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SIGNATURE-CHANGING METRICS (1)

* Metrics whose sighature changes from the Lorentzian one to the
Euclidean one and vice versa:

-Studied in classical and quantum General Relativity (GR)

e Quantum GR:

Hartle-Hawking no-boundary proposal

-Quantum cosmology Linde proposal

Vilenkin proposal (tunneling from nothing)

-Loop quantum cosmology




SIGNATURE-CHANGING METRICS (2)
e Classical GR:

-Not forbidden by Einstein field equations

-Homogeneous and isotropic ~riedman-Hobertson-Walker
geometries

i. Similar properties with quantum scenarios satisfying the Hartle-
Hawking no-boundary condition

ii. Related to the real tunneling solutions of Wheeler-DeWitt
equation in




e Joining two metrics at a common boundary, which divides the
spacetime into two distinct regions

Israel-Barrabes formalism (metrics with unchanging signature)

n, = adﬂf

2. is (= 1)
or spacelike (@ = — 1)

2y

(a,b =12,3) The same coordinates y“
installed on both sides of 2

8ap

T = @(f)g;y + @(_f)gﬂ—y metric in

coordinates x*




JUNCTION CONDITIONS AND THIN SHELLS (2)

What conditions must be imposed on the metric so that g, ; forms
a valid distribution-valued solution of Einstein field equations?

Junction conditions that involve three-tensors on >

[F ] = F ‘ L F ‘_ Jump discontinuity of any tensorial quantity /" across 2.

Fl1=0 F'is continuous at -

- F ;é O F'is discontinuous across 2;
| F'] is the jump discontinuity of Facross X

In our hypotheses [n%] = [x%] = [y‘] =0

8w, =0 +0O(=0)g, +adl)lg,ln,




JUNCTION CONDITIONS AND THIN SHELLS (3)

C - the metric is continuous across 2.

[g/,w] — O [hab] — 0

In the coordinate
system x“

Induced metric (coordinate y“) | coordinate-invariant statement

Metric tangential derivatives are also continuous, but the normal
derivatives are not:

[8ap ] = Kapn,




JUNCTION CONDITIONS AND THIN SHELLS (4)

e O-function part of the Riemann tensor

a
A% 5= > (Kg‘nﬁny — K, Mghs — Kgsh“n,, + Kﬂyn“n(;)

e O-function part of the Ricci tensor

a

=3 < L g+ K gntng — Knng — aKaﬂ>

e O-function part of the

— AQ — Kl H
A_Aa—a<1<ﬂyn n akﬂ>




JUNCTION CONDITIONS AND THIN SHELLS (5)

Einstein field equations give the following expression for the
stress-energy tensor:

_ 1
T,5=0C )T;ﬁ +O0(=)T 5+ 0(£)S,p with 8755 = A 5 — EAg“ﬂ

The o-function term of 7 ; is associated with the

presence of a thin distribution of matter, which is referred
to as surface layer or

IS Saﬂ




JUNCTION CONDITIONS AND THIN SHELLS (6)

Explicitly, the thin shell stress-energy tensor depends on the jump
discontinuity of the extrinsic curvature tensor K, of 2:

g o
b 8x

a

([K) — [Khy)

» Second junction condition: [K,] = 0, which implies A% =0

When junction conditions are satisfied, then the two metrics g/;—;

can be joined smoothly through 2




JUNCTION CONDITIONS AND THIN SHELLS (7)

e When X is either , then only the Ricci part of
the Riemann tensor can show a distributional singularity
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e When X is null, then both the part of the Riemann
tensor can present Dirac-delta singularities

Thin shell Impulsive gravitational wave




Lorentzian-Euclidean Schwarzschild metric in standard
coordinates {#,7,0, ¢}

2M dr?
ds? = —¢e| 1 ds* 4 d
r

2M 2M
— 2 -1,
r r

Sign function Step function |H(0)=1/2




LORENTZIAN-EUCLIDEAN BLACK HOLE (2)

