Gravitational Waves in Einstein-Cartan Theory

Emmanuele Battista

Department of Physics, University of Naples "Federico II"

OUTLINE

1.
2. BLANCHET-DAMOUR APPROACH IN EINSTEIN-CARTAN THEORY
3. GRAVITATIONAL-WAVE GENERATION PROBLEM
4. A FIRST APPLICATION TO BINARY NEUTRON STAR AND BLACK HOLE SYSTEMS

5. CONCLUSIONS

EINSTEIN-CARTAN THEORY (1)

- Enstein-Cartan (EC) theory has been formulated to extend the concepts of general relativity (GR) to the microphysical realm.
-Quantum intrinsic carried by elementary particles is described geometrically by means of the torsion tensor.

Mass-energy

Energy-momentum tensor

Spin density tensor
Curvature

EINSTEIN-CARTAN THEORY (2)

 and the most general nonsymmetric metric-compatible (i.e., $\nabla_{\mu} g_{\alpha \beta}=0$) affine connection $\Gamma_{\mu \nu}^{\lambda}$:$$
\begin{gathered}
\Gamma_{[\mu \nu]}^{\lambda} \equiv \frac{1}{2}\left(\Gamma_{\mu \nu}^{\lambda}-\Gamma_{\nu \mu}^{\lambda}\right) \equiv S_{\mu \nu}{ }^{\lambda}, \\
\Gamma_{\mu \nu}^{\lambda}=\hat{\Gamma}_{\mu \nu}^{\lambda}+\left(S_{\mu \nu}^{\lambda}+S_{\mu \nu}{ }^{\lambda}-S_{\nu}^{\lambda}{ }_{\mu}\right) \\
\hat{\Gamma}_{\mu \nu}^{\lambda}=\frac{1}{2} g^{\lambda \sigma}\left(\partial_{\mu} g_{\sigma \nu}+\partial_{\nu} g_{\sigma \mu}-\partial_{\sigma} g_{\mu \nu}\right) \\
\Gamma_{\mu \nu}^{\lambda}=\hat{\Gamma}_{\mu \nu}^{\lambda}-K_{\mu \nu}{ }^{\lambda} \\
K_{\mu \nu}{ }^{\lambda}=S_{\nu}^{\lambda}{ }_{\mu}-S_{\mu \nu}^{\lambda}-S_{\mu \nu}{ }^{\lambda}
\end{gathered}
$$

Torsion tensor

Affine connection

Christoffel symbols

Contortion tensor

EINSTEIN-CARTAN THEORY (3)

- EC theory, GR theory, special relativity:

EINSTEIN-CARTAN THEORY (4)

- Curvature is related to the rotation of a vector; torsion is related to the of a vector.

Curvature

Curvature and torsion

EINSTEIN-CARTAN THEORY (5)

in EC theory:

$R^{\mu}{ }_{\nu \rho \sigma}=\partial_{\rho} \Gamma_{\sigma \nu}^{\mu}-\partial_{\sigma} \Gamma_{\rho \nu}^{\mu}+\Gamma_{\rho \alpha}^{\mu} \Gamma_{\sigma \nu}^{\alpha}-\Gamma_{\sigma \alpha}^{\mu} \Gamma_{\rho \nu}^{\alpha}$
with $\Gamma_{\mu \nu}^{\lambda}=\hat{\Gamma}_{\mu \nu}^{\lambda}-K_{\mu \nu}^{\lambda}$

Riemann tensor of GR
$\hat{\nabla}_{\mu} \equiv$ Covariant derivative wrt the Christoffel symbols $\hat{\Gamma}_{\alpha \beta}^{\mu}$

$$
\begin{aligned}
R_{\mu \nu \rho \sigma} & =\hat{R}_{\mu \nu \rho \sigma}+\hat{\nabla}_{\sigma} K_{\rho \nu \mu}-\hat{\nabla}_{\rho} K_{\sigma \nu \mu} \\
& +K_{\rho \alpha \mu} K_{\sigma \nu}{ }^{\alpha}-K_{\sigma \alpha \mu} K_{\rho \nu}{ }^{\alpha},
\end{aligned}
$$

$K_{\mu \nu \alpha} \equiv$ Contortion tensor

EINSTEIN-CARTAN THEORY (6)

