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Abstract

Much research in health economics revolves around the analysis of hier-
archically structured data. For instance, combining characteristics of patients
with information pertaining to the general practice (GP) clinic providing treat-
ment is called for in order to investigate important features of the underlying
nested structure. In this paper we offer a new treatment of the two-level
random-intercept model and state equivalence results for specific estimators,
including popular two-step estimators. We show that a certain encompassing
regression equation, based on a Mundlak-type specification, provides a sur-
prisingly simple approach to efficient estimation and a straightforward way
to assess the assumptions required. As an illustration, we combine unique
information on the morbidity of Danish type 2 diabetes patients with infor-
mation about GP clinics to investigate the association with fee-for-service
healthcare expenditure. Our approach allows us to conclude that explanatory
power is mainly provided by patient information and patient mix, whereas
(possibly unobserved) clinic characteristics seem to play a minor role.
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1 Introduction

The rapidly increasing richness of available data and the ability to link and merge

these across various unit-specific levels have brought much recent attention to

statistical multilevel models. These methods acknowledge and seek to utilize the

nested data structure. Rice and Jones (1997) provide an introductory account and

point to areas within health economics where these methods could prove beneficial.

A few other field-related examples are Laudicella et al. (2010); Scribner et al.

(2009); Fletcher (2010); Gurka et al. (2011); Carey (2000); and Blundell and

Windmeijer (1997).

While researchers can choose among complex models for multilevel analysis,

simpler models have the benefit of practicality, ease of interpretation, and fewer

distributional assumptions. Combining deep hierarchies with random slopes and

cross-level interactions can be challenging and may not be necessary to answer

the question at hand. At the price of some composition detail, simpler regression

designs offer robustness and practicality by weakening distributional requirements

and allowing the use of a more conventional regression framework. It is important

to strike a balance while acknowledging the possible importance of the underlying

nested data structure for a particular problem.

In this paper we present a new treatment of the simple, yet very useful, two-

level random intercepts model. We provide insights that relate various estimation

strategies and their associated parameter estimators. From a practitioner’s view, our

results will clarify what is being estimated at the two levels and which assumptions

are required to answer a particular question. We argue that a combined equation

encompassing both levels is useful in several aspects. In particular, we show that an
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elegant result by Mundlak (1978), which bridges fixed effects and random effects

estimation, carries over to the current multilevel setting.1

The remainder of the paper is structured as follows. In Section 2, we discuss the

model setup, estimation strategies, and our main results. In Section 3 we illustrate

the results by applying the model to unique data on the co-morbidity of type

2 diabetes patients combined with clinic information. Our aim is to investigate

whether the available information is able to explain the variation in fee-for-service

expenditure and how explanatory power and unexplained variation is distributed at

the two levels. After giving concluding remarks in Section 4, we provide verification

of the results in Appendix A and some detail on the practical implementation in

Appendix B.

2 The model and estimator relationships

Suppose we are faced with a research question revolving around individuals each

of whom belongs to one of several groups. Here we use the terms “individuals”

and “groups”, but this could be any relevant nesting of units. Examples are patients

nested within GP clinics or hospital departments; doctors nested within hospitals;

or certain operations performed in different operating theatres.

We consider an individual-level equation specified as

yi = x
′
iβ+ γ j(i)+ui, (1)

1Unfortunately, our terminology can lead to confusion: the terms “fixed effects” and “random
effects” here take their meaning from panel data econometrics and should not be confused with
their use in multilevel models.
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where yi is the outcome variable to be explained; xi is a vector of individual

characteristics; γ j(i) is an (unobserved) component, or effect, specific to group j

of which individual i is a member; and ui is the unexplained noise term. We use

boldface to denote vectors (which we take as columns), and the prime ( ′) denotes

transposition.

At the second level of the hierarchy, we specify the group effects γ j in terms of

group-level characteristics z j; in particular we let

γ j = z
′
jα+ e j, (2)

where the vector z j is assumed to contain an intercept term. The vectors α and

β are unknown quantities of interest and are to be estimated. In addition to the

parameter vectors, some quantification of the explained and unexplained variation

at each level is typically also of direct interest.

