Quantum Black Hole Physics from the Event Horizon

a life at the edge

Manuel Del Piano

hQTClub 15/03/2024

Based on: 2307.13489

with S. Hohenegger and F. Sannino

hQTC

What we will delve into...

- 1. The problem of quantum gravity and classical BH
- 2. Set up the effective framework
- 3. Thermodynamics
- 4. Examples
- 5. Asymptotic expansions
- 6. Conclusions and outlooks

The problem of Quantum Gravity

Quantization of General Relativity is a rather difficult task

Numerous approaches String theory, LQG, ASG, CDT, EFT...

Swampland program

Seeking for universal underlying structures

Astrophysical observations and advances

Classical Black Hole recap

Static and Spherically Symmetric (SSS) spacetime

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = -h(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\varphi^{2}$$

Schwarzschild: vacuum solution to Einstein equations

$$h(r) = f(r) = f_{\rm S}(r) = 1 - \frac{2G_{\rm N}M}{r}$$

Dimensionless quantities:

reference mass-scale
$$M_{
m P}$$

$$\begin{cases} z := M_{
m P} r \\ \chi := M/M_{
m P} \end{cases}$$

reference mass-scale
$$z:=M_{
m P}r$$
 $1-rac{2\chi}{z}G_{
m N}M_{
m P}^2=1-rac{2\chi}{z}$

SSS Event horizon = Killing horizon

$$(K^t)^{\mu} = \delta^{0\mu} \implies (K^t)^{\mu} (K^t)_{\mu}|_{z=z_H} = 0$$

$$f_{\rm S}(z_H) = 1 - \frac{2\chi}{z_H} = 0 \implies z_H = 2\chi$$

We want an invariant (physical) quantity

The radial proper distance

$$d_{S}(z) = M_{P} \int_{0}^{z/M_{P}} ds = \int_{0}^{z} \frac{dz'}{\sqrt{|f_{S}(z')|}}$$

Setting up the framework

- 1. Upgrade $M_{
 m P}$ to a physical scale that governs the transition quantum-classical
- 2. Dependence on the new scale in all new quantities

$$f_{\rm S}(z) \longrightarrow f(z, u, M_{\rm P}) = 1 - \frac{2\chi}{z} v^{(u, M_{\rm P})}(z)$$

spurious scale to compensate the physical scale

Physical quantities must be independent on u

f must preserve the same coordinate transformations of $f_{
m S}$

Deformation function can only depend on physical quantities: we chose proper distance

$$v^{(\mathcal{X})}(\mathcal{X}) = e^{\Phi(d(z))} \qquad \qquad \Phi\left(\frac{1}{d(z)}\right) \qquad \qquad \mathcal{X} \equiv d(z) := \int_0^z \frac{\mathrm{d}z'}{\sqrt{|f(z')|}}$$

Setting up the framework

3. Same procedure for the temporal component

$$h(z) = 1 - \frac{2\chi}{z} e^{\Psi\left(\frac{1}{d(z)}\right)}$$

4. General SSS of a quantum deformed metric

$$M_{\rm P}^2 ds^2 = -h(z)M_{\rm P}^2 dt^2 + \frac{dz^2}{f(z)} + z^2 d\theta^2 + z^2 \sin^2\theta d\varphi^2$$

quantum corrections are embedded into 2 independent functions of the physical distance

$$\Phi\left(\frac{1}{d(z)}\right)$$
 and $\Psi\left(\frac{1}{d(z)}\right)$

5. Asymptotic flatness recovered

$$\Phi(0) = 0 = \Psi(0)$$

Two issues

a. Implicit definition of the metric functions

$$f(z) = 1 - \frac{2\chi}{z} e^{\Phi(1/d(z))} \quad \text{with} \quad d(z) = \int_0^z \frac{\mathrm{d}z'}{\sqrt{|f(z')|}}$$

previously it was addressed with an approximation $\,d(z)\sim d_{
m S}(z)$

b. Problems with the derivatives at the horizon

$$\frac{\mathrm{d}f(z)}{\mathrm{d}z}\Big|_{z=z_H} \supset \frac{\mathrm{d}d(z)}{\mathrm{d}z}\Big|_{z=z_H} = \frac{1}{\sqrt{|f(z_H)|}} \to \infty$$

Need to build a self-consistent approach and regularity conditions

Self-consistent approach

Series expansion close to the eventurity of the contract the contract

$$z(\rho) = z_H + \sum_{n=1}^{\infty} a_n \rho^n \qquad 2\chi e^{\Phi\left(\frac{1}{d_H + \rho}\right)} = \sum_{n=0}^{\infty} \xi_n \rho^n \quad \text{and} \quad 2\chi e^{\Psi\left(\frac{1}{d_H + \rho}\right)} = \sum_{n=0}^{\infty} \theta_n \rho^n$$

What is the minimal set of input parameters?