- Einstein tensor $G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R$ is not symmetric and satisfies

$$
G_{[\mu \nu]}=R_{[\mu \nu]}=\nabla_{\alpha}\left(S_{\mu \nu}^{\alpha}+2 \delta_{[\mu}^{\alpha} S_{\nu] \beta}^{\beta}\right)+2 S_{\alpha \rho}^{\rho}\left(S_{\mu \nu}^{\alpha}+2 \delta_{[\mu}^{\alpha} S_{\nu] \beta}^{\beta}\right)
$$

- Contracted Bianchi identity

$$
\nabla_{\alpha} G_{\mu}^{\alpha}=-2 S_{\alpha \rho}^{\rho} G_{\mu}^{\alpha}-2 S_{\alpha \mu}^{\nu} G_{\nu}^{\alpha}+\left(S_{\alpha \beta}^{\nu}+2 \delta_{[\alpha}^{\nu} S_{\beta] \rho}^{\rho}\right) R_{\mu \nu}^{\alpha \beta}
$$

EINSTEIN-CARTAN FIELD EQUATIONS (1)

- Total action of EC theory

Lagrangian

$\mathscr{L}_{\mathrm{m}}=\mathscr{L}_{\mathrm{m}}(\psi, \partial \psi, \eta)$

$$
\mathscr{L}_{\mathrm{m}}=\mathscr{L}_{\mathrm{m}}(\psi, \partial \psi, g, \partial g, S)
$$

Gravitational Lagrangian

$$
\mathscr{L}_{\mathrm{g}}(g, \partial g, S, \partial S)=\frac{c^{4}}{16 \pi G} R
$$

Total action of EC theory

$$
S=\int \mathrm{d}^{4} x \sqrt{-g}\left[\mathscr{L}_{\mathrm{m}}(\psi, \partial \psi, g, \partial g, S)+\frac{c^{4}}{16 \pi G} R\right]
$$

EINSTEIN-CARTAN FIELD EQUATIONS (2)

- EC field equations

$$
\begin{gathered}
G^{\mu \nu}=\frac{8 \pi G}{c^{4}} \mathbb{T}^{\mu \nu} \\
S_{\alpha \beta}^{\nu}+2 \delta_{[\alpha}^{\nu} S_{\beta] \rho}^{\rho}=\frac{8 \pi G}{c^{4}} \tau_{\alpha \beta}{ }^{\nu}
\end{gathered}
$$

where

$$
\mathbb{T}_{\beta}{ }^{\alpha}=\frac{1}{\sqrt{-g}}\left[\delta_{\beta}{ }^{\alpha} \mathcal{L}_{\mathrm{m}}-\frac{\partial \mathcal{L}_{\mathrm{m}}}{\partial\left(\partial_{\alpha} \Psi\right)} \nabla_{\beta} \Psi\right]
$$

Canonical energy-momentum tensor

$$
\tau_{\gamma}{ }^{\beta \alpha}=\frac{1}{\sqrt{-g}} \frac{\delta \mathcal{L}_{\mathrm{m}}}{\delta K_{\alpha \beta}^{\gamma}}
$$

Canonical spin angular momentum tensor

EINSTEIN-CARTAN FIELD EQUATIONS (3)

- Generalized conservation laws

$$
\left(\nabla_{\nu}+2 S_{\nu \alpha}{ }^{\alpha}\right) \mathbb{T}_{\mu}{ }^{\nu}=2 \mathbb{T}_{\lambda}{ }^{\nu} S_{\mu \nu}{ }^{\lambda}-\tau_{\nu \rho}{ }^{\sigma} R_{\mu \sigma}{ }^{\nu \rho},
$$

Conservation of

 energy-momentum$$
\nabla_{\alpha} G_{\mu}^{\alpha}=-2 S_{\alpha \rho}^{\rho} G_{\mu}^{\alpha}-2 S_{\alpha \mu}^{\nu} G_{\nu}^{\alpha}+\left(S_{\alpha \beta}^{\nu}+2 \delta_{[\alpha}^{\nu} S_{\beta] \rho}^{\rho}\right) R_{\mu \nu}^{\alpha \beta}
$$

$$
\left(\nabla_{\lambda}+2 S_{\lambda \alpha}{ }^{\alpha}\right) \tau_{\mu \nu}{ }^{\lambda}=\mathbb{T}_{[\mu \nu]},
$$

