Baryons from holographic instantons

Sven Bjarke Gudnason（比亚科）

河南大学

February 9，2024：SDU／QTC

My group at Henan University

(a) Sven Bjarke

Gudnason, Professor
(b) Lorenzo

Bartolini, Postdoc: Sadovski, Postdoc: holography, WSS quantum gravity

(d) Baiyang Zhang, Postdoc: quantization of solitons
(e) Jiahui Yu, Student
(f) Tiantian Zhang, Student

Kaifeng, the old capital of China

Outline

(1) Introduction
(2) Holography

- Holographic QCD
- Holographic Nuclei

Physics at low energies

- At low energies, we have nucleons and electrons
- EM is quite well understood: Maxwell theory
- Nuclei are still understood only at the phenomenological level, the exact relation to quarks and gluons remains elusive
- E.g. the proof of Yang-Mills theory being gapped in the vacuum is an unsolved Millennium Problem, with a 1 million dollars prize from Clay Math Institute
- The symmetries relevant for the strong interactions are $G=\mathrm{SU}\left(N_{f}\right) \times \mathrm{SU}\left(N_{f}\right)$ with $N_{f}=2,3$ depending on whether the energies are big enough to include strangeness (kaons or s)
- QCD with $N_{f}=2,3$ has an extra $\mathrm{U}(1)$ symmetry in the chiral limit, presenting the puzzle: if it's manifest, all hadronic states should appear in doublets (which they don't); or the symmetry should be spontaneously broken (but there's no Goldstone boson); what's the solution?
- 't Hooft's solution to the U(1) problem is that instantons via the ABJ anomaly non-perturbatively removes the would-be Goldstone bosons ['t Hooft, PRL 37, 8 (1976)]

Physics at low energies

- At low energies, we have nucleons and electrons
- EM is quite well understood: Maxwell theory
- Nuclei are still understood only at the phenomenological level, the exact relation to quarks and gluons remains elusive
- E.g. the proof of Yang-Mills theory being gapped in the vacuum is an unsolved Millennium Problem, with a 1 million dollars prize from Clay Math Institute
- The symmetries relevant for the strong interactions are $G=\mathrm{SU}\left(N_{f}\right) \times \mathrm{SU}\left(N_{f}\right)$ with $N_{f}=2,3$ depending on whether the energies are big enough to include strangeness (kaons or s)
QCD with $N_{f}=2,3$ has an extra $\mathrm{U}(1)$ symmetry in the chiral limit, presenting the puzzle: if it's manifest, all hadronic states should appear in doublets (which they don't); or the symmetry should be spontaneously broken (but there's no Goldstone boson); what's the solution?
- 't Hooft's solution to the $\mathrm{U}(1)$ problem is that instantons via the ABJ anomaly non-perturbatively removes the would-be Goldstone bosons ['t Hooft, PRL 37, 8 (1976)]

Physics at low energies

- At low energies, we have nucleons and electrons
- EM is quite well understood: Maxwell theory
- Nuclei are still understood only at the phenomenological level, the exact relation to quarks and gluons remains elusive

```
E.g. the proof of Yang-Mills theory being gapped in the vacuum is an
unsolved Millennium Problem, with a }1\mathrm{ million dollars prize from
Clay Math Institute
The symmetries relevant for the strong interactions are
G=SU(N
energies are big enough to include strangeness (kaons or s)
QCD with }\mp@subsup{N}{f}{}=2,3\mathrm{ has an extra U(1) symmetry in the chiral limit,
presenting the puzzle: if it's manifest, all hadronic states should
appear in doublets (which they don't); or the symmetry should be
spontaneously broken (but there's no Goldstone boson); what's the
solution?
't Hooft's solution to the U(1) problem is that instantons via the ABJ
anomaly non-perturbatively removes the would-be Goldstone bosons
['t Hooft, PRL 37, 8 (1976)]
```


Physics at low energies

- At low energies, we have nucleons and electrons
- EM is quite well understood: Maxwell theory
- Nuclei are still understood only at the phenomenological level, the exact relation to quarks and gluons remains elusive
- E.g. the proof of Yang-Mills theory being gapped in the vacuum is an unsolved Millennium Problem, with a 1 million dollars prize from Clay Math Institute

> The symmetries relevant for the strong interactions are $G=\mathrm{SU}\left(N_{f}\right) \times \mathrm{SU}\left(N_{f}\right)$ with $N_{f}=2,3$ depending on whether the energies are big enough to include strangeness (kaons or s) QCD with $N_{f}=2,3$ has an extra $U(1)$ symmetry in the chiral limit, presenting the puzzle: if it's manifest, all hadronic states should appear in doublets (which they don't); or the symmetry should be spontaneously broken (but there's no Goldstone boson); what's the solution?
> 't Hooft's solution to the U(1) problem is that instantons via the ABJ anomaly non-perturbatively removes the would-be Goldstone bosons ['t Hooft, PRL 37, 8 (1976)]

Physics at low energies

- At low energies, we have nucleons and electrons
- EM is quite well understood: Maxwell theory
- Nuclei are still understood only at the phenomenological level, the exact relation to quarks and gluons remains elusive
- E.g. the proof of Yang-Mills theory being gapped in the vacuum is an unsolved Millennium Problem, with a 1 million dollars prize from Clay Math Institute
- The symmetries relevant for the strong interactions are $G=\mathrm{SU}\left(N_{f}\right) \times \mathrm{SU}\left(N_{f}\right)$ with $N_{f}=2,3$ depending on whether the energies are big enough to include strangeness (kaons or s)
> presenting the puzzle: if it's manifest, all hadronic states should appear in doublets (which they don't); or the symmetry should be spontaneously broken (but there's no Goldstone boson); what's the solution?
> 't Hooft's solution to the $U(1)$ problem is that instantons via the ABJ anomaly non-perturbatively removes the would-be Goldstone bosons

Physics at low energies

- At low energies, we have nucleons and electrons
- EM is quite well understood: Maxwell theory
- Nuclei are still understood only at the phenomenological level, the exact relation to quarks and gluons remains elusive
- E.g. the proof of Yang-Mills theory being gapped in the vacuum is an unsolved Millennium Problem, with a 1 million dollars prize from Clay Math Institute
- The symmetries relevant for the strong interactions are $G=\mathrm{SU}\left(N_{f}\right) \times \mathrm{SU}\left(N_{f}\right)$ with $N_{f}=2,3$ depending on whether the energies are big enough to include strangeness (kaons or s)
- QCD with $N_{f}=2,3$ has an extra $\mathrm{U}(1)$ symmetry in the chiral limit, presenting the puzzle: if it's manifest, all hadronic states should appear in doublets (which they don't); or the symmetry should be spontaneously broken (but there's no Goldstone boson); what's the solution?

Physics at low energies

- At low energies, we have nucleons and electrons
- EM is quite well understood: Maxwell theory
- Nuclei are still understood only at the phenomenological level, the exact relation to quarks and gluons remains elusive
- E.g. the proof of Yang-Mills theory being gapped in the vacuum is an unsolved Millennium Problem, with a 1 million dollars prize from Clay Math Institute
- The symmetries relevant for the strong interactions are $G=\mathrm{SU}\left(N_{f}\right) \times \mathrm{SU}\left(N_{f}\right)$ with $N_{f}=2,3$ depending on whether the energies are big enough to include strangeness (kaons or s)
- QCD with $N_{f}=2,3$ has an extra $\mathrm{U}(1)$ symmetry in the chiral limit, presenting the puzzle: if it's manifest, all hadronic states should appear in doublets (which they don't); or the symmetry should be spontaneously broken (but there's no Goldstone boson); what's the solution?
- 't Hooft's solution to the $\mathrm{U}(1)$ problem is that instantons via the ABJ anomaly non-perturbatively removes the would-be Goldstone bosons ['t Hooft, PRL 37, 8 (1976)]

BPST Instantons

The Belavin-Polyakov-Schwartz-Tyupkin [PLB59, 85 (1975)] instanton can easiest be understood as the solution to the self-dual equation

$$
\begin{aligned}
S & =\frac{1}{2 e^{2}} \int \mathrm{~d}^{4} x \operatorname{tr} F_{\mu \nu} F_{\mu \nu} \\
& =\frac{1}{4 e^{2}} \int \mathrm{~d}^{4} x\left[\operatorname{tr}\left(F_{\mu \nu} \mp \widetilde{F}_{\mu \nu}\right)^{2} \pm 2 \operatorname{tr} F_{\mu \nu} \widetilde{F}_{\mu \nu}\right] \\
& =\frac{1}{4 e^{2}} \int \mathrm{~d}^{4} x\left[\operatorname{tr}\left(F_{\mu \nu} \mp \widetilde{F}_{\mu \nu}\right)^{2} \pm \epsilon^{\mu \nu \rho \sigma} \operatorname{tr} \partial_{\mu}\left(A_{\nu} F_{\rho \sigma}+\frac{\mathrm{i} 2}{3} A_{\nu} A_{\rho} A_{\sigma}\right)\right],
\end{aligned}
$$

with $\widetilde{F}_{\mu \nu}=\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} F^{\rho \sigma}$. The self-dual equation implies the full
second-order equation of motion

The first equality holds because of the selfdual equation (BPS equation), whereas the latter vanishes due to the Bianchi identity.

BPST Instantons

The Belavin-Polyakov-Schwartz-Tyupkin [PLB59, 85 (1975)] instanton can easiest be understood as the solution to the self-dual equation

$$
\begin{aligned}
S & =\frac{1}{2 e^{2}} \int \mathrm{~d}^{4} x \operatorname{tr} \boldsymbol{F}_{\mu \nu} \boldsymbol{F}_{\mu \nu} \\
& =\frac{1}{4 e^{2}} \int \mathrm{~d}^{4} x\left[\operatorname{tr}\left(\boldsymbol{F}_{\mu \nu} \mp \widetilde{F}_{\mu \nu}\right)^{2} \pm 2 \operatorname{tr} \boldsymbol{F}_{\mu \nu} \widetilde{F}_{\mu \nu}\right] \\
& =\frac{1}{4 e^{2}} \int \mathrm{~d}^{4} x\left[\operatorname{tr}\left(F_{\mu \nu} \mp \widetilde{F}_{\mu \nu}\right)^{2} \pm \epsilon^{\mu \nu \rho \sigma} \operatorname{tr} \partial_{\mu}\left(A_{\nu} F_{\rho \sigma}+\frac{\mathrm{i} 2}{3} A_{\nu} A_{\rho} A_{\sigma}\right)\right]
\end{aligned}
$$

with $\widetilde{F}_{\mu \nu}=\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} F^{\rho \sigma}$. The self-dual equation implies the full second-order equation of motion

$$
D_{\mu} F^{\mu \nu}= \pm D_{\mu} \widetilde{F}^{\mu \nu}=0
$$

The first equality holds because of the selfdual equation (BPS equation), whereas the latter vanishes due to the Bianchi identity.

Instanton solutions

The instanton solution can be found on Euclidean \mathbb{R}^{4} for $G=\operatorname{SU}(2)$ using the Ansatz

$$
A_{\mu}=\frac{\mathrm{i}}{2} \sigma_{\mu \nu} \partial_{\nu} \log \rho,
$$

with the 't Hooft symbols

$$
\sigma_{i 4}=\sigma_{i}, \quad \sigma_{i j}=\epsilon_{i j k} \sigma_{k}, \quad i, j, k=1,2,3,
$$

and the 't Hooft Ansatz

$$
\rho=1+\sum_{I=1}^{N} \frac{\lambda_{I}^{2}}{\left|x-a_{I}\right|^{2}},
$$

which encodes 5 parameters or moduli per instanton (in total N instantons). The $N=1$ solution is the BPST instanton solution.

Instanton moduli

For $N=1$ (a single instanton), this is the complete number of moduli according to the Atiyah-Hitchin-Singer [Proc.Natl.Acad.Sci.USA 74, 2662 (1977)] index theorem

$$
\operatorname{dim} \mathcal{M}_{N, \mathrm{SU}(2)}=8 N
$$

which agrees with the BPST solution, since a_{1} are spatial translations in $\mathbb{R}^{4}, \lambda_{1}^{2}$ is the size of the instanton and 3 global rotations in $\mathrm{SU}(2)$ correspond to the instanton's orientation in the gauge group

$$
A_{\mu} \rightarrow g A_{\mu} g^{-1}
$$

Instanton moduli

For $N=2,5+5<16$ but Jackiw-Nohl-Rebbi [PRD15, 1642 (1980)] found that

$$
\rho=\sum_{I=0}^{2} \frac{\lambda_{I}^{2}}{\left|x-a_{I}\right|^{2}}
$$

is the complete number of parameters for $N=2$ instantons, since $3 \times 5+3=18$, but only the ratio of sizes is physical due to the derivative of the logarithm and a further parameter is simply a gauge transformation.

For $N>2$, the Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction is the only way to parametrize the entire $8 N$ moduli. The reason that this construction is possible is due to the integrability properties of Yang-Mills theory.

Instanton moduli

For $N=2,5+5<16$ but Jackiw-Nohl-Rebbi [PRD15, 1642 (1980)] found that

$$
\rho=\sum_{I=0}^{2} \frac{\lambda_{I}^{2}}{\left|x-a_{I}\right|^{2}}
$$

is the complete number of parameters for $N=2$ instantons, since $3 \times 5+3=18$, but only the ratio of sizes is physical due to the derivative of the logarithm and a further parameter is simply a gauge transformation.

For $N>2$, the Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction is the only way to parametrize the entire $8 N$ moduli. The reason that this construction is possible is due to the integrability properties of Yang-Mills theory.

Gauge couplings - strong coupling at low energies

[Martin, Adv.Ser.Direct.HEP21, 1-153 (2010)]

Dualities?

- Since perturbation theory fails miserably at low energies for QCD, a duality would be the perfect candidate.
- An old example of a duality, is the EM duality

$$
\binom{F}{\widetilde{F}}=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\binom{F}{\widetilde{F}}
$$

under which the Maxwell's equations are invariant and so is the Hamiltonian

- However, the Lagrangian is not invariant since the SO(2) rotation rotates a tensor into a pseudo-tensor

Dualities?

- Since perturbation theory fails miserably at low energies for QCD, a duality would be the perfect candidate.
- An old example of a duality, is the EM duality

$$
\binom{\boldsymbol{F}}{\widetilde{F}}=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\binom{\boldsymbol{F}}{\widetilde{F}}
$$

under which the Maxwell's equations are invariant and so is the Hamiltonian

- However, the Lagrangian is not invariant since the $\mathrm{SO}(2)$ rotation rotates a tensor into a pseudo-tensor

Dualities?

- Since perturbation theory fails miserably at low energies for QCD, a duality would be the perfect candidate.
- An old example of a duality, is the EM duality

$$
\binom{\boldsymbol{F}}{\widetilde{F}}=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\binom{\boldsymbol{F}}{\widetilde{F}}
$$

under which the Maxwell's equations are invariant and so is the Hamiltonian

- However, the Lagrangian is not invariant since the $\mathrm{SO}(2)$ rotation rotates a tensor into a pseudo-tensor

Outline

(1) Introduction
(2) Holography

- Holographic QCD
- Holographic Nuclei

Maldacena - AdS/CFT

- In 1997 Maldacena [Adv.Theor.Math.Phys.2,231 (1998)] proposes the AdS/CFT duality between string theory in AdS_{5} space and the conformal $\mathcal{N}=4$ super-Yang-Mills field theory on the other side
- In particular, the D3-brane in the large N_{c} (large number of branes) is described in type IIB string theory by $\mathrm{AdS}_{5} \times S^{5}$.
- Chiral primary operators of $\mathcal{N}=4$ super-Yang-Mills theory are mapped to Kaluza-Klein modes of type IIB supergravity on $\mathrm{AdS}_{5} \times S^{5}$ [Witten, Adv.Theor.Math.Phys.2, 253 (1998)]
- Most importantly, the 't Hooft coupling $\lambda=g^{2} N$ is mapped to $1 / \alpha^{\prime}$, so that strongly coupled gauge theory corresponds to weakly coupled string theory
The symmetry group $\mathrm{SO}(2, d)$ of AdS_{d+1} acts as the conformal group on the boundary space M_{d}, which can be shown to be a compactification of d-Minkowski space

Maldacena - AdS/CFT

- In 1997 Maldacena [Adv.Theor.Math.Phys.2,231 (1998)] proposes the AdS/CFT duality between string theory in AdS_{5} space and the conformal $\mathcal{N}=4$ super-Yang-Mills field theory on the other side
- In particular, the D3-brane in the large N_{c} (large number of branes) is described in type IIB string theory by $\mathrm{AdS}_{5} \times S^{5}$.
Chiral primary operators of $\mathcal{N}=4$ super-Yang-Mills theory are mapped to Kaluza-Klein modes of type IIB supergravity on $\mathrm{AdS}_{5} \times S^{5}$ [Witten, Adv.Theor.Math.Phys.2, 253 (1998)]

Most importantly, the 't Hooft coupling $\lambda=g^{2} N_{c}$ is mapped to $1 / \alpha^{\prime}$, so that strongly coupled gauge theory corresponds to weakly coupled string theory

The symmetry group $\mathrm{SO}(2, d)$ of AdS_{d+1} acts as the conformal group on the boundary space M_{d}, which can be shown to be a compactification of d-Minkowski space

Maldacena - AdS/CFT

- In 1997 Maldacena [Adv.Theor.Math.Phys.2,231 (1998)] proposes the AdS/CFT duality between string theory in AdS_{5} space and the conformal $\mathcal{N}=4$ super-Yang-Mills field theory on the other side
- In particular, the D3-brane in the large N_{c} (large number of branes) is described in type IIB string theory by $\mathrm{AdS}_{5} \times S^{5}$.
- Chiral primary operators of $\mathcal{N}=4$ super-Yang-Mills theory are mapped to Kaluza-Klein modes of type IIB supergravity on $\mathrm{AdS}_{5} \times S^{5}$ [Witten, Adv.Theor.Math.Phys.2, 253 (1998)]
so that strongly coupled gauge theory corresponds to weakly coupled string theory

The symmetry group $\mathrm{SO}(2, d)$ of Ad_{d+1} acts as the conformal group on the boundary space M_{d}, which can be shown to be a compactification of d-Minkowski space

Maldacena - AdS/CFT

- In 1997 Maldacena [Adv.Theor.Math.Phys.2,231 (1998)] proposes the AdS/CFT duality between string theory in AdS_{5} space and the conformal $\mathcal{N}=4$ super-Yang-Mills field theory on the other side
- In particular, the D3-brane in the large N_{c} (large number of branes) is described in type IIB string theory by $\mathrm{AdS}_{5} \times S^{5}$.
- Chiral primary operators of $\mathcal{N}=4$ super-Yang-Mills theory are mapped to Kaluza-Klein modes of type IIB supergravity on $\mathrm{AdS}_{5} \times S^{5}$ [Witten, Adv.Theor.Math.Phys.2, 253 (1998)]
- Most importantly, the 't Hooft coupling $\lambda=g^{2} N_{c}$ is mapped to $1 / \alpha^{\prime}$, so that strongly coupled gauge theory corresponds to weakly coupled string theory
The symmetry group $\mathrm{SO}(2, d)$ of Ad_{d+1} acts as the conformal group on the boundary space M_{d}, which can be shown to be a compactification of d-Minkowski space

Maldacena - AdS/CFT

- In 1997 Maldacena [Adv.Theor.Math.Phys.2,231 (1998)] proposes the AdS/CFT duality between string theory in AdS_{5} space and the conformal $\mathcal{N}=4$ super-Yang-Mills field theory on the other side
- In particular, the D3-brane in the large N_{c} (large number of branes) is described in type IIB string theory by $\mathrm{AdS}_{5} \times S^{5}$.
- Chiral primary operators of $\mathcal{N}=4$ super-Yang-Mills theory are mapped to Kaluza-Klein modes of type IIB supergravity on $\mathrm{AdS}_{5} \times S^{5}$ [Witten, Adv.Theor.Math.Phys.2, 253 (1998)]
- Most importantly, the 't Hooft coupling $\lambda=g^{2} N_{c}$ is mapped to $1 / \alpha^{\prime}$, so that strongly coupled gauge theory corresponds to weakly coupled string theory
- The symmetry group $\operatorname{SO}(2, d)$ of AdS_{d+1} acts as the conformal group on the boundary space M_{d}, which can be shown to be a compactification of d-Minkowski space

AdS space

[Hawking-Ellis, 1973]

Outline

(1) Introduction

(2) Holography

- Holographic QCD
- Holographic Nuclei

Sakai-Sugimoto - AdS/QCD

The Sakai-Sugimoto (SS) model [Prog.Theor.Phys.113, 843 (2005)] builds on the work of Witten [Adv.Theor.Math.Phys.2, 253 (1998)] where N_{f} D8and $\overline{\mathrm{D} 8}$-branes are intersecting N_{c} D4-branes

	0	1	2	3	(4)	5	6	7	8	9
D 4	\circ	\circ	\circ	\circ	\circ					
$\mathrm{D} 8-\overline{\mathrm{D} 8}$	\circ	\circ	\circ	\circ		\circ	\circ	\circ	\circ	\circ

- The SS model is in type IIA string theory, but is T-dual to a D3/D7 model by [Sugimoto-Takahashi, JHEP04, 051 (2004)], except for SUSY-breaking anti-periodic boundary conditions on the S^{1} for the fermions on D4.