Self-consistent approach

Consistency of the distance framework

$$d(z) = \int_0^z \frac{\mathrm{d}z'}{\sqrt{|f(z')|}} \to \frac{\mathrm{d}\rho}{\mathrm{d}z} = \frac{1}{\sqrt{f(z)}}$$

$$\xi_{0} = z_{H}(1 - a_{1}^{2}) \equiv z_{H}$$

$$a_{1} = 0$$

$$\xi_{1} = a_{1}(1 - a_{1}^{2} - 4z_{H}a_{2})$$

$$\xi_{2} = a_{2}(1 - a_{1}^{2}) - [z_{H}(6a_{1}a_{3} + 4a_{2}^{2}) + 4a_{1}^{2}a_{2}]$$

$$a_{2} = \frac{1 + \sqrt{1 - 16z_{H}\xi_{2}}}{2}$$

Iterative relation for $p \ge 3$

$$a_p = \frac{1}{1 - 4p z_H a_2} \left[\xi_p + z_H \sum_{n=3}^{p-1} (p - n + 2) n a_n a_{p-n+2} + \sum_{n=2}^{p-2} \sum_{m=2}^{n} (n - m + 2) m a_{p-n} a_m a_{n-m+2} \right]$$

Regularity conditions

Investigate the behavior of invariant quantities at the horizon

Ricci scalar
$$R = \frac{fh^{(2)}}{h} + \frac{f(h^{(1)})^2}{2h^2} - \frac{(zf^{(1)} + 4f)h^{(1)}}{2zh} - \frac{2(zf^{(1)} + f - 1)}{z^2}$$

Consistency of power series expansion in ho of h requires constraints

$$\theta_1 = 0 \quad \theta_2 \le \frac{1 + \sqrt{1 - 16z_H \xi_2}}{8z_H}$$

Not enough to avoid singular terms in the Ricci scalar

$$R = \frac{(1+3\sqrt{1-16z_H\xi_2})\theta_3 + 2\xi_3}{(1+3\sqrt{1-16z_H\xi_2})(1-8z_H\theta_2 + \sqrt{1-16z_H\xi_2})}\rho^{-1} + \mathcal{O}(\rho^0)$$

$$\xi_3 = -\frac{1}{2} \left(1 + 3\sqrt{1 - 16z_H \xi_2} \right) \theta_3$$

Summing up the constraints

Self consistency

$$\xi_1 = 0 \quad \xi_2 \le \frac{1}{16z_H}$$

Divergence-free Ricci scalar at the event horizon

$$\theta_1 = 0 \quad \theta_2 \le \frac{1 + \sqrt{1 - 16z_H \xi_2}}{8z_H}$$

$$\xi_3 = -\frac{1}{2} \left(1 + 3\sqrt{1 - 16z_H \xi_2} \right) \theta_3$$

Hawking temperature

We are now able to compute physical quantities defined at the event horizon

Time-like Killing vector is needed to define the surface gravity

$$\kappa^2 = -\frac{1}{2M_{\rm P}^2} \nabla_\mu (K^t)_\nu \nabla^\mu (K^t)^\nu|_{z=z_H} \qquad {\rm dimensionless}$$

Which is related to the Hawking temperature

$$T_{
m H} := rac{\kappa}{2\pi} = rac{1}{4\pi} \sqrt{f_H^{(1)} h_H^{(1)}}$$

Achieved in a universal form expressing the power series expansions

$$T_{\rm H} = rac{\sqrt{1 - 8z_H heta_2 + \sqrt{1 - 16z_H \xi_2}}}{4\sqrt{2\pi z_H}}$$