Conservation of angular momentum

$$
G_{[\mu \nu]}=\nabla_{\alpha}\left(S_{\mu \nu}^{\alpha}+2 \delta_{[\mu}^{\alpha} S_{\nu] \beta}^{\beta}\right)+2 S_{\alpha \rho}^{\rho}\left(S_{\mu \nu}^{\alpha}+2 \delta_{[\mu}^{\alpha} S_{\nu] \beta}^{\beta}\right)
$$

EINSTEIN-CARTAN FIELD EQUATIONS (4)

- field equations

$$
\hat{G}^{\alpha \beta}=\frac{\chi}{2} \Theta^{\alpha \beta}
$$

$\hat{G}^{\alpha \beta} \equiv$ Einstein tensor constructed with the Christoffel symbols $\hat{\Gamma}^{\mu}{ }_{\alpha}$

$$
\left(\chi=16 \pi G / c^{4}\right)
$$

where

$$
\Theta^{\alpha \beta}=T^{\alpha \beta}+\frac{\chi}{2} \mathcal{S}^{\alpha \beta}
$$

combined energy-momentum tensor

$$
T^{\alpha \beta}=\frac{2}{\sqrt{-g}} \frac{\delta\left(\sqrt{-g} \mathscr{L}_{m}\right)}{\delta g_{\alpha \beta}}
$$

metric energy-momentum tensor

Contribution due to spin ($\tau^{\alpha \beta}{ }_{\gamma} \equiv$ canonical spin angular momentum tensor)

GRAVITATIONAL WAVES IN GR

- In high-energy astrophysics, the main sources of gravitational waves (GWs) are compact binary systems: black holes (BHs) and (NSs).

BLANCHET-DAMOUR APPROACH IN EC THEORY (1)

- Spinning, weakly self-gravitating, weakly stressed, and (i.e., spinning PN sources).
- Motion and radiation of binary systems in their early inspiralling stage.

-GW generation problem: relating the asymptotic gravitationalwave form generated by some isolated spinning PN source and which we observe via a detector (located in the wave zone of the source), to the material content of the source, i.e., its tensor $\Theta^{\alpha \beta}$, using some suitable approximation methods.

BLANCHET-DAMOUR APPROACH IN EC THEORY (2)

Let us introduce a set of harmonic coordinates $x^{\mu}=(c t, \boldsymbol{x})$. The spatial part \mathbb{R}^{3} of the spacetime manifold U_{4} is decomposed in the following domains:

Near (or inner) zone $r<r_{i}$

PN is valid

Exterior zone $r>d$
MPM is valid

$$
d<r_{i} \ll \lambda
$$

PN source: $d \ll \lambda$

BLANCHET-DAMOUR APPROACH IN EC THEORY (3)

- Post-Newtonian (PN) approximation scheme: valid under the assumptions of weak gravitational field inside the source and slow internal motions; an expansion in $v / c \ll 1$ is employed.

$$
F(t-r / c)=F(t)-\frac{r}{c} \dot{F}(t)+\frac{r^{2}}{2 c^{2}} \ddot{F}(t)+\ldots \quad \omega / c=2 \pi / \lambda
$$

(PM) approximation scheme: valid over all the spacetime; it operates by means of an expansion in the Newton gravitational constant G :

$$
\sqrt{-g} g^{\alpha \beta}=\eta^{\alpha \beta}+G \mathfrak{h}_{1}^{\alpha \beta}+G^{2} \mathfrak{h}_{2}^{\alpha \beta}+\ldots
$$

$$
\mathfrak{h}^{\alpha \beta}=\sum_{n=1}^{\infty} G^{n} \mathfrak{G}_{n}^{\alpha \beta}
$$

$\sqrt{-g} g^{\alpha \beta}:$ gothic metric

$$
g=\operatorname{det}\left(g_{\mu \nu}\right)
$$

$$
\text { basic variable: } \mathfrak{h}^{\alpha \beta}=\sqrt{-g} g^{\alpha \beta}-\eta^{\alpha \beta}
$$

BLANCHET-DAMOUR APPROACH IN EC THEORY (4)

- Multipole expansion: method used to describe the properties of the source as seen from its exterior ($r>d$); the spacetime metric is parametrized by multipole moments.

