November 2023

# $\theta$ -angle physics of 2-color QCD

Fixed baryon charge and Near Conformal Dynamics Based on [1] and [2] in collaboration with J. Bersini, F. Sannino and M. Torres

Alessandra D'Alise

🔀 alessandra.dalise@unina.it

📢 Alessandra D'Alise and Clelia Gambardella

🏛 Università degli studi di Napoli "Federico II"

Journal Club November 2023











*θ*-angle physics of 2-color QCD

 Journal Club November 2023
 *φ* Alessandra D'Alise and Clelia Gambardella

#### What we are going to talk about?

goal: we want to study QCD at finite baryon density

why?: we want to enrich and know more about QCD thermodynamics

problem: Finite density QCD cannot be efficiently studied on lattice due to the sign problem: the determinant of the Dirac operator is not real

solution: 2-color QCD: no sign problem due to the pseudo-reality of the quark representations







 2-color QCD:
 2-color QCD and θ-angle:
 SBP Dynamics occore
 NC 2-color QCD occore
 Charging NC 2-color QCD occore

#### What is the main novelty of our work?



#### OLD:

- 2-color QCD at fixed baryon charge for general N<sub>f</sub> [3]
- 2-color QCD at fixed baryon and isospin charge for general  $N_f$  [4]

#### NEW [1]:

study of the 2-color QCD EFT at fixed baryon charge with the inclusion of the topological term







## $\theta\text{-angle}$ physics

The analysis of vacuum structure in non-abelian gauge theories allows to add

 $\mathcal{L}_{\theta} = \theta \frac{g^2}{32\pi^2} F_a^{\mu\nu} \tilde{F}_{a\mu\nu} = \theta q(x) \quad \text{where} \quad q(x) \quad \text{is the topological charge}$ (1)

• this term violates CP symmetry: strong CP problem

 $\boldsymbol{\mathsf{Q}}$  What is its effect?

Due to chiral transformations, the CP violation depends on the more physical

 $\bar{\theta} = \theta - \operatorname{argdet} M$  where M is the quark mass.

The experiments give:  $\bar{\theta} < 10^{-10}$ 







(2)

## In this presentation we will talk about

- **2**-color QCD:
- $\succ\_$  From fondamental theory to EFT
- **2**-color QCD and  $\theta$ -angle:
- >\_ Vacuum structure
- O Symmetry breaking pattern
- O Solving the dynamics
- $\searrow$  Ground State Energy
- ⊘ Near-conformal 2-color QCD
- O Charging near-conformal 2-color QCD
- **Ø** Backup slides







 2-color QCD:
 2-color QCD and θ-angle:
 SBP Dynamics occore
 NC 2-color QCD occore
 Charging NC 2-color QCD occore

# FROM FUNDAMENTAL THEORY TO THE EFT







β-angle physics of 2-color QCD
 Journal Club November 2023
 Alessandra D'Alise and Clelia Gambardella

NC 2-color QCD Charging NC 2-color QCD 2-color QCD: 2-color QCD and  $\theta$ -angle: SBP Dynamics From fondamental theory to EFT

#### $QC_2D$ Lagrangian in the Chirally Broken Phase

$$\mathcal{L} = -\frac{1}{4g^2} G^{a}_{\mu\nu} G^{\mu\nu}_{a} + \sum_{f}^{N_f} i \,\bar{\psi}_f \gamma^{\mu} D_{\mu} \psi_f = -\frac{1}{4g^2} G^{a}_{\mu\nu} G^{\mu\nu}_{a} + i q^{\dagger}_L \bar{\sigma}^{\mu} D_{\mu} q_L + i q^{\dagger}_R \sigma^{\mu} D_{\mu} q_R \,, \quad (3)$$

When  $N_c = 2$  the fundamental representation is pseudo-real  $(\tau_a^* = \tau_a^T = -\tau_2 \tau_a \tau_2)$  and the quantity  $\tilde{q} = i\sigma_2 \tau_2 q_R^*$  transforms as a left quark, thus

$$(q_L, q_R) \rightarrow (q, \tilde{q}) \equiv Q^T$$
.

The global symmetry group

 $U(N_f)_L \times U(N_f)_R$  is enlarged to  $|U(2N_f) \sim SU(2N_f) \times U(1)_A|$ .

Introducing a quark mass term

$$\bar{\psi}\psi = \mathbf{q}_{\mathrm{R}}^{\dagger}\mathbf{q}_{\mathrm{L}} + \mathbf{q}_{\mathrm{L}}^{\dagger}\mathbf{q}_{\mathrm{R}} = \frac{1}{2}\mathbf{Q}^{\mathrm{T}}\sigma_{2}\tau_{2} \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}\mathbf{Q} + \mathrm{h.c.}$$
(4)

the global group  $SU(2N_f)$  is further broken to  $Sp(2N_f)$ .







 $\blacksquare$   $\theta$ -angle physics of 2-color QCD

Journal Club November 2023

Alessandra D'Alise and Clelia Gambardella

 2-color QCD:
 2-color QCD and θ-angle:
 SBP Dynamics
 NC 2-color QCD Charging NC 2-color QCD 000

 000
 000
 0000
 0000
 000

 From fondamental theory to EFT
 000
 000
 000

Two-color QCD Lagrangian for  $N_{\rm f}$  Dirac fermions at the fundamental level:

$$\mathcal{L} = -\frac{1}{4g^2} G^{a}_{\mu\nu} G^{\mu\nu}_{a} + i\bar{\mathcal{Q}}\bar{\sigma}^{\mu} \Big[ \partial_{\mu} - iG^{a}_{\mu} \frac{\tau_{a}}{2} \Big] \mathcal{Q} - \frac{1}{2} m_{q} \mathcal{Q}^{T} \tau_{2} E \mathcal{Q} + h.c. , \qquad (5)$$

$$\label{eq:constraint} \begin{array}{ll} \text{Two-spinor field} \quad \mathcal{Q} = \left( \begin{array}{c} q_L \\ i\sigma_2\tau_2q_R^* \end{array} \right) \,, \quad \text{Dirac mass} \quad E = \left( \begin{array}{c} 0 & 1 \\ -1 & 0 \end{array} \right) \otimes \mathbb{1}_{N_f} \end{array}$$

In the Chirally broken phase, the Goldstones' dynamics is described by the phenomenological Lagrangian

$$\mathcal{L}_{\rm eff} = \nu^2 {\rm tr}[\partial_\mu \Sigma \partial^\mu \Sigma^\dagger] + {\rm m}_\pi^2 \nu^2 {\rm tr}[\mathcal{M}\Sigma + \mathcal{M}^\dagger \Sigma^\dagger], \quad \mathcal{M} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \otimes \mathbb{1}_{\rm N_f}. \tag{6}$$

where

$$\Sigma = e^{i\Pi/\nu}$$
,  $\Pi = \pi^{a}T_{a}$ ,  $T_{a} = broken generators$ 

and

$$\Sigma \ \rightarrow \ U\Sigma U^T \quad {\rm with} \quad U \in {\rm SU}(2N_f) \,.$$







 
 θ-angle physics of 2-color QCD

 Journal Club November 2023
 Alessandra D'Alise and Clelia Gambardella

#### Quantum Field Theories at fixed charge

Fixing a charge means to impose a constrain which breaks Lorentz invariance:

$$Q = \int d^{d-1}x j^0 = \bar{Q} \quad \Rightarrow \quad \hat{\mathcal{L}} = \mathcal{L} - \mu Q \tag{7}$$

where  $\mu$  is the chemical potential. In the present case the fixed baryon charge is associated to the generator

$$B = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \otimes \mathbb{1}_{N_{f}}.$$
(8)

At the fundamental level this can be done introducing a long derivative:

$$\partial_{\mu} \rightarrow \partial_{\mu} - i\mu B_{\mu}, \quad B_{\mu} = \delta^{0}_{\mu} B$$
(9)

which at the effective level means

$$\partial_{\mu}\Sigma \to D_{\mu}\Sigma = \partial_{\mu}\Sigma - i\mu_{B}[B_{\mu}\Sigma + \Sigma B_{\mu}].$$
 (10)







 
 θ-angle physics of 2-color QCD

 Journal Club November 2023
 Alessandra D'Alise and Clelia Gambardella
 
 2-color QCD:
 2-color QCD and θ-angle:
 SBP Dynamics
 NC 2-color QCD Charging NC 2-color QCD 000

 000
 000
 000
 000
 000

 From fondamental theory to EFT
 000
 000
 000

#### The charged Lagrangian results to be

$$\mathcal{L}_{\mathrm{eff},\mu} = \nu^2 \mathrm{tr}[\partial_\mu \Sigma \partial^\mu \Sigma^\dagger] + 4i\nu^2 \mu_\mathrm{B} \mathrm{tr}[\mathrm{B}\Sigma^\dagger \partial_0 \Sigma] + \mathrm{m}_\pi^2 \nu^2 \mathrm{tr}[\mathcal{M}\Sigma + \mathcal{M}^\dagger \Sigma^\dagger] + 2\nu^2 \mu_\mathrm{B}^2 \mathrm{tr}[\Sigma \mathrm{B}\Sigma^\dagger \mathrm{B} + \mathrm{B}^2].$$
(11)

In the end we add the topological sector, which at the fundamental level is given by:

$$\mathcal{L}_{\theta} = \theta \frac{g^2}{32\pi^2} F_{a}^{\mu\nu} \tilde{F}_{a\mu\nu} = \theta q(x) \,. \tag{12}$$

where the topological charge q(x) is related to the axial anomaly

$$\partial_{\mu} J_5^{\mu} = 4 N_f q(\mathbf{x}) \,. \tag{13}$$

#### At the effective level this corresponds to the term

$$\mathcal{L}_{\theta} = -\mathrm{a}\nu^{2} \left(\theta - \frac{\mathrm{i}}{4} \mathrm{Tr}\{\log \Sigma - \log \Sigma^{\dagger}\}\right)^{2}.$$
 (14)







 $\theta$  -angle physics of 2-color QCD  $\blacksquare$  Journal Club November 2023

📢 Alessandra D'Alise and Clelia Gambardella

#### The $\theta$ -angle physics of two-color QCD at fixed baryon charge

The complete Lagrangian for 2-color QCD at fixed baryon charge with global symmetry  $SU(2N_f)$  [3] and the  $\theta$ -angle [5, 6] is thus:

$$\mathcal{L} = \mathcal{L}_{\partial \pi} + \mathcal{L}_{m_{\pi}} + \mathcal{L}_{\mu} + \mathcal{L}_{\theta}$$
(15)  
$$\mathcal{L}_{\pi} \text{ pions } = \nu^{2} \operatorname{Tr} \{ \partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger} \} + m_{\pi}^{2} \nu^{2} \operatorname{Tr} \{ M \Sigma + M^{\dagger} \Sigma^{\dagger} \}$$







*θ*-angle physics of 2-color QCD

 *Ξ* Journal Club November 2023
 *φ* Alessandra D'Alise and Clelia Gambardella

#### The $\theta$ -angle physics of two-color QCD at fixed baryon charge

The complete Lagrangian for 2-color QCD at fixed baryon charge with global symmetry  $SU(2N_f)$  [3] and the  $\theta$ -angle [5, 6] is thus:

$$\mathcal{L} = \mathcal{L}_{\partial \pi} + \mathcal{L}_{\mathrm{m}_{\pi}} + \mathcal{L}_{\mu} + \mathcal{L}_{\theta}$$
(15)

$$\mathcal{L}_{\pi} \quad \text{pions} = \nu^2 \text{Tr}\{\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\} + m_{\pi}^2 \nu^2 \text{Tr}\{M\Sigma + M^{\dagger} \Sigma^{\dagger}\}$$
$$\mathcal{L}_{\mu} \quad \text{baryon charge} = 4\mu\nu^2 \text{Tr}\{B\Sigma^{\dagger} \partial_0 \Sigma\} + 2\mu^2 \nu^2 \left[\text{Tr}\{\Sigma B^{T} \Sigma^{\dagger} B\} + \text{Tr}\{BB\}\right]$$







*θ*-angle physics of 2-color QCD

 Journal Club November 2023
 *φ*-Alessandra D'Alise and Clelia Gambardella

#### The $\theta$ -angle physics of two-color QCD at fixed baryon charge

The complete Lagrangian for 2-color QCD at fixed baryon charge with global symmetry  $SU(2N_f)$  [3] and the  $\theta$ -angle [5, 6] is thus:

$$\mathcal{L} = \mathcal{L}_{\partial \pi} + \mathcal{L}_{\mathrm{m}_{\pi}} + \mathcal{L}_{\mu} + \mathcal{L}_{\theta} \tag{15}$$