Entropy

Coarse grained definition of entropy from the first law of thermodynamics

$$S = \int rac{\mathrm{d}\chi}{T_{\mathrm{H}}(\chi)}$$

The integral is to be performed once the dependence of the parameters on the mass is given

$$z_H(\chi)$$

$$z_H(\chi)$$
 $d_H(\chi)$ $\xi_2(\chi)$ $\theta_2(\chi)$

$$\xi_2(\chi)$$

$$\theta_2(\chi)$$

An example

Bonanno-Reuter Black Hole

Idea: promote the Newton coupling to a running scale-dependent coupling

$$G_{\rm N} \to G(k) = \frac{G(k=0)}{1 + \omega G(k=0)k^2}$$

scale identification
$$\ k(z) = rac{\xi}{d_{\mathrm{BR}}(z)}$$

The corresponding metric functions $f(z)=h(z)\equiv f_{BR}(z)=1-rac{2\chi}{z}rac{e^{\Phi}}{1+rac{\omega\xi^2}{d_{\mathrm{BR}}(z)^2}}$

Self-consistency would require $d_{\mathrm{BR}}(z) = \int_0^z \frac{\mathrm{d}z'}{\sqrt{|f_{\mathrm{BR}}(z')|}}$

$$\xi_1 = \theta_1 = \frac{4\chi\omega\xi^2 d_{\text{BR},H}}{(\omega\xi^2 + d_{\text{BR},H}^2)^2} \neq 0$$

$$d_{\text{BR}}(z) = \left(\frac{z^3}{z + \frac{9}{2}\chi}\right)^{1/2}$$

approximation

$$d_{\rm BR}(z) = \left(\frac{z^3}{z + \frac{9}{2}\chi}\right)^{1/2}$$

regular at the origin, not on the horizon

Two more examples

Hayward Black Hole

$$f(z) = h(z) \equiv f_{\text{Hay}}(z) = 1 - \frac{2\chi}{z} \frac{v(\chi z)^3}{z^3 + 2\gamma \chi}$$

$$\xi_1 = \theta_1 = \xi_3 = \theta_3 = 0$$

$$\xi_2 = \theta_2 = \frac{6\gamma \chi^3 z_H^3 (z_H^3 - 4\gamma \chi)}{(2\gamma \chi + z_H^3)^4}$$

Dymnikova Black Hole

$$f(z) = h(z) \equiv f_{\mathrm{Dymn}}(z) = 1 - \frac{2\chi}{z} \left(1^{(\chi)} \left(\chi^3 \right)^{2\chi z_0^2} \right)$$

$$\xi_1 = \theta_1 = \xi_3 = \theta_3 = 0$$
 $\xi_2 = \theta_2 = \frac{3e^{-z_H^3/\chi z_0^2}}{4z_0^4} (2\chi z_0^2 (e^{z_H^3/2\chi z_0^2} - 1) - 3z_H^3)$

A minimal model

We provide a model abiding by the constraints

$$\Phi\left(\frac{1}{d_H + \rho}\right) \equiv \Psi\left(\frac{1}{d_H + \rho}\right) = -\frac{3\phi_2}{2d_H^2} + \frac{\rho^2(d_H + 3\rho)\phi_2}{2d_H^2(d_H + \rho)^3}$$

such that
$$\Phi_H^{(1)} = 0$$
, $\Phi_H^{(2)} = \phi_2$ and $\Phi_H^{(n)} = 0$ for $n \ge 3$

The event horizon and the Hawking temperature are easily computed

$$z_H = 2\chi e^{-3\phi_2/2d_H^2}$$
 and $T_H = \frac{1}{8\pi z_H} \left[1 + \left(1 - \frac{8z_H^2\phi_2}{d_H^4} \right)^{1/2} \right]$

The entropy can be computed by extracting the leading contributions in the large mass limit

$$S = 4\pi\chi^2 \left[1 - \frac{3\pi^2 - 16}{3\pi^2\chi^2} \log(\chi^2) + \mathcal{O}(\chi^{-4}) \right]$$

Asymptotic expansions

$$f(z) = 1 - \frac{2\chi}{z} \left(1 + \sum_{n=1}^{\infty} \frac{\omega_n}{d(z)^n} \right) \qquad h(z) = 1 - \frac{2\chi}{z} \left(1 + \sum_{n=1}^{\infty} \frac{\gamma_n}{d(z)^n} \right)$$

Convergence criteria $\limsup_{n\to\infty} |\omega_n|^{1/n} \le d_H$ and $\limsup_{n\to\infty} |\gamma_n|^{1/n} \le d_H$

Rescale the coefficients $\omega_n=\overline{\omega}_n d_H^n$ and $\gamma_n=\overline{\gamma}_n d_H^n$

Horizon constraint $\sum_{n=1}^\infty \overline{\omega}_n = \sum_{n=1}^\infty \overline{\gamma}_n = \frac{z_H}{2\chi} - 1$