The combined model is referred to as a random intercepts model, where the

second-level equation specifies the intercepts in terms of the group-level data and

a remainder. Surely, some applications may opt for models that also address the

potential need for specifying random slopes and/or nesting structures deeper than

two levels. We limit our discussion to the model specified by equations (1) and (2):

it is common due to its simple interpretation, and it is practically straightforward

to implement within a standard (least-squares) regression framework. Furthermore,

under certain assumptions the slope parameters may be interpreted as averages of

potentially random slopes which may suffice in the particular application.2

One approach that has been used for estimation of the model is to (separately)

2Typically, one needs some variation of the assumption that deviations from slope means should
be uncorrelated with the included regressors.
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estimate equation (1) using the within estimator (often also referred to as the fixed

effects estimator). Estimation is based on the equation

yi− ȳ j = (xi− x̄ j)
′β+ui− ū j, (3)

where group averages are subtracted from individual observations. Then, the un-

observed effects γ j are replaced by their estimates γ̂ j in equation (2) to enable

estimation of the second-level equation; see e.g. Laudicella et al. (2010). The

rationale behind this strategy is that elements with no variation within each group

are eliminated by the within transformation, and one can thus disregard any po-

tential dependence between xi and γ j(i). However, the details of the second-stage

estimation are less clear, and one may ask whether the problem solved in the first

stage remains in the second. Furthermore, even though an estimated dependent

variable need not invalidate a regression, there are varying numbers of observations

contributing to each estimated group effect. One may therefore consider possible

efficiency improvements associated with various weighted estimation procedures,

see e.g. Lewis and Linzer (2005). It is also not clear at the outset how to decom-

pose goodness-of-fit measures to asses the explanatory power of the information

included, and to which degree estimation error from the first stage affects measures

of variation.

An alternative to the two-stage strategy is to combine equations (1) and (2),

yi = x
′
iβ+z′j(i)α+ e j(i)+ui, (4)

and employ (feasible) generalized least squares (GLS) for estimation. This is
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commonly referred to as (pure) random effects estimation. In this approach the

variance structure of the combined error term is modeled explicitly. For consistent

estimation of the model parameters, the strategy requires the unobserved effects

(now e j(i)) to be uncorrelated with the individual characteristics, xi, in addition to

the group characteristics z j(i); an assumption which may often be violated. On the

other hand, when the assumption is satisfied the estimator can be more efficient

than the two-step approach. The choice between strategies is at the core of the

well-known “fixed effects versus random effects” discussion in panel data analysis.

We will argue that the so-called Mundlak device allows for a one-stage single-

equation estimation where the choice between the two approaches is both arbitrary

and unnecessary, to quote Mundlak (1978). Furthermore, our treatment makes the

relation between the various estimators and weighting schemes more apparent.

With a single equation, standard regression results make it clear which assumptions

are needed. As an additional feature, a test for the appropriateness of the random

effects estimation becomes directly available. The unification of approaches, in

terms of the equivalence of estimators, is useful since the Mundlak-type equation

is well-suited for estimation and offers some additional features, while the two-

step approach provides intuition and ease of interpretation. Each approach could

possibly offer extensions which are not straightforward for the other.

As argued above, a natural concern with estimation of (1) or the combined

model in (4), treating γ j (or e j) as random, is whether exogeneity of xi is reasonable.

In this paper we focus on endogeneity due to the presence of γ j(i) and maintain the

assumption that ui is not a source of concern.3 The within transformation in (3)

3If one suspects endogeneity due to elements in ui, the current setup could be combined with
methods that take this into account.
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eliminates γ j(i) and thereby any endogeneity problems associated with this term.

Using the resulting estimator, which we denote β̂w, one can obtain estimates γ̂ j,w

as the group means of the residuals âi = yi−x′iβ̂w. On the other hand, correlation

between γ j(i) and elements in xi could be due to observable group characteristics,

and using the specification in (2) could be sufficient in alleviating the endogeneity

if e j(i) is uncorrelated with xi. In this case, estimation can be based on (4), possibly

with specific assumptions on the covariance structure of the composite error term.

Now, if e j(i) is correlated with xi, one may attempt to capture the pertinent

correlation with a linear projection

e j = x̄
′
jπ+ v j, (5)

where the bar is used to denote group averages. We now plug this into the combined

equation, which now reads

yi = x
′
iβ+z′j(i)α+ x̄′j(i)π+ v j(i)+ui. (6)

The averages often have a suitable interpretation as group-level aggregation of

individual-level data, but in general this should be thought of as a technical device,

often referred to as the Mundlak device. For reference, we explicitly write out the

second-level equation for the groups as

γ j = z
′
jα+ x̄′jπ+ v j. (7)

It is natural to question the extent to which the projection can solve the endogeneity

problem. It turns out that OLS estimation of (6) yields an estimator of β identical

7



to β̂w, which we know to be robust to any kind of dependence between e j(i) and

elements of xi.

