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EINSTEIN-CARTAN THEORY (1)

(EC) theory has been formulated to extend the
concepts of general relativity (GR) to the microphysical realm.

*Quantum carried by elementary particles is
described geometrically by means of the torsion tensor.
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EINSTEIN-CARTAN THEORY (2)

spacetime U, endowed with the metric tensor 8up

and the most general nonsymmetric metric-compatible
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EINSTEIN-CARTAN THEORY (3)

, GR theory, special relativity:

General affine manifold A,

Metric-compatible connection

\4

Riemann-Cartan manifold U,

Torsionless connection

\4

Riemann manifold V,

Zero curvature

\4

Minkowski manifold M,




EINSTEIN-CARTAN THEORY (4)

e Curvature is related to the of a vector; torsion is related
to the of a vector.
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in EC theory:
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EINSTEIN-CARTAN THEORY (6)

: : 1 : : . g
« EinsteintensorG, =R, - Eg””R IS not symmetric and satisfies
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e Contracted Bianchi identity
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V_, = Covariant derivative wrt the
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connection coefficients F”a p




EINSTEIN-CARTAN FIELD EQUATIONS (1)

e Total action of EC theory

Lagrangian

L= Ly, oy, 1) - L= ZLn(w, oy, g,0g,S)

Minimal coupling
Now — 8uv s a,u = V,u

Gravitational Lagrangian
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Total action of EC theory
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EINSTEIN-CARTAN FIELD EQUATIONS (2)

 EC field equations
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5/))(1 ‘Cm I V/;‘P Canonical energy-momentum

. ( 0,V ) tensor

Canonical spin angular momentum
tensor




EINSTEIN-CARTAN FIELD EQUATIONS (3)

e Generalized conservation laws
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energy-momentum
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field equations
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combined

G* = Einstein tensor constructed
with the Christoffel symbols F”a p

energy-momentum tensor
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Contribution due to spin

(T“ﬁy = canonical spin

angular momentum tensor)
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BLANCHET-DAMOUR APPROACH IN EC THEORY (1)

* Spinning, weakly self-gravitating, weakly stressed, and
(i.e., spinning PN sources).
* Motion and radiation of binary systems in their early

*GW generation problem: relating the asymptotic gravitational-
wave form generated by some isolated spinning PN source and
which we observe via a detector (located in the wave zone of the

source), to the material content of the source, i.e., its tensor e ,
using some suitable approximation methods.
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BLANCHET-DAMOUR APPROACH IN EC THEORY (2)

Let us introduce a set of harmonic coordinates x* = (ct, x). The spatial

part RS of the spacetime manifold U, is decomposed in the following
domains:

Q={xeR3:r<d)

< >

Exterior zone r > d MPM is valid

Spinning
PN source

O £ ()

Near (or inner) zone
r<r;

PN is valid

d<r <A

PN source: d < A




BLANCHET-DAMOUR APPROACH IN EC THEORY (3)

e Post-Newtonian (PN) approximation scheme: valid under the
assumptions of weak gravitational field inside the source and

slow internal motions; an expansion in v/c < 1 is employed.

2

F(t = rlc) = F(t) — —F(f) + —FE() + ... alle = Dl
C 2c?

(V1) approximation scheme: valid over all the
spacetime; it operates by means of an expansion in the Newton

gravitational constant G:

\/ng“ﬂ ="+ GH¥ + G*HY + ...

/=g g% gothic metric

basic variable: §* = ,/—gg® — n%

g = det(g,,)




BLANCHET-DAMOUR APPROACH IN EC THEORY (4)

* Multipole expansion: method used to describe the properties of

the source as seen from its exterior (r > d); the spacetime

metric is parametrized by
multipole moments.

e Multipolar-post-Minkowskian (MPM) method: it can be employed
in the exterior weak-field region of the source to solve vacuum
EC field equations and combines the PM algorithm and the
multipole expansion.




