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SIGNATURE-CHANGING METRICS (1)
• Metrics whose signature changes from the Lorentzian one to the 

Euclidean one and vice versa: 

-Studied in classical and quantum General Relativity (GR) 

• Quantum GR: 

-Quantum cosmology 

-Loop quantum cosmology 

-Supergravity and String theory 
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Hartle-Hawking no-boundary proposal

Linde proposal

Vilenkin proposal (tunneling from nothing)



SIGNATURE-CHANGING METRICS (2)
• Classical GR:  

-Not forbidden by Einstein field equations 

-Homogeneous and isotropic Friedman-Robertson-Walker 
geometries 

i. Similar properties with quantum scenarios satisfying the Hartle-
Hawking no-boundary condition  

ii. Related to the real tunneling solutions of Wheeler-DeWitt 
equation in quantum cosmology
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JUNCTION CONDITIONS AND THIN SHELLS (1)
• Joining two metrics at a common boundary, which divides the 

spacetime into two distinct regions 

Israel-Barrabes formalism (metrics with unchanging signature) 
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nμ = α∂μℓg+
αβ

g−
αβ

 is timelike ( ) 
or spacelike ( )
Σ α = 1

α = − 1

The same coordinates  
installed on both sides of 

ya

Σ

metric in  
coordinates xμ

(a, b = 1,2,3)

 ℓ = 0

 ℓ > 0

 ℓ < 0

 gμν = Θ(ℓ)g+
μν + Θ(−ℓ)g−

μν



JUNCTION CONDITIONS AND THIN SHELLS (2)
What conditions must be imposed on the metric so that  forms 
a valid distribution-valued solution of Einstein field equations? 

Junction conditions that involve three-tensors on  

In our hypotheses  

 

gαβ

Σ

[nα] = [xα] = [ya] = 0

gμν,γ = Θ(ℓ)g+
μν,γ + Θ(−ℓ)g−

μν,γ + αδ(ℓ)[gμν]nγ
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Jump discontinuity of any tensorial quantity  across F Σ[F] := F |+ − F |−

[F] = 0  is continuous at  F Σ

[F] ≠ 0  is discontinuous across ;  
 is the jump discontinuity of across 

F Σ
[F] F Σ



JUNCTION CONDITIONS AND THIN SHELLS (3)
• First junction condition: the metric is continuous across  

Metric tangential derivatives are also continuous, but the normal 
derivatives are not:

Σ
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[gμν] = 0 [hab] = 0
In the coordinate 

 system xα Induced metric (coordinate )ya coordinate-invariant statement

[gαβ,γ] = καβnγ



JUNCTION CONDITIONS AND THIN SHELLS (4)
• -function part of the Riemann tensor 

• -function part of the Ricci tensor 

• -function part of the Ricci scalar

δ

δ

δ
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Aα
βγδ =

α
2 (κα

δ nβnγ − κα
γ nβnδ − κβδnαnγ + κβγnαnδ)

Aαβ ≡ Aμ
αμβ =

α
2 (κμαnμnβ + κμβnμnα − κμ

μnαnβ − ακαβ)

A ≡ Aα
α = α (κμνnμnν − ακμ

μ)



JUNCTION CONDITIONS AND THIN SHELLS (5)
Einstein field equations give the following expression for the 
stress-energy tensor:  

The -function term of  is associated with the  
presence of a thin distribution of matter, which is referred  

to as surface layer or thin shell 

The stress-energy tensor of the thin shell is 

δ Tαβ

Sαβ

10

Tαβ = θ(ℓ)T+
αβ + θ(−ℓ)T−

αβ + δ(ℓ)Sαβ with 8πSαβ = Aαβ −
1
2

Agαβ



JUNCTION CONDITIONS AND THIN SHELLS (6)
Explicitly, the thin shell stress-energy tensor depends on the jump 
discontinuity of the extrinsic curvature tensor  of : 