We are typically also interested in the variance components of the composite

error term, σ2
u and σ2

v , say, which coupled with generalized least-squares (GLS)

could also improve estimation efficiency. Suppose cor(ui,v j(i)) = 0, which leads

to the classical random-effects covariance structure. Curiously, the GLS estimator

of β based on (6) is also identical to β̂w. The “augmented” regression equation is

therefore equivalent to the first stage in terms of estimating β regardless of whether

OLS or GLS is used for estimation.4

We now discuss how the estimators of α are related. First, note that the

uncertainty associated with the average member of a group is proportional to

1/n j, i.e. var(ū j) = σ2
u/n j, if the ui terms are uncorrelated. In the absence of

group-specific noise, this would hint at the use of ω j = n j as regression weights

when analyzing data aggregated at the group level. Since the precision with

which each γ j is estimated in the two-stage procedure is different for each j,

it seems natural to assign higher weights to more informative groups in the sec-

ond regression. If there is group-level noise, v j, then aggregated uncertainty is

var(v j + ū j) = σ2
v +σ2

u/n j = σ2
v (1+(σ2

u/σ2
v )/n j), which instead would suggest

using second-stage weights ω̃ j = 1/[1+(σ2
u/σ2

v )/n j]. In fact, α̂OLS, the estimator

based on applying OLS to (6), is identical to the second-stage estimator based on (7)

with ω j as regression weights (and γ̂ j,w as dependent variable). Furthermore, α̂GLS,

the GLS estimator based on (6), is identical to second-stage regression with ω̃ j

as weights. While one may also consider an unweighted second-stage regression

4However, standard inference is not equivalent. OLS estimation, for example, should here be
coupled with inference measures that are robust to clustering.
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(which in terms of estimating α is equivalent to a regression of (6) with weights

1/n j), it is advisable to gain efficiency by using appropriate weights, in particular

if g is small.

An additional feature of the encompassing Mundlak-type equation relates to

the parameter π, which is zero if and only if e j(i) and xi are uncorrelated. Testing

the hypothesis π = 0 therefore leads to a Hausman-type test for consistency of

pure random-effects estimation based on (4). While the original form of such a test

cannot be made robust to violations of the random-effects model assumptions, this

version of the test can be made fully robust. For more details about this version

of the test, see Baltagi (2006) and for its original form, see Hausman (1978). If

π = 0, equation (4) and a feasible GLS estimator should be used for estimation. It

is also important to note from (7) that when π 6= 0, a second-stage regression will

be biased and inconsistent for α if x̄ j is excluded but correlated with z j.

We now summarize the main results of this paper:

(i) The estimators β̂w, β̂GLS, and β̂OLS are equivalent.

(ii) The estimators α̂ω and π̂ω are equivalent to α̂OLS and π̂OLS, respec-
tively.

(iii) The estimators α̂ω̃ and π̂ω̃ are equivalent to α̂GLS and π̂GLS, respec-
tively.

(iv) If π 6= 0 and correlations exist among variables in xi and z j, then the
estimators of α from (2) will be biased and inconsistent.

Here, α̂ω , π̂ω , α̂ω̃ , and π̂ω̃ are the second-stage weighted least squares
estimators based on (7) with ω , respectively ω̃ , as regression weights and
γ̂ j,w as dependent variable. For verification of the results, see Appendix A.
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Part (i) is basically Mundlak’s celebrated result, but here it is stated in an

unbalanced setting (i.e. we have unequal group sizes), and we include group-

specific explanatory variables.5 A generalization of Mundlak’s result with time-

invariant variables is shown by Krishnakumar (2006) but also in a balanced panel

data setting. Part (i) shows that the Mundlak device is sufficient for dealing with

any kind of dependence between e j and xi, since it yields an estimator of β that is

identical to the one obtained by applying a within transformation (and because this

is robust to any dependence structure). Therefore, since unbiased and consistent

estimation of β using the within estimator requires E[ui|xi, x̄ j(i)] = 0, this is also

the appropriate condition for the OLS/GLS estimator of (6). A relaxation of this

assumption to zero correlation retains the consistency of the estimator(s).

Parts (ii) and (iii) relate one- and two-step estimators of α and π. Since we do

not eliminate group-specific variables in estimation based on (6), we can directly

obtain the estimates with no need for a second regression. On the other hand,

the results justify a (weighted) second-stage regression where x̄ j is included. To

estimate α and π based on (6) without bias, a sufficient assumption is E[ui +

v j(i)|xi,z j(i), x̄ j(i)] = 0. Again, consistency only requires zero correlation. The

equivalence results imply that the condition can be used for the second-stage

estimators as well.