 $\mathcal{L}_{\pi} \quad \text{pions} = \nu^2 \text{Tr}\{\partial_{\mu}\Sigma\partial^{\mu}\Sigma^{\dagger}\} + m_{\pi}^2\nu^2 \text{Tr}\{M\Sigma + M^{\dagger}\Sigma^{\dagger}\}$  $\mathcal{L}_{\mu} \quad \text{baryon charge} = 4\mu\nu^2 \text{Tr}\{B\Sigma^{\dagger}\partial_0\Sigma\} + 2\mu^2\nu^2\left[\text{Tr}\{\Sigma B^{T}\Sigma^{\dagger}B\} + \text{Tr}\{BB\}\right]$  $\mathcal{L}_{\theta} \quad \theta\text{-angle} = -a\nu^2\left(\theta - \frac{i}{4}\text{Tr}\{\log\Sigma - \log\Sigma^{\dagger}\}\right)^2$ 







*θ*-angle physics of 2-color QCD
 Journal Club November 2023
 Alessandra D'Alise and Clelia Gambardella

#### The $\theta$ -angle physics of two-color QCD at fixed baryon charge

The complete Lagrangian for 2-color QCD at fixed baryon charge with global symmetry  $SU(2N_f)$  [3] and the  $\theta$ -angle [5, 6] is thus:

$$\mathcal{L} = \mathcal{L}_{\partial \pi} + \mathcal{L}_{\mathrm{m}_{\pi}} + \mathcal{L}_{\mu} + \mathcal{L}_{\theta} \tag{15}$$

 $\mathcal{L}_{\pi} \text{ pions} = \nu^{2} \operatorname{Tr} \{ \partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger} \} + m_{\pi}^{2} \nu^{2} \operatorname{Tr} \{ M \Sigma + M^{\dagger} \Sigma^{\dagger} \}$   $\mathcal{L}_{\mu} \text{ baryon charge} = 4 \mu \nu^{2} \operatorname{Tr} \{ B \Sigma^{\dagger} \partial_{0} \Sigma \} + 2 \mu^{2} \nu^{2} \left[ \operatorname{Tr} \{ \Sigma B^{T} \Sigma^{\dagger} B \} + \operatorname{Tr} \{ B B \} \right]$   $\mathcal{L}_{\theta} \quad \theta \text{-angle} = -a \nu^{2} \left( \theta - \frac{i}{4} \operatorname{Tr} \{ \log \Sigma - \log \Sigma^{\dagger} \} \right)^{2}$ 

 $m_{\pi}$ 







 $\blacksquare$   $\theta$ -angle physics of 2-color QCD

μ

Journal Club November 2023

📢 Alessandra D'Alise and Clelia Gambardella

 $4\pi$ 1

 $\begin{array}{c} 2\text{-color QCD} \\ 000 \end{array} \qquad \begin{array}{c} \text{2-color QCD and } \theta\text{-angle:} \\ 000 \end{array} \\ \begin{array}{c} \text{SBP} \\ 000 \end{array} \\ \begin{array}{c} \text{Dynamics} \\ 000 \end{array} \\ \begin{array}{c} \text{NC } 2\text{-color QCD} \\ 000 \end{array} \\ \begin{array}{c} \text{Charging NC } 2\text{-color QCD} \\ 000 \end{array} \\ \begin{array}{c} \text{Charging NC } 2\text{-color QCD} \\ 000 \end{array} \\ \end{array}$ 

Vacuum structure

# 2-COLOR QCD AND $\theta$ -ANGLE: VACUUM STRUCTURE







β-angle physics of 2-color QCD
 Journal Club November 2023
 Alessandra D'Alise and Clelia Gambardella

## Vacuum Structure

The vacuum configuration for the complete Lagrangian

$$\mathcal{L} = \mathcal{L}_{\partial \pi} + \mathcal{L}_{\mathrm{m}_{\pi}} + \mathcal{L}_{\mu} \tag{16}$$

is given by the following ansatz

$$\Sigma_{\rm c} = \underbrace{\begin{pmatrix} 0 & 1_{\rm N_f} \\ -1_{\rm N_f} & 0 \end{pmatrix}}_{\rm cos\,\varphi + i} \underbrace{\begin{pmatrix} \mathcal{I} & 0 \\ 0 & \mathcal{I} \end{pmatrix}}_{\rm sin\,\varphi} \quad \text{where} \quad \mathcal{I} = \begin{pmatrix} 0 & -1_{\rm N_f/2} \\ 1_{\rm N_f/2} & 0 \end{pmatrix} .$$
(17)

We introduce the Witten variables  $\alpha_i$  to consider the ground state of

$$\mathcal{L} = \mathcal{L}_{\partial \pi} + \mathcal{L}_{m_{\pi}} + \mathcal{L}_{\mu} + \mathcal{L}_{\theta}$$
(18)

 $\Sigma_0 = U(\alpha_i)\Sigma_c, \qquad U(\alpha_i) \equiv diag[e^{-i\alpha_1}, ..., e^{-i\alpha_{N_f}}, e^{-i\alpha_1}, ..., e^{-i\alpha_{N_f}}].$ (19)

each phase  $\alpha_i$  is an overall axial transformation for each left-right quark pair.







Journal Club November 2023

📢 Alessandra D'Alise and Clelia Gambardella

2-color QCD and θ-angle: SBP Dynamics NC 2-color QCD Charging NC 2-color QCD ου

# SYMMETRY BREAKING PATTERN







*θ*-angle physics of 2-color QCD

 *Ξ* Journal Club November 2023
 *κ*<sup>2</sup> Alessandra D'Alise and Clelia Gambardella
 2-color QCD: 2-color QCD and θ-angle: SBP Dynamics NC 2-color QCD Charging NC 2-color QCD coo

#### Pion kinetics, mass term and $\theta$ -angle

$$\mathcal{L} = \mathcal{L}_{\partial \pi} + \mathcal{L}_{\mathrm{m}_{\pi}} + \mathcal{L}_{\theta} \tag{20}$$

$$\mathcal{L}_{\pi} \quad \text{pions' kinetics} = \nu^2 \mathrm{Tr} \{ \partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger} \}$$
(21)

$$\mathcal{L}_{\pi} \quad \text{pions' mass term} = m_{\pi}^2 \nu^2 \text{Tr}\{M\Sigma + M^{\dagger}\Sigma^{\dagger}\}$$
(22)

$$\mathcal{L}_{\theta} \quad \theta \text{-angle} = -\mathrm{a}\nu^2 \left(\theta - \frac{\mathrm{i}}{4} \mathrm{Tr}\{\log \Sigma - \log \Sigma^{\dagger}\}\right)^2 \tag{23}$$

$$\Sigma_0 = U(\alpha_i)\Sigma_c, \quad \Sigma_c = \Sigma_M = \begin{pmatrix} 0 & 1_{N_f} \\ -1_{N_f} & 0 \end{pmatrix} = -\mathcal{M}$$
(24)

$$\begin{split} U(2N_f) &\sim SU(2N_f) \times U(1)_A \to Sp(2N_f) \quad (explicit) \\ U(2N_f) &\sim SU(2N_f) \times U(1)_A \rightsquigarrow Sp(2N_f) \quad (spontaneous) \end{split}$$

 $\#GBs = (2N_f^2 - N_f - 1)$  massless or quasi-massless (+1) S-massive particle (anomaly)  $= 2N_f^2 - N_f.$ 







2-color QCD: 2-color QCD and θ-angle: SBP Dynamics NC 2-color QCD Charging NC 2-color QCD oo

#### Pion kinetics, chemical potential and $\theta$ -angle

$$\mathcal{L} = \mathcal{L}_{\partial \pi} + \mathcal{L}_{\mu} + \mathcal{L}_{\theta} \tag{25}$$

$$\mathcal{L}_{\partial \pi} = \nu^{2} \operatorname{Tr} \{ \partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger} \}$$

$$\mathcal{L}_{\mu} \quad \text{baryon charge} = 4\mu\nu^{2} \operatorname{Tr} \{ B\Sigma^{\dagger} \partial_{0} \Sigma \} + 2\mu^{2}\nu^{2} \left[ \operatorname{Tr} \{ \Sigma B^{T} \Sigma^{\dagger} B \} + \operatorname{Tr} \{ BB \} \right] \quad (26)$$

$$\mathcal{L}_{\theta} \quad \theta \text{-angle} = -a\nu^{2} \left( \theta - \frac{i}{4} \operatorname{Tr} \{ \log \Sigma - \log \Sigma^{\dagger} \} \right)^{2} \quad (27)$$

$$\Sigma_{0} = U(\alpha_{i}) \Sigma_{c}, \quad \Sigma_{c} = \Sigma_{M} \cos \varphi + i\Sigma_{B} \sin \varphi, \quad \Sigma_{B} = \begin{pmatrix} J & 0 \\ 0 & J \end{pmatrix}; \quad (28)$$

$$\begin{split} & SU(2N_f)\times U(1)_A\rightsquigarrow Sp(2N_f)\rightarrow SU(N_f)_L\times SU(N_f)_R\times U(1)_B\rightsquigarrow Sp(N_f)_L\times Sp(N_f)_R.\\ & \#GBs=(N_f^2-N_f-1) \text{ massless (+1) massive S-particle } (+N_f^2) \text{ massive } (\propto \mu)=2N_f^2-N_f. \end{split}$$







∃ θ-angle physics of 2-color QCD ■ Journal Club November 2023

📢 Alessandra D'Alise and Clelia Gambardella

 2-color QCD:
 2-color QCD and θ-angle:
 SBP Dynamics NC 2-color QCD color QCD color

#### Pion kinetics, mass term, chemical potential and $\theta$ -angle

$$\mathcal{L} = \mathcal{L}_{\partial \pi} + \mathcal{L}_{\mathrm{m}_{\pi}} + \mathcal{L}_{\mu} + \mathcal{L}_{\theta} \tag{29}$$

$$\mathcal{L}_{\partial\pi} + \mathcal{L}_{m\pi} = \nu^2 \text{Tr} \{ \partial_\mu \Sigma \partial^\mu \Sigma^\dagger \} + m_\pi^2 \nu^2 \text{Tr} \{ M \Sigma + M^\dagger \Sigma^\dagger \}$$
  
baryon charge =  $4\mu \nu^2 \text{Tr} \{ B \Sigma^\dagger \partial_0 \Sigma \} + 2\mu^2 \nu^2 [\text{Tr} \{ \Sigma B^T \Sigma^\dagger B \} + \text{Tr} \{ B B \} ]$  (30)

$$\mathcal{L}_{\theta} \quad \theta \text{-angle} = -\mathrm{a}\nu^2 \left(\theta - \frac{\mathrm{i}}{4} \mathrm{Tr}\{\log \Sigma - \log \Sigma^{\dagger}\}\right)^2 \tag{31}$$

• Superfluid transition  $\equiv$  Bose-Einstein (diquark) condensation  $\rightarrow \frac{N_f^2 - N_f}{2}$  massless GBs!