Therefore, the spacetime manifold is dividedas V = V_ U V_ and

e = 1 if r > 2M: Lorentzian signature ( — + + + )

¢ =0 if r = 2M: metric is degenerate detg,, = 0

e=—1 ifr < 2M: metric has a structure and attains
ultrahyperbolic signature (

2. . r=2M change surface (null hypersurface)

Metric and its derivatives are discontinuous across the change
surface

[8ep]l # O [8ap ] 70




LORENTZIAN-EUCLIDEAN BLACK HOLE (3)

Metric in Gullstrand-Painlevé coordinates (7, r, 0, ¢)

: - .t
ds® = —ed T~ + (dr + e —d//) + r<dQ2-.
2

The only pathology is related to the fact that the metric becomes
degenerate on the change surface 2, i.e., whenr = 2M and € = 0




THE REGULARIZATION PROCESS (1)

Recall that [gaﬂ] #+ () and [gaﬁ,ﬂ] #= () first junction condition
cannot be satisfied

e Dirac-delta-like contributions arising in the Riemann tensor

 Terms proportional to ¢/, (¢/)?, ¢” = Linear and quadratic terms
in the Dirac-delta function o6(r — 2M) in the Riemann tensor




e Smooth approximation of e(r) = 2H(1 — 2M/r) — 1:

(7" _ 2M)1/(2K+1)
] 122k+1)°

plM 2 - small positive quantity
K . positive integer

e(r) =
[(r — MY+ p

The smaller p/M?,
the sharper &(r)

p = 0.1M? : red curve
p = 0.01M? : blue curve
p = 0.001M? : green curve







THE REGULARIZATION PROCESS (4)

 The Riemann tensor contains linear-in-delta ill-defined terms of
the type

\
" -
4

Hadamard partie finie & approximation of (r):

n: positive integer
X:=r—2M




THE REGULARIZATION PROCESS (5)

e Let F(&; a) be a function of £ which diverges as & approaches a.
We assume that near & = a

nmax

F(&a)= ) s7"f,(s:a) + O(s). s=|£—al

n=0

n

e The function diverges as s "mx when £ — a and does not have a

well-defined value at £ = a

* We can regularize it by extracting its partie finie at the singular
point & = a, which is defined by
27

(F)(a) := L f(s;a)do Angular average of the zeroth
2z — termfo(s; a) of the Laurent series

0
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THE REGULARIZATION PROCESS (6)

e The partie finie can be used to make sense of the product of F
with the delta function o(¢ — a), since we declare that

F(&a)6(& — a) = (F)(a) 6(& — a)

JF@; )8(E — a) dE = (F)(a)

F=|x|""==|r-2M|™"

o(x)
e In our case — =0, /
|X| \

(Fy =0

21



THE REGULARIZATION PROCESS (7)

Quadratic-in-delta ill-defined terms occurring
In the Riemann tensor

Regularized within our model since
their coefficient vanish when r = 2M

4=

- r s

R

Terms of the type 6°(r — 2M) give
vanishing contribution in the distributional
sense to the Riemann tensor




THE REGULARIZATION PROCESS (8)

e An example: regularization of R’;,gr

M r*Q2M — e’ + 2re [r(r — 2M)e" + 3M8’] — 8M¢e?
V r

24/2r33/2

-Terms linear in £'(x) yield an integral proportional to (recall x := r — 2M)

5( ) (xz n p) 1/42x+1) 5( )
xX) N X ) 1/4(2k+1)
[dx el de o(x) x172(2k+1) - de < xpx1/2(2K+l)> [xp <X tp ) ]

Approximation

for &(r) o)/ |x|"=0
(Hadamard prescription )

vanishinginx = 0
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THE REGULARIZATION PROCESS (9)

-Terms depending on (¢')” lead to an integral proportional to

xéz(x) ) ) 3/4(2k+1)
(4x—1)/2(2k+1)
dx o J'dx 0-(x) (x p) X :

