

We want to determine the transition rate between an initial (excited) state |i〉 =
|e, 0〉 ≡ |e〉 ⊗ |0〉 and a final (not necessarily the lowest) state |f〉 = |g, 1xjω0〉 =
f†j (x,ω0) |g, 0〉. The transition rate for such a first-order process calculated within
first-order perturbation theory follows from Fermi’s Golden Rule [232, 474]

Γi→f = 2π
~2 |〈f |Hint |i〉|2 δ(ωi − ωf − ω) . (D.12)
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The matrix element entering in Eq. (D.12) reads2 [54]

〈f |Hint |i〉 = e

m

∑
k

〈g, 1xkω0 |A(r) · p |e, 0〉

= e

m

∑
k

〈g, 0| fk(x,ω0)A(r) · p |e, 0〉

= e

m

√
~
πε0

ω0

c2

∑
k

〈g, 0|
√

Im ε(x,ω0)G†kn(r, x;ω0)pn |e, 0〉 . (D.13)

where the commutation relations of the bosonic field operators have been used. Car-
rying out a similar calculation for 〈i|Hint |f〉, and making use of the identity (D.5c),
one may write (taking the wavefunctions as real)

Γ = 2π
~2

e2~
πε0m2c2

∫
dr
∫

dr′ ψe(r′)ψe(r) ImGij(r, r′;ω0)(piψg(r))(p∗jψg(r′)) .
(D.14)

Now, the electromagnetic Green’s function admits an analytical expression of the form
(for z > 0)

↔
G(r, r′;ω0) = i

8π2

∫
dq
[↔
Ms +

↔
Mp

]
eiq·ρ+ikzze−iq·ρ

′+ikzz
′
. (D.15)

Since deviations of the LDOS from classicality owing to quantum surface corrections
incur at relatively short emitter–metal distances, i.e., at relatively large wavevectors,
we here assume the electrostatic limit, i.e., q � k0 (except for the reflection coefficient,
which is still assumed to be the retarded version in order to obtain the plasmon pole

accurately), such that kz → iq and ‖
↔
Ms‖ → 0 as c→∞:

↔
G(r, r′;ω0) c→∞' i

8π2

∫
dq

↔
Mp

∣∣
c→∞e

iq·ρ−qze−iq·ρ
′−qz′ , (D.16)

where

↔
Mp

∣∣
c→∞ = −qc

2

ω2
0
rp

 i 0 1
0 0 0
−1 0 i

 = −qc
2

ω2
0
rp

 i
0
−1

⊗(1 0 −i
)
≡ −2i qc

2

ω2
0
rpε̂q̂⊗ε̂∗q̂,

(D.17)
with ε̂q̂ denoting the polarization vector defined via ε̂q̂ = (q̂ + iẑ)/

√
2. Therefore, the

transition rate (D.14) is now given by

Γ = e2

2π2ε0~m2ω2
0

∫ 2π

0
dϕ
∫ ∞

0
dq q2 ∣∣〈e| (ε̂q̂ · p)eiq·ρ−qz |g〉

∣∣2 Im rp. (D.18)

2Neglecting the contribution from ∇ ·A which is approximately zero away from the metal (where
∇ ·A = 0).
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It it useful to rewrite Eq. (D.18) as

Γ = e2

2π2ε0~m2ω2
0

∫ 2π

0
dϕ
∫ ∞

0
dq q2

∣∣∣〈e| (ε̂q̂ · p)eiq·ρ−q(z−z0) |g〉
∣∣∣2 Im rp (D.19)

which allows the evaluation of the matrix element with the emitter at the origin.
For simplicity, in what follows we restrict ourselves to electric multipolar transitions

whose initial and final states posses mf = mi = 0. Then, we may choose q along the
x-direction, and, writing the momentum operator as p = −i~∇, we obtain

Γ = 4α~2ω0

m2c2

∫ ∞
0

duu2e−2uk0z0
∣∣∣〈e| eiuk0x−uk0(z−z0)ε̂q̂ ·∇ |g〉

∣∣∣2 Im rp, (D.20)

where we have introduced the dimensionless variable u ≡ q/k0. Since for an arbitrary
nth electric transition, En, the matrix element in (D.20) is dominated by only one of
the terms coming from the expansion of the exponential,3 we get∣∣∣〈e| eik0ux−k0u(z−z0)ε̂q̂ ·∇ |g〉

∣∣∣2 ∝ u2(n−1). (D.21)

Finally, this leads to the following expression the transition rate associated with a
given En transition:

ΓEn = 2α3ω0

[
(k0ab)n−1

(n− 1)!

]2

Ξle,lg
ne,ng

∫ ∞
0

duu2ne−2uk0z0 Im rp, (D.22)

where ab denotes the Bohr radius and where the quantity Ξ originates from the matrix
element,

Ξle,lg
ne,ng

≡
∣∣∣∣ ∫ 2π

0
dφ
∫ π

0
dθ sin θ

∫ ∞
0

dr̄ r̄2 Ψe(r̄, θ,φ) (i r̄ sin θ cosφ− r̄ cos θ)n−1

× (sin θ cosφ+ i cos θ) ∂
∂r̄

Ψg(r̄, θ,φ)
∣∣∣∣2, (D.23)

with r̄ ≡ r/ab (note that here the wavefunctions Ψ are dimensionless).
In passing, we comment that a classical electrodynamics calculation using the

Green’s dyadics yields the same qualitative result as Eq. (D.22) [i.e., up to a propor-
tionality factor]. The decay rates relative to the ones in vacuum, however, should be
quantitatively the same (at least within the approximations assumed in this deriva-
tion) [520–522].

