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What we will delve into...

1. The problem of quantum gravity and classical BH
2. Set up the effective framework

3. Thermodynamics

4. Examples

5. Asymptotic expansions

6. Conclusions and outlooks



The problem of Quantum Gravity

Quantization of General Relativity is a rather difficult task
String theory, LQG, ASG, CDT, EFT...

Numerous approaches =

Swampland program

. . | Compatibility conditions
Seeking for universal underlying structures P

Astrophysical observations and advances



Classical Black Hole recap
Static and Spherically Symmetric (SSS) spacetime
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Schwarzschild:
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Dimensionless quantities:
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SSS Event horizon = Killing horizon
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We want an invariant (physical) quantity

z/Mp z d’
d =M ds =
()= e [ ds= | oA




Setting up the framework
1. Upgrade Mp to a physical scale that governs the

2. Dependence on the new scale in all new quantities

2
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Physical quantities must be on U

f must preserve the same coordinate transformations of fq

Deformation function can only depend on we chose
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Setting up the framework

B 2X w(Ls)
3. Same procedure for the temporal component h(z) — 1 e \d(z)
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4. General SSS of a
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quantum corrections are embedded into 2 independent functions of the physical distance

(I)(d(lz)) and \Ij(d(lz))

5. Asymptotic flathess recovered




Two Issues

a. Implicit definition of the metric functions

f(z) =1

&

2
X €<I>(1/d(z))

with d(z

/ \/If

previously it was addressed with an approximation d(z) ~ dg(z

b. Problems with the derivatives at the horizon

df(z)

dZ Z=Z

Need to build a
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Self-consistent approach

Center of the BH d(z5) = dg d(z) 00

possible singularity | |
Event horizon Asymptotic region

| | - - flat
Series expansion close to the singutariy=fiez at space
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What is the minimal set of input parameters?



Self-consistent approach

Consistency of the distance framework
/
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Regularity conditions

Investigate the behavior of at the horizon
f? fRD)?(zf D+ 4HRD 2z 4 f - 1)

Riccl scalar — |
i h 2h? 22h 22

Consistency of power series expansion In 10, of h requires constraints

Not enough to avoid singular terms in the Ricci scalar
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Summing up the constraints

Self consistency

Divergence-free Ricci scalar at the event horizon
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Hawking temperature

We are now able to compute physical quantities defined at the event horizon

Time-like Killing vector is needed to define the
1
2

Ko = QM]_;2> VM(Kt)VV“(Kt)V}Z:ZH dimensionless

Which is related to the

kL )
Ty = = \/ (D
o 2 4w Ji

Achieved In a expressing the power series expansions
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Entropy

definition of entropy from the first law of thermodynamics

d
il / THECX)

The integral is to be performed once the dependence of the parameters on the mass is given
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An example

Bonanno-Reuter Black Hole

ldea: promote the Newton coupling to a running scale-dependent coupling

G(k = 0) s Y
scale identification k(z) =

14+ wG(k = 0)k? dr(2)
. . . 2x @ 1
The corresponding metric functions f(z) = h(z) = fBR(z) =1 5
o 1 dBR(Z)2
Self-consistency would require dpr(z / J f
BR
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regular at the origin, not on the horizon
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Two more examples
Hayward Black Hole

) 3
F(2) = h(z) = ity (2) = 1 = = w5
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Dymnikova Black Hole
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A minimal model

We provide a model abiding by the constraints

q)( 1 ) _\IJ( 1 )  3¢2 pP(du +3p)o
di + p dy + p 242, 2d%(dg + p)3

such that CIDE) =0, CIDE-?) = @2 and q)s-?) =0 for n>3

The and the are easily computed
L 7 822 1/2-
2H = 2X6_3¢2/2d%’ and Ty = 1+ (1 Ifsz)
The can be computed by extracting the leading contributions in the limit
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Asymptotic expansions

Convergence criteria  limsup |w, |V < dy and limsup |y,|Y" < dy

nN—2 00 n—7 00

Rescale the coefficients wn = w,dy and v, =7,dy
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Asymptotic expansions

<
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Asymptotic expansions

Hawking temperature in the large mass limit ~ lim z_:ln Gy = 0 = lim Zln ¥, VreN

I 7 1 }
Ty = 1 (4n*(wp +7,,) + Twn) + ...
ST L T

Two types of leading corrections to the entropy  dgy ~ 7y + 0o(x)
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Further results

. We can demand that the metric must be

(n)a h_(,?) — Oapr1 =0 = &ap11

. Regularity constraints can be applied also at

for

p € N
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Conclusions

Input

distance function
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regularity

consistency

physical quantities

Curvature

R
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Conclusions

1. We introduced a to describe effective
quantum black holes deformations with physical quantities

2. Although universal, we obtained on the admissible
deformations

3. Determine physical quantities that are defined at the event
horizon, 1.e. the of the

Outlooks

1. Extend the definition of scheme (EMD) to local invariants, i.e. Ricci and Kretschmann scalars

2. Generalize the deformation to other black hole solutions, i.e. Reissner—Nordstrom, Kerr, regular
BHs, other dimensions, AdS, holography, etc...

3. Phenomenology, i.e. QNM and GWSs, shadow, precession, astroparticles, etc...

24



Mange tak! +
Thank you! =<
Grazie! ¥

References:

[Del Piano, 2307.13489], [Binetti, 2203.13515], [D’Alise, 2305.129695],
[Bonanno, hep-th/0002196], [Palti, 1903.06239],

[Hawking, Commun.Math.Phys. 43 (1975) 100-220],

[Bardeen, Commun.Math.Phys. 31 (1973) 161.179]

[Barenblatt, Quantum electron. 19 (1976) 643],

[Chen, Phys.Rev.E 49 (1994) 4502],

[Dymnikova, Gen.Rel.Grav. 24 (1992) 235-242],

[Hayward, Phys.Rev.Lett. 96 (2006) 031103]

25