BLANCHET-DAMOUR APPROACH IN EC THEORY (5)

 Blanchet-Damour formalism is based on two approximation
schemes: MPM and methods. It allows to solve
approximately the GW generation problem and employs a four-
stage program:

1. In the exterior domain, vacuum EC field equations are

perturbatively solved by means of the MPM algorithm and the

resulting solution is parametrized by STF source multipole

moments [, J;:

oo

recall that [)gft = Z G”[)Z'B I)gft — gft(IL’ JL)
b’ =\ /~gg? —n* n=1

[;: mass-type STF source multipole moment of order /

J;: current-type STF source multipole moment of order /

Multi-index notation, where L denotes the multi-index i;i,...;; made of / spatial indices. Hence [; = [;; ;
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2. In the wave zone, a set of

form

Xt =(cT,X)is
invoked where the metric coefficients #7"* admit the radiative

n=1

— | X| =

(5, X' X)) "~

radiative distance from the source

AP (X)) Z ji"“” T —-R/c,N) U=T-TR/c

N=X/R

retarded time

direction of propagation of GW
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TT L
ATT(XP) =

{NL>[/A1L>(Z/{>

A ‘-N'aLQGab(kVI)bL‘Z(Z/{)}'

Transverse-traceless
(TT) projection
of the leading
term

U, : mass-type STF radiative multipole moment of order /

V,: current-type STF radiative multipole moment of order /

Physical Observables




BLANCHET-DAMOUR APPROACH IN EC THEORY (7)

Transverse-traceless (TT) projection operator
onto the plane orthogonal to A4

__ . L | R
PiitiN) = Py Pj1 — 5Zii Pkl

Pi;(N) = 0i; — NiN;.
TT gauge
(%TT)ii — () aj%;ﬁT —0

3. In the near zone of the source, the EC field equations are solved
through the PN iteration: the inner metric I)ﬁlﬂ IS obtained.

4. The matching procedure is exploited in the
yielding the explicit expressions of both the source multipole

moments /;, J; and the radiative moments U;, V; in terms of the
combined energy-momentum tensor O




BLANCHET-DAMOUR APPROACH IN EC THEORY (8)

Near zone |Overlapping zone Wave zone

Matching | FveieEl 1 [ \ Radiative coordinates UL
information >
procedure about the source J Vv
L L

Source Physical Observables

The matching procedure allows to “fill” the otherwise “empty” expressions of
both the source and the radiative multipole moments with physical information
about the source.

I;,J; are given as well-defined (compact-support) integral expressions involving
the source variables; Iin particular, they are given as integrals extending over the

(compact-support) O% of the material source.

The radiative multipole moments U,, V; are obtained in the form of some (non-
linear) functionals of the source moments /,, J;.
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at 1PN order in harmonic coordinates x* = (ct, x):

p _
bt =92 Jp) gggt _

ext T e - 5 The qualifier nPN

f)aﬂ _ \/—_g gaﬁ _ naﬁ Yoi S TR - /) refers to a correction
ext ]

— of the order ¢ 2"

ext
Y9ij

External
potentials
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GW GENERATION PROBLEM IN EC THEORY (2)

* Upon introducing in the the radiative coordinates

X" = (cT, X), the analysis of the asymptotic expansion of the
external metric yields

(1)
w=t—rle) |Ur(u) = I(u)+ O(c?),

(1) N
0> 2) Vi(u) = Jp(u) + O(c™?).

Relation between harmonic coordinates x* = (ct, x)
and radiative coordinates X" = (c7T, X):

U = u+ O(c™)

U =T—|X|/c




e Inner metric at 1PN order in harmonic coordinates x* = (ct, x):

. ‘ in; 2 3
gop = —e 27 /< +0(c™°),
4

Vi +0(c™),

. 2 . 1.
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in
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Inner potentials
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* Matching procedure in the overlapping domain: the internal field
and the external metric should be

u=t-—rlc YLy, = YL, STF projection of y,

1 1 d?
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Solution of GW generation problem in EC theory at




* 1PN-accurate asymptotic gravitational radiation amplitude (or

)

- e | | 1 4 |
){;;I‘T(Xu) _ R 2l , \A) , [gN kala(,u.) + gfabik‘/l,la(u,)Nb]

1 (1 .. .. ..
+ > [19NabUklab(u.) -5 ab(kVuaC(U)Nbc] + O(c 3)}-

 Total radiated power (or luminosity or flux) of the source at 1PN
order
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APPLICATION TO A BINARY NS SYSTEM (1)

* N weakly self-gravitating, slowly moving, widely separated
spinning bodies.

