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Setup
• Binomial and multinomial discrete choice models that 

contain a random preference parameter with an 
unknown distribution

• Unknown distribution is nonparametric. Combination 
with parametric model would then be called 
semiparametric

• In a discrete choice model, the random preference 
parameter may enter indirect utilities

• Model:
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Health warning: RE vs FE
• We shall maintain a random effect assumption: x and β are 

independent
• This is very convenient, but not always credible and by no means 

innocuous 
• If, for example, the population is divided into men and women, 

distinguished by x=1 or x=2, then we have to be able to believe that

• Sometimes possible to use a fixed effect assumption, under which 
some parameters can be random but not necessarily independent of 
the variables 

• Fixed effects models are discussed in most econometrics textbooks 
but not here

• But they are used FAR TOO LITTLE in choice modelling circles
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RE is useful! 

• If RE assumption is accepted, then 

• If F is known, this integration can generally be 
carried out, either analytically or numerically

• This is routinely done in the many applications of 
the mixed logit model, where random parameters 
are given some distribution and the integration is 
carried out using simulation
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But which distribution to use?
• Mostly we have very little idea what F should be

– Possibly bounds, sign restriction 
• Sometimes the precise form for F is not essential and then it 

may be unproblematic to impose a specific form
• But it is not desirable to impose a specific functional form 

on F when 
– The shape of F has significant impact on the object of interest for 

the investigation 
– When F itself is the object of interest

• Many applications of discrete choice models aim to 
estimate a WTP distribution 
– It is then highly desirable to be able to infer the functional form 

for the distribution of WTP from data
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Regression based approaches –
Binary choice and no covariates

• Observe y=1{ w<v}, observe (y,v) for a range of values of v 
• Concerned with finding the CDF F of w.

– Contingent valuation
– Two factor binary choice 

• E (y|v) =P(w<v) =F(v) 
– Mean y conditional on a value of v is an estimate of F at the point v 
– Might estimate F(v) as average yi for (yi,vi) near v

• To estimate F we thus need to observe (y,v) many times for a range of values of v
• NEED TO OBSERVE AT ALL RELEVANT VALUES OF v!
• This problem is deadly serious when it is desired to estimate Ew
• Example

– Know F for values of v up to 100, F(100)=0.9
– The lower bound for the mean is reached if the residual mass is concentrated at 100
– The upper bound for the mean is infinity

• Must verify that it is in fact possible to identify the distribution of interest from the 
data at hand

• Imposing parametric assumptions runs the risk of introducing errors that are 
extremely large



16 parametric distributions
Distribution Fw (a) 

Min(supp) 
(b) 

Max(supp) 
(e) 

E(w*1{w>0}) 
Normal -  51.4
Lognormal 0  250.8
Gamma 0  70.9
Loggamma 0  4.7E+06
Uniform -190.1 211.0 55.4
Loguniform 0.8547 402.6 65.1
Triangular -56.30 279.3 57.6
Logtriangular 0.3690 336.0 59.6
SB -14.00 103980 96.0
LogSB 0.0000 1810 69.6
SB1 2.635 201 54.4
LogSB1 2.746 201 54.2
Beta 0.3651 71743 71.4
Logbeta 0.0472 380.3 61.4
Beta1 2.978 201 53.4
Logbeta1 2.6021 201 54.0



Lack of identification
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Catching the tail
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Misspecification
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Questions for John

• What is an efficient design for nonparametric 
identification of WTP distribution?

• Will use of efficient designs (for less general 
models) help with nonparametric identification 
of WTP distribution?



Kernel regression
• Kernel that places a smooth bump of mass at the point x0; the 

concentration of the mass is determined by the bandwidth parameter h

• Choice of kernel is less important
• Choice of bandwidth is very important

– Mean-variance trade-off
– Cross-validation
– Plug-in bandwidth
– Eye-balling

• Bandwidth will depend on the sample size
– Optimal bandwidth is smaller for larger samples and in the limit the optimal 

bandwidth approaches zero
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Binary choice including covariates
• Observe y=1{w+βx<v}

– w independent of x and v
– This is the same model as before, except now a term βx has been added to the unobserved w
– x is observed and β must be estimated
– Such a model arises, e.g., if v is the log of a bid and the willingness-to-pay is exp(w+βx)

• If β was known, then we could just regress y against v-βx in order to estimate F 
using kernel regression