 $\mathcal{L}_{\mu}$ 





 $\blacksquare \theta$ -angle physics of 2-color QCD

Journal Club November 2023

📢 Alessandra D'Alise and Clelia Gambardella

2-color QCD and θ-angle: SBP Dynamics NC 2-color QCD Charging NC 2-color QCD oo

Ground State Energy

# GROUND STATE ENERGY







*θ*-angle physics of 2-color QCD

 Journal Club November 2023

 Alessandra D'Alise and Clelia Gambardella

2-color QCD: 2-color QCD and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD Charging NC 2-color QCD 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000

#### EOMs for the Witten variables

The Lagrangian evaluated on the vacuum ansatz reads

$$\mathcal{L}_{\theta}[\Sigma_0] = \nu^2 \left[ 4m_{\pi}^2 X \cos \varphi + 2\mu^2 N_f \sin^2 \varphi - a\bar{\theta}^2 \right]$$
(32)

where for later convenience we introduced

$$\bar{\theta} = \theta - \sum_{i}^{N_{f}} \alpha_{i}, \qquad X = \sum_{i}^{N_{f}} \cos \alpha_{i}$$
(33)

where  $\bar{\theta}$  is the effective theta angle that enters physical observables The equations of motion read

$$\sin\varphi\left(N_{\rm f}\cos\varphi - \frac{m_{\pi}^2}{\mu^2}X\right) = 0 \tag{34}$$

$$2m_{\pi}^{2}\sin\alpha_{i}\cos\varphi = a\bar{\theta}, \quad i = 1, .., N_{f}$$
(35)







 $\exists \theta$ -angle physics of 2-color QCD

Journal Club November 2023

📢 Alessandra D'Alise and Clelia Gambardella

#### GSE: ground state energy

$$\mathbf{E} = -\nu^2 \left[ 4\mathbf{m}_{\pi}^2 \mathbf{X} - \mathbf{a}\bar{\theta}^2 \right] , \quad \text{normal phase} \tag{36}$$

The superfluid phase is associated with diquark (baryon) condensation

$$\mathbf{E} = -\nu^2 \left[ 2 \frac{\mathbf{N}_{\mathrm{f}}^2 \mu^4 + \mathbf{m}_{\pi}^4 \mathbf{X}^2}{\mathbf{N}_{\mathrm{f}} \mu^2} - \mathbf{a} \bar{\theta}^2 \right], \quad \text{superfluid phase } \left( \cos \varphi = \frac{\mathbf{m}_{\pi}^2}{\mathbf{N}_{\mathrm{f}} \mu^2} \mathbf{X} \right) . \tag{37}$$

•  $\theta = 0$ : X = N<sub>f</sub> and the superfluid phase transition occurs at  $\mu = m_{\pi}$ 

•  $\theta \neq 0$ :  $\theta$ -dependence in both phases: the energy is minimized when X(normal phase) and X<sup>2</sup> (superfluid phase) is maximized







## Solutions of the EOM for Witten variables: normal phase

the Witten variables are related to  $\theta$  by the well-known equation

$$2m_{\pi}^{2}\sin\alpha_{i} = a\bar{\theta} = a\left(\theta - \sum_{i}^{N_{f}}\alpha_{i}\right)$$
(38)

For the general solution we must have for any  $\overline{\theta}$  fixed  $\sin \alpha_i = \sin \alpha_j$ We solve in powers of  $m_{\pi}^2/a$ 

At the leading order one needs to solve for  $\bar{\theta} = 0$  and the angles  $\alpha_i$  satisfy

$$\alpha_{i} = \begin{cases} \pi - \alpha, & i = 1, \dots, n \\ \alpha, & i = n + 1, \dots, N_{f} \end{cases}$$
(39)

where  $\alpha$  is the solution of the following modular equation

$$n(\pi - \alpha) + (N_f - n)\alpha = \theta \mod 2\pi .$$
(40)







θ-angle physics of 2-color QCD
 Journal Club November 2023
 Alessandra D'Alise and Clelia Gambardella

#### Periodicity of the solutions

The modulo comes from the fact that if a solution  $\{\alpha_i\}$  of eq.(38) is found, then it is possible to build another solution as follows

$$\alpha_1(\theta + 2\pi) = \alpha_1(\theta) + 2\pi, \qquad \alpha_i(\theta + 2\pi) = \alpha_i(\theta), \quad i = 2, \dots, N_f.$$
(41)

Physics depends only on  $e^{-i\alpha_i}$ : the dynamics is invariant under  $\theta \to \theta + 2\pi$ 

#### The solution of (40) is

$$\alpha = \frac{\theta + (2k - n)\pi}{(N_f - 2n)}, \quad k = 0, \dots, N_f - 2n - 1, \quad n = 0, \dots, \left[\frac{N_f - 1}{2}\right]$$
(42)

The range for k above emerges because for  $k \geq N_{\rm f} - 2n$  we repeat the solution for a given n.







#### More on the solutions

$$\alpha = \frac{\theta + (2k - n)\pi}{(N_f - 2n)}, \quad k = 0, \dots, N_f - 2n - 1, \quad n = 0, \dots, \left[\frac{N_f - 1}{2}\right]$$
(43)

the solutions with  $n \neq 0$  spontaneously break  $\mathrm{Sp}(2N_f)$  because of the different phases for each flavour

the most general solution with n = 0 is

$$U(\alpha_{i}) = e^{i\frac{\theta + 2\pi k}{N_{f}}} \mathbb{1}_{2N_{f}}$$
(44)







*θ*-angle physics of 2-color QCD

 Journal Club November 2023
 <sup>φ</sup> Alessandra D'Alise and Clelia Gambardella
 2-color QCD: 2-color QCD and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD Charging NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occorde and  $\theta$ -angle: SBP **Dynamics** NC 2-

#### CP symmetry

CP is conserved when  

$$\bar{\theta} = \theta - \sum_{i=1}^{N_f} \alpha_i = 0$$
 (45)  
this happens if:  $\bullet \theta = 0$   $\bullet m_{\pi}^2 = 0$ 

•  $\theta = \pi$  the Lagrangian is CP invariant and we have  $X = \cos\left(\frac{(2k+1)\pi}{N_f}\right)$  which is maximized when k = 0 and  $k = N_f - 1$ , that is the vacua lie at [5]

$$U(\alpha_i) = e^{\frac{i\pi}{N_f}} \mathbb{1}_{2N_f}, \qquad U(\alpha_i) = e^{-\frac{i\pi}{N_f}} \mathbb{1}_{2N_f}$$
(46)

The two solutions are related by a CP transformation  $U \to U^\dagger$ 

CP is spontaneously broken by the vacuum(Dashen phenomenon [7–10])







 $\exists \theta$ -angle physics of 2-color QCD

- Journal Club November 2023
- 📢 Alessandra D'Alise and Clelia Gambardella

#### Solutions of the EOM for Witten variables: superfluid phase

the EOM to solve in this case is

$$\frac{2m_{\pi}^4}{N_f \mu^2} X \sin \alpha_i = a \bar{\theta} , \qquad i = 1, \dots, N_f$$
(47)

and we solve in expansion of  $\underline{m}_{\pi}^4/(a\mu^2)$ 

at leading order the solutions are the same of those for the normal phase

$$\alpha = \frac{\theta + (2k - n)\pi}{(N_f - 2n)}, \quad k = 0, \dots, N_f - 2n - 1, \quad n = 0, \dots, \left[\frac{N_f - 1}{2}\right]$$
(48)







 $\blacksquare$   $\theta$ -angle physics of 2-color QCD

Journal Club November 2023

📢 Alessandra D'Alise and Clelia Gambardella

 $N_{\rm f} = 2$ 

at leading order (in  $m_{\pi}^2/a$  or  $m_{\pi}^4/(a\mu)$ ) the EOM is

 $\alpha_1 + \alpha_2 = \theta + 2k\pi \qquad \sin \alpha_1 = \sin \left(\theta + 2k\pi - \alpha_1\right) \tag{49}$ 

and has solutions

$$\bullet\{\alpha_1,\alpha_2\} = \left\{\frac{\theta}{2},\frac{\theta}{2}\right\} \qquad \bullet\{\alpha_1,\alpha_2\} = \left\{\frac{\theta+2\pi}{2},\frac{\theta+2\pi}{2}\right\} \tag{50}$$



Superfluid phase



the solutions cross at  $\theta = \pi$ 







#### the energy is an analytic function of $\theta$

- $\blacksquare$   $\theta$ -angle physics of 2-color QCD
- Journal Club November 2023
- 📢 Alessandra D'Alise and Clelia Gambardella

2-color QCD: 2-color QCD and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD Charging NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP **Dynamics** NC 2-color QCD occord and  $\theta$ -angle: SBP

CP breaking  $N_f = 2$ 

CP order parameter:

$$\left\langle \tilde{FF} \right\rangle \propto -\frac{\partial E}{\partial \theta}$$
 (51)

Normal phase •spontaneous symmetry breaking:



•explicit breaking of CP symmetry:

$$\bar{\theta} = \frac{2m_{\pi}^2}{a} \sin \frac{\theta}{2} \stackrel{\theta = \pi}{=} \frac{2m_{\pi}^2}{a} + \mathcal{O}\bigg(\frac{m_{\pi}^6}{a^3}$$







Superfluid phase •NO spontaneous symmetry breaking:



•NO explicit breaking of CP symmetry:

$$\bar{\theta} = \frac{m_{\pi}^4}{a\mu^2} \sin \theta \stackrel{\theta=\pi}{=} 0$$

 $\blacksquare$   $\theta$ -angle physics of 2-color QCD

Journal Club November 2023

📢 Alessandra D'Alise and Clelia Gambardella

#### $N_f = 2$ : more details



- $\theta = \pi$  the effective mass  $m_{\pi}^2(\theta) \sim m_{\pi}^2 \left| \cos\left(\frac{\theta}{2}\right) \right|$  vanishes up to correction of order  $\left(\frac{m_{\pi}^2}{a}\right)$
- $\bullet$  mass term disappears from the Lagrangian and the global flavor symmetry is again  ${\rm SU}(4)$
- massless Goldstones when  $SU(4) \rightsquigarrow Sp(4)$  [6]







*θ*-angle physics of 2-color QCD

 Journal Club November 2023
 *Alessandra D'Alise and Clelia Gambardella*

#### $N_f = 2$ : more details





- $\theta = \pi$  the effective mass  $m_{\pi}^2(\theta) \sim m_{\pi}^2 \left| \cos\left(\frac{\theta}{2}\right) \right|$  vanishes up to correction of order  $\left(\frac{m_{\pi}^2}{a}\right)$
- $\bullet$  mass term disappears from the Lagrangian and the global flavor symmetry is again  ${\rm SU}(4)$
- massless Goldstones when  $SU(4) \rightsquigarrow Sp(4)$  [6]

there is no chiral symmetry restoration in the fundamental Lagrangian: apparent paradox







β-angle physics of 2-color QCD
 Journal Club November 2023
 Alessandra D'Alise and Clelia Gambardella

#### $N_f = 2$ : more details





- $\theta = \pi$  the effective mass  $m_{\pi}^2(\theta) \sim m_{\pi}^2 \left| \cos\left(\frac{\theta}{2}\right) \right|$  vanishes up to correction of order  $\left(\frac{m_{\pi}^2}{a}\right)$
- mass term disappears from the Lagrangian and the global flavor symmetry is again SU(4)
- massless Goldstones when  $SU(4) \rightsquigarrow Sp(4)$  [6]

there is no chiral symmetry restoration in the fundamental Lagrangian: apparent paradox



solved by realising that SU(4) is still broken by higher order mass terms in the effective Lagrangian also for  $a \to \infty$  [5, 6]







β-angle physics of 2-color QCD
 Journal Club November 2023
 Alessandra D'Alise and Clelia Gambardella

 $N_{\rm f} = 3$ 

solutions:  $n = 0 \implies k = 0, 1, 2$  and  $n = 1 \implies k = 0$  $i.\left\{\frac{\theta}{3}, \frac{\theta}{3}, \frac{\theta}{3}\right\}, \quad ii.\left\{\frac{\theta + 2\pi}{3}, \frac{\theta + 2\pi}{3}, \frac{\theta + 2\pi}{3}\right\}, \quad iii.\left\{\frac{\theta + 4\pi}{3}, \frac{\theta + 4\pi}{3}, \frac{\theta + 4\pi}{3}\right\}, \quad iv.\left\{\theta - \pi, \theta - \pi, 2\pi - \theta\right\}$ 





Superfluid phase



the solutions i., ii. and iii. cross at  $\theta=\pi/2, 3\pi/2$ 

the solutions i. and iii. cross at  $\theta = \pi$ 







 $\exists \theta$ -angle physics of 2-color QCD

- 르 Journal Club November 2023
- 📢 Alessandra D'Alise and Clelia Gambardella

2-color QCD: 2-color QCD and θ-angle: SBP Dynamics NC 2-color QCD Charging NC 2-color QCD 

Ground State Energy

#### CP breaking $N_f = 3$

Normal phase •SSB of CP at  $\theta = \pi$ : <FÊ2 0.06 0.02 -0.02 -0.04 -0.06  $\bar{\theta} = \frac{\sqrt{3}m_{\pi}^2}{a} - \frac{m_{\pi}^4}{\sqrt{3}a^2} - \frac{m_{\pi}^6}{6\sqrt{3}a^3} + \left(\frac{m_{\pi}^8}{a^4}\right)$  $\bar{\theta} = 0$ NO explicit breaking of CP symmetry explicit breaking of CP symmetry

 $\bigstar$  two novel phase transitions at  $\theta = \pi/2$  and  $\theta = 3\pi/2$  in the superfluid phase







 $\blacksquare$   $\theta$ -angle physics of 2-color QCD

Journal Club November 2023

Alessandra D'Alise and Clelia Gambardella

Superfluid phase •NO SSB of CP at  $\theta = \pi$  but at  $\pi/2, 3\pi/2$ :

u=5

u=10

 $\mu = 15$
$N_f = 6$ 

Solutions i-vi : 
$$\alpha_1 = \alpha_2, \dots = \alpha_6 = \frac{\theta + 2\pi k}{6},$$
  $k = 0, \dots, 5$   
Solutions vii-ix :  $\alpha_1 = \alpha_2 = \dots = \alpha_5 = \frac{\theta - \pi + 2\pi k}{4}, \quad \alpha_6 = \pi - \alpha_1,$   $k = 0, \dots, 3$   
Solutions x-xii :  $\alpha_1 = \alpha_2 = \dots = \alpha_4 = \frac{\theta - 2\pi + 2\pi k}{2}, \quad \alpha_5 = \alpha_6 = \pi - \alpha_1,$   $k = 0, 1.$  (52)