Chiral symmetry is explicit by the two 8-branes, when they stretch Chiral symmetry breaking is string geometric as the 8-branes touch and merge - the low-energy supergravity geometry is that of a cigar-shaped space, which is AdS_{5}-like

Sakai-Sugimoto - AdS/QCD

The Sakai-Sugimoto (SS) model [Prog.Theor.Phys.113, 843 (2005)] builds on the work of Witten [Adv.Theor.Math.Phys.2, 253 (1998)] where N_{f} D8and $\overline{\mathrm{D} 8}$-branes are intersecting N_{c} D4-branes

	0	1	2	3	(4)	5	6	7	8	9
D 4	\circ	\circ	\circ	\circ	\circ					
$\mathrm{D} 8-\overline{\mathrm{D} 8}$	\circ	\circ	\circ	\circ		\circ	\circ	\circ	\circ	\circ

- The SS model is in type IIA string theory, but is T-dual to a D3/D7 model by [Sugimoto-Takahashi, JHEP04, 051 (2004)], except for SUSY-breaking anti-periodic boundary conditions on the S^{1} for the fermions on D4.
- Chiral symmetry is explicit by the two 8-branes, when they stretch

Chural symmetry breaking is string geometric as the 8-branes touch and merge - the low-energy supergravity geometry is that of a cigar-shaped space, which is $A d S_{5}$-like

Sakai-Sugimoto - AdS/QCD

The Sakai-Sugimoto (SS) model [Prog.Theor.Phys.113, 843 (2005)] builds on the work of Witten [Adv.Theor.Math.Phys.2, 253 (1998)] where N_{f} D8and $\overline{\mathrm{D} 8}$-branes are intersecting N_{c} D4-branes

	0	1	2	3	(4)	5	6	7	8	9
D 4	\circ	\circ	\circ	\circ	\circ					
$\mathrm{D} 8-\overline{\mathrm{D} 8}$	\circ	\circ	\circ	\circ		\circ	\circ	\circ	\circ	\circ

- The SS model is in type IIA string theory, but is T-dual to a D3/D7 model by [Sugimoto-Takahashi, JHEP04, 051 (2004)], except for SUSY-breaking anti-periodic boundary conditions on the S^{1} for the fermions on D4.
- Chiral symmetry is explicit by the two 8-branes, when they stretch
- Chiral symmetry breaking is string geometric as the 8-branes touch and merge - the low-energy supergravity geometry is that of a cigar-shaped space, which is AdS_{5}-like

Sakai-Sugimoto - chiral symmetry breaking

[Sakai-Sugimoto, Prog.Theor.Phys.113, 843 (2005)]

- Notice that the confined geometry ends at U_{KK}

Sakai-Sugimoto - AdS/QCD

- The 't Hooft limit is considered $N_{c} \gg N_{f}$, so that the 8-branes can be considered in the probe branes embedded in the D4-background (color d.o.f.)

$$
\begin{aligned}
\mathrm{d} s^{2} & =\left(\frac{u}{R}\right)^{3 / 2}\left(\eta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+f(u) \mathrm{d} \tau^{2}\right)+\left(\frac{R}{u}\right)^{3 / 2}\left(\frac{\mathrm{~d} u^{2}}{f(u)}+u^{2} \mathrm{~d} \Omega_{4}^{2}\right) \\
e^{\phi} & =g_{s}\left(\frac{u}{R}\right)^{3 / 4}, \quad F_{4}=\mathrm{d} C_{3}=\frac{2 \pi N_{c}}{V_{4}} \epsilon_{4}, \quad f(u)=1-\frac{u_{\mathrm{KK}}^{3}}{u^{3}} .
\end{aligned}
$$

The flavor d.o.f. are described by the DBI action and the
Chern-Simons term at level N_{c} - both scale as N_{c}
The leading order approximation to the DBI action is the
5-dimensional Yang-Mills term, hence the Sakai-Sugimoto model:

with YM coefficient $\kappa=\frac{\lambda N_{c}}{216 \pi^{3}}$, and 't Hooft coupling $\lambda=g_{\mathrm{YM}}^{2} N_{c}$ (fixed),

Sakai-Sugimoto - AdS/QCD

- The 't Hooft limit is considered $N_{c} \gg N_{f}$, so that the 8-branes can be considered in the probe branes embedded in the D4-background (color d.o.f.)

$$
\begin{aligned}
\mathrm{d} s^{2} & =\left(\frac{u}{R}\right)^{3 / 2}\left(\eta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+f(u) \mathrm{d} \tau^{2}\right)+\left(\frac{R}{u}\right)^{3 / 2}\left(\frac{\mathrm{~d} u^{2}}{f(u)}+u^{2} \mathrm{~d} \Omega_{4}^{2}\right) \\
e^{\phi} & =g_{s}\left(\frac{u}{R}\right)^{3 / 4}, \quad F_{4}=\mathrm{d} C_{3}=\frac{2 \pi N_{c}}{V_{4}} \epsilon_{4}, \quad f(u)=1-\frac{u_{\mathrm{KK}}^{3}}{u^{3}} .
\end{aligned}
$$

- The flavor d.o.f. are described by the DBI action and the Chern-Simons term at level N_{c} - both scale as N_{c}

The leading order approximation to the DBI action is the
5-dimensional Yang-Mills term, hence the Sakai-Sugimoto model:

with YM coefficient $\kappa=\frac{\lambda N_{c}}{216 \pi^{3}}$, and 't Hooft coupling $\lambda=g_{\mathrm{YM}}^{2} N_{c}$ (fixed),

Sakai-Sugimoto - AdS/QCD

- The 't Hooft limit is considered $N_{c} \gg N_{f}$, so that the 8-branes can be considered in the probe branes embedded in the D4-background (color d.o.f.)

$$
\begin{aligned}
\mathrm{d} s^{2} & =\left(\frac{u}{R}\right)^{3 / 2}\left(\eta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+f(u) \mathrm{d} \tau^{2}\right)+\left(\frac{R}{u}\right)^{3 / 2}\left(\frac{\mathrm{~d} u^{2}}{f(u)}+u^{2} \mathrm{~d} \Omega_{4}^{2}\right) \\
e^{\phi} & =g_{s}\left(\frac{u}{R}\right)^{3 / 4}, \quad F_{4}=\mathrm{d} C_{3}=\frac{2 \pi N_{c}}{V_{4}} \epsilon_{4}, \quad f(u)=1-\frac{u_{\mathrm{KK}}^{3}}{u^{3}} .
\end{aligned}
$$

- The flavor d.o.f. are described by the DBI action and the Chern-Simons term at level N_{c} - both scale as N_{c}
- The leading order approximation to the DBI action is the 5-dimensional Yang-Mills term, hence the Sakai-Sugimoto model:

$$
S=-\kappa \operatorname{tr} \int_{\mathrm{AdS}_{5}} \mathcal{F} \wedge * \mathcal{F}+N_{c} \int_{\mathrm{AdS}_{5}} \omega_{5}
$$

with YM coefficient $\kappa=\frac{\lambda N_{c}}{216 \pi^{3}}$, and 't Hooft coupling $\lambda=g_{\mathrm{YM}}^{2} N_{c}$ (fixed),

$$
g=h(z) k(z) \mathrm{d} x^{\mu} \mathrm{d} x_{\mu}+h^{2}(z) \mathrm{d} z^{2}, \quad k(z)=h^{-3}(z)=1+z^{2}
$$

Sakai-Sugimoto - Mesons and baryons

- The scale of the theory (glueballs) is

$$
R_{\tau}=\frac{4 \pi}{3} \frac{R^{3 / 2}}{u_{\mathrm{KK}}^{1 / 2}}, \quad M_{\mathrm{KK}}=\frac{3}{2} \frac{u_{\mathrm{KK}}^{1 / 2}}{R^{3 / 2}},
$$

- And in terms of string theory

- The flavor fields can be expanded as

with profile functions

with vector meson masses $M_{n} \sim \sqrt{\lambda_{n}}$
- Fitting the pion decay constant and the rho meson mass, one obtains

$$
M_{\mathrm{KK}}=949 \mathrm{MeV}, \quad \lambda=16.63
$$

Sakai-Sugimoto - Mesons and baryons

- The scale of the theory (glueballs) is

$$
R_{\tau}=\frac{4 \pi}{3} \frac{R^{3 / 2}}{u_{\mathrm{KK}}^{1 / 2}}, \quad M_{\mathrm{KK}}=\frac{3}{2} \frac{u_{\mathrm{KK}}^{1 / 2}}{R^{3 / 2}}
$$

- And in terms of string theory

$$
R^{3}=\frac{1}{2} \frac{g_{\mathrm{YM}}^{2} N_{c} l_{s}^{2}}{M_{\mathrm{KK}}}, \quad u_{\mathrm{KK}}=\frac{2}{9} g_{\mathrm{YM}}^{2} N_{c} M_{\mathrm{KK}} l_{s}^{2}, \quad g_{s}=\frac{1}{2 \pi} \frac{g_{\mathrm{YM}}^{2}}{M_{\mathrm{KK}} l_{s}}
$$

- The flavor fields can be expanded as

with profile functions
pions : $\phi_{0}(z)=\frac{1}{\sqrt{\pi k}} \frac{1}{k(z)}$

with vector meson masses $M_{n} \sim \sqrt{\lambda_{n}}$
- Fitting the pion decay constant and the rho meson mass, one obtains $M_{\mathrm{KK}}=949 \mathrm{MeV}, \quad \lambda=16.63$

Sakai-Sugimoto - Mesons and baryons

- The scale of the theory (glueballs) is

$$
R_{\tau}=\frac{4 \pi}{3} \frac{R^{3 / 2}}{u_{\mathrm{KK}}^{1 / 2}}, \quad M_{\mathrm{KK}}=\frac{3}{2} \frac{u_{\mathrm{KK}}^{1 / 2}}{R^{3 / 2}}
$$

- And in terms of string theory

$$
R^{3}=\frac{1}{2} \frac{g_{\mathrm{YM}}^{2} N_{c} l_{s}^{2}}{M_{\mathrm{KK}}}, \quad u_{\mathrm{KK}}=\frac{2}{9} g_{\mathrm{YM}}^{2} N_{c} M_{\mathrm{KK}} l_{s}^{2}, \quad g_{s}=\frac{1}{2 \pi} \frac{g_{\mathrm{YM}}^{2}}{M_{\mathrm{KK}} l_{s}}
$$

- The flavor fields can be expanded as

$$
\mathcal{A}_{\mu}=\sum_{n} v_{\mu}^{2 n-1}(x) \psi_{2 n-1}(z)+\sum_{n} a_{\mu}^{2 n}(x) \psi_{2 n}(z), \quad \mathcal{A}_{z}=\Pi(x) \phi_{0}(z)
$$

with profile functions

$$
\text { pions : } \phi_{0}(z)=\frac{1}{\sqrt{\pi \kappa}} \frac{1}{k(z)}, \quad \text { vectors }:-h^{-1}(z) \partial_{z}\left(k(z) \partial_{z} \psi_{n}\right)=\lambda_{n} \psi_{n}
$$

$$
\text { with vector meson masses } M_{n} \sim \sqrt{\lambda_{n}}
$$

Sakai-Sugimoto - Mesons and baryons

- The scale of the theory (glueballs) is

$$
R_{\tau}=\frac{4 \pi}{3} \frac{R^{3 / 2}}{u_{\mathrm{KK}}^{1 / 2}}, \quad M_{\mathrm{KK}}=\frac{3}{2} \frac{u_{\mathrm{KK}}^{1 / 2}}{R^{3 / 2}}
$$

- And in terms of string theory

$$
R^{3}=\frac{1}{2} \frac{g_{\mathrm{YM}}^{2} N_{c} l_{s}^{2}}{M_{\mathrm{KK}}}, \quad u_{\mathrm{KK}}=\frac{2}{9} g_{\mathrm{YM}}^{2} N_{c} M_{\mathrm{KK}} l_{s}^{2}, \quad g_{s}=\frac{1}{2 \pi} \frac{g_{\mathrm{YM}}^{2}}{M_{\mathrm{KK}} l_{s}}
$$

- The flavor fields can be expanded as

$$
\mathcal{A}_{\mu}=\sum_{n} v_{\mu}^{2 n-1}(x) \psi_{2 n-1}(z)+\sum_{n} a_{\mu}^{2 n}(x) \psi_{2 n}(z), \quad \mathcal{A}_{z}=\Pi(x) \phi_{0}(z)
$$

with profile functions

$$
\text { pions : } \phi_{0}(z)=\frac{1}{\sqrt{\pi \kappa}} \frac{1}{k(z)}, \quad \text { vectors }:-h^{-1}(z) \partial_{z}\left(k(z) \partial_{z} \psi_{n}\right)=\lambda_{n} \psi_{n}
$$

with vector meson masses $M_{n} \sim \sqrt{\lambda_{n}}$

- Fitting the pion decay constant and the rho meson mass, one obtains

$$
M_{\mathrm{KK}}=949 \mathrm{MeV}, \quad \lambda=16.63
$$

Sakai-Sugimoto - Mesons and baryons

- If we truncate to the pions, one gets the Skyrme model

$$
S=\widetilde{T}\left(2 \pi \alpha^{\prime}\right)^{2} \int \mathrm{~d}^{4} x \operatorname{tr}\left[A L_{\mu}^{2}+B\left[L_{\mu}, L_{\nu}\right]^{2}\right]
$$

with the left-invariant chiral current $L_{\mu}=U^{-1} \partial_{\mu} U$, and the constants determined by string theory

$$
A=\frac{9 u_{\mathrm{KK}}}{4 \pi}, \quad B=\frac{R^{3} b}{2 \pi^{4}}, \quad b \sim 15.25
$$

- Notice that the Skyrme coupling is determined by the model

which can be compared to [Adkins-Nappi-Witten, NPB228, 552 (1983)], where they find $e=5.45$ by fitting to the masses of the nucleon and Delta resonance

Sakai-Sugimoto - Mesons and baryons

- If we truncate to the pions, one gets the Skyrme model

$$
S=\widetilde{T}\left(2 \pi \alpha^{\prime}\right)^{2} \int \mathrm{~d}^{4} x \operatorname{tr}\left[A L_{\mu}^{2}+B\left[L_{\mu}, L_{\nu}\right]^{2}\right]
$$

with the left-invariant chiral current $L_{\mu}=U^{-1} \partial_{\mu} U$, and the constants determined by string theory

$$
A=\frac{9 u_{\mathrm{KK}}}{4 \pi}, \quad B=\frac{R^{3} b}{2 \pi^{4}}, \quad b \sim 15.25
$$

- Notice that the Skyrme coupling is determined by the model

$$
e^{2}=\frac{27 \pi^{7}}{2 b} \frac{1}{\lambda N_{c}} \sim(7.32 \cdots)^{2}
$$

which can be compared to [Adkins-Nappi-Witten, NPB228, 552 (1983)], where they find $e=5.45$ by fitting to the masses of the nucleon and Delta resonance

Sakai-Sugimoto - Where is the baryon?

The baryon is:

- the coupling of N_{c} strings from the D4-branes to the 8-branes

- the instanton in an $\left(x^{1}, x^{2}, x^{2}, z\right)$ slice of the AdS_{5}-like geometry
- the Skyrmion in the pion effective theory, which is a soliton of 1 dimension less than the instanton, but same S^{3} target space

$$
\pi_{3}\left(S^{3}\right)=\mathbb{Z} \ni k=B
$$

- The 3rd homotopy group is due to the mappings being from $\sim \partial \mathbb{R}^{4} \simeq S^{3}$ in the instanton case, and from $\mathbb{R}^{3} \cup\{\infty\} \simeq S^{3}$ in the
Skyrmion case
- The precise mathematical relation is given by the instanton holonomy of [Atiyah-Manton, PLB, 438 (1989)]

Sakai-Sugimoto - Where is the baryon?