• If F was known, then we could estimate β by maximum likelihood, since P(y=1|v,x) 
=F(v-βx)

• These observations are the basis for the Klein-Spady estimator. 
• Iterate until convergence:

– Estimate F given β
– Estimating β given F,

• There are alternatives to Klein-Spady, e.g. Manski 1985, Horowitz 1992, Cosslett
1983

• Lee 1995 generalises to multinomial choice



Multivariate regression: E(y|x1,x2)
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Method of sieves
• Construct families of functions that may approximate an unknown 

function arbitrarily well
• Any (nice) real F may be written as a series in terms of basis functions 

via 
– Lk() are known basis functions and γ are coefficients

• A number of convenient bases exist
• While F has a representation in terms of coefficients, there are, in 

general, infinitely many coefficients
• F may be approximated  by a truncated series 

• The choice of K determines the degree of flexibility in the 
approximating FK

• The optimal K will depend on the shape of F and on the size of the 
available data set

– Bias vs variance

• A good choice of leading term L0 may economize on K
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Fosgerau&Bierlaire
• F is now a univariate CDF with density f
• H is another CDF density h 
• Use F as a base for estimating the true distribution H

– F is a candidate for H
– Require that support of F contains support of H

• Define Q(u)=H(F-1(u)),  then Q(F(β))=H(β)
• Q is a CDF for a random variable on the unit interval 

– q=Q’ is the density 
• h(β) =q(F(β) )f (β)



The key idea
• DC model P(y|x,β) with β~H (true distribution). Then 

• Thus problem of finding unknown h is reduced to that of 
finding q, an unknown density on the unit interval

• The probability may be simulated using R standard uniform 
draws ur and computing

•
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Approximating q
• Let Lk be the k’th Legendre polynomial on the unit interval
• Easily computed, orthonormal basis
• Define the density

• Any density on the unit interval can be written in this way.
• One way to use this setup is to test the hypothesis that (γ1,...,γK)=0

– Then q=1 so this amounts to testing whether QK is different from the 
uniform distribution 

– or equivalently whether H=F 
• Alternatively, it is possible just to use the flexibility such that the 

random parameter has distribution QK(F(β))
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Example



FB approximation
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FB9 on three mass points
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Tricks with series

i. A series
ii. Squared series is 

always positive
iii. If L is an ONB
iv. Always increasing
v. Convex
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Combining sieves with a copula
• Multivariate distributions lead to the curse of dimensionality
• Use a parametric form to describe a dependence structure using a small 

number of parameters, while allowing marginal distributions to be arbitrary. 
This is achieved through the use of copula

• Consider a random vector ( X1,...,XD)~F, with continuous marginal 
distributions Fd

• Write F(β) =C ( F1(β),...,FD(β))
– Where C is the CDF of the random vector (F1(X1),...,FD(XD))
– Such a C is called a copula 
– It is a CDF on the unit cube with univariate marginal distributions being 

uniform
– Any such CDF is a copula
– The copula in captures precisely the dependence structure of F and does not 

depend on the marginal distributions
– The simplest copula is the independence copula, which is the product C(u) 

=u1*…*uD



Creating copula
• Use known multivariate CDF, e.g. multivariate normal, completely 

defined in terms of the correlation matrix. In D dimensions, this has 
D ( D-1)/2 parameters

• Archimedian copula have the form C(u) =ψ(ψ-1(u1)+...+ ψ-1(uD)),
• Any multivariate extreme value distribution with EV1 marginals has 

the form exp( -G( exp(-β1),...,exp(-βD)))
– G is a choice probability generating function with certain properties 
– Such CPGF may be viewed as generalisations of summation 
– Replacing the sum in the Archimedian copula leads to a generalised

Archimedian copula
• Then complex dependence structures may be handled using nesting 

as in the nested or cross-nested logit models



Copula and simulation

• Copula C has density c:



Mixtures of distributions –
a sum of bumps

• Define pairs (μk, σk) of means and standard deviations 
• Corresponding weights πk, that are positive and sum to 

1
• Approximate unknown CDF as a discrete mixture of 

smooth distributions (e.g. standard normals) using
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Summary
• Why/when is it important to use nonparametric distributions 

for random parameters?
• Regression based methods

– wysiwyg
• Series methods

– Always applicable
• Things to develop

– Identification tests
– Multivariate stuff, copula

• Never forget
– Identification?
– Possibility of using FE?
– Specification testing