- same energy dependence on  $\theta$  in both phases
- SSB of CP symmetry at  $\theta = \pi$
- explicit breaking of CP symmetry at  $\theta = \pi$







 $\blacksquare \theta$ -angle physics of 2-color QCD

- Journal Club November 2023
- 📢 Alessandra D'Alise and Clelia Gambardella

# $\mathrm{General}\ \mathrm{N_{f}}$

Solutions of the EOMs are generally not periodic of  $2\pi$  for  $\theta$ The periodicity condition can be satisfied only if at least two solutions cross. Consider

$$U = e^{-i\alpha} \mathbb{1}_{2N_f} \tag{53}$$

and ask when two different solutions of the equation of motion can have the same energy. This corresponds to requiring

$$\cos\left(\frac{\theta + 2\pi k_1}{N_f}\right) = \cos\left(\frac{\theta + 2\pi k_2}{N_f}\right) , \qquad \text{normal phase} \qquad (54)$$
$$\cos^2\left(\frac{\theta + 2\pi k_1}{N_f}\right) = \cos^2\left(\frac{\theta + 2\pi k_2}{N_f}\right) , \qquad \text{superfluid phase} \qquad (55)$$

Both conditions are satisfied when  $k_1 = -\frac{\theta}{\pi} - k_2 + N_f$ 

• near  $\theta = 0$  the ground state is  $k_1 = 0$ 







 $\exists \theta$ -angle physics of 2-color QCD  $\blacksquare$  Journal Club November 2023

♥ Alessandra D'Alise and Clelia Gambardella

 2-color QCD:
 2-color QCD and θ-angle:
 SBP Dynamics NC 2-color QCD Charging NC 2-color QCD coordinates

 Ground State Energy
 Ground State Energy

heta-dependence of the energy [1, 5, 6]  $N_{\rm f}$  even



### $\theta$ -dependence of the energy [1, 5, 6]

EVEN NUMBER OF FLAVOURS

ODD NUMBER OF FLAVOURS





two novel phase transitions at  $\theta = \pi/2$  and  $\theta = 3\pi/2$  in the superfluid phase







β-angle physics of 2-color QCD
 Journal Club November 2023
 Alessandra D'Alise and Clelia Gambardella

2-color QCD: 2-color QCD and θ-angle: SBP Dynamics NC 2-color QCD Charging NC 2-color QCD coord of the second state Energy

#### Take home messages

2-color QCD EFT at fixed baryon charge and global symmetry  $\rm SU(2N_f)$  in the presence of the  $\theta\text{-angle}$ 







*θ*-angle physics of 2-color QCD

 Journal Club November 2023
 *Alessandra D'Alise and Clelia Gambardella*

#### Take home messages

2-color QCD EFT at fixed baryon charge and global symmetry  $\rm SU(2N_f)$  in the presence of the  $\theta\text{-angle}$ 

normal phase:  $\theta$ -dependence of the energy is the same for even and odd  $N_f$ 







*θ*-angle physics of 2-color QCD

 *Ξ* Journal Club November 2023
 *ξ* Alessandra D'Alise and Clelia Gambardella

#### Take home messages

2-color QCD EFT at fixed baryon charge and global symmetry  $\rm SU(2N_f)$  in the presence of the  $\theta\text{-angle}$ 

normal phase: superfluid phase:  $\theta\text{-dependence}$  of the energy is the same for even and odd  $N_{\rm f}$  the ground state energy has two minima for even  $N_{\rm f}$  and three new minima for odd  $N_{\rm f}$ 







*θ*-angle physics of 2-color QCD

 *Ξ* Journal Club November 2023
 *κ*<sup>2</sup> Alessandra D'Alise and Clelia Gambardella

#### Take home messages

2-color QCD EFT at fixed baryon charge and global symmetry  ${\rm SU}(2N_{\rm f})$  in the presence of the  $\theta\text{-angle}$ 

normal phase: superfluid phase:

Dashen's phenomenon:

 $\theta$ -dependence of the energy is the same for even and odd  $N_f$ the ground state energy has two minima for even  $N_f$ and three new minima for odd  $N_f$ it happens at  $\frac{\pi}{2}$  for even  $N_f$ it happens at  $\frac{\pi}{2}$  e  $a\frac{3\pi}{2}$  for odd  $N_f$ 







*θ*-angle physics of 2-color QCD

 Journal Club November 2023
 <sup>4</sup> Alessandra D'Alise and Clelia Gambardella

#### Take home messages

2-color QCD EFT at fixed baryon charge and global symmetry  ${\rm SU}(2N_{\rm f})$  in the presence of the  $\theta\text{-angle}$ 

normal phase: superfluid phase:  $\theta$ -dependence of the energy is the same for even and odd N<sub>f</sub> the ground state energy has two minima for even N<sub>f</sub> and three new minima for odd N<sub>f</sub> it happens at  $\frac{\pi}{2}$  for even N<sub>f</sub> it happens at  $\frac{\pi}{2}$  e  $a\frac{3\pi}{2}$  for odd N<sub>f</sub>

Dashen's phenomenon:



### Future directions and interesting investigations

Recently in [11] the authors discovered the breaking of the conformal bound for dense  $QC_2D$  by lattice calculations.

- **Q** Can we say more when including the physics of the  $\theta$ -angle?
- Suggestions? Ideas?

Interesting similar results found for QCD at finite isospin  $\left[12,\,13\right]$ 







Ground State Energy

## Conformal Window



- IR dynamics of SU(N) theories depends non-trivially on  $N_f$  and N
- In the conformal window the theory features an IR fixed point
- Slightly below the lower edge the physics is still partly controlled by the fixed point: near-conformal dynamics







θ-angle physics of 2-color QCD
Journal Club November 2023

♥ Alessandra D'Alise and Clelia Gambardella

Ground State Energy

# SU(2): walking [14, 15]









θ-angle physics of 2-color QCD
Journal Club November 2023

📢 Alessandra D'Alise and Clelia Gambardella

Ground State Energy

# SU(2): walking [14, 15]









θ-angle physics of 2-color QCD
Journal Club November 2023

≰ Alessandra D'Alise and Clelia Gambardella

SU(2) : walking [14, 15]









 $\exists \theta$ -angle physics of 2-color QCD

Journal Club November 2023

📢 Alessandra D'Alise and Clelia Gambardella

# SU(2) : walking [14, 15]



#### Near conformal dynamics of the theory

EFT of 2-color QCD at fixed baryon charge with global symmetry SU(2N<sub>f</sub>) [3] in the presence of the  $\theta$ -angle [5, 6]

$$\mathcal{L} = \mathcal{L}_{\pi} + \mathcal{L}_{\mu} + \mathcal{L}_{\theta} \tag{56}$$







*θ*-angle physics of 2-color QCD

 Journal Club November 2023

 *Alessandra D'Alise and Clelia Gambardella*

#### Near conformal dynamics of the theory

EFT of 2-color QCD at fixed baryon charge with global symmetry SU(2N<sub>f</sub>) [3] in the presence of the  $\theta$ -angle [5, 6]

$$\mathcal{L} = \mathcal{L}_{\pi} + \mathcal{L}_{\mu} + \mathcal{L}_{\theta} \tag{56}$$

Step 1:







*θ*-angle physics of 2-color QCD

 Journal Club November 2023

 *Alessandra D'Alise and Clelia Gambardella*

#### Near conformal dynamics of the theory

EFT of 2-color QCD at fixed baryon charge with global symmetry SU(2N<sub>f</sub>) [3] in the presence of the  $\theta$ -angle [5, 6]

$$\mathcal{L} = \mathcal{L}_{\pi} + \mathcal{L}_{\mu} + \mathcal{L}_{\theta} \tag{56}$$

Step 1:  $\tilde{\mathcal{L}} = \tilde{\mathcal{L}}_{\pi} + \tilde{\mathcal{L}}_{\mu} + \tilde{\mathcal{L}}_{\theta}$ 







*θ*-angle physics of 2-color QCD

 *Ξ* Journal Club November 2023
 *ξ* Alessandra D'Alise and Clelia Gambardella

### Near conformal dynamics of the theory

EFT of 2-color QCD at fixed baryon charge with global symmetry SU(2N<sub>f</sub>) [3] in the presence of the  $\theta$ -angle [5, 6]

$$\mathcal{L} = \mathcal{L}_{\pi} + \mathcal{L}_{\mu} + \mathcal{L}_{\theta} \tag{56}$$

Step 1:  $\tilde{\mathcal{L}} = \tilde{\mathcal{L}}_{\pi} + \tilde{\mathcal{L}}_{\mu} + \tilde{\mathcal{L}}_{\theta}$ 

Step 2:







*θ*-angle physics of 2-color QCD

 *Ξ* Journal Club November 2023
 *ξ* Alessandra D'Alise and Clelia Gambardella

### Near conformal dynamics of the theory

EFT of 2-color QCD at fixed baryon charge with global symmetry SU(2N<sub>f</sub>) [3] in the presence of the  $\theta$ -angle [5, 6]

$$\mathcal{L} = \mathcal{L}_{\pi} + \mathcal{L}_{\mu} + \mathcal{L}_{\theta} \tag{56}$$

Step 1: 
$$\tilde{\mathcal{L}} = \underline{\tilde{\mathcal{L}}_{\pi}} + \underline{\tilde{\mathcal{L}}_{\mu}} + \underline{\tilde{\mathcal{L}}_{\theta}}$$
  
Step 2:  $x \mapsto e^{\alpha} x \implies \sigma \mapsto \sigma - \frac{\alpha}{f} \implies \mathcal{O}_{k} \mapsto e^{(k-4)\sigma f} \mathcal{O}_{k}$ 







*θ*-angle physics of 2-color QCD

 *Ξ* Journal Club November 2023
 *κ*<sup>3</sup> Alessandra D'Alise and Clelia Gambardella

### Near conformal dynamics of the theory

EFT of 2-color QCD at fixed baryon charge with global symmetry SU(2N<sub>f</sub>) [3] in the presence of the  $\theta$ -angle [5, 6]

$$\mathcal{L} = \mathcal{L}_{\pi} + \mathcal{L}_{\mu} + \mathcal{L}_{\theta} \tag{56}$$

Step 1: 
$$\tilde{\mathcal{L}} = \tilde{\mathcal{L}}_{\pi} + \tilde{\mathcal{L}}_{\mu} + \tilde{\mathcal{L}}_{\theta}$$
  
Step 2:  $\mathbf{x} \mapsto \mathbf{e}^{\alpha} \mathbf{x} \implies \sigma \mapsto \sigma - \frac{\alpha}{\mathbf{f}} \implies \mathcal{O}_{\mathbf{k}} \mapsto \mathbf{e}^{(\mathbf{k}-4)\sigma \mathbf{f}} \mathcal{O}_{\mathbf{k}}$   
 $\tilde{\mathcal{L}}_{\pi} = \mathbf{e}^{-2\sigma \mathbf{f}} \nu^{2} \mathrm{Tr} \{\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\} + \mathbf{e}^{-(3-\gamma)\sigma \mathbf{f}} \mathbf{m}_{\pi}^{2} \nu^{2} \mathrm{Tr} \{\mathbf{M} \Sigma + \mathbf{M}^{\dagger} \Sigma^{\dagger}\}$ 







*θ*-angle physics of 2-color QCD

 Journal Club November 2023
 <sup>\*</sup> Alessandra D'Alise and Clelia Gambardella

### Near conformal dynamics of the theory

EFT of 2-color QCD at fixed baryon charge with global symmetry SU(2N<sub>f</sub>) [3] in the presence of the  $\theta$ -angle [5, 6]

$$\mathcal{L} = \mathcal{L}_{\pi} + \mathcal{L}_{\mu} + \mathcal{L}_{\theta} \tag{56}$$