• Second junction condition: , which implies  

When junction conditions are satisfied, then the two metrics  
can be joined smoothly through  

Kab Σ

[Kab] = 0 Aα
βγδ = 0

g±
μν

Σ
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Sab = −
α
8π ([Kab] − [K]hab)



JUNCTION CONDITIONS AND THIN SHELLS (7)
• When  is either spacelike or timelike, then only the Ricci part of 

the Riemann tensor can show a distributional singularity 

• When  is null, then both the Ricci and Weyl part of the Riemann 
tensor can present Dirac-delta singularities

Σ

Σ
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Thin shell Impulsive gravitational wave



LORENTZIAN-EUCLIDEAN BLACK HOLE (1)
Lorentzian-Euclidean Schwarzschild metric in standard  
coordinates  {t, r, θ, ϕ}
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H(0)=1/2Sign function Step function

where



LORENTZIAN-EUCLIDEAN BLACK HOLE (2)
Therefore, the spacetime manifold is divided as  and  

•   if : Lorentzian signature  

•   if : metric is degenerate  

•   if : metric has a Euclidean structure and  attains 
ultrahyperbolic  signature   

•    change surface (null hypersurface) 

• Metric and its derivatives are discontinuous across the change 
surface 

V = V+ ∪ V−

ε = 1 r > 2M ( − + + + )

ε = 0 r = 2M detgμν = 0

ε = − 1 r < 2M
( − − + + )

Σ : r = 2M
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[gαβ] ≠ 0 [gαβ,μ] ≠ 0



LORENTZIAN-EUCLIDEAN BLACK HOLE (3)
Metric in Gullstrand-Painlevé coordinates  

The only pathology is related to the fact that the metric becomes 
degenerate on the change surface , i.e., when  and 

(𝒯, r, θ, ϕ)

Σ r = 2M ε = 0
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THE REGULARIZATION PROCESS (1)
Recall that  and               first junction condition  
cannot be satisfied  

• Dirac-delta-like contributions arising in the Riemann tensor 

• Terms proportional to Linear and quadratic terms 
in the Dirac-delta function  in the Riemann tensor 

Proper regularization scheme

[gαβ] ≠ 0 [gαβ,μ] ≠ 0

ε′ , (ε′ )2, ε′ ′ ⇒
δ(r − 2M)
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THE REGULARIZATION PROCESS (2)
• Smooth approximation of :  ε(r) = 2H(1 − 2M/r) − 1
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ε(r) =
(r − 2M)1/(2κ+1)

[(r − 2M)2 + ρ]
1/2(2κ+1) ,   small positive quantity 

 positive integer
ρ/M2 :

κ :

 red curve 
 blue curve 
 green curve

ρ = 0.1M2 :
ρ = 0.01M2 :

ρ = 0.001M2 :

The smaller ,  
the sharper 

ρ/M2

ε(r)

M = 1, κ = 1



THE REGULARIZATION PROCESS (3)
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The larger ,  the  
steeper 

κ
ε(r)

 red curve 
 blue curve 

 purple curve 
 green curve

κ = 0 :
κ = 1 :

κ = 2 :
κ = 3 :

M = 1, ρ = 0.1M2

We will see that our regularization scheme requires κ ≥ 1



THE REGULARIZATION PROCESS (4)
• The Riemann tensor contains linear-in-delta ill-defined terms of 

the type 

Hadamard partie finie regularization method & approximation of :  ε(r)
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∫ dr
δ (r − 2M)

ε(r)
,

 
δ(x)
|x |n ≡ 0, : positive integer 

 
n

x := r − 2M



THE REGULARIZATION PROCESS (5)
• Let  be a function of  which diverges as  approaches . 