The baryon is:

- the coupling of N_{c} strings from the D4-branes to the 8-branes

- the instanton in an $\left(x^{1}, x^{2}, x^{2}, z\right)$ slice of the AdS_{5}-like geometry
- the Skyrmion in the pion effective theory, which is a soliton of 1 dimension less than the instanton, but same S^{3} target space

$$
\pi_{3}\left(S^{3}\right)=\mathbb{Z} \ni k=B
$$

- The 3rd homotopy group is due to the mappings being from $\sim \partial \mathbb{R}^{4} \simeq S^{3}$ in the instanton case, and from $\mathbb{R}^{3} \cup\{\infty\} \simeq S^{3}$ in the
Skyrmion case
- The precise mathematical relation is given by the instanton holonomy of [Atiyah-Manton, PLB, 438 (1989)]

Sakai-Sugimoto - Where is the baryon?

The baryon is:

- the coupling of N_{c} strings from the D4-branes to the 8-branes

- the instanton in an $\left(x^{1}, x^{2}, x^{2}, z\right)$ slice of the AdS_{5}-like geometry
- the Skyrmion in the pion effective theory, which is a soliton of 1 dimension less than the instanton, but same S^{3} target space

$$
\pi_{3}\left(S^{3}\right)=\mathbb{Z} \ni k=B
$$

The 3rd homotopy group is due to the mappings being from $\sim \partial \mathbb{R}^{4} \simeq S^{3}$ in the instanton case, and from $\mathbb{R}^{3} \cup\{\infty\} \simeq S^{3}$ in the
Skyrmion case
The precise mathematical relation is given by the instanton holonomy of [Atiyah-Manton, PLB, 438 (1989)]

Sakai-Sugimoto - Where is the baryon?

The baryon is:

- the coupling of N_{c} strings from the D4-branes to the 8-branes

- the instanton in an $\left(x^{1}, x^{2}, x^{2}, z\right)$ slice of the AdS_{5}-like geometry
- the Skyrmion in the pion effective theory, which is a soliton of 1 dimension less than the instanton, but same S^{3} target space

$$
\pi_{3}\left(S^{3}\right)=\mathbb{Z} \ni k=B
$$

- The 3rd homotopy group is due to the mappings being from $\sim \partial \mathbb{R}^{4} \simeq S^{3}$ in the instanton case, and from $\mathbb{R}^{3} \cup\{\infty\} \simeq S^{3}$ in the Skyrmion case
The precise mathematical relation is given by the instanton holonomy of [Atiyah-Manton, PLB, 438 (1989)]

Sakai-Sugimoto - Where is the baryon?

The baryon is:

- the coupling of N_{c} strings from the D4-branes to the 8-branes

- the instanton in an $\left(x^{1}, x^{2}, x^{2}, z\right)$ slice of the AdS_{5}-like geometry
- the Skyrmion in the pion effective theory, which is a soliton of 1 dimension less than the instanton, but same S^{3} target space

$$
\pi_{3}\left(S^{3}\right)=\mathbb{Z} \ni k=B
$$

- The 3rd homotopy group is due to the mappings being from $\sim \partial \mathbb{R}^{4} \simeq S^{3}$ in the instanton case, and from $\mathbb{R}^{3} \cup\{\infty\} \simeq S^{3}$ in the Skyrmion case
- The precise mathematical relation is given by the instanton holonomy of [Atiyah-Manton, PLB, 438 (1989)]

The instanton in SS

- In the large- λ limit, the curved-space instanton is well approximated by the flat-space BPST instanton solution in the non-Abelian fields [Hata-Sakai-Sugimoto-Yamato, Prog.Theor.Phys.117, 1157 (2007)]

$$
\begin{aligned}
A_{M} & =-\mathrm{i} f(\xi) g \partial_{M} g^{-1}, & f(\xi) & =\frac{\xi^{2}}{\xi^{2}+\rho^{2}}, \\
\xi^{2} & =(x-X)^{2}+(z-Z)^{2}, & & g(x)=\frac{(z-Z)-\mathrm{i}(\mathbf{x}-\mathbf{X}) \cdot \boldsymbol{\tau}}{\xi} .
\end{aligned}
$$

- The Abelian electric field is new, this field acts as a size stabilization against gravitational collapse

- Minimization of the pseudo-moduli Z, ρ gives

$$
Z=0
$$

- Rotation of the instanton gives rise to spin and isospin quantum numbers

The instanton in SS

- In the large- λ limit, the curved-space instanton is well approximated by the flat-space BPST instanton solution in the non-Abelian fields [Hata-Sakai-Sugimoto-Yamato, Prog.Theor.Phys.117, 1157 (2007)]

$$
\begin{aligned}
A_{M} & =-\mathrm{i} f(\xi) g \partial_{M} g^{-1}, & f(\xi) & =\frac{\xi^{2}}{\xi^{2}+\rho^{2}} \\
\xi^{2} & =(x-X)^{2}+(z-Z)^{2}, & g(x) & =\frac{(z-Z)-\mathrm{i}(\mathbf{x}-\mathbf{X}) \cdot \boldsymbol{\tau}}{\xi}
\end{aligned}
$$

- The Abelian electric field is new, this field acts as a size stabilization against gravitational collapse

$$
\widehat{A}_{0}=\frac{N_{c}}{8 \pi^{2} \kappa} \frac{1}{\xi^{2}}\left(1-\frac{\rho^{4}}{\left(\xi^{2}+\rho^{2}\right)^{2}}\right)
$$

- Minimization of the pseudo-moduli Z, ρ gives $Z=0$,

The instanton in SS

- In the large- λ limit, the curved-space instanton is well approximated by the flat-space BPST instanton solution in the non-Abelian fields [Hata-Sakai-Sugimoto-Yamato, Prog.Theor.Phys.117, 1157 (2007)]

$$
\begin{aligned}
A_{M}=-\mathrm{i} f(\xi) g \partial_{M} g^{-1}, & f(\xi)=\frac{\xi^{2}}{\xi^{2}+\rho^{2}} \\
\xi^{2}=(x-X)^{2}+(z-Z)^{2}, & g(x)=\frac{(z-Z)-\mathrm{i}(\mathbf{x}-\mathbf{X}) \cdot \boldsymbol{\tau}}{\xi}
\end{aligned}
$$

- The Abelian electric field is new, this field acts as a size stabilization against gravitational collapse

$$
\widehat{A}_{0}=\frac{N_{c}}{8 \pi^{2} \kappa} \frac{1}{\xi^{2}}\left(1-\frac{\rho^{4}}{\left(\xi^{2}+\rho^{2}\right)^{2}}\right)
$$

- Minimization of the pseudo-moduli Z, ρ gives

$$
Z=0, \quad \rho^{2}=\frac{N_{c}}{8 \pi^{2} \kappa} \sqrt{\frac{6}{5}}
$$

Rotation of the instanton gives rise to spin and isospin quantum numbers

The instanton in SS

- In the large- λ limit, the curved-space instanton is well approximated by the flat-space BPST instanton solution in the non-Abelian fields [Hata-Sakai-Sugimoto-Yamato, Prog.Theor.Phys.117, 1157 (2007)]

$$
\begin{aligned}
A_{M}=-\mathrm{i} f(\xi) g \partial_{M} g^{-1}, & f(\xi)=\frac{\xi^{2}}{\xi^{2}+\rho^{2}} \\
\xi^{2}=(x-X)^{2}+(z-Z)^{2}, & g(x)=\frac{(z-Z)-\mathrm{i}(\mathbf{x}-\mathbf{X}) \cdot \boldsymbol{\tau}}{\xi}
\end{aligned}
$$

- The Abelian electric field is new, this field acts as a size stabilization against gravitational collapse

$$
\widehat{A}_{0}=\frac{N_{c}}{8 \pi^{2} \kappa} \frac{1}{\xi^{2}}\left(1-\frac{\rho^{4}}{\left(\xi^{2}+\rho^{2}\right)^{2}}\right)
$$

- Minimization of the pseudo-moduli Z, ρ gives

$$
Z=0, \quad \rho^{2}=\frac{N_{c}}{8 \pi^{2} \kappa} \sqrt{\frac{6}{5}}
$$

- Rotation of the instanton gives rise to spin and isospin quantum numbers

Instantons in string theory

- The instanton is in fact expected on general grounds from string theory
- The simplest description is the D0-D4-brane system in type IIA or its T-dual D(-1)-D3-brane system in type IIB [Polchinsky II, 1998]
- The orthogonality of the branes means there are no forces between the D0-branes - they are BPS objects
- The Higgs branch condition in the D4-branes gives rise to the self-dual equation

$$
F= \pm * F,
$$

- The intersecting, but orthogonal D-branes break exactly $1 / 2$ of supersymmetry - the instantons are 1/2-BPS objects, just like YM instantons
- Performing T-duality, we can easily arrive at the D4-D8-branes system in type IIB - the Sakai-Sugimoto soliton

Instantons in string theory

- The instanton is in fact expected on general grounds from string theory
- The simplest description is the D0-D4-brane system in type IIA or its T-dual D(-1)-D3-brane system in type IIB [Polchinsky II, 1998]
- The orthogonality of the branes means there are no forces between the D0-branes - they are BPS objects
- The Higgs branch condition in the D4-branes gives rise to the self-dual equation
- The intersecting, but orthogonal D-branes break exactly $1 / 2$ of supersymmetry - the instantons are 1/2-BPS objects, just like YM instantons
- Performing T-duality, we can easily arrive at the D4-D8-branes system in type IIB - the Sakai-Sugimoto soliton

Instantons in string theory

- The instanton is in fact expected on general grounds from string theory
- The simplest description is the D0-D4-brane system in type IIA or its T-dual D(-1)-D3-brane system in type IIB [Polchinsky II, 1998]
- The orthogonality of the branes means there are no forces between the D0-branes - they are BPS objects
- The Higgs branch condition in the D4-branes gives rise to the
self-dual equation

The intersecting, but orthogonal D-branes break exactly $1 / 2$ of supersymmetry - the instantons are 1/2-BPS objects, just like YM instantons
Performing T-duality, we can easily arrive at the D4-D8-branes system in type IIB - the Sakai-Sugimoto soliton

Instantons in string theory

- The instanton is in fact expected on general grounds from string theory
- The simplest description is the D0-D4-brane system in type IIA or its T-dual D(-1)-D3-brane system in type IIB [Polchinsky II, 1998]
- The orthogonality of the branes means there are no forces between the D0-branes - they are BPS objects
- The Higgs branch condition in the D4-branes gives rise to the self-dual equation

$$
F= \pm * F,
$$

The intersecting, but orthogonal D-branes break exactly $1 / 2$ of supersymmetry - the instantons are 1/2-BPS objects, just like YM instantons
Performing T-duality, we can easily arrive at the D4-D8-branes system in type IIB - the Sakai-Sugimoto soliton

Instantons in string theory

- The instanton is in fact expected on general grounds from string theory
- The simplest description is the D0-D4-brane system in type IIA or its T-dual D(-1)-D3-brane system in type IIB [Polchinsky II, 1998]
- The orthogonality of the branes means there are no forces between the D0-branes - they are BPS objects
- The Higgs branch condition in the D4-branes gives rise to the self-dual equation

$$
F= \pm * F
$$

- The intersecting, but orthogonal D-branes break exactly $1 / 2$ of supersymmetry - the instantons are 1/2-BPS objects, just like YM instantons

> Performing T-duality, we can easily arrive at the D4-D8-branes system in type IIB - the Sakai-Sugimoto soliton

Instantons in string theory

- The instanton is in fact expected on general grounds from string theory
- The simplest description is the D0-D4-brane system in type IIA or its T-dual D(-1)-D3-brane system in type IIB [Polchinsky II, 1998]
- The orthogonality of the branes means there are no forces between the D0-branes - they are BPS objects
- The Higgs branch condition in the D4-branes gives rise to the self-dual equation

$$
F= \pm * F
$$

- The intersecting, but orthogonal D-branes break exactly $1 / 2$ of supersymmetry - the instantons are 1/2-BPS objects, just like YM instantons
- Performing T-duality, we can easily arrive at the D4-D8-branes system in type IIB - the Sakai-Sugimoto soliton

Hashimoto-Sakai-Sugimoto

[Hashimoto-Sakai-Sugimoto, Prog.Theor.Phys.120, 1093 (2008)] computed baryon observables and showed general improvements over the Skyrme model computations by [Adkins-Nappi-Witten, NPB228, 552 (1983)]

	our model	Skyrmion ${ }^{(14)}$	experiment
$\left\langle r^{2}\right\rangle_{I=0}^{1 / 2}$	0.742 fm	0.59 fm	0.806 fm
$\left\langle r^{2}\right\rangle_{M, I=0}^{1 / 2}$	0.742 fm	0.92 fm	0.814 fm
$\left\langle r^{2}\right\rangle_{E, \mathrm{p}}$	$(0.742 \mathrm{fm})^{2}$	∞	$(0.875 \mathrm{fm})^{2}$
$\left\langle r^{2}\right\rangle_{E, \mathrm{n}}$	0	$-\infty$	$-0.116 \mathrm{fm}^{2}$
$\left\langle r^{2}\right\rangle_{M, \mathrm{p}}$	$(0.742 \mathrm{fm})^{2}$	∞	$(0.855 \mathrm{fm})^{2}$
$\left\langle r^{2}\right\rangle_{M, \mathrm{n}}$	$(0.742 \mathrm{fm})^{2}$	∞	$(0.873 \mathrm{fm})^{2}$
$\left\langle r^{2}\right\rangle_{A}^{1 / 2}$	0.537 fm	-	0.674 fm
μ_{p}	2.18	1.87	2.79
μ_{n}	-1.34	-1.31	-1.91
$\left\|\frac{\mu_{p}}{\mu_{n}}\right\|$	1.63	1.43	1.46
g_{A}	0.734	0.61	1.27
$g_{\pi N N}$	7.46	8.9	13.2
$g_{\rho N N}$	5.80	-	$4.2 \sim 6.5$

Approximations made

A lot of approximations has been made under the way of constructing this version of holographic QCD (many are similar in other HQCD models):

- Large- N_{c} : Nature is only $N_{c}=3$
- Large- λ, this is necessary for using the BPST solution and corresponding analytic basis of ψ_{n}
- QCD is not supersymmetric: in SS SUSY is broken at $\sim M_{\text {KK }}$
- The SS model is not asymptotically free - it is only applicable as a model for low-energy QCD
- The SS has no quark masses (see next)
- The single instanton is simple, but multi-instantons are also quite complicated! How to get large nuclei or neutron star equations of state (EOS)

Approximations made

A lot of approximations has been made under the way of constructing this version of holographic QCD (many are similar in other HQCD models):

- Large- N_{c} : Nature is only $N_{c}=3$
- Large- λ, this is necessary for using the BPST solution and corresponding analytic basis of ψ_{n}
- QCD is not supersymmetric: in SS SUSY is broken at $\sim M_{\mathrm{KK}}$
- The SS model is not asymptotically free - it is only applicable as a model for low-energy QCD The SS has no quark masses (see next) The single instanton is simple, but multi-instantons are also quite complicated! How to get large nuclei or neutron star equations of state (EOS)

Approximations made

A lot of approximations has been made under the way of constructing this version of holographic QCD (many are similar in other HQCD models):

- Large- N_{c} : Nature is only $N_{c}=3$
- Large- λ, this is necessary for using the BPST solution and corresponding analytic basis of ψ_{n}
- QCD is not supersymmetric: in SS SUSY is broken at $\sim M_{\mathrm{KK}}$
- The SS model is not asymptotically free - it is only applicable as a model for low-energy QCD The SS has no quark masses (see next) The single instanton is simple, but multi-instantons are also quite complicated! How to get large nuclei or neutron star equations of state (EOS)

Approximations made

A lot of approximations has been made under the way of constructing this version of holographic QCD (many are similar in other HQCD models):

- Large- N_{c} : Nature is only $N_{c}=3$
- Large- λ, this is necessary for using the BPST solution and corresponding analytic basis of ψ_{n}
- QCD is not supersymmetric: in SS SUSY is broken at $\sim M_{\mathrm{KK}}$
- The SS model is not asymptotically free - it is only applicable as a model for low-energy QCD
The SS has no quark masses (see next)
The single instanton is simple, but multi-instantons are also quite complicated! How to get large nuclei or neutron star equations of state (EOS)

Approximations made

A lot of approximations has been made under the way of constructing this version of holographic QCD (many are similar in other HQCD models):

- Large- N_{c} : Nature is only $N_{c}=3$
- Large- λ, this is necessary for using the BPST solution and corresponding analytic basis of ψ_{n}
- QCD is not supersymmetric: in SS SUSY is broken at $\sim M_{\text {KK }}$
- The SS model is not asymptotically free - it is only applicable as a model for low-energy QCD
- The SS has no quark masses (see next)
- The single instanton is simple, but multi-instantons are also quite complicated! How to get large nuclei or neutron star equations of state (EOS)

Approximations made

A lot of approximations has been made under the way of constructing this version of holographic QCD (many are similar in other HQCD models):

- Large- N_{c} : Nature is only $N_{c}=3$
- Large- λ, this is necessary for using the BPST solution and corresponding analytic basis of ψ_{n}
- QCD is not supersymmetric: in SS SUSY is broken at $\sim M_{\text {KK }}$
- The SS model is not asymptotically free - it is only applicable as a model for low-energy QCD
- The SS has no quark masses (see next)
- The single instanton is simple, but multi-instantons are also quite complicated! How to get large nuclei or neutron star equations of state (EOS)

Quark and pion masses in SS

- The issue with the quark mass in SS , is that it involves both the leftand right-handed fermions

$$
m_{q}\left(\psi_{L}^{\dagger} \psi_{R}+\psi_{R}^{\dagger} \psi_{L}\right)
$$

which must be nonlocal in the bulk!

- [Aharony-Kutasov, PRD78, 026005 (2008)] solved this problem with a
Wilson line
$S_{\mathrm{AK}}=c \int \mathrm{~d}^{4} x \operatorname{tr} P\left[M\left(e^{\mathrm{i} \varphi}+e^{-\mathrm{i} \varphi}-21\right)\right], \quad \varphi=-\int \mathrm{d} z A_{z}, \quad$ (1)
- It can be interpreted also as an effect from world-sheet instantons
- Inclusion of the AK action (quark masses) deforms the size of the
instanton and the mass of the instanton
- It also induces a pion mass (k_{0} of ϕ_{0} becomes nonvanishing) and in
turn yields the Gell-Man-Oakes-Renner relation

$$
4 m c=f_{\pi}^{2} m_{\pi}^{2} .
$$

i.e. the pion mass squared is proportional to the quark mass

Quark and pion masses in SS

- The issue with the quark mass in SS , is that it involves both the leftand right-handed fermions

$$
m_{q}\left(\psi_{L}^{\dagger} \psi_{R}+\psi_{R}^{\dagger} \psi_{L}\right)
$$

which must be nonlocal in the bulk!