- Multipolar-post-Minkowskian (MPM) method: it can be employed in the exterior weak-field region of the source to solve vacuum EC field equations and combines the PM algorithm and the multipole expansion.

BLANCHET-DAMOUR APPROACH IN EC THEORY (5)

- Blanchet-Damour formalism is based on two approximation schemes: MPM and PN methods. It allows to solve approximately the GW generation problem and employs a fourstage program:

1. In the exterior domain, vacuum EC field equations are perturbatively solved by means of the MPM algorithm and the resulting solution is parametrized by STF source multipole moments I_{L}, J_{L} :
recall that $\mathfrak{h}^{\alpha \beta}=\sqrt{-g} g^{\alpha \beta}-\eta^{\alpha \beta}$

$$
\mathfrak{h}_{\mathrm{ext}}^{\alpha \beta}=\sum_{n=1}^{\infty} G^{n} \mathfrak{h}_{n}^{\alpha \beta}
$$

$$
\mathfrak{h}_{\mathrm{ext}}^{\alpha \beta}=\mathfrak{h}_{\mathrm{ext}}^{\alpha \beta}\left(I_{L}, J_{L}\right)
$$

$I_{L}:$ mass-type STF source multipole moment of order I
$J_{L}:$ current-type STF source multipole moment of order I

Multi-index notation, where L denotes the multi-index $i_{1} i_{2} \ldots i_{l}$ made of $/$ spatial indices. Hence $I_{L}=I_{i_{1} i_{2} \ldots i_{l}}$

BLANCHET-DAMOUR APPROACH IN EC THEORY (6)

2. In the wave zone, a set of radiative coordinates $X^{\mu}=(c T, \boldsymbol{X})$ is invoked where the metric coefficients $\mathscr{H}^{\mu \nu}$ admit the radiative form

$$
\mathscr{H}^{\mu \nu}(X)=\sum_{n=1}^{\infty} \frac{1}{\mathcal{R}^{n}} \mathscr{H}_{n}^{\mu \nu}(T-\mathcal{R} / c, \mathcal{N})
$$

$$
\mathcal{R}=|\boldsymbol{X}| \equiv\left(\delta_{i j} X^{i} X^{j}\right)^{1 / 2} \rightarrow \infty
$$

radiative distance from the source

$$
\mathcal{U} \equiv T-\mathcal{R} / c \quad \text { retarded time }
$$

$\mathcal{N} \equiv \boldsymbol{X} / \mathcal{R} \quad$ direction of propagation of GW
$\mathscr{H}_{i j}^{\mathrm{TT}}\left(X^{\mu}\right)=\frac{4 G}{c^{2} \mathcal{R}} \mathscr{P}_{i j k l}(\mathcal{N}) \sum_{l=2}^{\infty} \frac{1}{l!c^{l}}\left\{\mathcal{N}_{L-2} U_{k l L-2}(\mathcal{U})\right.$

$$
\left.-\frac{2 l}{(l+1) c} \mathcal{N}_{a L-2} \epsilon_{a b(k} V_{l) b L-2}(\mathcal{U})\right\},
$$

U_{L} : mass-type STF radiative multipole moment of order I
$V_{L}:$ current-type STF radiative multipole moment of order I

BLANCHET-DAMOUR APPROACH IN EC THEORY (7)

Transverse-traceless (TT) projection operator onto the plane orthogonal to \mathscr{N}

$$
\begin{aligned}
\mathscr{P}_{i j k l}(\boldsymbol{\mathcal { N }}) & \equiv \mathscr{P}_{i k} \mathscr{P}_{j l}-\frac{1}{2} \mathscr{P}_{i j} \mathscr{P}_{k l}, \\
\mathscr{P}_{i j}(\boldsymbol{\mathcal { N }}) & \equiv \delta_{i j}-\mathcal{N}_{i} \mathcal{N}_{j} .
\end{aligned}
$$

TT gauge
$\mathscr{H}_{0 \mu}^{\mathrm{TT}}=0$

$$
\left(\mathscr{H}^{\mathrm{TT}}\right)_{i}^{i}=0 \quad \partial^{j} \mathscr{H}_{i j}^{\mathrm{TT}}=0
$$

3. In the near zone of the source, the EC field equations are solved through the PN iteration: the inner metric $\mathfrak{h}_{\text {in }}^{\alpha \beta}$ is obtained.
4. The matching procedure is exploited in the yielding the explicit expressions of both the source multipole moments I_{L}, J_{L} and the radiative moments U_{L}, V_{L} in terms of the combined energy-momentum tensor $\Theta^{\alpha \beta}$.