3In particular, the dominating term arising from the expansion of the exponential is the one
corresponding to the change in the angular momentum of the atom by an integer n, i.e., |lf − li| = n;
see Supplementary Material of Ref. [54].
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[108] G. X. Ni, A. S. McLeod, Z. Sun, L. Wang, L. Xiong, K. W. Post, S. S. Sunku,
B.-Y. Jiang, J. Hone, C. R. Dean, M. M. Fogler, and D. N. Basov. Fundamental
limits to graphene plasmonics. Nature 557, 530 (2018).

[109] L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang,
A. Zettl, Y. R. Shen, and F. Wang. Graphene plasmonics for tunable terahertz
metamaterials. Nat. Nanotechnol. 6, 630 (2011).

[110] D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. Garćıa de Abajo, V. Pruneri,
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single-molecule fluorescence enhancements produced by a bowtie nanoantenna.
Nat. Photonics 3, 654 (2009).

[200] C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed. On the use of plasmonic
nanoparticle pairs as a plasmon ruler: The dependence of the near-field dipole
plasmon coupling on nanoparticle size and shape. J. Phys. Chem. A 113, 1946
(2009).

[201] B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu,
N. X. Fang, and K. C. Toussaint. Application of plasmonic bowtie nanoantenna
arrays for optical trapping, stacking, and sorting. Nano Lett. 12, 796 (2012).

[202] M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and
N. Liu. Transition from isolated to collective modes in plasmonic oligomers.
Nano Lett. 10, 2721 (2010).

[203] M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu. Plasmonic
oligomers: The role of individual particles in collective behavior. ACS Nano 5,
2042 (2011).

[204] B. Gallinet and O. J. F. Martin. Influence of electromagnetic interactions on
the line shape of plasmonic Fano resonances. ACS Nano 5, 8999 (2011).
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[283] M. P. Greene, H. J. Lee, J. J. Quinn, and S. Rodriguez. Linear response theory
for a degenerate electron gas in a strong magnetic field. Phys. Rev. 177, 1019
(1969).

[284] D. K. Efetov and P. Kim. Controlling electron-phonon interactions in graphene
at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010).

[285] F. J. Bezares, A. D. Sanctis, J. R. M. Saavedra, A. Woessner, P. Alonso-González,
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A platform for strong light–matter interactions. Nano Lett. 11, 3370 (2011).

[292] D. N. Basov, M. M. Fogler, and F. J. Garćıa de Abajo. Polaritons in van der
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[309] H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris,
and F. Xia. Tunable infrared plasmonic devices using graphene/insulator stacks.
Nat. Nanotechnol. 7, 330 (2012).

[310] H. Yan, F. Xia, Z. Li, and P. Avouris. Plasmonics of coupled graphene micro-
structures. New J. Phys. 14, 125001 (2012).

[311] S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garćıa de Abajo. Complete
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[408] C. David and F. J. Garćıa de Abajo. Spatial nonlocality in the optical response
of metal nanoparticles. J. Phys. Chem. C 115, 19470 (2011).

[409] R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen,
and X.-H. Wang. Strong light-matter interactions in single open plasmonic
nanocavities at the quantum optics limit. Phys. Rev. Lett. 118, 237401 (2017).

[410] U. Kreibig and C. v. Fragstein. The limitation of electron mean free path in
small silver particles. Z. Phys. 224, 307 (1969).

[411] M. A. Leontovich. On the Approximate Boundary Conditions for Electromagnetic
Field on the Surface of Highly Conducting Bodies. Propagation of electromagnetic
waves, Part II, Moscow (1948).

[412] A. N. Shchukin. Propagation of Radio Waves. Svyazizdatt, Moscow (1940).

[413] S. M. Rytov. Calculation of skin effect by perturbation method. Zh. Eksp. Teor.
Fiz. 10, 180 (1940).

[414] S. V. Yuferev and N. Ida. Surface impedance boundary conditions: a compre-
hensive approach. CRC press (2009).

[415] S. Tretyakov. Analytical modeling in applied electromagnetics. Artech House
(2003).

[416] S. A. Tretyakov. Metasurfaces for general transformations of electromagnetic
fields. Phil. Trans. R. Soc. A 373, 20140362 (2015).

[417] A. K. Geim and I. V. Grigorieva. Van der Waals heterostructures. Nature 499,
419 (2013).
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[446] K.-D. Tsuei, E. W. Plummer, and P. J. Feibelman. Surface-plasmon dispersion
in simple metals. Phys. Rev. Lett. 63, 2256 (1989).

[447] K.-D. Tsuei, E. W. Plummer, A. Liebsch, K. Kempa, and P. Bakshi. Multipole
plasmon modes at a metal surface. Phys. Rev. Lett. 64, 44 (1990).

[448] K.-D. Tsuei, E. W. Plummer, A. Liebsch, E. Pehlke, K. Kempa, and P. Bakshi.
The normal modes at the surface of simple metals. Surf. Sci. 247, 302 (1991).

[449] P. T. Sprunger, G. M. Watson, and E. W. Plummer. The normal modes at the
surface of Li and Mg. Surf. Sci. 269-270, 551 (1992).
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