Part (iv) reveals that if there is correlation between e j(i) and xi (the reason for

employing the within estimator in the first place), then a second-stage regression

based only on (2) is ill-advised if elements of z j(i) are correlated with elements

in xi. When separating the combined model into two regressions, and estimating

5Mundlak used a balanced panel data setting, where individuals are observed over time, and did
not include time-invariant explanatory variables.
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the first stage by eliminating the group-specific elements, one may unconsciously

overlook the possible dependence issues in the second regression (which can be

solved by the Mundlak correction). Even though one has controlled for correlation

issues when estimating β, any such problem often remains in the second-stage

equation. Equations (6) and (7), where the Mundlak device is included, make it

very clear when omission of x̄ j leads to inconsistent estimation. It is also important

to realize that while e j(i) is allowed to be correlated with xi, it is not allowed for v j

to be correlated with z j (yet we could still consistently estimate β). Finally, it is

obvious that the within transformation—however powerful—does not eliminate

problems that might arise from correlations between ui and xi, and then nor does

estimation based on (6).

To summarize, one can obtain the various two-step estimators directly from

estimation based on (6), a Hausman-type test becomes directly available, and it is

more apparent when estimation will be consistent and unbiased by applying the

usual least squares regression reasoning. In practice, we do not know the variances

σ2
u and σ2

v , but it is advisable to employ a feasible (GLS) procedure to estimate (6)

since using the weights ω j may be inappropriate as seen from the expression of

the variance term of the combined error. In Appendix B we review an approach to

feasible GLS estimation. It should also be mentioned that using OLS on the second

stage using (7) without weights is possible and provides consistent estimates under

the usual assumptions, but since there are typically not many observations at this

level, one would often try to get an efficiency gain by using proper weights. Finally,

if one is worried about the assumed variance structure, it is possible to use a

flexible (feasible) generalized least squares estimator on equation (6) where the

assumptions are relaxed. However, there are no direct relationships with two-step
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estimation; a minor problem if the outset is equation (6).

Finally, note that consistency of the estimator(s) of β only requires n (the total

number of observations) to grow large, whereas consistency of the estimators of α

hinges on the number of groups, say g. To get consistent estimators of γ j, it is clear

that one would need the group sizes, say n j, to grow.

3 Illustration

To illustrate our results results, we employ the various estimators in an analysis of

the association between individual-level fee-for-service expenditures (FFSE) and

co-morbidity of type 2 diabetes patients. We use a unique data set that allows us

to combine information on the patients’ morbidity with characteristics of the GP

clinics providing treatment.

Danish GPs are self-employed professionals who are paid by regional govern-

ments (Olejaz et al., 2012). The current remuneration system for GPs, in which GPs

are compensated through a combination of per capita fees (30%) and FFS (70%),

does not differentiate the per capita component or the fees. However, the mixed GP

remuneration system and other central parts of the primary care sector are currently

undergoing a restructuring process (Pedersen et al., 2012; OECD Health Division,

2013). The success of these reforms and efforts to improve quality and efficiency

will depend upon radically developing the data infrastructure underpinning primary

care. One new element is that many Danish GPs have started to use the Interna-

tional Classification of Primary Care code (ICPC-2); see Schroll et al. (2008);

Schroll (2009); WONCA (2005). The plan is that these data, which are routinely

electronically collected by the Danish Quality Unit of Primary Care (DAK-E), will
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allow GPs to improve their quality of care. From 2013, the General Practitioners

Organization (PLO) has agreed that all GPs will start diagnoses coding chronic

patients such as Diabetes patients (Schroll et al., 2012). This development is in line

with an international trend towards orienting resource allocation systems according

to patients’ overall health care needs (Starfield and Kinder, 2011). From an interna-

tional perspective these new patient-level morbidity data combined with data on

GP clinic activity and politically negotiated FFS tariffs offer a unique opportunity to

explore how effectively the allocation of resources for FFS remuneration meets the

health care needs. Therefore, in addition to the illustration of our theoretical results,

our example provides a first attempt to explore the degree to which the proportion

of FFSE variation is explained by patient morbidity and GP clinic characteristics for

type 2 diabetes patients.