BA |ry —rgl

- 113 Gm
(i.J) I B
rAri‘ 1+62[2vA Z ] +

[(VAXSA)IF£+ (VAXSA)Jré_géij (VAXSA) .rA] _ﬁa

current quadrupole moment




APPLICATION TO A BINARY NS SYSTEM (2)

mass 2*-pole moment

d3N

Vo =— [m r<irj€k>lprlf‘v£ + 2<rzsq5<irj5k> — 18,0880 59 r<irj5k>>] + 0 (c_2> :

l]k= 3 A"A" A
dr -

A " Aq AN A A A9

current octupole moment
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APPLICATION TO A BINARY NS SYSTEM (3)

 Let us consider a binary NS system

ml — 16OM®
m2 — 117M®
s | =1.21%x10°"A

s, | = 4.73 x 10°°n
R, =4.69x10°m

EC contribution to GR flux

EC contribution to GR waveform




APPLICATION TO A BINARY NS SYSTEM (4)

e Plots

2.0
1.8

—~ 1.6
g .
o 14 Function R(7)
< 1.2
: :
1.0
0.8

0.6

The average EC

contributions p Function £x(t)
are smaller

than GR ones
by a factor 103

Eq (10720
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Function & (1)




APPLICATION TO BINARY BH SYSTEMS

10.000 ; : : ]

ntermediate Stellar BHs
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Neutron stars and Stellar BHs

1000  10°  10° 10”2 10’
MIM,

GR and EC effects are comparable for masses of the order of 10MMm :
which corresponds to a GW of the order of 10~!? Hz.




CONCLUSIONS (1)

* The research activity underlying this seminar aims at
understanding possible Imprints in the propagation of
GWs produced by spinning PN sources in EC theory, namely
spinning, weakly self-gravitating, slowly moving, and weakly
stressed sources.

We have solved the GW generation problem at 1PN level by
extending the Blanchet-Damour approach to EC theory.

e We have evaluated the 1PN-accurate
and the luminosity of the source.
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CONCLUSIONS (2)

We have provided a concrete application by applying the
Blanchet-Damour method to a binary NS system

The case of has also been considered. We
have seen that EC corrections imprinted in their gravitational-
wave signal can be potentially detected by means of the pulsar
timing array technique.

 Future work: analysis of the behavior of compact binaries in their
later evolution phases (i.e., plunge, , ringdown)
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CONCLUSIONS (3)

e Further details can be found in:

“First post-Newtonian generation of gravitational waves in Einstein-Cartan theory”
(Emmanuele Battista and Vittorio De Falco), Phys. Rev. D 104, 084067 (2021)

“Gravitational waves at the first post-Newtonian order with the Weyssenhoff fluid in Einstein-
Cartan theory” (Emmanuele Battista and Vittorio De Falco), Eur. Phys. J. C 82, 628 (2022)

“First post-Newtonian N-body problem in Einstein-Cartan theory with the Weyssenhoff fluid:
equations of motion” (Emmanuele Battista and Vittorio De Falco), Eur. Phys. J. C 82, 782 (2022)

“First post-Newtonian N-body problem in Einstein-Cartan theory with the Weyssenhoff fluid:
Lagrangian and first integrals” (Emmanuele Battista, Vittorio De Falco, and Davide Usseglio),
Eur. Phys. J. C 83, 112 (2023)

“Analytical results for binary dynamics at the first post-Newtonian order in Einstein-Cartan
theory with the Weyssenhoff fluid” (Vittorio De Falco and Emmanuele Battista), Phys. Rev. D
108, 064032 (2023)

“Radiative losses and radiation-reaction effects at the first post-Newtonian order in Einstein-
Cartan theory” (Vittorio De Falco, Emmanuele Battista, Davide Usseglio, and Salvatore
Capozziello), to appear on Eur. Phys. J. C