18

Asymptotic expansions

Regularity of derivatives
$$\frac{1}{2\chi}\sum_{p=0}^{\infty}\xi_{p}\rho^{p}=1+\sum_{n=1}^{\infty}\overline{\omega}_{n}\Big(\sum_{k=0}^{\infty}\big(-\frac{\rho}{d_{H}}\big)^{k}\Big)^{n}$$

$$\xi_1 = 0 = \xi_3 \to \sum_{n=1}^{\infty} n\overline{\omega}_n = 0 = \sum_{n=1}^{\infty} n^2(n+3)\overline{\omega}_n \quad \xi_p = \frac{2\chi}{p!(-d_H)^p} \sum_{n=1}^{\infty} \overline{\omega}_n \underbrace{\sum_{n=1}^{\infty} (n+p-1)!}_{n=1} = 0 = \sum_{n=1}^{\infty} n^2(n+3)\overline{\gamma}_n$$

$$\xi_2 \to \sum_{n=1}^{\infty} n^2 \overline{\omega}_n \le \frac{d_H^2}{16z_H \chi}$$
 $\theta_2 \to \sum_{n=1}^{\infty} n^2 \overline{\gamma}_n \le \frac{d_H^2}{8z_H \chi} (1 + \sqrt{1 - 8z_H \xi_2})$

Asymptotic expansions

Hawking temperature in the large mass limit

$$\lim_{\chi \to \infty} \sum_{n=1}^{\infty} n^r \overline{\omega}_n = 0 = \lim_{\chi \to \infty} \sum_{n=1}^{\infty} n^r \overline{\gamma}_n \quad \forall r \in \mathbb{N}$$

$$T_{\rm H} = \frac{1}{8\pi\chi} \left[1 - \frac{1}{\pi^2} \sum_{n=1}^{\infty} \left(4n^2 (\overline{\omega}_n + \overline{\gamma}_n) + \pi^2 \overline{\omega}_n \right) + \dots \right]$$

Two types of leading corrections to the entropy $d_H \simeq \pi \chi + \mathfrak{o}(\chi)$

1.
$$(\omega_1, \gamma_1) \neq (0, 0)$$
 $S = 4\pi \chi^2 \left(1 + \frac{8\gamma_1 + 2(4 + \pi^2)\omega_1}{\pi^3 \chi} + \frac{\alpha}{\chi^2} \log(\chi) \dots\right)$

2.
$$\frac{(\omega_1, \gamma_1) = (0, 0)}{(\omega_2, \gamma_2) \neq (0, 0)}$$

$$S = 4\pi \chi^2 \left(1 + \frac{(16\gamma_2 + (16 + \pi^2)\omega_2)^2}{\pi^4 \chi^2} \log(\pi^4 \chi^2 - 16\gamma_2 - (16 + \pi^2)\omega_2) + \dots \right)$$

Further results

i. We can demand that the metric must be infinitely times differentiable

$$f_H^{(n)}, h_H^{(n)} \to \theta_{2p+1} = 0 = \xi_{2p+1} \quad \text{for} \quad p \in \mathbb{N}_0$$

ii. Regularity constraints can be applied also at internal horizons

Conclusions

Conclusions

- 1. We introduced a model-independent framework to describe effective quantum black holes deformations with physical quantities
- 2. Although universal, we obtained non-trivial conditions on the admissible deformations
- 3. Determine self-consistently physical quantities that are defined at the event horizon, *i.e.* the universal form of the Hawking temperature

Outlooks

- 1. Extend the definition of scheme (EMD) to local invariants, i.e. Ricci and Kretschmann scalars
- 2. Generalize the deformation to other black hole solutions, *i.e.* Reissner–Nordström, Kerr, regular BHs, other dimensions, *AdS*, holography, *etc...*
- 3. Phenomenology, i.e. QNM and GWs, shadow, precession, astroparticles, etc...

Mange tak! Thank you! Grazie! Grazie!

References:

[Del Piano, 2307.13489], [Binetti, 2203.13515], [D'Alise, 2305.12965], [Bonanno, hep-th/0002196], [Palti, 1903.06239], [Hawking, Commun.Math.Phys. 43 (1975) 100-220], [Bardeen, Commun.Math.Phys. 31 (1973) 161.179] [Barenblatt, Quantum electron. 19 (1976) 643], [Chen, Phys.Rev.E 49 (1994) 4502], [Dymnikova, Gen.Rel.Grav. 24 (1992) 235-242], [Hayward, Phys.Rev.Lett. 96 (2006) 031103]