Our data set includes 6,706 type 2 diabetes patients who were registered and

received services in 59 so-called sentinel GP clinics in 2010. These sentinel clinics

are defined as those that coded more than 70% of their patients and are preferred

for research and monitoring.6 The dependent variable is patient-level FFSE defined

as the sum of GP services weighted by politically negotiated service-specific fees.

To measure the patients’ morbidity we use simplified morbidity categories, termed

Resource Utilization Bands (RUBs), based on the Adjusted Clinical Groups (ACG)

case mix system developed by The Health Services Research & Development

Center at The Johns Hopkins University (2009). The six mutually excluding RUBs

are formed by combining the ACGs based on the patients’ age, sex, and diagnoses

codes. The ACG system software assigns the co-morbidity measures as listed in

6There might be a selection issue if the coding decision cannot be regarded as random. Explicitly
testing for this would be an interesting pursuit when coding is no longer optional and data become
available.
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Table 1.

[Table 1 about here.]

Since higher morbidity could affect expenditures through an increased number

of GP visits, we include the latter as an explicit control in the regressions. The

GP-level variables we include are clinic size, the number of doctors in the clinics,

the average doctor’s age at the clinics, the proportion of female doctors, and the

number of diabetes patients per doctor. Some descriptive statistics are given in

Table 2, and the regression results from OLS and (feasible) GLS estimation of (6)

and the two-stage estimators with different weighting schemes are given in Table

3.

[Table 2 about here.]

[Table 3 about here.]

It is clear that the different estimation strategies yield identical estimates of β,

the parameters associated with individual-level characteristics. The estimated

parameters indicate that there are increasing expenditures associated with the

degree of morbidity which becomes both statistically and practically significant

as morbidity increases. Not surprisingly, the number of visits is also positively

associated with expenditure.

Interestingly, none of the GP-level variables are significant in the regressions.

However, one can confirm that the GLS estimates are identical to the second-stage

WLS regression with ω̃ as weights7, and that the OLS estimates are identical to the

second-stage WLS regression with ω as weights. The second-stage OLS regression

7Of course, this requires that we use the same estimates of σ2
u and σ2

v .
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does not correspond to any of the other columns, although the practical difference

is small in this case.

The group means (x̄) often have useful interpretations. In the current application

the averaged RUB categories represents the proportions of diabetes patients the GPs

have in each category. The averaged number of visits represent how many visits

diabetes patients have on average in each GP. Only RUB2 and #visits are significant,

but more interestingly: a (robust) Wald-test of π = 0 yields a χ2 statistic of 16.0

with a p-value of 0.0137 based on the GLS estimation (the conclusion based on

the OLS estimation is very similar). The evidence illustrates a situation where we

cannot simply combine equations (1) and (2), but should use either a two-stage

approach including the group averages or a Mundlak-type estimation (since they

are equivalent).

The variance component estimates are σ̂v ≈ 53.34 and σu ≈ 129.97. The ratio

σ̂2
v /(σ̂

2
u + σ̂2

v ) ≈ 0.14 indicates that most of the unexplained variation in FFSE

belongs to the individual level. This is interesting as almost all of our explanatory

power also belongs to the individual level. R2 ≈ 0.67 (for both Mundlak-type

estimations), which means that quite a large proportion of the variation can be

explained for this patient type. If we omit the GP-level characteristics and include

only individual characteristics and their aggregations (in terms of x̄), this drops to

0.66, a negligible decrease. Interpreting the variation decomposition based on the

combined estimation has the benefit that we do not need to worry about the effect

of estimation error in connection with γ̂ j and the second-stage regression.

The above results provide initial evidence that clinic-level information is not

crucial for modeling FFSE, a result which is not obvious. However, the test rejecting

π = 0 suggests that clinic-level effects are correlated with morbidity and number
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of visits, and this should be controlled for. It also suggests that aggregated patient

information as a measure of patient mix is important.

4 Conclusion and final remarks

Our theoretical results provide new insight to the random-intercept model and

contribute to the field in several ways. First, it unifies several estimation procedures

by introducing a single encompassing regression equation based on the Mundlak

device. We show that its features carry over from the balanced panel data setup to

the nested two-level setup. The equivalence results make it clear which assumptions

need to be imposed as each provides certain insights. Secondly, certain weighting

schemes for the second-level regression equation are highlighted and shown to

be incorporated “automatically” when basing estimation on the new combined

equation. Thirdly, a test for the dependence between individual characteristics and

unobserved group effects becomes directly available as a bi-product of the new

specification. Finally, we illustrate the results by analyzing how information about

GP clinics and the morbidity of their diabetes patients explains FFS expenditure.