BLANCHET-DAMOUR APPROACH IN EC THEORY (8)

Near zone

Source

Overlapping zone

Physical Observables

- The matching procedure allows to "fill" the otherwise "empty" expressions of both the source and the radiative multipole moments with physical information about the source.
- I_{L}, J_{L} are given as well-defined (compact-support) integral expressions involving the source variables; in particular, they are given as integrals extending over the (compact-support)
$\Theta^{\alpha \beta}$ of the material source.
- The radiative multipole moments U_{L}, V_{L} are obtained in the form of some (nonlinear) functionals of the source moments I_{L}, J_{L}.

GW GENERATION PROBLEM IN EC THEORY (1)

- at 1PN order in harmonic coordinates $x^{\mu}=(c t, \boldsymbol{x})$:

$$
\begin{aligned}
& \mathfrak{h}_{\mathrm{ext}}^{\alpha \beta}=\mathfrak{h}_{\mathrm{ext}}^{\alpha \beta}\left(I_{L}, J_{L}\right) \\
& \mathfrak{h}_{\mathrm{ext}}^{\alpha \beta}=\sqrt{-g} g_{\mathrm{ext}}^{\alpha \beta}-\eta^{\alpha \beta} \\
& g_{0 i}^{\mathrm{ext}}=-\frac{4}{c^{3}} V_{i}^{\mathrm{ext}}+\mathrm{O}\left(c^{-5}\right), \\
& g_{00}^{\mathrm{ext}}=-\mathrm{e}^{-2 V^{\mathrm{ext}} / c^{2}}+\mathrm{O}\left(c^{-6}\right), \\
& g_{i j}^{\mathrm{ext}}=\delta_{i j}\left(1+\frac{2}{c^{2}} V^{\mathrm{ext}}\right)+\mathrm{O}\left(c^{-4}\right),
\end{aligned}
$$

The qualifier n PN refers to a correction of the order $c^{-2 n}$

External potentials

$$
r=|\boldsymbol{x}|=\left(x^{i} x_{i}\right)^{1 / 2}
$$

$$
\begin{aligned}
V^{\mathrm{ext}} & =G \sum_{l=0}^{+\infty} \frac{(-1)^{l}}{l!} \partial_{L}\left(\frac{I_{L}(u)}{r}\right), \\
V_{i}^{\mathrm{ext}} & =-G \sum_{l=1}^{+\infty} \frac{(-1)^{l}}{l!}\left\{\partial_{L-1}\left(\frac{\dot{I}_{i L-1}(u)}{r}\right)\right. \\
& \left.+\frac{l}{l+1} \epsilon_{i a b} \partial_{a L-1}\left(\frac{J_{b L-1}(u)}{r}\right)\right\} .
\end{aligned}
$$

$$
u \equiv t-r / c
$$

GW GENERATION PROBLEM IN EC THEORY (2)

- Upon introducing in the wave zone the radiative coordinates $X^{\mu}=(c T, X)$, the analysis of the asymptotic expansion of the external metric yields

$$
\begin{array}{c|l}
(u=t-r / c) & \begin{array}{l}
U_{L}(u)=\stackrel{(l)}{I}_{L}(u)+\mathrm{O}\left(c^{-3}\right) \\
\quad(l \geq 2)
\end{array} \\
V_{L}(u)=\stackrel{(l)}{J}_{L}(u)+\mathrm{O}\left(c^{-2}\right)
\end{array}
$$

Relation between harmonic coordinates $x^{\mu}=(c t, \boldsymbol{x})$ and radiative coordinates $X^{\mu}=(c T, \boldsymbol{X})$:

$$
\mathscr{U}=u+\mathrm{O}\left(c^{-3}\right)
$$

$$
\mathscr{U}=T-|\boldsymbol{X}| / c
$$

GW GENERATION PROBLEM IN EC THEORY (3)