Vanishing contribution in the distributional sense as the
coefficient of 5%(x) is zero in x = 0 if we suppose k > 1

-Terms depending on £” give an integral proportional to

) p 5/0) (x2 +p)1/4(21<+1)
xe"(x x0'(x
de e =2 | dx i - = — 2de 0(X) RS

(x I p) 3/42k+1)

+3/2Q2K+1) ’

+2 de 52(X)x

o)/ |x|"=0

Vanishing contribution .
3 (Hadamard prescription )

in the distributional sense




assumes this form

_2\/5 M
r

3/2 \/E

2

Remaining reqgularized Riemann tensor components read as
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THE REGULARIZATION PROCESS (11)

-The regularized Riemann tensor does not depend on the Dirac-delta
function and is discontinuous across 2, as [R‘zyé] = ()

-The ensuing Ricci tensor, Ricci scalar, and consequently
vanish

2. does not represent a thin shell

-Regularized Kretschmann invariant
48 M*
R

afyu —
R — :

afyu

2. does not give rise to a new curvature singularity
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THE REGULARIZATION PROCESS (12)

-The Weyl tensor stemming from the regularized Riemann tensor is

discontinuous across 2., but it does not depend on Dirac-delta
function

No impulsive gravitational wave on X

The Lorentzian-Euclidean Schwarzschild metric
Is a valid
of vacuum Einstein field equations




AVOIDANCE OF THE SINGULARITY (1)

Henceforth, we will use Schwarzschild coordinates {7, r, 0, ¢}

r

M dr?
ds? = — ¢ (1 ) dr? + . + r2dQ?,
(1

2M
r

with

e=1ifr>2M,e=0 ifr=2M,ande=—1 if r < 2M.

Let us study the motion of bodies radially approaching the
Lorentzian-Euclidean black hole




AVOIDANCE OF THE SINGULARITY (2)

-Observer starting at rest at some finite distance r; > 2M

-Describe the radial variable via the relation

r(n) = r;cos*(n/2), n € [0,ny]

-Equations governing infalling radial geodesics are

£* sin? (;7/2) + E? [0032 (;7/2) — 84]

€3 cos? (;7/2)

. E cos’ (;7/2)
[ =

€2 cos? (;7/2) — (1 — E2)




AVOIDANCE OF THE SINGULARITY (3)

along with

, dr e’

7 _ (7 L = rysin (1/2) cos? (n/2)

dp 7 dy \[etsin® (1/2) + cos? (1/2) - &*]

dt .do E rycos®(n/2)sin(n/2) g3
—_— = — =
dr dp € cos? (n/2) - (1 - E?) \84 sin? (17/2) + E? lcos2 (n/2) — 84]

-The radial velocity 7, and the derivatives do/d»n, df/dn assume
imaginary values as r < 2M

- The radial velocity 7 vanishes at r = 2M

10









AVOIDANCE OF THE SINGULARITY (6)

e Accelerated motion

-Radially accelerated observer whose trajectory begins at rest
from a large distance from the black hole

dU* dx*
A y) v .
—— 4+ T4 UHU Ut = ——

a 1 + v 1o

-Radial-directed orbit (¢, ¢ constant)

dU" dU”
a'=——+2IU'U" a’=——+ UV + T U'U"
0]

do

Christoffel symbols regularized via our technique




AVOIDANCE OF THE SINGULARITY (7)

U = — \/E\/ F2_ (1 - 2M/7) F = flon/1=2MIr,  f(o) > |

U’ vanishes on the event horizon and becomes imaginary inside it

-Differential equation for ¢

do I
Voo felFr-a—2mim)

34






CONCLUSIONS

* The signature change of the Lorentzian-Euclidean metric can be
ascribed to the emergence of an imaginary time variable 7 when

r < 2M. We propose to relate this feature to the concept of
“atemporality”

* Bunch of particles accumulating on the event horizon:
observational feature of the model?