Our data provide a unique opportunity to combine patient-level data with the GP

clinics providing treatment. Our findings suggest that it is mainly information

pertaining to the patients that explains FFS expenditure variation, at least for this

category of patients. When more data become available this would require a more

in-depth analysis to confirm these findings.

We did not consider potential endogeneity issues related to the unobserved

individual-level component but have kept focus on issues related to the group-level

component. The former is surely an important issue in many applications. Having
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formulated both levels of the model in a single encompassing regression equation

makes many common econometric tools available for which applicability in the

two-step approach is not obvious. Another topic interesting for future research is

how our results extend to deeper hierarchical structures.

A Verification of the theoretical results

In the verification of the results it is helpful to recall a generalized Frisch-Waugh

theorem; see Krishnakumar (2006). Consider the general partitioned regression:

y =X1β1 +X2β2 +u. (8)

Then, for positive definite covariance matrix Ω,

β̂2,GLS = (R′2Ω
−1R2)

−1R′2Ω
−1R1 (9)

= (R′2Ω
−1R2)

−1R′2Ω
−1y, (10)

where

R1 = y−X1(X
′
1Ω
−1X1)

−1X ′1Ω
−1y (11)

R2 =X2−X1(X
′
1Ω
−1X1)

−1X ′1Ω
−1X2. (12)
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Also, ifX ′1Ω
−1X2 = 0, then

β̂1,gls = (X ′1Ω
−1X1)

−1X ′1Ω
−1y (13)

β̂2,gls = (X ′2Ω
−1X2)

−1X ′2Ω
−1y. (14)

Note that the matrix Ω is the same in all of the regressions.

In what follows it is convenient to write the model in matrix notation as

y =Xβ+Zα+X̄π+v+u. (15)

Let g be the number of groups, each with n j members, j = 1, . . . ,g, and let

n = ∑n j. Define P to be a block-diagonal matrix with g blocks, each of size

n j × n j with all entries being 1/n j, j = 1, . . . ,g. Also, let Q = In−P ; this is

the well-known within transformation matrix. The random effects GLS variance-

covariance matrix of the combined error term v+u is then Ω =DP +σ2
uQ,

whereD is an n×n diagonal matrix with values n jσ
2
v +σ2

u (note that the n j term

in the iith element, i = 1, . . . ,n, corresponds to the size of the group in which

individual i is a member). It is easy to verify that Ω−1 =D−1P +σ−2
u Q, since

Ω−1Ω = P +Q= I .

Now, noting thatX = PX+QX and that X̄ = PX , we can rewrite (15) as

y =QXβ+Zα+PX(π+β)+v+u (16)

=QXβ+ Z̃δ+v+u, (17)
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where

Z̃ = [Z
... PX] (18)

δ = [α′
... (π+β)′]′. (19)

To verify part (i), note that Z̃ = PZ̃, so

X ′QΩ−1Z̃ =X ′QΩ−1PZ̃ (20)

= σ
−2
u X ′QPZ̃ (21)

= 0 (22)

sinceQ and P are orthogonal andQ is idempotent (as is P ). Therefore, from the

generalized Frisch-Waugh theorem we have

β̂GLS = (X ′QΩ−1QX)−1X ′QΩ−1y (23)

= (X ′QX)−1X ′Qy (24)

= β̂OLS = β̂w. (25)

The step from (23) to (24) can be realized usingQΩ−1 =QΩ−1Q= σ−2
u Q.
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To verify part (ii), we have from the classical Frisch-Waugh theorem that

δ̂OLS = (Z̃ ′Z̃)−1Z̃ ′y (26)

= (Z̃ ′Z̃)−1Z̃ ′(y−QXβ̂OLS) (27)

= (Z̃ ′Z̃)−1[PZ̃]′(y−Xβ̂w +PXβ̂w) (28)

= (Z̃ ′Z̃)−1Z̃ ′γ̂+(Z̃ ′Z̃)−1Z̃ ′X̄β̂w (29)

= (α̂′ω , π̂
′
ω)
′+(0, β̂′w)

′ (30)

=

 α̂ω

π̂ω + β̂w

 . (31)

The last equality holds since we end up with a regression of averaged data with γ̂

as dependent variable. All observations within each group are identical so this is

the same as a weighted regression based on the unique averaged observations with

weights ω j.