- Inner metric at 1PN order in harmonic coordinates $x^{\mu}=(c t, \boldsymbol{x})$:

$$
\begin{aligned}
& g_{00}^{\mathrm{in}}=-\mathrm{e}^{-2 V^{\mathrm{in}} / c^{2}}+\mathrm{O}\left(c^{-6}\right) \\
& g_{0 i}^{\mathrm{in}}=-\frac{4}{c^{3}} V_{i}^{\mathrm{in}}+\mathrm{O}\left(c^{-5}\right), \\
& g_{i j}^{\mathrm{in}}=\delta_{i j}\left(1+\frac{2}{c^{2}} V^{\mathrm{in}}\right)+\mathrm{O}\left(c^{-4}\right),
\end{aligned}
$$

Inner potentials

$$
\begin{aligned}
& V^{\text {in }}(t, \boldsymbol{x})=G \int \frac{\mathrm{~d}^{3} y}{|\boldsymbol{x}-\boldsymbol{y}|} \sigma(t-|\boldsymbol{x}-\boldsymbol{y}| / c, \boldsymbol{y}), \\
& V_{i}^{\text {in }}(t, \boldsymbol{x})=G \int \frac{\mathrm{~d}^{3} y}{|\boldsymbol{x}-\boldsymbol{y}|} \sigma_{i}(t-|\boldsymbol{x}-\boldsymbol{y}| / c, \boldsymbol{y}),
\end{aligned}
$$

$\sigma \equiv \frac{\Theta^{00}+\Theta^{k k}}{c^{2}}=\frac{T^{00}+T^{k k}}{c^{2}}+(8 \pi G) \frac{\mathcal{S}^{00}+\mathcal{S}^{k k}}{c^{6}}$

$$
\sigma_{i} \equiv \frac{\Theta^{0 i}}{c}=\frac{T^{0 i}}{c}+(8 \pi G) \frac{\mathcal{S}^{0 i}}{c^{5}}
$$

GW GENERATION PROBLEM IN EC THEORY (4)

- Matching procedure in the overlapping domain: the internal field and the external metric should be

$$
(u=t-r / c) \quad y_{\langle L\rangle}=\check{y}_{L} \quad \text { STF projection of } y_{L}
$$

$$
\begin{aligned}
I_{L}(u) & =\int \mathrm{d}^{3} \boldsymbol{y} y_{\langle L\rangle} \sigma(\boldsymbol{y}, u)+\frac{1}{2(2 l+3)} \frac{1}{c^{2}} \frac{\mathrm{~d}^{2}}{\mathrm{~d} u^{2}} \int \mathrm{~d}^{3} \boldsymbol{y} y_{\langle L\rangle} \boldsymbol{y}^{2} \sigma(\boldsymbol{y}, u)-\frac{4(2 l+1)}{(l+1)(2 l+3)} \frac{1}{c^{2}} \frac{\mathrm{~d}}{\mathrm{~d} u} \int \mathrm{~d}^{3} \boldsymbol{y} y_{\langle i L\rangle} \sigma_{i}(\boldsymbol{y}, u) \\
& +\mathrm{O}\left(c^{-4}\right),
\end{aligned} \quad(l \geqslant 0),
$$

$$
J_{L}(u)=\int \mathrm{d}^{3} \boldsymbol{y} \epsilon_{a b\left\langle i_{l}\right.} \check{y}_{L-1\rangle a} \sigma_{b}(\boldsymbol{y}, u)+\mathrm{O}\left(c^{-2}\right), \quad(l \geqslant 1),
$$

$$
\sigma \equiv \frac{\Theta^{00}+\Theta^{k k}}{c^{2}}=\frac{T^{00}+T^{k k}}{c^{2}}+(8 \pi G) \frac{\mathcal{S}^{00}+\mathcal{S}^{k k}}{c^{6}}
$$

$$
\sigma_{i} \equiv \frac{\Theta^{0 i}}{c}=\frac{T^{0 i}}{c}+(8 \pi G) \frac{\mathcal{S}^{0 i}}{c^{5}}
$$

$$
U_{L}(u)=\stackrel{(l)}{I}_{L}(u)+\mathrm{O}\left(c^{-3}\right)
$$

Solution of GW generation problem in EC theory at 1PN level

GW GENERATION PROBLEM IN EC THEORY (5)