Step 1: 
$$\tilde{\mathcal{L}} = \tilde{\mathcal{L}}_{\pi} + \tilde{\mathcal{L}}_{\mu} + \tilde{\mathcal{L}}_{\theta}$$
Step 2: 
$$\mathbf{x} \mapsto \mathbf{e}^{\alpha} \mathbf{x} \implies \sigma \mapsto \sigma - \frac{\alpha}{\mathbf{f}} \implies \mathcal{O}_{\mathbf{k}} \mapsto \mathbf{e}^{(\mathbf{k}-4)\sigma\mathbf{f}} \mathcal{O}_{\mathbf{k}}$$

$$\tilde{\mathcal{L}}_{\pi} = \mathbf{e}^{-2\sigma\mathbf{f}}\nu^{2}\mathrm{Tr}\{\partial_{\mu}\Sigma\partial^{\mu}\Sigma^{\dagger}\} + \mathbf{e}^{-(3-\gamma)\sigma\mathbf{f}}\mathbf{m}_{\pi}^{2}\nu^{2}\mathrm{Tr}\{\mathbf{M}\Sigma + \mathbf{M}^{\dagger}\Sigma^{\dagger}\}$$

$$\tilde{\mathcal{L}}_{\mu} = \mathbf{e}^{-2\sigma\mathbf{f}}4\mu\nu^{2}\mathrm{Tr}\{\mathbf{B}\Sigma^{\dagger}\partial_{0}\Sigma\} + 2\mu^{2}\nu^{2}\left[\mathbf{e}^{-2\sigma\mathbf{f}}\mathrm{Tr}\{\Sigma\mathbf{B}^{\mathrm{T}}\Sigma^{\dagger}\mathbf{B}\} + \mathrm{Tr}\{\mathbf{B}\mathbf{B}\}\right]$$







 θ-angle physics of 2-color QCD

 Journal Club November 2023
 Alessandra D'Alise and Clelia Gambardella

### Near conformal dynamics of the theory

EFT of 2-color QCD at fixed baryon charge with global symmetry SU(2N<sub>f</sub>) [3] in the presence of the  $\theta$ -angle [5, 6]

$$\mathcal{L} = \mathcal{L}_{\pi} + \mathcal{L}_{\mu} + \mathcal{L}_{\theta} \tag{56}$$

Step 1:  

$$\begin{aligned} \tilde{\mathcal{L}} &= \tilde{\mathcal{L}}_{\pi} + \tilde{\mathcal{L}}_{\mu} + \tilde{\mathcal{L}}_{\theta} \\
\text{Step 2:} & \mathbf{x} \mapsto \mathbf{e}^{\alpha} \mathbf{x} \implies \sigma \mapsto \sigma - \frac{\alpha}{\mathbf{f}} \implies \mathcal{O}_{\mathbf{k}} \mapsto \mathbf{e}^{(\mathbf{k}-4)\sigma\mathbf{f}} \mathcal{O}_{\mathbf{k}} \\
\tilde{\mathcal{L}}_{\pi} &= \mathbf{e}^{-2\sigma\mathbf{f}} \nu^{2} \mathrm{Tr} \{\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\} + \mathbf{e}^{-(3-\gamma)\sigma\mathbf{f}} \mathbf{m}_{\pi}^{2} \nu^{2} \mathrm{Tr} \{\mathbf{M}\Sigma + \mathbf{M}^{\dagger} \Sigma^{\dagger}\} \\
\tilde{\mathcal{L}}_{\mu} &= \mathbf{e}^{-2\sigma\mathbf{f}} 4\mu\nu^{2} \mathrm{Tr} \{\mathbf{B}\Sigma^{\dagger}\partial_{0}\Sigma\} + 2\mu^{2}\nu^{2} \left[\mathbf{e}^{-2\sigma\mathbf{f}} \mathrm{Tr} \{\Sigma\mathbf{B}^{\mathrm{T}}\Sigma^{\dagger}\mathbf{B}\} + \mathrm{Tr} \{\mathbf{B}\mathbf{B}\}\right] \\
\tilde{\mathcal{L}}_{\theta} &= -\mathbf{e}^{-4\sigma\mathbf{f}} \mathbf{a}\nu^{2} \left(\theta - \frac{\mathbf{i}}{4} \mathrm{Tr} \{\log \Sigma - \log \Sigma^{\dagger}\}\right)^{2}
\end{aligned}$$







θ-angle physics of 2-color QCD
Journal Club November 2023

➡ Alessandra D'Alise and Clelia Gambardella

### Near conformal dynamics of the theory

EFT of 2-color QCD at fixed baryon charge with global symmetry SU(2N<sub>f</sub>) [3] in the presence of the  $\theta$ -angle [5, 6]

$$\mathcal{L} = \mathcal{L}_{\pi} + \mathcal{L}_{\mu} + \mathcal{L}_{\theta} \tag{56}$$

Step 1: 
$$\tilde{\mathcal{L}} = \tilde{\mathcal{L}}_{\pi} + \tilde{\mathcal{L}}_{\mu} + \tilde{\mathcal{L}}_{\theta}$$
Step 2: 
$$\mathbf{x} \mapsto \mathbf{e}^{\alpha} \mathbf{x} \implies \sigma \mapsto \sigma - \frac{\alpha}{\mathbf{f}} \implies \mathcal{O}_{\mathbf{k}} \mapsto \mathbf{e}^{(\mathbf{k}-4)\sigma\mathbf{f}} \mathcal{O}_{\mathbf{k}}$$

$$\tilde{\mathcal{L}}_{\pi} = \mathbf{e}^{-2\sigma\mathbf{f}}\nu^{2}\mathrm{Tr}\{\partial_{\mu}\Sigma\partial^{\mu}\Sigma^{\dagger}\} + \mathbf{e}^{-(3-\gamma)\sigma\mathbf{f}}\mathbf{m}_{\pi}^{2}\nu^{2}\mathrm{Tr}\{\mathbf{M}\Sigma + \mathbf{M}^{\dagger}\Sigma^{\dagger}\}$$

$$\tilde{\mathcal{L}}_{\mu} = \mathbf{e}^{-2\sigma\mathbf{f}}4\mu\nu^{2}\mathrm{Tr}\{\mathbf{B}\Sigma^{\dagger}\partial_{0}\Sigma\} + 2\mu^{2}\nu^{2}\left[\mathbf{e}^{-2\sigma\mathbf{f}}\mathrm{Tr}\{\Sigma\mathbf{B}^{\mathrm{T}}\Sigma^{\dagger}\mathbf{B}\} + \mathrm{Tr}\{\mathbf{B}\mathbf{B}\}\right]$$

$$\tilde{\mathcal{L}}_{\theta} = -\mathbf{e}^{-4\sigma\mathbf{f}}\mathbf{a}\nu^{2}\left(\theta - \frac{\mathbf{i}}{4}\mathrm{Tr}\{\log\Sigma - \log\Sigma^{\dagger}\}\right)^{2}$$

Step 3:







 $\blacksquare \theta$ -angle physics of 2-color QCD

Journal Club November 2023

📢 Alessandra D'Alise and Clelia Gambardella

### Near conformal dynamics of the theory

EFT of 2-color QCD at fixed baryon charge with global symmetry SU(2N<sub>f</sub>) [3] in the presence of the  $\theta$ -angle [5, 6]

$$\mathcal{L} = \mathcal{L}_{\pi} + \mathcal{L}_{\mu} + \mathcal{L}_{\theta} \tag{56}$$

Step 1:  

$$\begin{aligned} \tilde{\mathcal{L}} &= \tilde{\mathcal{L}}_{\pi} + \tilde{\mathcal{L}}_{\mu} + \tilde{\mathcal{L}}_{\theta} \\
\text{Step 2:} & \mathbf{x} \mapsto \mathbf{e}^{\alpha} \mathbf{x} \implies \sigma \mapsto \sigma - \frac{\alpha}{\mathbf{f}} \implies \mathcal{O}_{\mathbf{k}} \mapsto \mathbf{e}^{(\mathbf{k}-4)\sigma \mathbf{f}} \mathcal{O}_{\mathbf{k}} \\
\tilde{\mathcal{L}}_{\pi} &= \mathbf{e}^{-2\sigma \mathbf{f}} \nu^{2} \mathrm{Tr} \{\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\} + \mathbf{e}^{-(3-\gamma)\sigma \mathbf{f}} \mathbf{m}_{\pi}^{2} \nu^{2} \mathrm{Tr} \{\mathbf{M} \Sigma + \mathbf{M}^{\dagger} \Sigma^{\dagger}\} \\
\tilde{\mathcal{L}}_{\mu} &= \mathbf{e}^{-2\sigma \mathbf{f}} 4\mu \nu^{2} \mathrm{Tr} \{\mathbf{B} \Sigma^{\dagger} \partial_{0} \Sigma\} + 2\mu^{2} \nu^{2} \left[\mathbf{e}^{-2\sigma \mathbf{f}} \mathrm{Tr} \{\Sigma \mathbf{B}^{\mathrm{T}} \Sigma^{\dagger} \mathbf{B}\} + \mathrm{Tr} \{\mathbf{B} \mathbf{B}\}\right] \\
\tilde{\mathcal{L}}_{\theta} &= -\mathbf{e}^{-4\sigma \mathbf{f}} \mathbf{a} \nu^{2} \left(\theta - \frac{\mathbf{i}}{4} \mathrm{Tr} \{\log \Sigma - \log \Sigma^{\dagger}\}\right)^{2}
\end{aligned}$$

Step 3:









 $\exists \theta$ -angle physics of 2-color QCD

Journal Club November 2023

📢 Alessandra D'Alise and Clelia Gambardella

2-color QCD: 2-color QCD and  $\theta$ -angle: SBP Dynamics NC 2-color QCD Charging NC 2-color QCD  $\bullet \circ \circ$ 

### Charging the conformal window at nonzero $\theta$ -angle [2]

Dilaton-EFT of 2-color QCD with global symmetry  ${\rm SU}(2N_{\rm f})$  on non-trivial background

$$\tilde{\mathcal{L}} = \tilde{\mathcal{L}}_{\pi} + \tilde{\mathcal{L}}_{\mu} + \tilde{\mathcal{L}}_{\theta} + \mathcal{V}(\sigma) + \underline{\tilde{\mathcal{L}}_{\mathcal{M}}}$$
(57)







*θ*-angle physics of 2-color QCD

 *Ξ* Journal Club November 2023
 *φ* Alessandra D'Alise and Clelia Gambardella
 2-color QCD and θ-angle: SBP Dynamics NC 2-color QCD Charging NC 2-color QCD ΦΟΟ

#### Charging the conformal window at nonzero $\theta$ -angle [2]

# Dilaton-EFT of 2-color QCD with global symmetry ${\rm SU}(2N_{\rm f})$ on non-trivial background

$$\tilde{\mathcal{L}} = \tilde{\mathcal{L}}_{\pi} + \tilde{\mathcal{L}}_{\theta} + \tilde{\mathcal{L}}_{\theta} + \mathcal{V}(\sigma) + \underline{\tilde{\mathcal{L}}_{\mathcal{M}}}$$
(57)

$$\mathcal{M} = \mathbb{R} \times \mathcal{S}^{3}, \quad V(\sigma) = \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma \, e^{-2f\sigma} - \frac{m_{\sigma}^{2}}{16f^{2}} \left( 4f\sigma + e^{-4f\sigma} - 1 \right) [16], \quad \underline{\tilde{\mathcal{L}}_{\mathcal{M}}} = \Lambda_{0} e^{-4f\sigma} - \frac{R^{2}}{12f^{2}} e^{-2f\sigma}$$







*θ*-angle physics of 2-color QCD

 *Ξ* Journal Club November 2023
 *φ* Alessandra D'Alise and Clelia Gambardella

### Charging the conformal window at nonzero $\theta$ -angle [2]

# Dilaton-EFT of 2-color QCD with global symmetry ${\rm SU}(2N_{\rm f})$ on non-trivial background

$$\tilde{\mathcal{L}} = \tilde{\mathcal{L}}_{\pi} + \tilde{\mathcal{L}}_{\theta} + \tilde{\mathcal{L}}_{\theta} + \mathcal{V}(\sigma) + \underline{\tilde{\mathcal{L}}_{\mathcal{M}}}$$
(57)

$$\mathcal{M} = \mathbb{R} \times \mathcal{S}^{3}, \quad V(\sigma) = \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma \, e^{-2f\sigma} - \frac{m_{\sigma}^{2}}{16f^{2}} \left( 4f\sigma + e^{-4f\sigma} - 1 \right) [16], \quad \underline{\tilde{\mathcal{L}}_{\mathcal{M}}} = \Lambda_{0} e^{-4f\sigma} - \frac{R^{2}}{12f^{2}} e^{-2f\sigma}$$

study of the ground state energy of the theory in the superfluid phase with semiclassical methods [17]