- [Aharony-Kutasov, PRD78, 026005 (2008)] solved this problem with a Wilson line

$$
\begin{equation*}
S_{\mathrm{AK}}=c \int \mathrm{~d}^{4} x \operatorname{tr} P\left[M\left(e^{\mathrm{i} \varphi}+e^{-\mathrm{i} \varphi}-2 \mathbf{1}\right)\right], \quad \varphi=-\int \mathrm{d} z A_{z}, \tag{1}
\end{equation*}
$$

- It can be interpreted also as an effect from world-sheet instantons
- Inclusion of the AK action (quark masses) deforms the size of the instanton and the mass of the instanton
- It also induces a pion mass (k_{0} of ϕ_{0} becomes nonvanishing) and in turn yields the Gell-Man-Oakes-Renner relation

$$
4 m c=f^{2} m^{2} .
$$

i.e. the pion mass squared is proportional to the quark mass

Quark and pion masses in SS

- The issue with the quark mass in SS , is that it involves both the leftand right-handed fermions

$$
m_{q}\left(\psi_{L}^{\dagger} \psi_{R}+\psi_{R}^{\dagger} \psi_{L}\right)
$$

which must be nonlocal in the bulk!

- [Aharony-Kutasov, PRD78, 026005 (2008)] solved this problem with a Wilson line

$$
\begin{equation*}
S_{\mathrm{AK}}=c \int \mathrm{~d}^{4} x \operatorname{tr} P\left[M\left(e^{\mathrm{i} \varphi}+e^{-\mathrm{i} \varphi}-2 \mathbf{1}\right)\right], \quad \varphi=-\int \mathrm{d} z A_{z}, \tag{1}
\end{equation*}
$$

- It can be interpreted also as an effect from world-sheet instantons
- Inclusion of the AK action (quark masses) deforms the size of the instanton and the mass of the instanton It also induces a pion mass (k_{0} of ϕ_{0} becomes nonvanishing) and in turn yields the Gell-Man-Oakes-Renner relation $4 m c=f_{\pi}^{2} m_{\pi}^{2}$.
i.e. the pion mass squared is nronortional to the quark mass

Quark and pion masses in SS

- The issue with the quark mass in SS , is that it involves both the leftand right-handed fermions

$$
m_{q}\left(\psi_{L}^{\dagger} \psi_{R}+\psi_{R}^{\dagger} \psi_{L}\right)
$$

which must be nonlocal in the bulk!

- [Aharony-Kutasov, PRD78, 026005 (2008)] solved this problem with a Wilson line

$$
\begin{equation*}
S_{\mathrm{AK}}=c \int \mathrm{~d}^{4} x \operatorname{tr} P\left[M\left(e^{\mathrm{i} \varphi}+e^{-\mathrm{i} \varphi}-2 \mathbf{1}\right)\right], \quad \varphi=-\int \mathrm{d} z A_{z} \tag{1}
\end{equation*}
$$

- It can be interpreted also as an effect from world-sheet instantons
- Inclusion of the AK action (quark masses) deforms the size of the instanton and the mass of the instanton
- It also induces a pion mass (k_{0} of ϕ_{0} becomes nonvanishing) and in turn yields the Gell-Man-Oakes-Renner relation $4 m c=f_{\pi}^{2} m_{\pi}^{2}$.
i.e. the pion mass squared is proportional to the quark mass

Quark and pion masses in SS

- The issue with the quark mass in SS , is that it involves both the leftand right-handed fermions

$$
m_{q}\left(\psi_{L}^{\dagger} \psi_{R}+\psi_{R}^{\dagger} \psi_{L}\right)
$$

which must be nonlocal in the bulk!

- [Aharony-Kutasov, PRD78, 026005 (2008)] solved this problem with a Wilson line

$$
\begin{equation*}
S_{\mathrm{AK}}=c \int \mathrm{~d}^{4} x \operatorname{tr} P\left[M\left(e^{\mathrm{i} \varphi}+e^{-\mathrm{i} \varphi}-2 \mathbf{1}\right)\right], \quad \varphi=-\int \mathrm{d} z A_{z} \tag{1}
\end{equation*}
$$

- It can be interpreted also as an effect from world-sheet instantons
- Inclusion of the AK action (quark masses) deforms the size of the instanton and the mass of the instanton
- It also induces a pion mass (k_{0} of ϕ_{0} becomes nonvanishing) and in turn yields the Gell-Man-Oakes-Renner relation

$$
4 m c=f_{\pi}^{2} m_{\pi}^{2}
$$

i.e. the pion mass squared is proportional to the quark mass

The instanton tail

- Although most of the instanton's energy is situated near $z=0$ (for $Z=0$), the tail of the flat instanton is incorrect at long distances, leading to contradicting and erroneous results in the literature: e.g. exponentially suppressed EM form factors
(2014)], where the non-commutativity of λ and large radius is
discussed in detail

The resolution is the discovery of a new scale, after which numerical
solutions or nonlinear analysis is required

0	$<\rho \lesssim L / \sqrt{\Lambda}$,		flat and nonlinear
$L / \sqrt{\Lambda} \lesssim \rho \lesssim L$,		flat and linear	
$L \lesssim \rho \lesssim L \log \Lambda$,		curved and linear	
$L \log \Lambda \lesssim \rho$		curved and nonlinear.	

The instanton tail

- Although most of the instanton's energy is situated near $z=0$ (for $Z=0$), the tail of the flat instanton is incorrect at long distances, leading to contradicting and erroneous results in the literature: e.g. exponentially suppressed EM form factors
- This problem was addressed in [Bolognesi-Sutcliffe, JHEP01, 078 (2014)], where the non-commutativity of λ and large radius is discussed in detail

The resolution is the discovery of a new scale, after which numerical solutions or nonlinear analysis is required

$0<\rho$	$\lesssim L / \sqrt{\Lambda}$,	
flat and nonlinear		
$L / \sqrt{\Lambda} \lesssim \rho \lesssim L$,		flat and linear
$L \lesssim \rho \lesssim L \log \Lambda$,		curved and linear
$L \log \Lambda \lesssim \rho$		curved and nonlinear.

The instanton tail

- Although most of the instanton's energy is situated near $z=0$ (for $Z=0$), the tail of the flat instanton is incorrect at long distances, leading to contradicting and erroneous results in the literature: e.g. exponentially suppressed EM form factors
- This problem was addressed in [Bolognesi-Sutcliffe, JHEP01, 078 (2014)], where the non-commutativity of λ and large radius is discussed in detail

- The resolution is the discovery of a new scale, after which numerical solutions or nonlinear analysis is required

0	$<\rho \lesssim L / \sqrt{\Lambda}$,		flat and nonlinear
$L / \sqrt{\Lambda}$	$\lesssim \rho \lesssim L$,		flat and linear
L	$\lesssim \lesssim L \log \Lambda$,		curved and linear
$L \log \Lambda$	\lesssim		curved and nonlinear.

Large and small 't Hooft coupling

- [Bartolini-Bolognesi-Proto, PRD97, 014024 (2018)] studied the behavior of the SS model in the limits of small and large 't Hooft coupling
The large- λ limit essentially converges to the results given by the BPST instanton. In the case of taking into account the correction for the quark mass, the energy is given by [Hashimoto-Hirayama-Hong, PRD81, 045016 (2010)] - in this limit the instantons are point-like
The small λ-limit corresponds to the so-called BPS-Skyrme model,
which is a field theory incarnation of a liquid-drop model

Baryons from holographic instantons

Large and small 't Hooft coupling

- [Bartolini-Bolognesi-Proto, PRD97, 014024 (2018)] studied the behavior of the SS model in the limits of small and large 't Hooft coupling
- The large- λ limit essentially converges to the results given by the BPST instanton. In the case of taking into account the correction for the quark mass, the energy is given by [Hashimoto-Hirayama-Hong, PRD81, 045016 (2010)] - in this limit the instantons are point-like
The small λ-limit corresponds to the so-called BPS-Skyrme model,
which is a field theory incarnation of a liquid-drop model

Large and small 't Hooft coupling

- [Bartolini-Bolognesi-Proto, PRD97, 014024 (2018)] studied the behavior of the SS model in the limits of small and large 't Hooft coupling
- The large- λ limit essentially converges to the results given by the BPST instanton. In the case of taking into account the correction for the quark mass, the energy is given by [Hashimoto-Hirayama-Hong, PRD81, 045016 (2010)] - in this limit the instantons are point-like
- The small λ-limit corresponds to the so-called BPS-Skyrme model, which is a field theory incarnation of a liquid-drop model

Large and small 't Hooft coupling

- The Sakai-Sugimoto model with the tower of vector mesons integrated out is

$$
\begin{aligned}
S= & \frac{\lambda N_{c}}{216 \pi^{4}} \int \mathrm{~d}^{4} x \operatorname{tr} L_{\mu}^{2}+\frac{\lambda N_{c}}{216 \pi^{3}} \int \mathrm{~d}^{4} x \operatorname{tr}\left[L_{\mu}, L_{\nu}\right]^{2} \\
& +\frac{51 N_{c}}{8960 \lambda} \int \mathrm{~d}^{4} x\left(\operatorname{tr} L_{\mu} L_{\nu} L_{\rho} \epsilon^{\mu \nu \rho \sigma}\right)^{2}+4 m c \int \mathrm{~d}^{4} x(\sigma-1) .
\end{aligned}
$$

- The large- λ limit gives the Skyrme model, as expected (to leading order)
The small- $-\lambda$ limit makes the volume-preserving diffeomorphism invariant sextic term the dominant one
- Upon scaling the size of the soliton, one obtains the sextic term + mass term, which is exactly the BPS-Skyrme model of [Adam-Sanchez-Guillen-Wereszczynski, pre691, 105 (2010)]

Large and small 't Hooft coupling

- The Sakai-Sugimoto model with the tower of vector mesons integrated out is

$$
\begin{aligned}
S= & \frac{\lambda N_{c}}{216 \pi^{4}} \int \mathrm{~d}^{4} x \operatorname{tr} L_{\mu}^{2}+\frac{\lambda N_{c}}{216 \pi^{3}} \int \mathrm{~d}^{4} x \operatorname{tr}\left[L_{\mu}, L_{\nu}\right]^{2} \\
& +\frac{51 N_{c}}{8960 \lambda} \int \mathrm{~d}^{4} x\left(\operatorname{tr} L_{\mu} L_{\nu} L_{\rho} \epsilon^{\mu \nu \rho \sigma}\right)^{2}+4 m c \int \mathrm{~d}^{4} x(\sigma-1) .
\end{aligned}
$$

- The large- λ limit gives the Skyrme model, as expected (to leading order)
The small- λ limit makes the volume-preserving diffeomorphism invariant sextic term the dominant one
Upon scaling the size of the soliton, one obtains the sextic term + mass term, which is exactly the BPS-Skyrme model of [Adam-Sanchez-Guillen-Wereszczynski, PLB691, 105 (2010)]

Large and small 't Hooft coupling

- The Sakai-Sugimoto model with the tower of vector mesons integrated out is

$$
\begin{aligned}
S= & \frac{\lambda N_{c}}{216 \pi^{4}} \int \mathrm{~d}^{4} x \operatorname{tr} L_{\mu}^{2}+\frac{\lambda N_{c}}{216 \pi^{3}} \int \mathrm{~d}^{4} x \operatorname{tr}\left[L_{\mu}, L_{\nu}\right]^{2} \\
& +\frac{51 N_{c}}{8960 \lambda} \int \mathrm{~d}^{4} x\left(\operatorname{tr} L_{\mu} L_{\nu} L_{\rho} \epsilon^{\mu \nu \rho \sigma}\right)^{2}+4 m c \int \mathrm{~d}^{4} x(\sigma-1) .
\end{aligned}
$$

- The large- λ limit gives the Skyrme model, as expected (to leading order)
- The small- λ limit makes the volume-preserving diffeomorphism invariant sextic term the dominant one

Large and small 't Hooft coupling

- The Sakai-Sugimoto model with the tower of vector mesons integrated out is

$$
\begin{aligned}
S= & \frac{\lambda N_{c}}{216 \pi^{4}} \int \mathrm{~d}^{4} x \operatorname{tr} L_{\mu}^{2}+\frac{\lambda N_{c}}{216 \pi^{3}} \int \mathrm{~d}^{4} x \operatorname{tr}\left[L_{\mu}, L_{\nu}\right]^{2} \\
& +\frac{51 N_{c}}{8960 \lambda} \int \mathrm{~d}^{4} x\left(\operatorname{tr} L_{\mu} L_{\nu} L_{\rho} \epsilon^{\mu \nu \rho \sigma}\right)^{2}+4 m c \int \mathrm{~d}^{4} x(\sigma-1) .
\end{aligned}
$$

- The large- λ limit gives the Skyrme model, as expected (to leading order)
- The small- λ limit makes the volume-preserving diffeomorphism invariant sextic term the dominant one
- Upon scaling the size of the soliton, one obtains the sextic term + mass term, which is exactly the BPS-Skyrme model of [Adam-Sanchez-Guillen-Wereszczynski, PLB691, 105 (2010)]

Outline

(1) Introduction

(2) Holography

- Holographic QCD
- Holographic Nuclei

Nucleon-nucleon potential

- [Baldino-Bolognesi-Gudnason-Koksal, PRD96, 034008 (2017)] and [Baldino-Bartolini-Bolognesi-Gudnason, PRD103, 126015 (2021)] obtain the nucleon-nucleon potential from the SS model

$$
\begin{aligned}
V\left(r, B^{\dagger} C\right)= & \frac{4 \pi N_{c}}{\Lambda}\left(\sum _ { n = 1 } ^ { \infty } \left(\frac{1}{c_{2 n-1}} \frac{e^{-k_{2 n-1} r}}{r}+\frac{6}{5} \frac{1}{c_{2 n-1}} M_{i j}\left(B^{\dagger} C\right) P_{i j}\left(r_{i}, k_{2 n-1}\right) \frac{e^{-k_{2 n-1} r}}{r^{3}}\right.\right. \\
& \left.\left.-\frac{6}{5} \frac{1}{d_{2 n}} \frac{e^{-k_{2 n} r}}{r^{3}} M_{i j}\left(B^{\dagger} C\right) P_{i j}\left(r_{i}, k_{2 n}\right)\right)-\frac{6}{5 \pi} \frac{e^{-k_{0} r}}{r^{3}} M_{i j}\left(B^{\dagger} C\right) P_{i j}\left(r_{i}, k_{0}\right)\right) .
\end{aligned}
$$

- Point-like nucleons in the following configurations minimize the 2-body potential

Baryons from holographic instantons

Nucleon-nucleon potential

- [Baldino-Bolognesi-Gudnason-Koksal, PRD96, 034008 (2017)] and [Baldino-Bartolini-Bolognesi-Gudnason, PRD103, 126015 (2021)] obtain the nucleon-nucleon potential from the SS model

$$
\begin{aligned}
V\left(r, B^{\dagger} C\right)= & \frac{4 \pi N_{c}}{\Lambda}\left(\sum _ { n = 1 } ^ { \infty } \left(\frac{1}{c_{2 n-1}} \frac{e^{-k_{2 n-1} r}}{r}+\frac{6}{5} \frac{1}{c_{2 n-1}} M_{i j}\left(B^{\dagger} C\right) P_{i j}\left(r_{i}, k_{2 n-1}\right) \frac{e^{-k_{2 n-1} r}}{r^{3}}\right.\right. \\
& \left.\left.-\frac{6}{5} \frac{1}{d_{2 n}} \frac{e^{-k_{2 n} r}}{r^{3}} M_{i j}\left(B^{\dagger} C\right) P_{i j}\left(r_{i}, k_{2 n}\right)\right)-\frac{6}{5 \pi} \frac{e^{-k_{0} r}}{r^{3}} M_{i j}\left(B^{\dagger} C\right) P_{i j}\left(r_{i}, k_{0}\right)\right) .
\end{aligned}
$$

- Point-like nucleons in the following configurations minimize the 2-body potential

Baryons from holographic instantons

Hashimoto - matrix model for nuclei

- Instead of studying the instanton in the SS model as the baryon, one can write down the matrix model corresponding to description of the zeromodes of the D8-branes wrapping the S^{4}
- The matrix model is very similar to the ADHM construction of instantons
- However, with the addition of a 1-dimensional Chern-Simons term and an important mass deformation - not present in ADHM
- The symmetry of the fields is $\mathrm{U}(k) \times \mathrm{SU}\left(N_{f}\right) \times \mathrm{SO}(3)$
- The model is much simpler than solving ODEs in the bulk (or PDEs) A question whether the (lifted) zeromodes on the 8-branes is enough for capturing all phenomena in nuclear physics

Hashimoto - matrix model for nuclei

- Instead of studying the instanton in the SS model as the baryon, one can write down the matrix model corresponding to description of the zeromodes of the D8-branes wrapping the S^{4}
- The matrix model is very similar to the ADHM construction of instantons
- However, with the addition of a 1-dimensional Chern-Simons term and an important mass deformation - not present in ADHM
- The symmetry of the fields is $\mathrm{U}(k) \times \mathrm{SU}\left(N_{f}\right) \times \mathrm{SO}(3)$
- The model is much simpler than solving ODEs in the bulk (or PDEs) A question whether the (lifted) zeromodes on the 8-branes is enough for capturing all phenomena in nuclear physics

Hashimoto - matrix model for nuclei

- Instead of studying the instanton in the SS model as the baryon, one can write down the matrix model corresponding to description of the zeromodes of the D8-branes wrapping the S^{4}
- The matrix model is very similar to the ADHM construction of instantons
- However, with the addition of a 1-dimensional Chern-Simons term and an important mass deformation - not present in ADHM

The model is much simpler than solving ODEs in the bulk (or PDEs) A question whether the (lifted) zeromodes on the 8-branes is enough for capturing all phenomena in nuclear physics

Hashimoto - matrix model for nuclei

- Instead of studying the instanton in the SS model as the baryon, one can write down the matrix model corresponding to description of the zeromodes of the D8-branes wrapping the S^{4}
- The matrix model is very similar to the ADHM construction of instantons
- However, with the addition of a 1-dimensional Chern-Simons term and an important mass deformation - not present in ADHM
- The symmetry of the fields is $\mathrm{U}(k) \times \mathrm{SU}\left(N_{f}\right) \times \mathrm{SO}(3)$ A question whether the (lifted) zeromodes on the 8-branes is enough for capturing all phenomena in nuclear physics