- 1PN-accurate asymptotic gravitational radiation amplitude (or)

$$
\begin{aligned}
\mathscr{H}_{i j}^{\mathrm{TT}}\left(X^{\mu}\right) & =\frac{2 G}{c^{4} \mathcal{R}} \mathscr{P}_{i j k l}(\mathcal{N})\left\{U_{k l}(\mathcal{U})+\frac{1}{c}\left[\frac{1}{3} \mathcal{N}_{a} U_{\text {kla }}(\mathcal{U})+\frac{4}{3} \epsilon_{a b(k} V_{l) a}(\mathcal{U}) \mathcal{N}_{b}\right]\right. \\
& \left.+\frac{1}{c^{2}}\left[\frac{1}{12} \mathcal{N}_{a b} U_{k l a b}(\mathcal{U})+\frac{1}{2} \epsilon_{a b(k} V_{l) a c}(\mathcal{U}) \mathcal{N}_{b c}\right]+\mathrm{O}\left(c^{-3}\right)\right\} .
\end{aligned}
$$

- Total radiated power (or luminosity or flux) of the source at 1PN order

$$
\mathcal{F}(\mathcal{U})=\frac{G}{c^{5}}\left\{\frac{1}{5} \stackrel{(1)}{U}_{i j}(\mathcal{U}) \stackrel{(1)}{U}_{i j}(\mathcal{U})+\frac{1}{c^{2}}\left[\frac{1}{189} \stackrel{(1)}{U}_{i j k}(\mathcal{U}) \stackrel{(1)}{U}_{i j k}(\mathcal{U})+\frac{16}{45} \stackrel{(1)}{V}_{i j}(\mathcal{U}) \stackrel{(1)}{V}_{i j}(\mathcal{U})\right]+\mathrm{O}\left(c^{-4}\right)\right\} .
$$

APPLICATION TO A BINARY NS SYSTEM (1)

- N weakly self-gravitating, slowly moving, widely separated spinning bodies.

$$
\begin{aligned}
& +\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \sum_{A=1}^{N}\left\{\frac{4}{c^{2}}\left[\left(v_{A} \times s_{A}\right)^{i} r_{A}^{j}+\left(v_{A} \times s_{A}\right)^{j} r_{A}^{i}-\frac{2}{3} \delta^{j i}\left(v_{A} \times s_{A}\right) \cdot r_{A}\right]-\frac{4}{3 c^{2}} \frac{\mathrm{~d}}{\mathrm{~d} t}\left[\left(r_{A} \times s_{A}{ }^{i} r_{A}^{j}+\left(r_{A} \times s_{A}\right)^{j} r_{A}^{i}\right]\right\}+\mathrm{O}\left(\mathrm{c}^{-3}\right),\right. \\
& U_{i j k}=\frac{\mathrm{d}^{3}}{\mathrm{~d} t^{3}} \sum_{A} m_{A} r_{A}^{\langle i} r_{A}^{j} r_{A}^{k\rangle}+\mathrm{O}\left(\mathrm{c}^{-2}\right), \\
& V_{i j}=\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\left\{\sum_{A} m_{A} \epsilon^{k\langle\langle i} r_{A}^{j} r_{A}^{j\rangle} r_{A}^{k} \nu_{A}^{l}+\frac{1}{2} \sum_{A}\left[3\left(s_{A}^{i} r_{A}^{j}+s_{A}^{j} r_{A}^{i}\right)-2 \delta^{i j} s_{A} \cdot \boldsymbol{r}_{A}\right]\right\}+\mathrm{O}\left(\mathrm{c}^{-2}\right),
\end{aligned}
$$

APPLICATION TO A BINARY NS SYSTEM (2)

$$
U_{i j k l}=\frac{\mathrm{d}^{4}}{\mathrm{~d} t^{4}} \sum_{A=1}^{N} m_{A} r_{A}^{\langle i} r_{A}^{j} r_{A}^{k} r_{A}^{l\rangle}+\mathrm{O}\left(\mathrm{c}^{-2}\right)
$$

$$
V_{i j k}=\frac{\mathrm{d}^{3}}{\mathrm{~d} t^{3}} \sum_{A=1}^{N}\left[m_{A} r_{A}^{\langle i} r_{A}^{j} \epsilon^{k\rangle p} r_{A}^{l} \nu_{A}^{p}+2\left(r_{A}^{n} s_{A}^{q} \delta_{n}^{\langle i} r_{A}^{j} \delta_{q}^{k\rangle}-\boldsymbol{r}_{A} \cdot s_{A} \delta_{n}^{\langle i} r_{A}^{j} \delta_{n}^{k\rangle}+s_{A}^{q} r_{A}^{\langle i} r_{A}^{j} \delta_{q}^{k\rangle}\right)\right]+\mathrm{O}\left(\mathrm{c}^{-2}\right) .
$$