#### Charging the conformal window at nonzero $\theta$ -angle [2]

# Dilaton-EFT of 2-color QCD with global symmetry ${\rm SU}(2N_{\rm f})$ on non-trivial background

$$\tilde{\mathcal{L}} = \tilde{\mathcal{L}}_{\pi} + \tilde{\mathcal{L}}_{\theta} + \tilde{\mathcal{L}}_{\theta} + \mathcal{V}(\sigma) + \underline{\tilde{\mathcal{L}}_{\mathcal{M}}}$$
(57)

$$\mathcal{M} = \mathbb{R} \times \mathcal{S}^{3}, \quad V(\sigma) = \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma \, e^{-2f\sigma} - \frac{m_{\sigma}^{2}}{16f^{2}} \left( 4f\sigma + e^{-4f\sigma} - 1 \right) [16], \quad \underline{\tilde{\mathcal{L}}_{\mathcal{M}}} = \Lambda_{0} e^{-4f\sigma} - \frac{R^{2}}{12f^{2}} e^{-2f\sigma}$$

study of the ground state energy of the theory in the superfluid phase with semiclassical methods [17]

state on the cylinder  
in the superfluid phase 
$$E_Q \mathcal{R} = \Delta_Q [18]$$
 operator with large global charge







θ-angle physics of 2-color QCD
 ΩCD
 Journal Club November 2023
 Alessandra D'Alise and Clelia Gambardella

 $\begin{array}{c} 2\text{-color QCD} \\ \text{ooo} \end{array} \begin{array}{c} 2\text{-color QCD and } \theta\text{-angle:} \\ \text{ooo} \end{array} \begin{array}{c} \text{SBP Dynamics} \\ \text{ooo} \end{array} \begin{array}{c} \text{NC 2-color QCD} \\ \text{ooo} \end{array} \begin{array}{c} \text{Charging NC 2-color QCD} \\ \text{ooo} \end{array} \end{array}$ 

$$\begin{split} \mathbf{E}^{\gamma \ll 1} &= \ \frac{\mathbf{c}_{4/3} \mathbf{Q}^{4/3}}{\tilde{\mathbf{V}}^{1/3}} + \mathbf{Q}^{2/3} \tilde{\mathbf{V}}^{1/3} \Biggl\{ \mathbf{c}_{2/3} \tilde{\mathbf{R}} - \frac{\mathbf{X}_{00}^2}{4\pi^2 \mathbf{N}_{\mathrm{f}}^3 \mathbf{c}_{4/3}^4} \left( \frac{9\mathbf{m}_{\pi}^2}{32\nu} \right)^2 \Biggl[ 1 - \gamma \Biggl( \frac{2}{3} \log \mathbf{Q} - \frac{\mathbf{X}_{10}}{\mathbf{X}_{00}} - \\ &\log \Biggl( \frac{32\mathbf{N}_{\mathrm{f}} \nu^2 \pi^2 \mathbf{c}_{4/3} \tilde{\mathbf{V}}^{2/3}}{3} \Biggr) \Biggr) \Biggr] \Biggr\} - \tilde{\mathbf{V}} \log \mathbf{Q} \Biggl\{ \frac{16\pi^2}{9} \mathbf{N}_{\mathrm{f}} \mathbf{c}_{2/3} \mathbf{c}_{4/3} \nu^2 \mathbf{m}_{\sigma}^2 - \frac{\gamma}{3\pi^2 \mathbf{N}_{\mathrm{f}}^4 \mathbf{c}_{4/3}^5} \Biggl( \frac{9\mathbf{m}_{\pi}^2}{32\nu} \Biggr)^2 . \\ & \Biggl[ \frac{5}{8\pi^2 \mathbf{c}_{4/3}^4 \mathbf{N}_{\mathrm{f}}^2} \Biggl( \frac{9\mathbf{m}_{\pi}^2}{32\nu} \Biggr)^2 \mathbf{X}_{00}^4 - \mathbf{c}_{2/3} \tilde{\mathbf{R}} \mathbf{N}_{\mathrm{f}} \mathbf{X}_{00}^2 + \frac{9\mathbf{X}_{00} \mathbf{X}_{01}}{32\mathbf{c}_{4/3}} \Biggr] \Biggr\} + \left( \mathbf{Q}^0 \right) \\ \mathbf{E}^{1-\gamma \ll 1} &= \frac{\mathbf{c}_{4/3} \mathbf{Q}^{4/3}}{\tilde{\mathbf{V}}^{1/3}} + \mathbf{c}_{2/3} \mathbf{Q}^{2/3} \tilde{\mathbf{R}} \tilde{\mathbf{V}}^{1/3} - \frac{9(1-\gamma) \mathbf{X}_{00}^2 \mathbf{m}_{\pi}^4 \tilde{\mathbf{V}} \log \mathbf{Q}}{64\mathbf{c}_{4/3}^3 \mathbf{N}_{\mathrm{f}}^2} \\ & - \frac{16}{9} \pi^2 \mathbf{m}_{\sigma}^2 \mathbf{N}_{\mathrm{f}} \mathbf{c}_{2/3} \mathbf{c}_{4/3} \nu^2 \tilde{\mathbf{V}} \log \mathbf{Q} + \left( \mathbf{Q}^0 \right) \ , \end{split}$$







∂ θ-angle physics of 2-color QCD
 Dournal Club November 2023
 Alessandra D'Alise and Clelia Gambardella

 $\begin{array}{c} 2\text{-color QCD} \\ \text{ooo} \end{array} \begin{array}{c} 2\text{-color QCD and } \theta\text{-angle:} \\ \text{ooo} \end{array} \begin{array}{c} \text{SBP Dynamics} \\ \text{ooo} \end{array} \begin{array}{c} \text{NC 2-color QCD} \\ \text{ooo} \end{array} \begin{array}{c} \text{Charging NC 2-color QCD} \\ \text{ooo} \end{array} \end{array}$ 

$$\begin{split} \mathrm{E}^{\gamma \ll 1} &= \ \frac{\mathrm{c}_{4/3} \mathrm{Q}^{4/3}}{\tilde{\mathrm{V}}^{1/3}} + \mathrm{Q}^{2/3} \tilde{\mathrm{V}}^{1/3} \Biggl\{ \mathrm{c}_{2/3} \tilde{\mathrm{R}} - \frac{\mathrm{X}_{00}^2}{4\pi^2 \mathrm{N}_{\mathrm{f}}^3 \mathrm{c}_{4/3}^4} \Bigl( \frac{9\mathrm{m}_{\pi}^2}{32\nu} \Bigr)^2 \Biggl[ 1 - \gamma \Biggl( \frac{2}{3} \log \mathrm{Q} - \frac{\mathrm{X}_{10}}{\mathrm{X}_{00}} - \\ & \log \Biggl( \frac{32\mathrm{N}_{\mathrm{f}} \nu^2 \pi^2 \mathrm{c}_{4/3} \tilde{\mathrm{V}}^{2/3}}{3} \Biggr) \Biggr) \Biggr] \Biggr\} - \tilde{\mathrm{V}} \log \mathrm{Q} \Biggl\{ \frac{16\pi^2}{9} \mathrm{N}_{\mathrm{f}} \mathrm{c}_{2/3} \mathrm{c}_{4/3} \nu^2 \mathrm{m}_{\sigma}^2 - \frac{\gamma}{3\pi^2 \mathrm{N}_{\mathrm{f}}^4 \mathrm{c}_{4/3}^5} \Bigl( \frac{9\mathrm{m}_{\pi}^2}{32\nu} \Bigr)^2 . \\ & \Biggl[ \frac{5}{8\pi^2 \mathrm{c}_{4/3}^4 \mathrm{N}_{\mathrm{f}}^2} \Bigl( \frac{9\mathrm{m}_{\pi}^2}{32\nu} \Bigr)^2 \mathrm{X}_{00}^4 - \mathrm{c}_{2/3} \tilde{\mathrm{R}} \mathrm{N}_{\mathrm{f}} \mathrm{X}_{00}^2 + \frac{9\mathrm{X}_{00} \mathrm{X}_{01}}{32\mathrm{c}_{4/3}} \Biggr] \Biggr\} + (\mathrm{Q}^0) \\ \mathrm{E}^{1-\gamma \ll 1} &= \frac{\mathrm{c}_{4/3} \mathrm{Q}^{4/3}}{\tilde{\mathrm{V}}^{1/3}} + \mathrm{c}_{2/3} \mathrm{Q}^{2/3} \tilde{\mathrm{R}} \tilde{\mathrm{V}}^{1/3} - \frac{9(1-\gamma) \mathrm{X}_{00}^2 \mathrm{m}_{\pi}^4 \tilde{\mathrm{V}} \log \mathrm{Q}}{64\mathrm{c}_{4/3}^3 \mathrm{N}_{\mathrm{f}}^2} \\ & - \frac{16}{9} \pi^2 \mathrm{m}_{\sigma}^2 \mathrm{N}_{\mathrm{f}} \mathrm{c}_{2/3} \mathrm{c}_{4/3} \nu^2 \tilde{\mathrm{V}} \log \mathrm{Q} + (\mathrm{Q}^0) \ , \end{split}$$

dove

$$c_{4/3} = \frac{3}{8} \left(\frac{\Lambda^2}{\pi N_f \nu^2}\right)^{2/3}, \quad c_{2/3} = \frac{1}{4f^2} \left(\frac{\pi^2}{N_f \nu^2 \Lambda^4}\right)^{1/3}, \quad \tilde{R} = \frac{R}{6} \quad \text{and} \quad \tilde{V} = \frac{V}{2\pi^2}, \tag{58}$$







 $\blacksquare$   $\theta$ -angle physics of 2-color QCD

Journal Club November 2023

📢 Alessandra D'Alise and Clelia Gambardella

Take home messages

 $\begin{array}{c} \mbox{2-color QCD+non-}\\ \mbox{zero baryon}\\ \mbox{charge+ $\theta$-angle} \end{array}$ 







*θ*-angle physics of 2-color QCD

 *Ξ* Journal Club November 2023
 *ξ* Alessandra D'Alise and Clelia Gambardella

  $\begin{array}{c} 2\text{-color QCD:} \\ 000 \end{array} \quad \begin{array}{c} 2\text{-color QCD and } \theta\text{-angle:} \\ 000 \end{array} \quad \begin{array}{c} \text{SBP Dynamics} \\ 000 \end{array} \quad \begin{array}{c} \text{NC 2-color QCD} \\ 000 \end{array} \quad \begin{array}{c} \text{Charging NC 2-color QCD} \\ 000 \end{array}$ 

#### Take home messages

study of the vacuum structure of the theory as a function of the number of flavours

 $\begin{array}{c} \mbox{2-color QCD+non-}\\ \mbox{zero baryon}\\ \mbox{charge+ $\theta$-angle} \end{array}$ 







*θ*-angle physics of 2-color QCD

 Journal Club November 2023

 *Alessandra D'Alise and Clelia Gambardella*

 $\begin{array}{c} 2\text{-color QCD:} \\ 000 \end{array} \quad \begin{array}{c} 2\text{-color QCD and } \theta\text{-angle:} \\ 000 \end{array} \quad \begin{array}{c} \text{SBP Dynamics} \\ 000 \end{array} \quad \begin{array}{c} \text{NC 2-color QCD} \\ 000 \end{array} \quad \begin{array}{c} \text{Charging NC 2-color QCD} \\ 000 \end{array}$ 

#### Take home messages

study of the vacuum structure of the theory as a function of the number of flavours

 $\begin{array}{c} \mbox{2-color QCD+non-}\\ \mbox{zero baryon}\\ \mbox{charge+ $\theta$-angle} \end{array}$ 

new phases for even and odd flavours[1]







*θ*-angle physics of 2-color QCD

 Journal Club November 2023

 Alessandra D'Alise and Clelia Gambardella

 $\begin{array}{c} 2\text{-color QCD:} \\ 000 \end{array} \quad \begin{array}{c} 2\text{-color QCD and } \theta\text{-angle:} \\ 000 \end{array} \quad \begin{array}{c} \text{SBP Dynamics} \\ 000 \end{array} \quad \begin{array}{c} \text{NC 2-color QCD} \\ 000 \end{array} \quad \begin{array}{c} \text{Charging NC 2-color QCD} \\ 000 \end{array}$ 




$\begin{array}{c} 2\text{-color QCD:} \\ 000 \end{array} \quad \begin{array}{c} 2\text{-color QCD and } \theta\text{-angle:} \\ 000 \end{array} \quad \begin{array}{c} \text{SBP} \\ 000 \end{array} \quad \begin{array}{c} \text{Dynamics} \\ 000 \end{array} \quad \begin{array}{c} \text{NC } 2\text{-color QCD} \\ 000 \end{array} \quad \begin{array}{c} \text{Charging NC } 2\text{-color QCD} \\ 000 \end{array}$ 



 2-color QCD:
 2-color QCD and θ-angle:
 SBP Dynamics NC 2-color QCD charging NC 2-color QCD ooc
 Charging NC 2-color QCD ooc

# Bibliografia I

- Jahmall Bersini et al. "The θ-angle and axion physics of two-color QCD at fixed baryon charge". In: JHEP 11 (2022), p. 080. DOI: 10.1007/JHEP11(2022)080. arXiv: 2208.09226 [hep-th].
- [2] Jahmall Bersini et al. "Charging the conformal window at nonzero  $\theta$  angle". In: Phys. Rev. D 107.12 (2023), p. 125024. DOI: 10.1103/PhysRevD.107.125024. arXiv: 2208.09227 [hep-th].
- J. B. Kogut et al. "QCD like theories at finite baryon density". In: Nucl. Phys. B 582 (2000), pp. 477–513. DOI: 10.1016/S0550-3213(00)00242-X. arXiv: hep-ph/0001171.
- [4] K. Splittorff, D. T. Son, and M. A. Stephanov. "QCD-like theories at finite baryon and isospin density". In: Physical Review D 64.1 (May 2001). ISSN: 1089-4918. DOI: 10.1103/physrevd.64.016003. URL: http://dx.doi.org/10.1103/PhysRevD.64.016003.
- [5] Andrei V. Smilga. "QCD at theta similar to pi". In: Phys. Rev. D 59 (1999), p. 114021. DOI: 10.1103/PhysRevD.59.114021. arXiv: hep-ph/9805214.
- [6] Max A. Metlitski and Ariel R. Zhitnitsky. "Theta-parameter in 2 color QCD at finite baryon and isospin density". In: Nucl. Phys. B 731 (2005), pp. 309–334. DOI: 10.1016/j.nuclphysb.2005.09.027. arXiv: hep-ph/0508004.
- [7] Roger F. Dashen. "Some features of chiral symmetry breaking". In: Phys. Rev. D 3 (1971), pp. 1879–1889. DOI: 10.1103/PhysRevD.3.1879.