We assume that near   

• The function diverges as  when  and does not have a 
well-defined value at  

• We can regularize it by extracting its partie finie at the singular 
point , which is defined by 

F(ξ; a) ξ ξ a
ξ = a

s−nmax ξ → a
ξ = a

ξ = a

20

F(ξ; a) =
nmax

∑
n=0

s−nfn(s; a) + O(s), s = |ξ − a |

 ⟨F⟩(a) :=
1

2π

2π

∫
0

f0(s; a) dθ Angular average of the zeroth 
 term  of the Laurent seriesf0(s; a)



THE REGULARIZATION PROCESS (6)
• The partie finie can be used to make sense of the product of 

with the delta function , since we declare that 

• In our case

F
δ(ξ − a)
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 F(ξ; a)δ(ξ − a) ≡ ⟨F⟩(a) δ(ξ − a)

 ∫ F(ξ; a)δ(ξ − a) dξ = ⟨F⟩(a)

 
δ(x)
|x |n ≡ 0,

 F = |x |−n := |r − 2M |−n

 ⟨F⟩ = 0



THE REGULARIZATION PROCESS (7)
• Quadratic-in-delta ill-defined terms occurring  

in the Riemann tensor 

Regularized within our model since  
their coefficient  vanish when  

Terms of the type  give  
vanishing contribution in the distributional 

 sense to the Riemann tensor 

r = 2M

δ2(r − 2M)
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THE REGULARIZATION PROCESS (8)
• An example: regularization of  

 

-Terms linear in  yield an integral proportional to (recall ) 

Rr
r𝒯r

Rr
r𝒯r =

M
r

r2(2M − r)ε′ 2 + 2rε [r(r − 2M)ε′ ′ + 3Mε′ ] − 8Mε2

2 2r3ε3/2

ε′ (x) x := r − 2M

∫ dx
δ(x)
ε1/2

= ∫ dx δ(x) (x2 + ρ)1/4(2κ+1)

x1/2(2κ+1)
= ∫ dx ( δ(x)

xpx1/2(2κ+1) ) [xp (x2 + ρ)1/4(2κ+1)]
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(Hadamard prescription )

δ(x)/ |x |n ≡ 0
Approximation 

for ε(r)
vanishing in x = 0



THE REGULARIZATION PROCESS (9)
-Terms depending on  lead to an integral proportional to 

 

-Terms depending on  give an integral proportional to 

 

(ε′ )2

∫ dx
xδ2(x)

ε3/2
= ∫ dx δ2(x)(x2 + ρ)3/4(2κ+1) x(4κ−1)/2(2κ+1),

ε′ ′ 

∫ dx
xε′ ′ (x)
ε1/2

= 2∫ dx
xδ′ (x)
ε1/2

= = − 2∫ dx δ(x) (x2 + ρ)1/4(2κ+1)

x1/2(2κ+1)

+2∫ dx δ2(x)x (x2 + ρ)3/4(2κ+1)

x3/2(2κ+1)
,
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Vanishing contribution in the distributional sense as the  
coefficient of  is zero in  if we suppose δ2(x) x = 0 κ ≥ 1

  
(Hadamard prescription )

δ(x)/ |x |n ≡ 0
Vanishing contribution  

in the distributional sense



THE REGULARIZATION PROCESS (10)
The regularized  assumes this form 
          

                                

Remaining regularized Riemann tensor components read as

Rr
r𝒯r

Rr
r𝒯r = − 2 2 ( M

r )
3/2 ε

r2

25



THE REGULARIZATION PROCESS (11)
-The regularized Riemann tensor does not depend on the Dirac-delta 
function and is discontinuous across , as  
-The ensuing Ricci tensor, Ricci scalar, and consequently Einstein 
tensor vanish 

         

-Regularized Kretschmann invariant 

 

                               

Σ [Rα
βγδ] ≠ 0

RαβγμRαβγμ =
48M2

r6
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 does not represent a thin shellΣ

 does not give rise to a new curvature singularityΣ



THE REGULARIZATION PROCESS (12)
-The Weyl tensor stemming from the regularized Riemann tensor is 
discontinuous across , but it does not depend on Dirac-delta 
function  
          
                               

Σ
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No impulsive gravitational wave on Σ

The Lorentzian-Euclidean Schwarzschild metric  
is a valid signature-changing solution  

of vacuum Einstein field equations



AVOIDANCE OF THE SINGULARITY (1)
Henceforth, we will use Schwarzschild coordinates  
        

  

with 

  if ,   if , and   if . 