Part (iii) is verified similarly:

δ̂GLS = (Z̃ ′Ω−1Z̃)−1Z̃ ′Ω−1y (32)

= (Z̃ ′Ω−1Z̃)−1Z̃ ′Ω−1(y−QXβ̂GLS) (33)

= (Z̃ ′Ω−1Z̃)−1Z̃ ′Ω−1[P +Q](y−Xβ̂w +PXβ̂w) (34)

= (Z̃ ′Ω−1Z̃)−1Z̃ ′Ω−1P (y−Xβ̂w +PXβ̂w) (35)

= (Z̃ ′Ω−1Z̃)−1Z̃ ′Ω−1γ̂+(Z̃ ′Ω−1Z̃)−1Z̃ ′Ω−1X̄β̂w (36)

= (α̂′
ω̃
, π̂′

ω̃
)′+(0, β̂′w)

′ (37)

=

 α̂ω̃

π̂ω̃ + β̂w

 . (38)
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The last equality follows from the definition of D, implying that the diagonal

elements of its inverse are 1/[n jσ
2
v +σ2

u ], which combined with the n j replications

of each unique observation makes the last expression correspond to a second-stage

regression of unique averaged observations with γ̂ as dependent variable and

weights n j/[n jσ
2
v +σ2

u ] = σ2
v /[1+(σ2

u/σ2
u )/n j] ∝ ω̃ j.

Part (iv) is obvious when considering equations (6) and (7) and the usual

requirements for unbiasedness and consistency of least squares estimators.

B Estimation with quasi-demeaned data

Here, we review a practical approach to feasible GLS estimation of equation (6)

where data is quasi-demeaned, an approach which is also valid in the current

setting. GLS estimation amounts to pre-multiplying data columns with σuΩ
−1/2

and applying OLS on the transformed data. It is straightforward to verify that

Ω−1/2 =D−1/2P +σ−1
u Q, so that σuΩ

−1/2 = σuD
−1/2P +Q. Define

θ j = 1−

√
σ2

u
n jσ2

v +σ2
u

(39)

= 1−

√
1

n j(σ2
v /σ2

u )+1
(40)

and note that elements of the diagonal matrix σuD
−1/2 are of the form 1−θ j.
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Now, consider e.g. the transformation of the dependent variable:

σuΩ
−1/2y = σuD

−1/2Py+Qy (41)

= σuD
−1/2Py−Py+y (42)

= σuD
−1/2ȳ− ȳ+y (43)

= y− (1−σuD
−1/2)ȳ, (44)

where the bar denotes a vector with group averages. From this one obtains that each

transformed observation is of the form yi−θ jȳ j. Similar transformation applies to

the independent variables, too. The transformation subtracts from each observation

a fraction of the group mean, and this is called quasi-demeaning. It is interesting to

note that n j→ ∞ implies θ j→ 1, so as all group sizes grow large, GLS estimation

tends to the within estimator.

The variance components σ2
u and σ2

v are unknown, and hence the θ js are

unknown, but these quantities can be estimated leading to the feasible estimator.

Let ai j = v j +ui, and note that E[ai jal j] = σ2
v for i 6= l. Using the non-redundant

observations, this suggests the estimator

σ̂
2
v =

1
m− p

g

∑
j=1

n j−1

∑
i=1

n j

∑
l=i+1

âi jâl j, where (45)

m =
g

∑
j=1

n j(n j−1)/2, (46)

âi j are the residuals from an OLS estimation, and p is the total number of parameters

in α , β , and π . Note that index i is used differently here where it ranges from 1 to

n j for each j, rather than from 1 to n. This is convenient for writing the sum of the
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relevant cross-products.

Now, since σ2
a = var(ai j) = σ2

u +σ2
v , we can estimate of σ2

u as

σ̂
2
u = σ̂

2
a − σ̂

2
v , where (47)

σ̂
2
a =

1
n− p

g

∑
j=1

n j

∑
i=1

â2
i j. (48)

There are other approaches to estimating the variance components. One al-

ternative uses the so-called between estimator. This approach will not work here,

since it is based on group averages of all variables inducing singularity since X̄

will then be included twice in the design matrix. Finally, under the assumption

imposed on the variance structure, the variance-covariance matrix for inference

can be estimated as

var(ξ̂) = n(H ′Ω̂−1H)−1, where (49)

ξ̂ = (β̂′,α̂′, π̂′)′ and (50)

H = [X
... Z

... X̄]. (51)

Alternatively, one can use robust versions if one suspects the imposed variance

structure to be incorrect.
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RUB0: non-users
RUB1: healthy users
RUB2: low morbidity
RUB3: moderate morbidity
RUB4: high morbidity
RUB5: very high morbidity