## Bibliografia II

- [8] Paolo Di Vecchia and Francesco Sannino. "The Physics of the θ-angle for Composite Extensions of the Standard Model". In: Eur. Phys. J. Plus 129 (2014), p. 262. DOI: 10.1140/epjp/i2014-14262-4. arXiv: 1310.0954 [hep-ph].
- [9] Davide Gaiotto, Zohar Komargodski, and Nathan Seiberg. "Time-reversal breaking in QCD<sub>4</sub>, walls, and dualities in 2 + 1 dimensions". In: JHEP 01 (2018), p. 110. DOI: 10.1007/JHEP01(2018)110. arXiv: 1708.06806 [hep-th].
- [10] Paolo Di Vecchia et al. "Spontaneous CP breaking in QCD and the axion potential: an effective Lagrangian approach". In: JHEP 12 (2017), p. 104. DOI: 10.1007/JHEP12(2017)104. arXiv: 1709.00731 [hep-th].
- [11] Kei Iida and Etsuko Itou. "Velocity of sound beyond the high-density relativistic limit from lattice simulation of dense two-color QCD". In: Progress of Theoretical and Experimental Physics 2022.11 (Oct. 2022), 111B01. ISSN: 2050-3911. DOI: 10.1093/ptep/ptac137. eprint: https://academic.oup.com/ptep/article-pdf/2022/11/111B01/46781860/ptac137.pdf. URL: https://doi.org/10.1093/ptep/ptac137.
- [12] B. B. Brandt, F. Cuteri, and G. Endrödi. "Equation of state and speed of sound of isospin-asymmetric QCD on the lattice". In: Journal of High Energy Physics 2023.7 (July 2023). ISSN: 1029-8479. DOI: 10.1007/jhep07(2023)055. URL: http://dx.doi.org/10.1007/JHEP07(2023)055.







## Bibliografia III

- [13] Ryan Abbott et al. Lattice quantum chromodynamics at large isospin density: 6144 pions in a box. 2023. arXiv: 2307.15014 [hep-lat].
- [14] Dennis D. Dietrich and Francesco Sannino. "Conformal window of SU(N) gauge theories with fermions in higher dimensional representations". In: Phys. Rev. D 75 (2007), p. 085018. DOI: 10.1103/PhysRevD.75.085018. arXiv: hep-ph/0611341.
- [15] Oleg Antipin, Matin Mojaza, and Francesco Sannino. "Jumping out of the light-Higgs conformal window". In: Physical Review D 87.9 (2013), p. 096005.
- [16] Sidney Coleman. Aspects of symmetry: selected Erice lectures. Cambridge University Press, 1988.
- [17] Simeon Hellerman et al. "On the CFT Operator Spectrum at Large Global Charge". In: JHEP 12 (2015), p. 071. DOI: 10.1007/JHEP12(2015)071. arXiv: 1505.01537 [hep-th].
- [18] John L. Cardy. "Conformal invariance and universality in finite-size scaling". In: J. Phys. A 17 (1984), pp. L385–L387.
- [19] Domenico Orlando, Susanne Reffert, and Francesco Sannino. "Near-Conformal Dynamics at Large Charge". In: Phys. Rev. D 101.6 (2020), p. 065018. DOI: 10.1103/PhysRevD.101.065018. arXiv: 1909.08642 [hep-th].







 2-color QCD:
 2-color QCD and θ-angle:
 SBP Dynamics occore
 NC 2-color QCD occore
 Charging NC 2-color QCD occore

# Thank you!







β-angle physics of 2-color QCD
 Journal Club November 2023
 Alessandra D'Alise and Clelia Gambardella

# Backup slides

 2-color QCD:
 2-color QCD and θ-angle:
 SBP Dynamics NC 2-color QCD charging NC 2-color QCD oo
 Charging NC 2-color QCD oo

#### Superfluid $N_f$ odd

0

We have the solution 
$$k_1 = -k_2 + \frac{N_f}{2} - \frac{\theta}{\pi}$$
 which can be realized for  
 $\alpha = \frac{\theta}{N_f}$   $\alpha = \frac{\theta - \pi}{N_f} + \pi$   $\alpha = \frac{\theta - 2\pi}{N_f}$ 





 $\frac{\pi}{2}$ 



 $\varXi~\theta\text{-angle physics of 2-color QCD}$ 

🔜 Journal Club November 2023

 $\frac{3\pi}{2}$ 

📢 Alessandra D'Alise and Clelia Gambardella

θ

## CP breaking

- Note that when  $n \neq 0$ , the vacuum spontaneously breaks  $Sp(2N_f)$  because of the different phases for each quark flavour.
- CP is preserved when  $\bar{\theta} = 0$ . For equal mass quarks as considered here, this happens when  $m_{\pi} = 0$  or  $\theta = 0$ .
- For  $\theta = \pi$  the Lagrangian possess CP symmetry but in the normal phase the latter is spontaneously broken by the vacuum [Dashen:1970et,DiVecchia:2013swa,Gaiotto:2017tne,DiVecchia:2017xpu], leading to a strong  $\theta$ -dependence near  $\theta = \pi$ .







#### Symmetry breaking pattern & Spectrum



#### where

$$A = \frac{2}{N_{f}^{2}\mu^{2}} \sqrt{\left(N_{f}^{2}\mu^{4} + 3m_{\pi}^{4}X^{2}\right)^{2} + 4N_{f}^{2}\mu^{2}m_{\pi}^{4}k^{2}X^{2}},$$

$$M_{S}^{2} = \frac{a\mu^{4}N_{f}^{3} + 2\mu^{2}m_{\pi}^{4}X^{2}}{2\mu^{4}N_{f}^{2} - 2m_{\pi}^{4}X^{2}} \left(1 - \frac{m_{\pi}^{4}X^{2}}{\mu^{2}N_{f}^{2}}\right)$$
(60)







 $\blacksquare \theta$ -angle physics of 2-color QCD

르 Journal Club November 2023

#### Large charge setup

We will consider our system on a manifold  $\mathcal{M}$  with volume V and curvature R such that the underlying new scale of the theory is

$$\Lambda_{\rm Q} = ({\rm Q}/{\rm V})^{1/3} \tag{61}$$

where Q is the fixed baryon charge. Concretely, we will take our manifold to be

$$\mathcal{M} = \mathbb{R} \times \mathrm{S}^{\mathrm{d}-1} \tag{62}$$

such that we can consider an approximate state-operator correspondence that implies

$$\Delta_{\mathbf{Q}} = \tilde{\mathbf{V}}^{1/3} \mathbf{E}_{\mathbf{Q}} , \qquad \mathbf{E}_{\mathbf{Q}} = \mu \mathbf{Q} - \mathcal{L}$$
(63)

where  $\Delta_Q$  is the scaling dimension of the lowest-lying operator with baryon charge Q,  $E_Q$  is the ground state energy on  $\mathbb{R} \times S^{d-1}$  at fixed charge,  $\tilde{V}^{1/3}$  is the radius of  $S^{d-1}$ .







 $\begin{array}{c} 2\text{-color QCD:} \\ 000 \end{array} \quad \begin{array}{c} 2\text{-color QCD and } \theta\text{-angle:} \\ 000 \end{array} \quad \begin{array}{c} \text{SBP Dynamics} \\ 000 \end{array} \quad \begin{array}{c} \text{NC } 2\text{-color QCD} \\ 000 \end{array} \quad \begin{array}{c} \text{Charging NC } 2\text{-color QCD} \\ 000 \end{array} \end{array}$ 

#### Large charge expansion of the $\theta$ -angle physics

We double-expanded X first in  $\gamma$  and then also in 1/Q as follows

$$\begin{split} X &= X_0 + X_1 \gamma + \left(\gamma^2\right) \,, \qquad \qquad X_k = X_{k0} + \frac{X_{k1}}{Q^{2/3}} + \left(Q^{-4/3}\right) \,, \qquad \text{for } \gamma \ll 1 \\ X &= X_0 + X_1 (1-\gamma) + \left((1-\gamma)^2\right) \,, \qquad \qquad X_k = X_{k0} + \frac{X_{k1}}{Q^{4/3}} + \left(Q^{-2}\right) \,, \qquad \text{for } 1-\gamma \ll 1 \,. \end{split}$$

where

$$\begin{split} X_{00} &= N_{\rm f} \cos \left( \frac{\theta + 2k\pi}{N_{\rm f}} \right) & \bar{\theta}_{00} = 0 \\ X_{01} &= \frac{9m_{\pi}^4 \sin^2 \left( \frac{\theta + 2k\pi}{N_{\rm f}} \right) \cos \left( \frac{\theta + 2k\pi}{N_{\rm f}} \right)}{8 \ 2^{2/3} \pi^{4/3} {\rm a} \ c_{4/3}^2} & \bar{\theta}_{10} = 0 \\ X_{10} &= 0 \\ X_{11} &= 0 & \bar{\theta}_{11} = \frac{3m_{\pi}^2 \sin \left( \frac{2(\theta + 2\pi k)}{N_{\rm f}} \right) \log \left( \frac{8192 \pi^2 c_{4/3}^3 N_{\rm f}^3 v^6}{27 Q^2} \right)}{32 \ 2^{2/3} \pi^{4/3} {\rm a} \ c_{4/3}^2} \end{split}$$







 $\blacksquare$   $\theta$ -angle physics of 2-color QCD

르 Journal Club November 2023

 2-color QCD
 2-color QCD and θ-angle:
 SBP Dynamics
 NC 2-color QCD
 Charging NC 2-color QCD

#### EOMs

Evaluating the lagrangian (57) on the vacuum ansatz

$$\mathcal{L}_{\theta,\sigma} \left[ \Sigma_0, \sigma_0 \right] = -e^{-4f\sigma_0} \left( \Lambda^4 - \frac{m_\sigma^2}{16f^2} \right) - \frac{m_\sigma^2 \left( 4f\sigma_0 + e^{-4f\sigma_0} - 1 \right)}{16f^2} - \frac{R \ e^{-2f\sigma}}{12f^2} + + 4m_\pi^2 \nu^2 X \cos\varphi \ e^{-f\sigma_0 y} + 2\mu^2 N_f \nu^2 e^{-2f\sigma_0} \sin^2\varphi - a\nu^2 e^{-4f\sigma_0} \bar{\theta}^2 \ ,$$
(64)

where

$$\bar{\theta} \equiv \theta - \sum_{i}^{N_{f}} \alpha_{i}, \qquad X \equiv \sum_{i}^{N_{f}} \cos \alpha_{i}, \qquad \Lambda^{4} \equiv \Lambda_{0}^{4} + \frac{m_{\sigma}^{2}}{16f^{2}}.$$
(65)