Hashimoto - matrix model for nuclei

- Instead of studying the instanton in the SS model as the baryon, one can write down the matrix model corresponding to description of the zeromodes of the D8-branes wrapping the S^{4}
- The matrix model is very similar to the ADHM construction of instantons
- However, with the addition of a 1-dimensional Chern-Simons term and an important mass deformation - not present in ADHM
- The symmetry of the fields is $\mathrm{U}(k) \times \mathrm{SU}\left(N_{f}\right) \times \mathrm{SO}(3)$
- The model is much simpler than solving ODEs in the bulk (or PDEs)

Hashimoto - matrix model for nuclei

- Instead of studying the instanton in the SS model as the baryon, one can write down the matrix model corresponding to description of the zeromodes of the D8-branes wrapping the S^{4}
- The matrix model is very similar to the ADHM construction of instantons
- However, with the addition of a 1-dimensional Chern-Simons term and an important mass deformation - not present in ADHM
- The symmetry of the fields is $\mathrm{U}(k) \times \mathrm{SU}\left(N_{f}\right) \times \mathrm{SO}(3)$
- The model is much simpler than solving ODEs in the bulk (or PDEs)
- A question whether the (lifted) zeromodes on the 8-branes is enough for capturing all phenomena in nuclear physics

The Sutcliffe model

- The Sutcliffe model is a flat-holography model of YM on \mathbb{R}^{5}
- The kink function is introduced for the pion profile

$$
\psi_{+}(z)=\frac{1}{\sqrt{2} \pi^{\frac{1}{4}}} \int_{-\infty}^{z} \psi_{0}(\xi) \mathrm{d} \xi=\frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{z}{\sqrt{2}}\right)
$$

and the gauge fields are as usual expanded as

- Notice that no electric field or CS is present, since there is no curvature to fight against
- The KK scale appears due to truncation of the infinite modes to K modes

The Sutcliffe model

- The Sutcliffe model is a flat-holography model of YM on \mathbb{R}^{5}
- The kink function is introduced for the pion profile

$$
\psi_{+}(z)=\frac{1}{\sqrt{2} \pi^{\frac{1}{4}}} \int_{-\infty}^{z} \psi_{0}(\xi) \mathrm{d} \xi=\frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{z}{\sqrt{2}}\right)
$$

and the gauge fields are as usual expanded as

$$
A_{i}=-\partial_{i} U U^{-1} \psi_{+}(z)+\sum_{n=0}^{K-1} V_{i}^{n}(\mathbf{x}) \psi_{n}(z),
$$

- Notice that no electric field or CS is present, since there is no curvature to fight against
- The KK scale appears due to truncation of the infinite modes to K modes

The Sutcliffe model

- The Sutcliffe model is a flat-holography model of YM on \mathbb{R}^{5}
- The kink function is introduced for the pion profile

$$
\psi_{+}(z)=\frac{1}{\sqrt{2} \pi^{\frac{1}{4}}} \int_{-\infty}^{z} \psi_{0}(\xi) \mathrm{d} \xi=\frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{z}{\sqrt{2}}\right)
$$

and the gauge fields are as usual expanded as

$$
A_{i}=-\partial_{i} U U^{-1} \psi_{+}(z)+\sum_{n=0}^{K-1} V_{i}^{n}(\mathbf{x}) \psi_{n}(z),
$$

- Notice that no electric field or CS is present, since there is no curvature to fight against

The KK scale appears due to truncation of the infinite modes to K modes

The Sutcliffe model

- The Sutcliffe model is a flat-holography model of YM on \mathbb{R}^{5}
- The kink function is introduced for the pion profile

$$
\psi_{+}(z)=\frac{1}{\sqrt{2} \pi^{\frac{1}{4}}} \int_{-\infty}^{z} \psi_{0}(\xi) \mathrm{d} \xi=\frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{z}{\sqrt{2}}\right)
$$

and the gauge fields are as usual expanded as

$$
A_{i}=-\partial_{i} U U^{-1} \psi_{+}(z)+\sum_{n=0}^{K-1} V_{i}^{n}(\mathbf{x}) \psi_{n}(z),
$$

- Notice that no electric field or CS is present, since there is no curvature to fight against
- The KK scale appears due to truncation of the infinite modes to K modes

Homogeneous Ansatz

- The homogeneous Ansatz is an approximation where the single instantons are sitting so densely, that they lose their individual identity
- Unfortunately, it was proved in 2007 by [Rozali-Shieh-Van Raamsdonk-Wu, JHEP01, 053 (2008)] that it is impossible for a continuous gauge field configuration to have a nonvanishing instanton number in the homogeneous Ansatz
- However, it can be done by introducing a discontinuous gauge field, which acts as a source of baryons - usually put at $z=0$ [Li-Schmitt-Wang, PRD92, 026006 (2015)]

The homogeneous Ansatz for SS (for $\mathrm{SU}(2)$) is

$$
\mathcal{A}_{0}=\frac{1}{2} \widehat{a}_{0}(z), \quad \mathcal{A}_{i}=-\frac{1}{2} H(z) \tau_{i}, \quad \mathcal{A}_{z}=0
$$

with the discontinuous BCs:

Homogeneous Ansatz

- The homogeneous Ansatz is an approximation where the single instantons are sitting so densely, that they lose their individual identity
- Unfortunately, it was proved in 2007 by [Rozali-Shieh-Van Raamsdonk-Wu, JHEP01, 053 (2008)] that it is impossible for a continuous gauge field configuration to have a nonvanishing instanton number in the homogeneous Ansatz

The homogeneous Ansatz for SS (for $\mathrm{SU}(2)$) is

with the discontinuous BCs:

Homogeneous Ansatz

- The homogeneous Ansatz is an approximation where the single instantons are sitting so densely, that they lose their individual identity
- Unfortunately, it was proved in 2007 by [Rozali-Shieh-Van Raamsdonk-Wu, JHEP01, 053 (2008)] that it is impossible for a continuous gauge field configuration to have a nonvanishing instanton number in the homogeneous Ansatz
- However, it can be done by introducing a discontinuous gauge field, which acts as a source of baryons - usually put at $z=0$ [Li-Schmitt-Wang, PRD92, 026006 (2015)]
The homogeneous Ansatz for SS (for $\mathrm{SU}(2)$) is

with the discontinuous BCs:

Homogeneous Ansatz

- The homogeneous Ansatz is an approximation where the single instantons are sitting so densely, that they lose their individual identity
- Unfortunately, it was proved in 2007 by [Rozali-Shieh-Van Raamsdonk-Wu, JHEP01, 053 (2008)] that it is impossible for a continuous gauge field configuration to have a nonvanishing instanton number in the homogeneous Ansatz
- However, it can be done by introducing a discontinuous gauge field, which acts as a source of baryons - usually put at $z=0$ [Li-Schmitt-Wang, PRD92, 026006 (2015)]
- The homogeneous Ansatz for SS (for $\mathrm{SU}(2)$) is

$$
\mathcal{A}_{0}=\frac{1}{2} \widehat{a}_{0}(z), \quad \mathcal{A}_{i}=-\frac{1}{2} H(z) \tau^{i}, \quad \mathcal{A}_{z}=0
$$

with the discontinuous BCs:

$$
\widehat{a}_{0}^{\prime}(0)=0, \quad H\left(0^{ \pm}\right)= \pm\left(4 \pi^{2} d\right)^{\frac{1}{3}}
$$

Finite isospin density

- Following [Adkins-Nappi-Witten, NPB228, 552 (1983)], we can turn on isospin, by rotating the baryons in $\mathrm{SU}(2)$ [Bartolini-Gudnason, 2209.14309]

$$
\begin{aligned}
& \mathcal{A}_{0}=G(z) a \chi \cdot \tau a^{-1}+\frac{1}{2} \widehat{a}_{0}(z), \quad \mathcal{A}_{i}=-\frac{1}{2}\left(H(z) a \tau^{i} a^{-1}+L(z) \chi^{i}\right) \\
& \mathcal{A}_{z}=0
\end{aligned}
$$

with boundary angular isospin velocity $a \chi \cdot \tau a^{-1}=-2 \mathrm{i} \dot{a} a^{-1}$ and the discontinuous BCs:

$$
\widehat{a}_{0}^{\prime}(0)=0, \quad H\left(0^{ \pm}\right)= \pm\left(4 \pi^{2} d\right)^{\frac{1}{3}}
$$

- What are the suitable BCs for G and L ?
- Guessing suitable boundary conditions based on parity, one would get

$$
G^{\prime}(0)=0, \quad L(0)=0
$$

- Unfortunately, scrutinizing a bit, it turns out that $G^{\prime}(0)$ does not minimize the entire action!

Finite isospin density

- Following [Adkins-Nappi-Witten, NPB228, 552 (1983)], we can turn on isospin, by rotating the baryons in $\mathrm{SU}(2)$ [Bartolini-Gudnason, 2209.14309]

$$
\begin{aligned}
& \mathcal{A}_{0}=G(z) a \chi \cdot \tau \alpha^{-1}+\frac{1}{2} \widehat{a}_{0}(z), \quad \mathcal{A}_{i}=-\frac{1}{2}\left(H(z) a \tau^{i} a^{-1}+L(z) \chi^{i}\right) \\
& \mathcal{A}_{z}=0
\end{aligned}
$$

with boundary angular isospin velocity $a \chi \cdot \tau \alpha^{-1}=-2 \mathrm{i} \dot{\alpha} \alpha^{-1}$ and the discontinuous BCs:

$$
\widehat{a}_{0}^{\prime}(0)=0, \quad H\left(0^{ \pm}\right)= \pm\left(4 \pi^{2} d\right)^{\frac{1}{3}}
$$

- What are the suitable BCs for G and L ?
- Guessing suitable boundary conditions based on parity, one would get
- Unfortunately, scrutinizing a bit, it turns out that $G^{\prime}(0)$ does not minimize the entire action!

Finite isospin density

- Following [Adkins-Nappi-Witten, NPB228, 552 (1983)], we can turn on isospin, by rotating the baryons in $\mathrm{SU}(2)$ [Bartolini-Gudnason, 2209.14309]

$$
\begin{aligned}
& \mathcal{A}_{0}=G(z) a \chi \cdot \tau a^{-1}+\frac{1}{2} \widehat{a}_{0}(z), \quad \mathcal{A}_{i}=-\frac{1}{2}\left(H(z) a \tau^{i} a^{-1}+L(z) \chi^{i}\right) \\
& \mathcal{A}_{z}=0
\end{aligned}
$$

with boundary angular isospin velocity $a \chi \cdot \tau \alpha^{-1}=-2 \mathrm{i} \dot{\alpha} \alpha^{-1}$ and the discontinuous BCs:

$$
\widehat{a}_{0}^{\prime}(0)=0, \quad H\left(0^{ \pm}\right)= \pm\left(4 \pi^{2} d\right)^{\frac{1}{3}}
$$

- What are the suitable BCs for G and L ?
- Guessing suitable boundary conditions based on parity, one would get

$$
\begin{equation*}
G^{\prime}(0)=0, \quad L(0)=0 \tag{2}
\end{equation*}
$$

- Unfortunately, scrutinizing a bit, it turns out that $G^{\prime}(0)$ does not minimize the entire action!

Finite isospin density

- Following [Adkins-Nappi-Witten, NPB228, 552 (1983)], we can turn on isospin, by rotating the baryons in $\mathrm{SU}(2)$ [Bartolini-Gudnason, 2209.14309]

$$
\begin{aligned}
& \mathcal{A}_{0}=G(z) a \chi \cdot \tau \alpha^{-1}+\frac{1}{2} \widehat{a}_{0}(z), \quad \mathcal{A}_{i}=-\frac{1}{2}\left(H(z) a \tau^{i} a^{-1}+L(z) \chi^{i}\right) \\
& \mathcal{A}_{z}=0
\end{aligned}
$$

with boundary angular isospin velocity $a \chi \cdot \tau \alpha^{-1}=-2 \mathrm{i} \dot{\alpha} a^{-1}$ and the discontinuous BCs:

$$
\widehat{a}_{0}^{\prime}(0)=0, \quad H\left(0^{ \pm}\right)= \pm\left(4 \pi^{2} d\right)^{\frac{1}{3}}
$$

- What are the suitable BCs for G and L ?
- Guessing suitable boundary conditions based on parity, one would get

$$
\begin{equation*}
G^{\prime}(0)=0, \quad L(0)=0 \tag{2}
\end{equation*}
$$

- Unfortunately, scrutinizing a bit, it turns out that $G^{\prime}(0)$ does not minimize the entire action!

Taking a closer look at the Chern-Simons term

- SS Model

$$
S=-\kappa \operatorname{tr} \int_{\mathrm{AdS}_{5}} \mathcal{F} \wedge * \mathcal{F}+N_{c} \int_{\mathrm{AdS}_{5}} \omega_{5}, \quad \kappa=\frac{\lambda N_{c}}{216 \pi^{3}}
$$

or in more details

$$
\begin{aligned}
S & =-\frac{\kappa}{2} \operatorname{tr} \int \mathrm{~d}^{5} x\left[h(z) \mathcal{F}_{\mu \nu} \mathcal{F}^{\mu \nu}+2 k(z) \mathcal{F}_{\mu z} \mathcal{F}^{\mu z}\right] \\
& +\frac{N_{c}}{24 \pi^{2}} \operatorname{tr} \int\left(\mathcal{A} \wedge \mathcal{F}^{2}-\frac{\mathrm{i}}{2} \mathcal{A}^{3} \wedge \mathcal{F}-\frac{1}{10} \mathcal{A}^{5}\right)
\end{aligned}
$$

- The CS term can be integrated by parts:

with $\mathcal{F}=F^{a} \frac{\tau^{a}}{2}+\widehat{F} \frac{1}{2}$.
- After integrating by part, the entire CS term is proportional to A, but this depends on what is chosen as the boundary term (ambiguity problem)

Taking a closer look at the Chern-Simons term

- SS Model

$$
S=-\kappa \operatorname{tr} \int_{\mathrm{AdS}_{5}} \mathcal{F} \wedge * \mathcal{F}+N_{c} \int_{\mathrm{AdS}_{5}} \omega_{5}, \quad \kappa=\frac{\lambda N_{c}}{216 \pi^{3}},
$$

or in more details

$$
\begin{aligned}
S & =-\frac{\kappa}{2} \operatorname{tr} \int \mathrm{~d}^{5} x\left[h(z) \mathcal{F}_{\mu \nu} \mathcal{F}^{\mu \nu}+2 k(z) \mathcal{F}_{\mu z} \mathcal{F}^{\mu z}\right] \\
& +\frac{N_{c}}{24 \pi^{2}} \operatorname{tr} \int\left(\mathcal{A} \wedge \mathcal{F}^{2}-\frac{\mathrm{i}}{2} \mathcal{A}^{3} \wedge \mathcal{F}-\frac{1}{10} \mathcal{A}^{5}\right)
\end{aligned}
$$

- The CS term can be integrated by parts:

$$
\begin{aligned}
& \quad+\frac{N_{c}}{24 \pi^{2}} \operatorname{tr} \int\left[3 \widehat{A} \wedge F^{2}+\widehat{A} \wedge \widehat{F}^{2}+\mathrm{d}\left(\widehat{A} \wedge\left(2 F \wedge A-\frac{\mathrm{i}}{2} A^{3}\right)\right)\right] . \\
& \text { with } \mathcal{F}=F^{a} \frac{\tau^{a}}{2}+\widehat{F} \frac{\mathbf{1}}{2}
\end{aligned}
$$

- After integrating by part, the entire CS term is proportional to A, but this depends on what is chosen as the boundary term (ambiguity problem)

Taking a closer look at the Chern-Simons term

- SS Model

$$
S=-\kappa \operatorname{tr} \int_{\mathrm{AdS}_{5}} \mathcal{F} \wedge * \mathcal{F}+N_{c} \int_{\mathrm{AdS}_{5}} \omega_{5}, \quad \kappa=\frac{\lambda N_{c}}{216 \pi^{3}},
$$

or in more details

$$
\begin{aligned}
S & =-\frac{\kappa}{2} \operatorname{tr} \int \mathrm{~d}^{5} x\left[h(z) \mathcal{F}_{\mu \nu} \mathcal{F}^{\mu \nu}+2 k(z) \mathcal{F}_{\mu z} \mathcal{F}^{\mu z}\right] \\
& +\frac{N_{c}}{24 \pi^{2}} \operatorname{tr} \int\left(\mathcal{A} \wedge \mathcal{F}^{2}-\frac{\mathrm{i}}{2} \mathcal{A}^{3} \wedge \mathcal{F}-\frac{1}{10} \mathcal{A}^{5}\right)
\end{aligned}
$$

- The CS term can be integrated by parts:

$$
\begin{aligned}
& \quad+\frac{N_{c}}{24 \pi^{2}} \operatorname{tr} \int\left[3 \widehat{A} \wedge F^{2}+\widehat{A} \wedge \widehat{F}^{2}+\mathrm{d}\left(\widehat{A} \wedge\left(2 F \wedge A-\frac{\mathrm{i}}{2} A^{3}\right)\right)\right] . \\
& \text { with } \mathcal{F}=F^{a} \frac{\tau^{a}}{2}+\widehat{F} \frac{\mathbf{1}}{2}
\end{aligned}
$$

- After integrating by part, the entire CS term is proportional to \widehat{A}, but this depends on what is chosen as the boundary term (ambiguity problem)

Discarding the total derivative of CS

- Let's discard the total derivative in the CS
- and use the homogeneous Ansatz:

$$
\mathcal{A}_{0}=\frac{1}{2} \widehat{a}_{0}(z), \quad \mathcal{A}_{i}=-\frac{1}{2} H(z) \tau^{i}, \quad \mathcal{A}_{z}=0
$$

- The full variation of the action:

- We arrive at the conditions:

$$
\widehat{a}_{0}^{\prime}(0) \delta \widehat{a}_{0}(0)=0
$$

$$
\left(H^{\prime}(0)+\frac{N_{c}}{16 \pi^{2} \kappa} \widehat{a}_{0}(0) H^{2}(0)\right) \delta H(0)=0 .
$$

- and the solution for \widehat{a}_{0} :

Discarding the total derivative of CS

- Let's discard the total derivative in the CS
- and use the homogeneous Ansatz:

$$
\mathcal{A}_{0}=\frac{1}{2} \widehat{a}_{0}(z), \quad \mathcal{A}_{i}=-\frac{1}{2} H(z) \tau^{i}, \quad \mathcal{A}_{z}=0
$$

- The full variation of the action:

- We arrive at the conditions:

$$
\widehat{a}_{0}^{\prime}(0) \delta \widehat{a}_{0}(0)=0
$$

- and the solution for \widehat{a}_{0} :