Table 1: Resource Utilization Band categories.
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Variable Mean 5% Median 75% 95% 99%

In
di

vi
du

al
le

ve
l

FFSE (C) 398·48 96·67 353·26 500·89 841·03 1,200·34
RUB0 0·133
RUB1 0·081
RUB2 0·264
RUB3 0·478
RUB4 0·040
RUB5 0·004
#visits 7·844 1 6 10 20 31

G
P

le
ve

l

Clinic size 3·248 1 3 4 7 8
Average GP age 53·230 42·00 53·33 56·67 65·50 74·50
Prop. of female GP 0·514 0·00 0·50 0·67 1·00 1·00
#diab. patients/GP 56·989 24·00 52·33 73·00 101·00 114·00

Table 2: Descriptive statistics. The sample includes 59 GPs with a total of 6,702
type 2 diabetes patients.
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Combined estimation 2-step estimation

OLS GLS WLS, ω WLS, ω̃ OLS

In
di

vi
du

al
ch

ar
ac

te
ri

st
ic

s,
x

an
d
β RUB1 1·138 1·138 1·138 1·138 1·138

(6·999) (6·999) (6·994) (6·994) (6·994)
RUB2 11·22∗ 11·22∗ 11·22∗ 11·22∗ 11·22∗

(6·236) (6·236) (6·232) (6·232) (6·232)
RUB3 46·642∗∗∗ 46·642∗∗∗ 46·642∗∗∗ 46·642∗∗∗ 46·642∗∗∗

(8·881) (8·881) (8·874) (8·874) (8·874)
RUB4 98·886∗∗∗ 98·886∗∗∗ 98·886∗∗∗ 98·886∗∗∗ 98·886∗∗∗

(15·381) (15·381) (15·37) (15·37) (15·37)
RUB5 221·636∗∗∗ 221·636∗∗∗ 221·636∗∗∗ 221·636∗∗∗ 221·636∗∗∗

(61·197) (61·197) (61·151) (61·151) (61·151)
#visits 26·019∗∗∗ 26·019∗∗∗ 26·019∗∗∗ 26·019∗∗∗ 26·019∗∗∗

(0·929) (0·929) (0·929) (0·929) (0·929)

G
P

ch
ar

ac
te

ri
st

ic
s,
z

an
d
α Intercept 85·759 112·965 85·759 112·964 107·206

(113·47) (135·46) (124·582) (148·726) (153·084)
Clinic size 10·013∗∗ 8·75∗ 10·013∗∗ 8·75 8·862

(4·228) (5·279) (4·642) (5·796) (5·916)
Average GP age 0·111 −0·327 0·111 −0·327 −0·406

(1·268) (1·197) (1·393) (1·314) (1·305)
Prop. of women GP 26·769 27·314 26·769 27·314 28·292

(22·035) (20·429) (24·192) (22·43) (22·469)
#Diab. patients./GP 0·264 0·512∗ 0·264 0·512∗ 0·539∗

(0·244) (0·276) (0·268) (0·303) (0·312)

M
un

dl
ak

de
vi

ce
,x̄

an
d
π

RUB1 328·813 236·223 328·813 236·223 243·602
(217·547) (249·676) (239·186) (274·365) (281·101)

RUB2 −423·017∗∗ −324·295 −423·017∗∗ −324·295 −317·241
(178·802) (197·969) (196·225) (217·213) (224·141)

RUB3 30·914 37·089 30·914 37·089 51·779
(95·45) (125·397) (104·642) (136·377) (142·591)

RUB4 145·002 −2·563 145·002 −2·563 −10·897
(240·288) (229·259) (263·961) (252·047) (251·545)

RUB5 −1531·374 −1731·358 −1531·374 −1731·358 −1780·114
(1022·831) (1091·922) (1146·685) (1222·336) (1237·038)

#visits 10·422∗∗∗ 7·039∗∗ 10·422∗∗∗ 7·039∗∗ 6·87∗

(2·166) (2·937) (2·807) (3·483) (3·537)

Table 3: Regression results from the combined Mundlak-type equation using
ordinary least squares (OLS) and feasible generalized least squares (GLS) along with
the 2-stage procedures where the first stage is based on the within estimator and the
second stage is estimated by weighted least squares (WLS) and OLS. The dependent
variable is fee-for-service expenditures. Standard errors are robust to clustering and
heteroskedasticity. Significance codes are ∗∗∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1.
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