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Motivation & Background

D Automation and robotic have improved efficiency, accuracy, and
— “‘_|=1‘l' productivity across industries ranging from manufacturing to healthcare.
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Difficult to manually
program the dexterous

and adaptable behaviors
required by certain tasks.

. Unmet need
Some domains | \
AN . — for experts to
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(o 0 0 o)unautomated. systems [1]

Imitation Learning (IL) has gained significant attention due to these properties: 1) Transfer
human-like skills. 2) Enables non-experts to instruct and train systems effortlessly.

Problem

Time consuming and expensive Data collection:
2 O collecting high-quality expert demonstrations takes time. Learn from less data

Specialized data is scarce and costly to collect [2][3]

= [° Existing datasets: Often application specitic structured Learn general skills
= robot data, which 1s hard to use on a different case across domains
G §>ﬂ Data Efficiency: Training models require large amounts Improved
* T8 of data, which lead to long training time [4] Generalization
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Using Foundation model for high-level Learning the purpose of a task, rather than

knowledge, decision-making, planning, and low-level behavioral cloning. Train data driven

context comprehension world model. fy(1I;) = I;,1. Use optimal
control with learned cost function and world
model

Split into long- and short-horizon planning:

1) Behavioral cloning for long horizon. Can learn [ The developed methods will be valuable for %

in high-dimensions and multimodal action the medical domain with limited amount of

distributions. 2) Movement primitives for short expert demo's and data and for industrial g@

horizon for online adaptation. Control-theoretic disassembly task, where high variance and

methods for safety and convergence guarantees. ! ynseen cases is common T _
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