Discarding the total derivative of CS

- Let's discard the total derivative in the CS
- and use the homogeneous Ansatz:

$$
\mathcal{A}_{0}=\frac{1}{2} \widehat{a}_{0}(z), \quad \mathcal{A}_{i}=-\frac{1}{2} H(z) \tau^{i}, \quad \mathcal{A}_{z}=0
$$

- The full variation of the action:

$$
\begin{aligned}
\delta S & =\int \mathrm{d}^{4} x \mathrm{~d} z\left[(\text { E.o.M. })_{H} \delta H+(\text { E.o.M. })_{\widehat{a}_{0}} \delta \widehat{a}_{0}\right]+\delta S_{\text {boundary }} \\
\delta S_{\text {boundary }} & =2 \kappa \int \mathrm{~d}^{4} x\left[k(z) \widehat{a}_{0}^{\prime} \delta \widehat{a}_{0}-3\left(k(z) H^{\prime}+\frac{N_{c}}{16 \pi^{2} \kappa} \widehat{a}_{0} H^{2}\right) \delta H\right]_{z=0}^{z=\infty} .
\end{aligned}
$$

- We arrive at the conditions:

- and the solution for \widehat{a}_{0} :

Discarding the total derivative of CS

- Let's discard the total derivative in the CS
- and use the homogeneous Ansatz:

$$
\mathcal{A}_{0}=\frac{1}{2} \widehat{a}_{0}(z), \quad \mathcal{A}_{i}=-\frac{1}{2} H(z) \tau^{i}, \quad \mathcal{A}_{z}=0
$$

- The full variation of the action:

$$
\begin{aligned}
\delta S & =\int \mathrm{d}^{4} x \mathrm{~d} z\left[(\text { E.o.M. })_{H} \delta H+(\text { E.o.M. })_{\widehat{a}_{0}} \delta \widehat{a}_{0}\right]+\delta S_{\text {boundary }} \\
\delta S_{\text {boundary }} & =2 \kappa \int \mathrm{~d}^{4} x\left[k(z) \widehat{a}_{0}^{\prime} \delta \widehat{a}_{0}-3\left(k(z) H^{\prime}+\frac{N_{c}}{16 \pi^{2} \kappa} \widehat{a}_{0} H^{2}\right) \delta H\right]_{z=0}^{z=\infty}
\end{aligned}
$$

- We arrive at the conditions:

$$
\begin{aligned}
\widehat{a}_{0}^{\prime}(0) \delta \widehat{a}_{0}(0) & =0 \\
\left(H^{\prime}(0)+\frac{N_{c}}{16 \pi^{2} \kappa} \widehat{a}_{0}(0) H^{2}(0)\right) \delta H(0) & =0
\end{aligned}
$$

- and the solution for \widehat{a}_{0} :

Discarding the total derivative of CS

- Let's discard the total derivative in the CS
- and use the homogeneous Ansatz:

$$
\mathcal{A}_{0}=\frac{1}{2} \widehat{a}_{0}(z), \quad \mathcal{A}_{i}=-\frac{1}{2} H(z) \tau^{i}, \quad \mathcal{A}_{z}=0
$$

- The full variation of the action:

$$
\begin{aligned}
\delta S & =\int \mathrm{d}^{4} x \mathrm{~d} z\left[(\text { E.o.M. })_{H} \delta H+(\text { E.o.M. })_{\widehat{a}_{0}} \delta \widehat{a}_{0}\right]+\delta S_{\text {boundary }} \\
\delta S_{\text {boundary }} & =2 \kappa \int \mathrm{~d}^{4} x\left[k(z) \widehat{a}_{0}^{\prime} \delta \widehat{a}_{0}-3\left(k(z) H^{\prime}+\frac{N_{c}}{16 \pi^{2} \kappa} \widehat{a}_{0} H^{2}\right) \delta H\right]_{z=0}^{z=\infty} .
\end{aligned}
$$

- We arrive at the conditions:

$$
\begin{aligned}
\widehat{a}_{0}^{\prime}(0) \delta \widehat{a}_{0}(0) & =0 \\
\left(H^{\prime}(0)+\frac{N_{c}}{16 \pi^{2} \kappa} \widehat{a}_{0}(0) H^{2}(0)\right) \delta H(0) & =0
\end{aligned}
$$

- and the solution for \widehat{a}_{0} :

$$
\widehat{a}_{0}^{\prime}=-\frac{N_{c}}{16 \pi^{2} \kappa} \frac{1}{k(z)}\left(H^{3}(z)-H^{3}(0)\right)
$$

Discarding the total derivative of CS

- Looking at the baryon current at the conformal boundary

$$
d_{B}=\frac{2}{N_{c}} \kappa\left[k(z) \widehat{a}_{0}^{\prime}\right]_{-\infty}^{\infty}=\frac{4}{N_{c}} \kappa\left[k(z) \widehat{a}_{0}^{\prime}\right]_{z=\infty}=d
$$

- we find the same baryon density d as given by the topological integral

which is consistent.
- For the chemical potential

Discarding the total derivative of CS

- Looking at the baryon current at the conformal boundary

$$
d_{B}=\frac{2}{N_{c}} \kappa\left[k(z) \widehat{a}_{0}^{\prime}\right]_{-\infty}^{\infty}=\frac{4}{N_{c}} \kappa\left[k(z) \widehat{a}_{0}^{\prime}\right]_{z=\infty}=d
$$

- we find the same baryon density d as given by the topological integral

$$
\begin{aligned}
d & =\frac{1}{32 \pi^{2}} \int \mathrm{~d} z \epsilon^{M N P Q} \operatorname{tr} F_{M N} F_{P Q} \\
& =-\frac{1}{8 \pi^{2}} \int \mathrm{~d} z \partial_{z}\left(H^{3}\right) \\
& =-\frac{1}{8 \pi^{2}}\left[H^{3}\right]_{z=0^{+}}^{z=+\infty}-\frac{1}{8 \pi^{2}}\left[H^{3}\right]_{z=-\infty}^{z=0^{-}}
\end{aligned}
$$

which is consistent.

Discarding the total derivative of CS

- Looking at the baryon current at the conformal boundary

$$
d_{B}=\frac{2}{N_{c}} \kappa\left[k(z) \widehat{a}_{0}^{\prime}\right]_{-\infty}^{\infty}=\frac{4}{N_{c}} \kappa\left[k(z) \widehat{a}_{0}^{\prime}\right]_{z=\infty}=d
$$

- we find the same baryon density d as given by the topological integral

$$
\begin{aligned}
d & =\frac{1}{32 \pi^{2}} \int \mathrm{~d} z \epsilon^{M N P Q} \operatorname{tr} F_{M N} F_{P Q} \\
& =-\frac{1}{8 \pi^{2}} \int \mathrm{~d} z \partial_{z}\left(H^{3}\right) \\
& =-\frac{1}{8 \pi^{2}}\left[H^{3}\right]_{z=0^{+}}^{z=+\infty}-\frac{1}{8 \pi^{2}}\left[H^{3}\right]_{z=-\infty}^{z=0^{-}}
\end{aligned}
$$

which is consistent.

- For the chemical potential

$$
\mu_{B} d_{B}=-\frac{N_{c}}{8 \pi^{2}} \mu \int_{0}^{\infty} \mathrm{d} z \partial_{z}\left(H^{3}\right)=\frac{N_{c}}{2} \mu d \quad \Rightarrow \quad \mu_{B}=\frac{N_{c}}{2} \mu
$$

Including the total derivative of CS

- Let's now include the total derivative in the CS
- The full variation of the action now gives the conditions:

- and the solution for \widehat{a}_{0} :

$$
\widehat{a}_{0}^{\prime}=-\frac{1}{k(z)} \frac{N_{c}}{16 \pi^{2} k}\left(H^{3}(z)-\frac{H^{3}(0)}{4}\right)
$$

- Looking at the baryon current at the conformal boundary, we now find:

$$
d_{B}=\frac{2}{N_{c}} \kappa\left[k(z) \widehat{a}_{0}^{\prime}\right]_{-\infty}^{\infty}=\frac{4}{N_{c}} \kappa\left[k(z) \widehat{a}_{0}^{\prime}\right]_{z=\infty}=\frac{d}{4},
$$

which differs from the topological density by a factor of $1 / 4$.

- The chemical potential is unchanged.

Including the total derivative of CS

- Let's now include the total derivative in the CS
- The full variation of the action now gives the conditions:

$$
\begin{aligned}
\left(\widehat{a}_{0}^{\prime}(0)+\frac{3 N_{c}}{64 \pi^{2} \kappa} H^{3}(0)\right) \delta \widehat{a}_{0}(0) & =0 \\
\left(H^{\prime}(0)+\frac{N_{c}}{16 \pi^{2} \kappa} \widehat{a}_{0}(0) H^{2}(0)-\frac{3 N_{c}}{64 \pi^{2} \kappa} \widehat{a}_{0}(0) H^{2}(0)\right) \delta H(0) & =0
\end{aligned}
$$

- and the solution for \widehat{a}_{0} :

- Looking at the baryon current at the conformal boundary, we now find:

which differs from the topological density by a factor of $1 / 4$.
- The chemical potential is unchanged.

Including the total derivative of CS

- Let's now include the total derivative in the CS
- The full variation of the action now gives the conditions:

$$
\begin{aligned}
\left(\widehat{a}_{0}^{\prime}(0)+\frac{3 N_{c}}{64 \pi^{2} \kappa} H^{3}(0)\right) \delta \widehat{a}_{0}(0) & =0 \\
\left(H^{\prime}(0)+\frac{N_{c}}{16 \pi^{2} \kappa} \widehat{a}_{0}(0) H^{2}(0)-\frac{3 N_{c}}{64 \pi^{2} \kappa} \widehat{a}_{0}(0) H^{2}(0)\right) \delta H(0) & =0
\end{aligned}
$$

- and the solution for \widehat{a}_{0} :

$$
\widehat{a}_{0}^{\prime}=-\frac{1}{k(z)} \frac{N_{c}}{16 \pi^{2} \kappa}\left(H^{3}(z)-\frac{H^{3}(0)}{4}\right)
$$

- Looking at the baryon current at the conformal boundary, we now find:

which differs from the topological density by a factor of $1 / 4$. - The chemical potential is unchanged.

Including the total derivative of CS

- Let's now include the total derivative in the CS
- The full variation of the action now gives the conditions:

$$
\begin{aligned}
\left(\widehat{a}_{0}^{\prime}(0)+\frac{3 N_{c}}{64 \pi^{2} \kappa} H^{3}(0)\right) \delta \widehat{a}_{0}(0) & =0 \\
\left(H^{\prime}(0)+\frac{N_{c}}{16 \pi^{2} \kappa} \widehat{a}_{0}(0) H^{2}(0)-\frac{3 N_{c}}{64 \pi^{2} \kappa} \widehat{a}_{0}(0) H^{2}(0)\right) \delta H(0) & =0
\end{aligned}
$$

- and the solution for \widehat{a}_{0} :

$$
\widehat{a}_{0}^{\prime}=-\frac{1}{k(z)} \frac{N_{c}}{16 \pi^{2} \kappa}\left(H^{3}(z)-\frac{H^{3}(0)}{4}\right)
$$

- Looking at the baryon current at the conformal boundary, we now find:

$$
d_{B}=\frac{2}{N_{c}} \kappa\left[k(z) \widehat{a}_{0}^{\prime}\right]_{-\infty}^{\infty}=\frac{4}{N_{c}} \kappa\left[k(z) \widehat{a}_{0}^{\prime}\right]_{z=\infty}=\frac{d}{4}
$$

which differs from the topological density by a factor of $1 / 4$.

Including the total derivative of CS

- Let's now include the total derivative in the CS
- The full variation of the action now gives the conditions:

$$
\begin{aligned}
\left(\widehat{a}_{0}^{\prime}(0)+\frac{3 N_{c}}{64 \pi^{2} \kappa} H^{3}(0)\right) \delta \widehat{a}_{0}(0) & =0 \\
\left(H^{\prime}(0)+\frac{N_{c}}{16 \pi^{2} \kappa} \widehat{a}_{0}(0) H^{2}(0)-\frac{3 N_{c}}{64 \pi^{2} \kappa} \widehat{a}_{0}(0) H^{2}(0)\right) \delta H(0) & =0
\end{aligned}
$$

- and the solution for \widehat{a}_{0} :

$$
\widehat{a}_{0}^{\prime}=-\frac{1}{k(z)} \frac{N_{c}}{16 \pi^{2} \kappa}\left(H^{3}(z)-\frac{H^{3}(0)}{4}\right)
$$

- Looking at the baryon current at the conformal boundary, we now find:

$$
d_{B}=\frac{2}{N_{c}} \kappa\left[k(z) \widehat{a}_{0}^{\prime}\right]_{-\infty}^{\infty}=\frac{4}{N_{c}} \kappa\left[k(z) \widehat{a}_{0}^{\prime}\right]_{z=\infty}=\frac{d}{4}
$$

which differs from the topological density by a factor of $1 / 4$.

- The chemical potential is unchanged.

Proposal: Matching the currents and the topological data

- We propose to choose which total-derivative term to discard in the CS action, by matching the physical currents with the topological degrees calculated in the bulk.
- This fixes the CS term to:

- Using this CS term, the variation of the fields G, L :

- Luckily, this same choice of CS term yields consistency also between the isospin quantum number and its current

Proposal: Matching the currents and the topological data

- We propose to choose which total-derivative term to discard in the CS action, by matching the physical currents with the topological degrees calculated in the bulk.
- This fixes the CS term to:

$$
S_{\mathrm{CS}}=\frac{N_{c}}{24 \pi^{2}} \operatorname{tr} \int\left[3 \widehat{A} \wedge F^{2}+\widehat{A} \wedge \widehat{F}^{2}\right] .
$$

- Using this CS term, the variation of the fields G, L :

- Luckily, this same choice of CS term yields consistency also between the isospin quantum number and its current

Proposal: Matching the currents and the topological data

- We propose to choose which total-derivative term to discard in the CS action, by matching the physical currents with the topological degrees calculated in the bulk.
- This fixes the CS term to:

$$
S_{\mathrm{CS}}=\frac{N_{c}}{24 \pi^{2}} \operatorname{tr} \int\left[3 \widehat{A} \wedge F^{2}+\widehat{A} \wedge \widehat{F}^{2}\right]
$$

- Using this CS term, the variation of the fields G, L :

$$
\begin{aligned}
{\left[G^{\prime}(0)+\frac{N_{c}}{32 \pi^{2} \kappa} H^{2}(0) L(0)\right] \delta G(0) } & =0 \\
L^{\prime}(0) \delta L(0) & =0
\end{aligned}
$$

- Luckily, this same choice of CS term yields consistency also between the isospin quantum number and its current

Proposal: Matching the currents and the topological data

- We propose to choose which total-derivative term to discard in the CS action, by matching the physical currents with the topological degrees calculated in the bulk.
- This fixes the CS term to:

$$
S_{\mathrm{CS}}=\frac{N_{c}}{24 \pi^{2}} \operatorname{tr} \int\left[3 \widehat{A} \wedge F^{2}+\widehat{A} \wedge \widehat{F}^{2}\right]
$$

- Using this CS term, the variation of the fields G, L :

$$
\begin{aligned}
{\left[G^{\prime}(0)+\frac{N_{c}}{32 \pi^{2} \kappa} H^{2}(0) L(0)\right] \delta G(0) } & =0 \\
L^{\prime}(0) \delta L(0) & =0
\end{aligned}
$$

- Luckily, this same choice of CS term yields consistency also between the isospin quantum number and its current

Thermodynamic equilibrium condition

- Thermodynamic equilibrium condition can be found from

$$
\widehat{a}_{0}(z)=\mu-\int_{z}^{\infty} \mathrm{d} z^{\prime} \widehat{a}_{0}^{\prime}\left(z^{\prime}\right), \quad \widehat{a}_{0}^{\prime}=-\frac{N_{c}}{16 \pi^{2} \kappa} \frac{1}{k(z)}\left(H^{3}(z)-H^{3}(0)\right)
$$

Solving for μ :

$$
\mu(d)=-\frac{4 \kappa}{N_{c}}\left(\frac{4 \pi^{2}}{d^{2}}\right)^{\frac{1}{3}} H^{\prime}(0)+\frac{N_{c} d}{4 \kappa} \int_{0}^{\infty} \mathrm{d} z \frac{1}{k(z)}\left(1-\frac{H^{3}(z)}{H^{3}(0)}\right)
$$

- The trick is that $H(z)$ can be solved without knowing μ, which it is simply an overall shift in \widehat{a}_{0}, that the EOMs do not observe.
- Hence, fixing d, we can calculate the corresponding chemical potential μ, to within numerical precision.

Thermodynamic equilibrium condition

- Thermodynamic equilibrium condition can be found from

$$
\widehat{a}_{0}(z)=\mu-\int_{z}^{\infty} \mathrm{d} z^{\prime} \widehat{a}_{0}^{\prime}\left(z^{\prime}\right), \quad \widehat{a}_{0}^{\prime}=-\frac{N_{c}}{16 \pi^{2} \kappa} \frac{1}{k(z)}\left(H^{3}(z)-H^{3}(0)\right),
$$

Solving for μ :

$$
\mu(d)=-\frac{4 \kappa}{N_{c}}\left(\frac{4 \pi^{2}}{d^{2}}\right)^{\frac{1}{3}} H^{\prime}(0)+\frac{N_{c} d}{4 \kappa} \int_{0}^{\infty} \mathrm{d} z \frac{1}{k(z)}\left(1-\frac{H^{3}(z)}{H^{3}(0)}\right),
$$

- The trick is that $H(z)$ can be solved without knowing μ, which it is simply an overall shift in \widehat{a}_{0}, that the EOMs do not observe.
potential μ, to within numerical precision.

Thermodynamic equilibrium condition

- Thermodynamic equilibrium condition can be found from

$$
\widehat{a}_{0}(z)=\mu-\int_{z}^{\infty} \mathrm{d} z^{\prime} \widehat{a}_{0}^{\prime}\left(z^{\prime}\right), \quad \widehat{a}_{0}^{\prime}=-\frac{N_{c}}{16 \pi^{2} \kappa} \frac{1}{k(z)}\left(H^{3}(z)-H^{3}(0)\right),
$$

Solving for μ :

$$
\mu(d)=-\frac{4 \kappa}{N_{c}}\left(\frac{4 \pi^{2}}{d^{2}}\right)^{\frac{1}{3}} H^{\prime}(0)+\frac{N_{c} d}{4 \kappa} \int_{0}^{\infty} \mathrm{d} z \frac{1}{k(z)}\left(1-\frac{H^{3}(z)}{H^{3}(0)}\right),
$$

- The trick is that $H(z)$ can be solved without knowing μ, which it is simply an overall shift in \widehat{a}_{0}, that the EOMs do not observe.
- Hence, fixing d, we can calculate the corresponding chemical potential μ, to within numerical precision.