The respective equations of motion are

$$N_{f}\mu^{2}e^{-2f\sigma}\cos\varphi - m_{\pi}^{2}Xe^{-f\sigma y} = 0$$
(66)

$$ae^{-4f\sigma}\bar{\theta} - 2m_{\pi}^{2}\sin\alpha_{i}\cos\varphi e^{-f\sigma y} = 0, \qquad i = 1, .., N_{f} \qquad (67)$$

$$\frac{\operatorname{Re}^{-2f\sigma}}{6f} + 4af\nu^{2}e^{-4f\sigma}Y^{2} + 4f\Lambda_{0}^{4}e^{-4f\sigma} - \frac{m_{\sigma}^{2}\left(1 - e^{-4f\sigma}\right)}{4f} + -4f\mu^{2}N_{f}\nu^{2}e^{-2f\sigma}\sin^{2}\varphi - 4fm_{\pi}^{2}\nu^{2}yX\cos\varphi e^{-f\sigma y} = 0$$
(68)

$$4\mu N_{\rm f}\nu^2 e^{-2f\sigma} \sin^2\varphi = \frac{Q}{V} .$$
 (69)







 $\blacksquare~\theta\text{-angle physics of 2-color QCD}$ 

🔜 Journal Club November 2023

 2-color QCD
 2-color QCD and θ-angle:
 SBP Dynamics
 NC 2-color QCD
 Charging NC 2-color QCD

#### $\Delta_{\rm Q}$

#### • $\gamma \ll 1$

$$\begin{split} \frac{\Delta_{\rm Q}}{\Delta_{\rm Q}^*} &= 1 - \left(\frac{9m_\pi^2}{32\pi\nu}\right)^2 \frac{1 - \gamma \log\left(\frac{3\rho^{2/3}}{16(2\pi^2)^{1/3}c_{4/3}\nu^2 N_{\rm f}}\right)}{4c_{4/3}^5 N_{\rm f}} \cos^2\left(\frac{\theta + 2\pi k}{N_{\rm f}}\right) \left(\frac{1}{2\pi^2\rho}\right)^{2/3} \\ &+ \frac{\gamma}{c_{4/3}^6 N_{\rm f}} \cos^2\left(\frac{\theta + 2\pi k}{N_{\rm f}}\right) \left(\frac{27m_\pi^4 \sin^2\left(\frac{\theta + 2\pi k}{N_{\rm f}}\right)}{256\ 2^{2/3}\pi^{4/3} a\ c_{4/3}^3 N_{\rm f}^2} + \frac{5\left(\frac{9m_\pi^2}{64\pi\nu}\right)^2 \cos^2\left(\frac{\theta + 2\pi k}{N_{\rm f}}\right)}{6c_{4/3}^4 N_{\rm f}} - \frac{c_{2/3}}{2}\left(\frac{\rho}{2\pi^2 Q}\right)^{2/3} \right) \\ &\times \left(\frac{9m_\pi^2}{32\pi\nu}\right)^2 \left(\frac{1}{2\pi^2\rho}\right)^{4/3} \log Q - \frac{16}{9}\pi^2 c_{2/3}\nu^2 N_{\rm f} m_\sigma^2 \left(\frac{1}{2\pi^2\rho}\right)^{4/3} \log Q \end{split}$$

• 
$$(1 - \gamma) \ll 1$$
  
$$\frac{\Delta_{\mathbf{Q}}}{\Delta_{\mathbf{Q}}^*} = 1 - \left(\frac{9m_{\pi}^4}{64c_{4/3}^4}(1 - \gamma)\cos^2\left(\frac{\theta + 2\pi \mathbf{k}}{N_{\mathbf{f}}}\right) + \frac{16}{9}\pi^2 c_{2/3}\nu^2 N_{\mathbf{f}}m_{\sigma}^2\right) \left(\frac{1}{2\pi^2\rho}\right)^{4/3}\log\mathbf{Q}$$







 $\blacksquare \theta$ -angle physics of 2-color QCD

Journal Club November 2023

#### Spectrum

$$SU(2N_f) \times U(1)_A \xrightarrow{2N_f^2 - N_f} Sp(2N_f) \longrightarrow SU(N_f)_V \times U(1)_B \xrightarrow{\frac{N_f^2 - N_f}{2}} Sp(N_f)_V$$
(70)

Having in mind the hierarchy of scales  $m \ll \sqrt{a} \le \mu \ll 4\pi\nu$ , we focus on the spectrum of

light modes

- $\frac{1}{2}N_f(N_f 1)$  massless Goldstones: -+ of  $Sp(N_f)$
- 1 pseudo-Goldstone of  $Sp(N_f)$  with mass  $\propto \sqrt{a}$

the spectrum changes when (near)conformal dynamics is realized through the dilaton dressing

we expand around the vacuum solution as follows

$$\Sigma = e^{i\Omega} \Sigma_0 e^{i\Omega^t} \quad \text{where} \quad \Omega = \left( \begin{array}{cc} \pi & 0 \\ 0 & -\pi^t \end{array} \right) + \tilde{\beta} S \left( \begin{array}{cc} 1_{N_f} & 0 \\ 0 & 1_{N_f} \end{array} \right), \quad \tilde{\beta} \equiv \frac{1}{\sqrt{2N_f}}, \ \pi = \sum_{a=0}^{\dim \frac{O(Nf)}{Sp(N_f)}} \pi^a T_a$$







 $\blacksquare$   $\theta$ -angle physics of 2-color QCD

르 Journal Club November 2023

#### Spectrum

$$\frac{\tilde{\mathcal{L}}}{4\nu^2 \sin^2 \varphi \ \mathrm{e}^{-2\sigma_0 \mathrm{f}}} = \begin{pmatrix} \pi^0 & \hat{\sigma} & \mathrm{S} \end{pmatrix} \mathrm{D}^{-1} \begin{pmatrix} \pi^0 \\ \hat{\sigma} \\ \mathrm{S} \end{pmatrix} + \sum_{\mathrm{a}=1}^{\mathrm{dim}(\biguplus)} \partial^{\mu} \pi^{\mathrm{a}} \partial_{\mu} \pi^{\mathrm{a}}$$
(71)

with the inverse propagator  $D^{-1}$  defined as

$$D^{-1} = \begin{pmatrix} \omega^{2} - k^{2} & i\omega\mu f\sqrt{2N_{f}} & 0\\ -i\omega\mu f\sqrt{2N_{f}} & \frac{\omega^{2} - k^{2}}{8\nu^{2}\sin^{2}\varphi} - M_{\sigma}^{2} & \frac{1}{2}I_{\hat{\sigma}s} \\ 0 & \frac{1}{2}I_{\hat{\sigma}s} & \frac{(\omega^{2} - k^{2})}{\sin^{2}\varphi} - M_{s}^{2} \end{pmatrix}, \qquad I_{\hat{\sigma}S} = \frac{\sqrt{2}f\mu^{2}m_{\pi}^{4}\sqrt{N_{f}}XyZ}{m_{\pi}^{4}X^{2} - \mu^{4}N_{f}^{2}e^{2f\sigma_{0}(y-2)}}$$
(72)

where  $Z\equiv\sum_{i=1}^{N_f}\sin\alpha_i$  and the Lagrangian masses for the dilaton-field and the S mode are given by

$$M_{\sigma}^{2} = -\frac{f^{2}\mu^{2}N_{f}e^{-6f\sigma_{0}}\left(\nu^{2}m_{\pi}^{4}X^{2}\left(y^{2}-2\right)e^{6f\sigma_{0}}+2\mu^{4}\nu^{2}N_{f}^{2}e^{2f\sigma_{0}(y+1)}-4\Lambda^{4}\mu^{2}N_{f}e^{2f\sigma_{0}y}\right)}{2\nu^{2}\left(\mu^{4}N_{f}^{2}e^{2f\sigma_{0}(y-2)}-m_{\pi}^{4}X^{2}\right)}$$
(73)

$$M_{\rm S}^2 = \frac{a\mu^4 N_{\rm f}^3 e^{2f\sigma_0(y-1)} + 2\mu^2 m_\pi^4 X^2 e^{4f\sigma_0}}{2\mu^4 N_{\rm f}^2 e^{2f\sigma_0 y} - 2m_\pi^4 X^2 e^{4f\sigma_0}} .$$
(74)





INFN

 $\blacksquare \theta$ -angle physics of 2-color QCD

🔜 Journal Club November 2023

 $\begin{array}{c} \mbox{2-color QCD} \\ \mbox{000} \end{array} & \begin{array}{c} \mbox{2-color QCD and $\theta$-angle:} \\ \mbox{000} \end{array} & \begin{array}{c} \mbox{SBP} \\ \mbox{000} \end{array} & \begin{array}{c} \mbox{NC 2-color QCD} \\ \mbox{000} \end{array} & \begin{array}{c} \mbox{Carging NC 2-color QCD} \\ \mbox{000} \end{array} & \begin{array}{c} \mbox{Carging NC 2-color QCD} \\ \mbox{000} \end{array} & \begin{array}{c} \mbox{Carging NC 2-color QCD} \\ \mbox{000} \end{array} & \begin{array}{c} \mbox{Carging NC 2-color QCD} \\ \mbox{000} \end{array} & \begin{array}{c} \mbox{Carging NC 2-color QCD} \\ \mbox{Carging NC 2-color QCD} \end{array} & \begin{array}{c} \mbox{Carging NC 2-color QCD} \\ \mbox{Carging NC 2-color QCD} \end{array} & \begin{array}{c} \mbox{Carging NC 2-color QCD} \\ \mbox{Carging NC 2-color QCD} \end{array} & \begin{array}{c} \mbox{Carging NC 2-color QCD} \\ \mbox{Carging NC 2-color QCD} \end{array} & \begin{array}{c} \mbox{Carging NC 2-color QCD} \\ \mbox{Carging NC 2-color QCD} \end{array} & \begin{array}{c} \mbox{Carging NC 2-color QCD} \\ \mbox{Carging NC 2-color QCD} \end{array} & \begin{array}{c} \mbox{Carging NC 2-color QCD} \end{array} & \begin{array}{c} \mbox{Carging NC 2-color QCD} \\ \mbox{Carging NC 2-color QCD} \end{array} & \begin{array}{c} \mbox{Carging NC 2-color QCD$ 

#### Spectrum



#### In the large-charge limit, the above reduces to

$$\begin{split} \gamma \ll 1 : \quad \omega_2 &= k \left[ \frac{1}{\sqrt{3}} + \frac{\sqrt{3} X_{00}{}^2}{(2\pi^2)^{2/3} c_{4/3}^5 N_f^3} \left( \frac{9m_\pi^2}{128\pi\nu} \right)^2 \left( \frac{V}{Q} \right)^{2/3} + \ldots \right] + \mathcal{O}(k^2) \\ (1-\gamma) \ll 1 : \quad \omega_2 &= k \left[ \frac{1}{\sqrt{3}} + 1 \left( \frac{2^{5/3} c_{2/3} \nu^2 m_\sigma^2}{3\sqrt{3}\pi^{2/3}} + \frac{9\sqrt{3}m_\pi^4 X_{00}{}^2}{128\sqrt[3]{2}\pi^{8/3} c_{4/3}^4 N_f^2} \right) \left( \frac{V}{Q} \right)^{4/3} + \ldots \right] + \mathcal{O}(k^2) \end{split}$$







 $\blacksquare~\theta\text{-angle physics of 2-color QCD}$ 

🔜 Journal Club November 2023

2-color QCD: 2-color QCD and  $\theta$ -angle: SBP Dynamics NC 2-color QCD Charging NC 2-color QCD

#### Axion

We denote by  $\nu_{PQ}$  the scale of U(1)<sub>PQ</sub> spontaneous symmetry breaking and by  $a_{PQ}$  the coefficient of the  $U(1)_{PQ}$  anomalous term.

$$\mathcal{L}_{\hat{a}} = \nu^{2} \mathrm{Tr}\{\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\} + \nu_{\mathrm{PQ}}^{2} \partial_{\mu} N \partial^{\mu} N^{\dagger} + 4\mu \nu^{2} \mathrm{Tr}\{B\Sigma^{\dagger} \partial_{0} \Sigma\} + m_{\pi}^{2} \nu^{2} \mathrm{Tr}\{M\Sigma + M^{\dagger} \Sigma^{\dagger}\} + 2\mu^{2} \nu^{2} \left[\mathrm{Tr}\{\Sigma B^{\mathrm{T}} \Sigma^{\dagger} B\} + \mathrm{Tr}\{BB\}\right] - a\nu^{2} \left(\theta - \frac{\mathrm{i}}{4} \mathrm{Tr}\{\log \Sigma - \log \Sigma^{\dagger}\} - \frac{\mathrm{i}}{4} a_{\mathrm{PQ}} (\log N - \log N^{\dagger})\right)^{2}.$$

$$(75)$$

$$M_{\hat{a}}^{2} = \frac{a\mu \ a_{PQ}}{16\nu_{PQ}^{2} \left(\mu^{4} - m_{\pi}^{4}\right)} \ . \tag{78}$$

1

,





 $\blacksquare \theta$ -angle physics of 2-color QCD

1

Journal Club November 2023