APPLICATION TO A BINARY NS SYSTEM (3)

- Let us consider a binary NS system

$$
\begin{gathered}
m_{1}=1.60 M_{\odot} \\
m_{2}=1.17 M_{\odot} \\
\left|s_{1}\right|=1.21 \times 10^{57} \hbar \\
\left|s_{2}\right|=4.73 \times 10^{56} \hbar \\
R_{\mathrm{av}}=4.69 \times 10^{8} \mathrm{~m}
\end{gathered}
$$

$\mathcal{E}_{\mathcal{F}}(t) \equiv\left|\frac{\mathcal{F}_{\mathrm{EC}}(t)}{\mathcal{F}_{\mathrm{GR}}(t)}\right|$,
EC contribution to GR flux
$\mathcal{E}_{\mathscr{H}}(t) \equiv\left|\mathscr{H}_{11}^{\mathrm{GR}}(t)\right|-\left|\mathscr{H}_{11}^{\mathrm{EC}}(t)\right|$.
EC contribution to GR waveform

APPLICATION TO A BINARY NS SYSTEM (4)

- Plots

The average EC contributions are smaller than GR ones by a factor 10^{-23}

Function $R(t)$

Function $\mathcal{E}_{\mathcal{F}}(t)$

Function $\mathcal{E}_{\mathscr{H}}(t)$

APPLICATION TO BINARY BH SYSTEMS

GR and EC effects are comparable for masses of the order of $10^{14} M_{\odot}$, which corresponds to a GW
of the order of $10^{-12} \mathrm{~Hz}$.

CONCLUSIONS (1)

- The research activity underlying this seminar aims at understanding possible quantum imprints in the propagation of GWs produced by spinning PN sources in EC theory, namely spinning, weakly self-gravitating, slowly moving, and weakly stressed sources.
- We have solved the GW generation problem at 1PN level by extending the Blanchet-Damour approach to EC theory.
- We have evaluated the 1PN-accurate and the luminosity of the source.

CONCLUSIONS (2)

- We have provided a concrete application by applying the Blanchet-Damour method to a binary NS system
- The case of has also been considered. We have seen that EC corrections imprinted in their gravitationalwave signal can be potentially detected by means of the pulsar timing array technique.

- Future work: analysis of the behavior of compact binaries in their later evolution phases (i.e., plunge,
, ringdown)

CONCLUSIONS (3)

- Further details can be found in:

- "First post-Newtonian generation of gravitational waves in Einstein-Cartan theory" (Emmanuele Battista and Vittorio De Falco), Phys. Rev. D 104, 084067 (2021)
- "Gravitational waves at the first post-Newtonian order with the Weyssenhoff fluid in EinsteinCartan theory" (Emmanuele Battista and Vittorio De Falco), Eur. Phys. J. C 82, 628 (2022)
- "First post-Newtonian N-body problem in Einstein-Cartan theory with the Weyssenhoff fluid: equations of motion" (Emmanuele Battista and Vittorio De Falco), Eur. Phys. J. C 82, 782 (2022)
- "First post-Newtonian N-body problem in Einstein-Cartan theory with the Weyssenhoff fluid: Lagrangian and first integrals" (Emmanuele Battista, Vittorio De Falco, and Davide Usseglio), Eur. Phys. J. C 83, 112 (2023)
- "Analytical results for binary dynamics at the first post-Newtonian order in Einstein-Cartan theory with the Weyssenhoff fluid" (Vittorio De Falco and Emmanuele Battista), Phys. Rev. D 108, 064032 (2023)
- "Radiative losses and radiation-reaction effects at the first post-Newtonian order in EinsteinCartan theory" (Vittorio De Falco, Emmanuele Battista, Davide Usseglio, and Salvatore Capozziello), to appear on Eur. Phys. J. C