Effects on observables

Effects on observables

$$
d_{0}^{\text {bulk }}=0.436\left(\frac{M_{\mathrm{KK}}}{949 \mathrm{MeV}}\right)^{3} \mathrm{fm}^{-3}
$$

$$
d_{0}^{\mathrm{bulk}+\partial}=0.601\left(\frac{M_{\mathrm{KK}}}{949 \mathrm{MeV}}\right)^{3} \mathrm{fm}^{-3}
$$

$$
\begin{aligned}
d_{0}^{\text {bulk }} & =0.15 \mathrm{fm}^{-3} \quad \Rightarrow \quad M_{\mathrm{KK}}=665.0 \mathrm{MeV}, \\
d_{0}^{\text {bulk }+\partial} & =0.15 \mathrm{fm}^{-3} \quad \Rightarrow \quad M_{\mathrm{KK}}=597.6 \mathrm{MeV}
\end{aligned}
$$

Effects on observables

Effects on observables

Baryons from holographic instantons

Equivalence between quantization and chemical potential for isospin

- Start with Ansatz:

$$
A_{0}=G a \chi \cdot \tau a^{-1} \quad A_{i}=-\frac{H}{2} a \tau^{i} a^{-1}, \quad A_{z}=0
$$

- Perform a gauge transformation:

- Choose $b=a^{-1}$ rotating the fields A_{i} back to the standard orientation, while modifying the field A_{0} with an additional term:

- Using identity $-\mathrm{i} a^{-1} \dot{\alpha}=\frac{1}{2} \chi \cdot \tau$, we get

Equivalence between quantization and chemical potential for isospin

- Start with Ansatz:

$$
A_{0}=G a \chi \cdot \tau a^{-1} \quad A_{i}=-\frac{H}{2} a \tau^{i} a^{-1}, \quad A_{z}=0
$$

- Perform a gauge transformation:

$$
\begin{aligned}
A_{0} & \rightarrow \widetilde{A}_{0}=G b a \chi \cdot \tau a^{-1} b^{-1}-\mathrm{i} b \partial_{0} b^{-1} \\
A_{i} & \rightarrow \widetilde{A}_{i}=-\frac{H}{2} b a \tau^{i} a^{-1} b^{-1} \\
A_{z} & \rightarrow \widetilde{A}_{z}=0
\end{aligned}
$$

- Choose $b=a^{-1}$ rotating the fields A_{i} back to the standard orientation, while modifying the field A_{0} with an additional term:
- Using identity $-\mathrm{i} a^{-1} \dot{\alpha}=\frac{1}{2} \chi \cdot \tau$, we get

Equivalence between quantization and chemical potential for isospin

- Start with Ansatz:

$$
A_{0}=G a \chi \cdot \tau a^{-1} \quad A_{i}=-\frac{H}{2} a \tau^{i} a^{-1}, \quad A_{z}=0
$$

- Perform a gauge transformation:

$$
\begin{aligned}
A_{0} & \rightarrow \widetilde{A}_{0}=G b a \chi \cdot \tau a^{-1} b^{-1}-\mathrm{i} b \partial_{0} b^{-1} \\
A_{i} & \rightarrow \widetilde{A}_{i}=-\frac{H}{2} b a \tau^{i} a^{-1} b^{-1} \\
A_{z} & \rightarrow \widetilde{A}_{z}=0
\end{aligned}
$$

- Choose $b=a^{-1}$ rotating the fields A_{i} back to the standard orientation, while modifying the field A_{0} with an additional term:

$$
\widetilde{A}_{0}=G \chi \cdot \tau-\mathrm{i} a^{-1} \dot{a} \quad \widetilde{A}_{i}=-\frac{H}{2} \tau^{i}, \quad \widetilde{A}_{z}=0
$$

- Using identity $-\mathrm{i} a^{-1} \dot{\alpha}=\frac{1}{2} \chi \cdot \tau$, we get

Equivalence between quantization and chemical potential for isospin

- Start with Ansatz:

$$
A_{0}=G a \chi \cdot \tau a^{-1} \quad A_{i}=-\frac{H}{2} a \tau^{i} a^{-1}, \quad A_{z}=0
$$

- Perform a gauge transformation:

$$
\begin{aligned}
A_{0} & \rightarrow \widetilde{A}_{0}=G b a \chi \cdot \tau a^{-1} b^{-1}-\mathrm{i} b \partial_{0} b^{-1} \\
A_{i} & \rightarrow \widetilde{A}_{i}=-\frac{H}{2} b a \tau^{i} a^{-1} b^{-1} \\
A_{z} & \rightarrow \widetilde{A}_{z}=0
\end{aligned}
$$

- Choose $b=a^{-1}$ rotating the fields A_{i} back to the standard orientation, while modifying the field A_{0} with an additional term:

$$
\widetilde{A}_{0}=G \chi \cdot \tau-\mathrm{i} a^{-1} \dot{a} \quad \widetilde{A}_{i}=-\frac{H}{2} \tau^{i}, \quad \widetilde{A}_{z}=0
$$

- Using identity $-\mathrm{i} a^{-1} \dot{a}=\frac{1}{2} \chi \cdot \tau$, we get

$$
\widetilde{A}_{0}=\left(G+\frac{1}{2}\right) \chi \cdot \tau
$$

Equivalence between quantization and chemical potential for isospin

- Since $G(\infty)$ vanishes, we have

$$
\widetilde{A}_{0}\left(z \rightarrow z_{\mathrm{UV}}\right)=\frac{1}{2} \chi \cdot \tau .
$$

The boundary value of the field A_{0} is dual to an isospin chemical potential.

- Choosing $\chi=\left(0,0, \mu_{I}\right)$ and defining:

$$
\widetilde{G}(z)=\left(G(z)+\frac{1}{2}\right)
$$

- we obtain the familiar expressions for the gauge field and its boundary condition

Equivalence between quantization and chemical potential for isospin

- Since $G(\infty)$ vanishes, we have

$$
\widetilde{A}_{0}\left(z \rightarrow z_{\mathrm{UV}}\right)=\frac{1}{2} \chi \cdot \tau .
$$

The boundary value of the field A_{0} is dual to an isospin chemical potential.

- Choosing $\chi=\left(0,0, \mu_{I}\right)$ and defining:

$$
\widetilde{G}(z)=\left(G(z)+\frac{1}{2}\right),
$$

- we obtain the familiar expressions for the gauge field and its boundary condition

Equivalence between quantization and chemical potential for isospin

- Since $G(\infty)$ vanishes, we have

$$
\widetilde{A}_{0}\left(z \rightarrow z_{\mathrm{UV}}\right)=\frac{1}{2} \chi \cdot \tau .
$$

The boundary value of the field A_{0} is dual to an isospin chemical potential.

- Choosing $\chi=\left(0,0, \mu_{I}\right)$ and defining:

$$
\widetilde{G}(z)=\left(G(z)+\frac{1}{2}\right),
$$

- we obtain the familiar expressions for the gauge field and its boundary condition

$$
\widetilde{A}_{0}=\widetilde{G} \tau^{3} \mu_{I}, \quad \widetilde{A}_{0}\left(z \rightarrow z_{\mathrm{UV}}\right)=\frac{1}{2} \mu_{I} \tau^{3} .
$$

WSS and Hard-wall on the same footing

- If we fold the SS model [Gorsky-Gudnason-Krikun, PRD91, 126008 (2015)], then we can multiply the action by 2 and integrate over $z \in[0, \infty)$

$$
S \rightarrow 2 \int_{0}^{\infty} \mathrm{d} z \int \mathrm{~d}^{4} x \operatorname{tr} \mathcal{F} \wedge * \mathcal{F}+\ldots
$$

- In the hard-wall model in the baryonic phase, where the scalar only determines the onset of the baryons, we can identify

$$
L_{i}=-R_{i}=-\frac{1}{2} H(z) \tau^{i}, \quad L_{0}=R_{0}=\frac{1}{2} \hat{a}_{0}(z)
$$

- With these identifications, the SS and Hard-wall model are equivalent upon identifying

$$
\begin{equation*}
\kappa=M_{5}, \tag{3}
\end{equation*}
$$

and changing the warp factors and integration range (in hard-wall $z \in[0, L]$

- (The IR and UV are flipped in a standard notation between hard-wall and SS, but this can be turned into the same by another coordinate transformation)

WSS and Hard-wall on the same footing

- If we fold the SS model [Gorsky-Gudnason-Krikun, PRD91, 126008 (2015)], then we can multiply the action by 2 and integrate over $z \in[0, \infty)$

$$
S \rightarrow 2 \int_{0}^{\infty} \mathrm{d} z \int \mathrm{~d}^{4} x \operatorname{tr} \mathcal{F} \wedge * \mathcal{F}+\ldots
$$

- In the hard-wall model in the baryonic phase, where the scalar only determines the onset of the baryons, we can identify

$$
L_{i}=-R_{i}=-\frac{1}{2} H(z) \tau^{i}, \quad L_{0}=R_{0}=\frac{1}{2} \widehat{a}_{0}(z) .
$$

With these identifications, the SS and Hard-wall model are equivalent upon identifying

$$
\kappa=M_{5}
$$

and changing the warp factors and integration range (in hard-wall $z \in[0, L]$
(The IR and UV are flipped in a standard notation between hard-wall and $S S$, but this can be turned into the same by another coordinate transformation)

WSS and Hard-wall on the same footing

- If we fold the SS model [Gorsky-Gudnason-Krikun, PRD91, 126008 (2015)], then we can multiply the action by 2 and integrate over $z \in[0, \infty)$

$$
S \rightarrow 2 \int_{0}^{\infty} \mathrm{d} z \int \mathrm{~d}^{4} x \operatorname{tr} \mathcal{F} \wedge * \mathcal{F}+\ldots
$$

- In the hard-wall model in the baryonic phase, where the scalar only determines the onset of the baryons, we can identify

$$
L_{i}=-R_{i}=-\frac{1}{2} H(z) \tau^{i}, \quad L_{0}=R_{0}=\frac{1}{2} \widehat{a}_{0}(z) .
$$

- With these identifications, the SS and Hard-wall model are equivalent upon identifying

$$
\begin{equation*}
\kappa=M_{5}, \tag{3}
\end{equation*}
$$

and changing the warp factors and integration range (in hard-wall $z \in[0, L]$

WSS and Hard-wall on the same footing

- If we fold the SS model [Gorsky-Gudnason-Krikun, PRD91, 126008 (2015)], then we can multiply the action by 2 and integrate over $z \in[0, \infty)$

$$
S \rightarrow 2 \int_{0}^{\infty} \mathrm{d} z \int \mathrm{~d}^{4} x \operatorname{tr} \mathcal{F} \wedge * \mathcal{F}+\ldots
$$

- In the hard-wall model in the baryonic phase, where the scalar only determines the onset of the baryons, we can identify

$$
L_{i}=-R_{i}=-\frac{1}{2} H(z) \tau^{i}, \quad L_{0}=R_{0}=\frac{1}{2} \widehat{a}_{0}(z) .
$$

- With these identifications, the SS and Hard-wall model are equivalent upon identifying

$$
\begin{equation*}
\kappa=M_{5}, \tag{3}
\end{equation*}
$$

and changing the warp factors and integration range (in hard-wall $z \in[0, L]$

- (The IR and UV are flipped in a standard notation between hard-wall and SS, but this can be turned into the same by another coordinate transformation)

Symmetry energy

- Using the Ansatz

$$
\mathcal{A}_{0}=G a \chi \cdot \tau a^{-1}+\frac{1}{2} \widehat{a}_{0}, \quad \mathcal{A}_{i}=-\frac{1}{2}\left(H a \tau^{i} a^{-1}+L \chi^{i}\right), \quad \mathcal{A}_{z}=0
$$

- The action is

Symmetry energy

- Using the Ansatz

$$
\mathcal{A}_{0}=G a \chi \cdot \tau a^{-1}+\frac{1}{2} \widehat{a}_{0}, \quad \mathcal{A}_{i}=-\frac{1}{2}\left(H a \tau^{i} a^{-1}+L \chi^{i}\right), \quad \mathcal{A}_{z}=0
$$

- The action is

$$
\begin{aligned}
S_{\mathrm{YM}}= & -\kappa \int \mathrm{d}^{4} x \int \mathrm{~d} z\left[-8 h H^{2}\left(G+\frac{1}{2}\right)^{2} \chi \cdot \chi+3 h H^{4}\right. \\
& \left.+k\left[\left(L^{\prime}\right)^{2}-4\left(G^{\prime}\right)^{2}+8(K H)^{2}\right] \chi \cdot \chi+3 k\left(H^{\prime}\right)^{2}-k\left(\hat{a}_{0}^{\prime}\right)^{2}\right] \\
S_{\mathrm{CS}}= & -\frac{N_{c}}{8 \pi^{2}} \int \mathrm{~d}^{4} x \int \mathrm{~d} z \hat{a}_{0} H^{\prime} H^{2}+\frac{N_{c}}{4 \pi^{2}} \int \mathrm{~d}^{4} x \int \mathrm{~d} z\left(L H^{\prime}-L^{\prime} G H\right) H \chi \cdot \chi
\end{aligned}
$$

Symmetry energy

- Quantizing the isospin Hamiltonian

$$
\begin{aligned}
H & =\frac{1}{2} V \Lambda \chi \cdot \chi+V U \\
& =2 V \Lambda \dot{a}_{m}^{2}+V U \\
& =\frac{\pi_{m}^{2}}{8 V \Lambda}+V U \\
& =\frac{I(I+1)}{2 V \Lambda}+V U
\end{aligned}
$$

with $\pi_{m}=\frac{\partial H}{\partial \dot{a}_{m}}=4 V \Lambda \dot{a}_{m}$

- The symmetry energy can be read off:

Symmetry energy

- Quantizing the isospin Hamiltonian

$$
\begin{aligned}
H & =\frac{1}{2} V \Lambda \chi \cdot \chi+V U \\
& =2 V \Lambda \dot{a}_{m}^{2}+V U \\
& =\frac{\pi_{m}^{2}}{8 V \Lambda}+V U \\
& =\frac{I(I+1)}{2 V \Lambda}+V U
\end{aligned}
$$

with $\pi_{m}=\frac{\partial H}{\partial \dot{a}_{m}}=4 V \Lambda \dot{a}_{m}$

- The inertia and potential energy are

$$
\begin{aligned}
\Lambda & =2 \kappa \int \mathrm{~d} z\left[2 h H^{2}(2 G+1)^{2}+k\left(\left(L^{\prime}\right)^{2}+4\left(G^{\prime}\right)^{2}\right)\right] \\
U & =\kappa \int \mathrm{d} z\left[3 h H^{4}+3 k\left(H^{\prime}\right)^{2}+k\left(\widehat{a}_{0}^{\prime}\right)^{2}\right]
\end{aligned}
$$

- The symmetry energy can be read off:

Symmetry energy

- Quantizing the isospin Hamiltonian

$$
\begin{aligned}
H & =\frac{1}{2} V \Lambda \chi \cdot \chi+V U \\
& =2 V \Lambda \dot{a}_{m}^{2}+V U \\
& =\frac{\pi_{m}^{2}}{8 V \Lambda}+V U \\
& =\frac{I(I+1)}{2 V \Lambda}+V U
\end{aligned}
$$

with $\pi_{m}=\frac{\partial H}{\partial \dot{a}_{m}}=4 V \Lambda \dot{a}_{m}$

- The inertia and potential energy are

$$
\begin{aligned}
\Lambda & =2 \kappa \int \mathrm{~d} z\left[2 h H^{2}(2 G+1)^{2}+k\left(\left(L^{\prime}\right)^{2}+4\left(G^{\prime}\right)^{2}\right)\right] \\
U & =\kappa \int \mathrm{d} z\left[3 h H^{4}+3 k\left(H^{\prime}\right)^{2}+k\left(\widehat{a}_{0}^{\prime}\right)^{2}\right]
\end{aligned}
$$

- The symmetry energy can be read off:

$$
\begin{aligned}
\frac{H}{A} & =\frac{U}{\rho}+S(\rho) \beta^{2}+\mathcal{O}\left(V^{-1}\right) \\
S(\rho) & =\frac{\rho}{8 \Lambda}
\end{aligned}
$$

Symmetry energy with homogeneous Ansatz in WSS (and HW)

a) WSS: $M_{\text {кк }} \in[300,1200] \mathrm{MeV}$, HW: $\mathrm{L}^{-1} \in[110,320] \mathrm{MeV}$, b) WSS: $M_{\text {KK }} \in[370,949] \mathrm{MeV}$

$$
S(\rho)=\frac{\rho}{8 \Lambda}, \quad \Lambda=2 \kappa \int \mathrm{~d} z\left[2 h H^{2}(2 G+1)^{2}+k\left(\left(L^{\prime}\right)^{2}+4\left(G^{\prime}\right)^{2}\right)\right] .
$$

[Bartolini-Gudnason, 2209.14309]

Symmetry energy with homogeneous Ansatz in WSS

Baryon spectra in the soliton picture

- In bottom-up holography, we can stick in a field in a certain (e.g. tachyon) background and read off observables.
- With the SS soliton, the excited nucleon and nuclei spectra becomes more complicated
- In principle we could quantize all low-energy modes to obtain nuclear spectra
- See vibrations website: http://www1.maths.leeds.ac.uk/pure/geometry/SkyrmionVibrations/
- Many local vacua makes the semi-classical quantization even more involved
- See the smörgaisbord website: http://bjarke.gudnason.net/smoergaasbord/

Baryon spectra in the soliton picture

- In bottom-up holography, we can stick in a field in a certain (e.g. tachyon) background and read off observables.
- With the SS soliton, the excited nucleon and nuclei spectra becomes more complicated
- In principle we could quantize all low-energy modes to obtain nuclear spectra
- See vibrations website:
http://www1.maths.leeds.ac.uk/pure/geometry/SkyrmionVibrations/
- Many local vacua makes the semi-classical quantization even more involved
- See the smörgåsbord website: http://bjarke.gudnason.net/smoergaasbord/

Baryon spectra in the soliton picture

- In bottom-up holography, we can stick in a field in a certain (e.g. tachyon) background and read off observables.
- With the SS soliton, the excited nucleon and nuclei spectra becomes more complicated
- In principle we could quantize all low-energy modes to obtain nuclear spectra
- See vibrations website:
http://www1.maths.leeds.ac.uk/pure/geometry/SkyrmionVibrations/
- Many local vacua makes the semi-classical quantization even more involved
- See the smörgåsbord website: http://bjarke.gudnason.net/smoergaasbord/

Baryon spectra in the soliton picture

- In bottom-up holography, we can stick in a field in a certain (e.g. tachyon) background and read off observables.
- With the SS soliton, the excited nucleon and nuclei spectra becomes more complicated
- In principle we could quantize all low-energy modes to obtain nuclear spectra
- See vibrations website: http://www1.maths.leeds.ac.uk/pure/geometry/SkyrmionVibrations/
- Many local vacua makes the semi-classical quantization even more
involved
- See the smörgåsbord website:
http://bjarke.gudnason.net/smoergaasbord/

Baryon spectra in the soliton picture

- In bottom-up holography, we can stick in a field in a certain (e.g. tachyon) background and read off observables.
- With the SS soliton, the excited nucleon and nuclei spectra becomes more complicated
- In principle we could quantize all low-energy modes to obtain nuclear spectra
- See vibrations website: http://www1.maths.leeds.ac.uk/pure/geometry/SkyrmionVibrations/
- Many local vacua makes the semi-classical quantization even more involved
- See the smörgåsbord website: http://bjarke.gudnason.net/smoergaasbord/

Baryon spectra in the soliton picture

- In bottom-up holography, we can stick in a field in a certain (e.g. tachyon) background and read off observables.
- With the SS soliton, the excited nucleon and nuclei spectra becomes more complicated
- In principle we could quantize all low-energy modes to obtain nuclear spectra
- See vibrations website: http://www1.maths.leeds.ac.uk/pure/geometry/SkyrmionVibrations/
- Many local vacua makes the semi-classical quantization even more involved
- See the smörgåsbord website: http://bjarke.gudnason.net/smoergaasbord/

Which is the correct (dual) description of low-energy QCD?