Let us study the motion of bodies radially approaching the 
Lorentzian-Euclidean black hole 

{t, r, θ, ϕ}

ε = 1 r > 2M ε = 0 r = 2M ε = − 1 r < 2M
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ds2 = − ε (1 −
2M
r ) dt2 +

dr2

(1 − 2M
r )

+ r2dΩ2,



AVOIDANCE OF THE SINGULARITY (2)
• Geodesic motion  

-Observer starting at rest at some finite distance  

-Describe the radial variable via the relation 

         
       

-Equations governing infalling radial geodesics are 

ri > 2M

r(η) = ri cos2(η/2), η ∈ [0,ηH]
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 ·r = −
ε4 sin2 (η/2) + E2 [cos2 (η/2) − ε4]

ε3 cos2 (η/2)
·t =

E
ε2

cos2 (η/2)
cos2 (η/2) − (1 − E2)



AVOIDANCE OF THE SINGULARITY (3)
along with 

-The radial velocity , and the derivatives   assume 
imaginary values as  

- The radial velocity  vanishes at  
                              

·r dσ/dη, dt/dη
r < 2M

·r r = 2M
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dσ
dη

= ( ·r)−1 dr
dη

= ri sin (η/2) cos2 (η/2) ε3

ε4 sin2 (η/2) + E2 [cos2 (η/2) − ε4]

dt
dη

= ·t
dσ
dη

=
E
ε2

ri cos4 (η/2) sin (η/2)
cos2 (η/2) − (1 − E2)

ε3

ε4 sin2 (η/2) + E2 [cos2 (η/2) − ε4]



AVOIDANCE OF THE SINGULARITY (4)
-The observer in radial free fall takes an infinite amount of proper 
time  to stop at the event horizon                              σ
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event horizon: 
η ≈ 1.3



AVOIDANCE OF THE SINGULARITY (5)
-The observer in radial free fall takes an infinite amount of time to 
stop at the event horizon also from the point of view of an observer 
stationed at infinity                             
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event horizon: 
η ≈ 1.3



AVOIDANCE OF THE SINGULARITY (6)
• Accelerated motion          

-Radially accelerated observer whose trajectory begins at rest 
from a large distance from the black hole 

-Radial-directed orbit (  constant) 

                               

θ, ϕ
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aλ =
dUλ

dσ
+ Γλ

μνUμUν Uμ :=
dxμ

dσ

 at =
dUt

dσ
+ 2Γt

trUtUr  ar =
dUr

dσ
+ Γr

ttUtUt + Γr
rrUrUr

Christoffel symbols regularized via our technique 



AVOIDANCE OF THE SINGULARITY (7)
- Radial velocity                              

  

 vanishes on the event horizon and becomes imaginary inside it 

-Differential equation for  

Ur

σ
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 Ur = − ε ℱ2 − (1 − 2M/r)  ℱ = f(σ) 1 − 2M/r, f(σ) > 1

  
dσ
dr

= −
1

ε [ℱ2 − (1 − 2M/r)]



AVOIDANCE OF THE SINGULARITY (8)
The accelerated observer takes an infinite amount of proper time  
to stop at the event horizon                        

σ
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CONCLUSIONS
• The signature change of the Lorentzian-Euclidean metric can be 

ascribed to the emergence of an imaginary time variable  when 
. We propose to relate this feature to the concept of 

“atemporality”  

Atemporality configures in our model as the dynamical  
mechanism which permits one to avoid the black-hole singularity


• Bunch of particles accumulating on the event horizon: 
observational feature of the model? 

t
r < 2M
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