- Weinberg says: if you get the symmetries right, then the theory is the right theory

- In that sense, the chiral Lagrangian is correct
- But this quickly becomes insufficient, unless we reliably can determine the LECs

Which is the correct (dual) description of low-energy QCD?

- Weinberg says: if you get the symmetries right, then the theory is the right theory

- In that sense, the chiral Lagrangian is correct

But this quickly becomes insufficient, unless we reliably can determine the LECs

Which is the correct (dual) description of low-energy QCD?

- Weinberg says: if you get the symmetries right, then the theory is the right theory

- In that sense, the chiral Lagrangian is correct
- But this quickly becomes insufficient, unless we reliably can determine the LECs

Which is the correct (dual) description of low-energy QCD?

- In [Bijnens-Gudnason-Yu-Zhang, JHEP05, 061 (2023)] we have determined the pure pion terms up to operator dimension 16 (and also for any other spacetime dimension ≤ 12 as well as other $\mathrm{O}(N)$ groups)

n_{d}	\# EFT terms (in 3+1 dim)			
2	1	0	0	0
3	0	0	0	0
4	2	0	0	0
5	0	0	0	0
6	5	0	1	0
7	0	0	0	0
8	16	2	4	0
9	0	0	0	0
10	55	14	27	11
11	0	0	0	0
12	253	115	160	99
13	0	0	0	0
14	1260	806	1021	779
15	0	0	0	0
16	7140	5564	6379	5426

Which is the correct (dual) description of low-energy QCD?

- So the problem is to determine the many many LECs
- One way is to assume hidden local symmetry, where

$$
\begin{equation*}
S U\left(N_{f}\right)_{V} \subset S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R} \tag{4}
\end{equation*}
$$

becomes a local (gauged) group

- This is essentially already built-in in the SS model
- However, the symmetry group of SS is larger and hence gives numerically slightly different results, with respect to HLS
- One could contemplate that a different background gives rise to HLS
- Notice that SS, HW, HLS and the Sutcliffe model all determine all the LECs (up to the scale and 't Hooft coupling and their analogues in the other models), but all give different LECs
- Determining which background is correct amounts to determining with high precision the correct values of the LECs

Which is the correct (dual) description of low-energy QCD?

- So the problem is to determine the many many LECs
- One way is to assume hidden local symmetry, where

$$
\begin{equation*}
S U\left(N_{f}\right)_{V} \subset S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R} \tag{4}
\end{equation*}
$$

becomes a local (gauged) group

- This is essentially already built-in in the SS model
- However, the symmetry group of SS is larger and hence gives numerically slightly different results, with respect to HLS
- One could contemplate that a different background gives rise to HLS
- Notice that SS, HW, HLS and the Sutcliffe model all determine all the LECs (up to the scale and 't Hooft coupling and their analogues in the other models), but all give different LECs
- Determining which background is correct amounts to determining with high precision the correct values of the LECs

Which is the correct (dual) description of low-energy QCD?

- So the problem is to determine the many many LECs
- One way is to assume hidden local symmetry, where

$$
\begin{equation*}
S U\left(N_{f}\right)_{V} \subset S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R} \tag{4}
\end{equation*}
$$

becomes a local (gauged) group

- This is essentially already built-in in the SS model
- However, the symmetry group of SS is larger and hence gives numerically slightly different results, with respect to HLS
- One could contemplate that a different background gives rise to HLS
- Notice that SS, HW, HLS and the Sutcliffe model all determine all the LECs (up to the scale and 't Hooft coupling and their analogues in the other models), but all give different LECs
- Determining which background is correct amounts to determining with high precision the correct values of the LECs

Which is the correct (dual) description of low-energy QCD?

- So the problem is to determine the many many LECs
- One way is to assume hidden local symmetry, where

$$
\begin{equation*}
S U\left(N_{f}\right)_{V} \subset S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R} \tag{4}
\end{equation*}
$$

becomes a local (gauged) group

- This is essentially already built-in in the SS model
- However, the symmetry group of SS is larger and hence gives numerically slightly different results, with respect to HLS
- One could contemplate that a different background gives rise to HLS
- Notice that SS, HW, HLS and the Sutcliffe model all determine all the LECs (up to the scale and 't Hooft coupling and their analogues in the other models), but all give different LECs
- Determining which background is correct amounts to determining with high precision the correct values of the LECs

Which is the correct (dual) description of low-energy QCD?

- So the problem is to determine the many many LECs
- One way is to assume hidden local symmetry, where

$$
\begin{equation*}
S U\left(N_{f}\right)_{V} \subset S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R} \tag{4}
\end{equation*}
$$

becomes a local (gauged) group

- This is essentially already built-in in the SS model
- However, the symmetry group of SS is larger and hence gives numerically slightly different results, with respect to HLS
- One could contemplate that a different background gives rise to HLS the LECs (up to the scale and 't Hooft coupling and their analogues in the other models), but all give different LECs
Determining which background is correct amounts to determining with high precision the correct values of the LECs

Which is the correct (dual) description of low-energy QCD?

- So the problem is to determine the many many LECs
- One way is to assume hidden local symmetry, where

$$
\begin{equation*}
S U\left(N_{f}\right)_{V} \subset S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R} \tag{4}
\end{equation*}
$$

becomes a local (gauged) group

- This is essentially already built-in in the SS model
- However, the symmetry group of SS is larger and hence gives numerically slightly different results, with respect to HLS
- One could contemplate that a different background gives rise to HLS
- Notice that SS, HW, HLS and the Sutcliffe model all determine all the LECs (up to the scale and 't Hooft coupling and their analogues in the other models), but all give different LECs
with high precision the correct values of the LECs

Which is the correct (dual) description of low-energy QCD?

- So the problem is to determine the many many LECs
- One way is to assume hidden local symmetry, where

$$
\begin{equation*}
S U\left(N_{f}\right)_{V} \subset S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R} \tag{4}
\end{equation*}
$$

becomes a local (gauged) group

- This is essentially already built-in in the SS model
- However, the symmetry group of SS is larger and hence gives numerically slightly different results, with respect to HLS
- One could contemplate that a different background gives rise to HLS
- Notice that SS, HW, HLS and the Sutcliffe model all determine all the LECs (up to the scale and 't Hooft coupling and their analogues in the other models), but all give different LECs
- Determining which background is correct amounts to determining with high precision the correct values of the LECs

Chern says physics is geometry

$$
\begin{aligned}
& \text { 物理几何是一嫁 } \\
& \text { 華同推手到天涯 } \\
& \text {-黑洞革梀寝奥秘。 } \\
& \text { 納維連絡織鉑霜 } \\
& \text { 進化方程挀立異 } \\
& \text { 对偶曲率瞬息空 } \\
& \text { 畴祘竟有天人用 } \\
& \text { 拈花一笑不言中 }
\end{aligned}
$$

Shiing Shen Chern

Chern says physics is geometry

$$
\begin{aligned}
& \text { 物理几何是一家 } \\
& \text { 共同携手到天涯 } \\
& \text { 黑洞单极穷奥秘 } \\
& \text { 纤维连络织锦霞 } \\
& \text { 进化方程孤立异 } \\
& \text { 对偶曲率瞬息空 } \\
& \text { 畴祘竟有天人用 } \\
& \text { 拈花一笑不言中 }
\end{aligned}
$$

Shiing Shen Chern

Chern says physics is geometry

Physics and geometry are one family.
Together and holding hands they roam
to the limits of outer space.
Black hole and monopole exhaust
the secret of myths;
Fiber and connections weave to interlace
the roseate clouds.
Evolution equations describe solitons;
Dual curvatures defines instantons.
Surprisingly, Math. has earned
its rightful place
for man and in the sky;
Fondling flowers with a smile - just wish
nothing is said!

- Shiing-Shen Chern
A. Jackson and D. Kotschick, Notices of the AMS, 457 (1998)

Perhaps QCD is just geometry?!

Outlook/open problems

- How to systematically study and converge to the correct bulk geometry describing real world QCD?
- Using deep learning? [Hashimoto-Sugishita-Tanaka-Tomiya, PRD98, 046019 (2018)]
- How to systematically improve holographic QCD?
- How to improve the finite/large density description, instead of using a homogeneous Ansatz?
- Is the Chern-Simons term the right one? [Lau-Sugimoto, PRD95, 126007 (2017)]
- For a list of known problems with many holographic QCD models, see [Aoki-Hashimoto-Tizuka, Rept.Prog.Phys.76, 104301 (2013)], section 2.2
- Is the lack of asymptotic freedom going to be a problem for the low-energy effective theory?

Outlook/open problems

- How to systematically study and converge to the correct bulk geometry describing real world QCD?
- Using deep learning? [Hashimoto-Sugishita-Tanaka-Tomiya, PRD98, 046019 (2018)]
- How to systematically improve holographic QCD?
- How to improve the finite/large density description, instead of using a homogeneous Ansatz?
- Is the Chern-Simons term the right one? [Lau-Sugimoto, PRD95, 126007 (2017)]
- For a list of known problems with many holographic QCD models, see [Aoki-Hashimoto-Tizuka, Rept.Prog.Phys.76, 104301 (2013)], section 2.2
- Is the lack of asymptotic freedom going to be a problem for the low-energy effective theory?

Outlook/open problems

- How to systematically study and converge to the correct bulk geometry describing real world QCD?
- Using deep learning? [Hashimoto-Sugishita-Tanaka-Tomiya, PRD98, 046019 (2018)]
- How to systematically improve holographic QCD?
$1 / \lambda$ corrections? (notice that the liquid-drop-like theory term appears as $1 / \lambda$ after integrating out the vectors) Beyond the 8 -branes being probe branes? α^{\prime} corrections?
- How to improve the finite/large density description, instead of using a homogeneous Ansatz?
- Is the Chern-Simons term the right one? [Lau-Sugimoto, PRD95, 126007 (2017)]
- For a list of known problems with many holographic QCD models, see [Aoki-Hashimoto-Tizuka, Rept.Prog.Phys.76, 104301 (2013)], section 2.2
- Is the lack of asymptotic freedom going to be a problem for the low-energy effective theory?

Outlook/open problems

- How to systematically study and converge to the correct bulk geometry describing real world QCD?
- Using deep learning? [Hashimoto-Sugishita-Tanaka-Tomiya, PRD98, 046019 (2018)]
- How to systematically improve holographic QCD?
- $1 / N_{c}$ corrections?
/ λ corrections? (notice that the liquid-drop-like theory term appears as
$1 / \lambda$ after integrating out the vectors)
Beyond the 8 -branes being probe branes? - α^{\prime} corrections?
- How to improve the finite/large density description, instead of using a homogeneous Ansatz?
- Is the Chern-Simons term the right one? [Lau-Sugimoto, PRD95, 126007 (2017)]
- For a list of known problems with many holographic QCD models, see [Aoki-Hashimoto-Iizuka, Rept.Prog.Phys.76, 104301 (2013)], section 2.2

Is the lack of asymptotic freedom going to be a problem for the low-energy effective theory?

Outlook/open problems

- How to systematically study and converge to the correct bulk geometry describing real world QCD?
- Using deep learning? [Hashimoto-Sugishita-Tanaka-Tomiya, PRD98, 046019 (2018)]
- How to systematically improve holographic QCD?
- $1 / N_{c}$ corrections?
- $1 / \lambda$ corrections? (notice that the liquid-drop-like theory term appears as $1 / \lambda$ after integrating out the vectors)

[^0]
Outlook/open problems

- How to systematically study and converge to the correct bulk geometry describing real world QCD?
- Using deep learning? [Hashimoto-Sugishita-Tanaka-Tomiya, PRD98, 046019 (2018)]
- How to systematically improve holographic QCD?
- $1 / N_{c}$ corrections?
- $1 / \lambda$ corrections? (notice that the liquid-drop-like theory term appears as $1 / \lambda$ after integrating out the vectors)
- Beyond the 8 -branes being probe branes?
- How to improve the finite/large density description, instead of using a homogeneous Ansatz?
- Is the Chern-Simons term the right one? [Lau-Sugimoto, PRD95, 126007 (2017)]
- For a list of known problems with many holographic QCD models, see [Aoki-Hashimoto-Iizuka, Rept.Prog.Phys.76, 104301 (2013)], section 2.2

Is the lack of asymptotic freedom going to be a problem for the low-energy effective theory?

Outlook/open problems

- How to systematically study and converge to the correct bulk geometry describing real world QCD?
- Using deep learning? [Hashimoto-Sugishita-Tanaka-Tomiya, PRD98, 046019 (2018)]
- How to systematically improve holographic QCD?
- $1 / N_{c}$ corrections?
- $1 / \lambda$ corrections? (notice that the liquid-drop-like theory term appears as $1 / \lambda$ after integrating out the vectors)
- Beyond the 8 -branes being probe branes?
- α^{\prime} corrections?
- How to improve the finite/large density description, instead of using a homogeneous Ansatz?
- Is the Chern-Simons term the right one? [Lau-Sugimoto, PRD95, 126007 (2017)]
- For a list of known problems with many holographic QCD models, see [Aoki-Hashimoto-Iizuka, Rept.Prog.Phys.76, 104301 (2013)], section 2.2

Is the lack of asymptotic freedom going to be a problem for the low-energy effective theory?

Outlook/open problems

- How to systematically study and converge to the correct bulk geometry describing real world QCD?
- Using deep learning? [Hashimoto-Sugishita-Tanaka-Tomiya, PRD98, 046019 (2018)]
- How to systematically improve holographic QCD?
- $1 / N_{c}$ corrections?
- $1 / \lambda$ corrections? (notice that the liquid-drop-like theory term appears as $1 / \lambda$ after integrating out the vectors)
- Beyond the 8 -branes being probe branes?
- α^{\prime} corrections?
- How to improve the finite/large density description, instead of using a homogeneous Ansatz?

Outlook/open problems

- How to systematically study and converge to the correct bulk geometry describing real world QCD?
- Using deep learning? [Hashimoto-Sugishita-Tanaka-Tomiya, PRD98, 046019 (2018)]
- How to systematically improve holographic QCD?
- $1 / N_{c}$ corrections?
- $1 / \lambda$ corrections? (notice that the liquid-drop-like theory term appears as $1 / \lambda$ after integrating out the vectors)
- Beyond the 8 -branes being probe branes?
- α^{\prime} corrections?
- How to improve the finite/large density description, instead of using a homogeneous Ansatz?
- Is the Chern-Simons term the right one? [Lau-Sugimoto, PRD95, 126007 (2017)]
For a list of known problems with many holographic QCD models, see
2.2

Is the lack of asymptotic freedom going to be a problem for the low-energy effective theory?

Outlook/open problems

- How to systematically study and converge to the correct bulk geometry describing real world QCD?
- Using deep learning? [Hashimoto-Sugishita-Tanaka-Tomiya, PRD98, 046019 (2018)]
- How to systematically improve holographic QCD?
- $1 / N_{c}$ corrections?
- $1 / \lambda$ corrections? (notice that the liquid-drop-like theory term appears as $1 / \lambda$ after integrating out the vectors)
- Beyond the 8 -branes being probe branes?
- α^{\prime} corrections?
- How to improve the finite/large density description, instead of using a homogeneous Ansatz?
- Is the Chern-Simons term the right one? [Lau-Sugimoto, PRD95, 126007 (2017)]
- For a list of known problems with many holographic QCD models, see [Aoki-Hashimoto-Iizuka, Rept.Prog.Phys.76, 104301 (2013)], section 2.2

Is the lack of asymptotic freedom going to be a problem for the low-energy effective theory?

Outlook/open problems

- How to systematically study and converge to the correct bulk geometry describing real world QCD?
- Using deep learning? [Hashimoto-Sugishita-Tanaka-Tomiya, PRD98, 046019 (2018)]
- How to systematically improve holographic QCD?
- $1 / N_{c}$ corrections?
- $1 / \lambda$ corrections? (notice that the liquid-drop-like theory term appears as $1 / \lambda$ after integrating out the vectors)
- Beyond the 8 -branes being probe branes?
- α^{\prime} corrections?
- How to improve the finite/large density description, instead of using a homogeneous Ansatz?
- Is the Chern-Simons term the right one? [Lau-Sugimoto, PRD95, 126007 (2017)]
- For a list of known problems with many holographic QCD models, see [Aoki-Hashimoto-Iizuka, Rept.Prog.Phys.76, 104301 (2013)], section 2.2
- Is the lack of asymptotic freedom going to be a problem for the low-energy effective theory?

Mange tak！ Grazie mille！非常感谢！

Backup slides

Solution at $\lambda=16.63$

Full hydro simulation of merger

[^0]: Beyond the 8-branes being probe branes?
 x^{\prime} corrections?
 How to improve the finite/large density description, instead of using a homogeneous Ansatz?

 - Is the Chern-Simons term the right one? [Lau-Sugimoto, PRD95, 126007 (2017)]
 - For a list of known problems with many holographic QCD models, see [Aoki-Hashimoto-Iizuka, Rept.Prog.Phys.76, 104301 (2013)], section 2.2

 Is the lack of asymptotic freedom going to be a problem for the low-energy effective theory?

