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Glucocorticoids (GCs) and the glucocorticoid receptor (GR) are important regulators of

development, inflammation, stress response and metabolism, demonstrated in various

diseases including Addison’s disease, Cushing’s syndrome and by the many side effects

of prolonged clinical administration of GCs. These conditions include severe metabolic

challenges in key metabolic organs like the liver. In the liver, GR is known to regulate

the transcription of key enzymes in glucose and lipid metabolism and contribute to the

regulation of circadian-expressed genes. Insights to the modes of GR regulation and

the underlying functional mechanisms are key for understanding diseases and for the

development of improved clinical uses of GCs. The activity and function of GR is regulated

at numerous levels including ligand availability, interaction with heat shock protein (HSP)

complexes, expression of GR isoforms and posttranslational modifications. Moreover,

recent genomics studies show functional interaction with multiple transcription factors

(TF) and coregulators in complex transcriptional networks controlling cell type-specific

gene expression by GCs. In this review we describe the different regulatory steps

important for GR activity and discuss how different TF interaction partners of GR

selectively control hepatic gene transcription and metabolism.

Keywords: Glucocorticoid receptor, chromatin, transcription, metabolism, liver

INTRODUCTION

Any living organism must adapt and respond to the surrounding environment to maintain
its existence. For multicellular organisms such as mammals, this includes daily transitions
between different physiological conditions including sleep/awake, fasted/fed, and physical
inactivity/activity. Moreover, occasional response to environmental changes such as confinement,
predator stress, extreme temperatures, inflammation and prolonged lack of food is critical for
survival. Glucocorticoids (GCs) serve as important endocrine signaling molecules controlling
many molecular signaling pathways that enable cells in the organism to respond to different
extrinsic cues. This is particularly evident for cellular responses in the arousal state including the
transitions mentioned above. Importantly, pathophysiological conditions leading to dysfunctional
GC signaling have dramatic effects onmany important biological functions including development,
inflammatory response, reproduction, cognitive function, anxiety, circadian entrainment,
cardiovascular regulation and cellular metabolism in a tissue-specific manner (1). For example,
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uncontrolled GC secretion observed in Cushing’s syndrome
leads to metabolic complications such as type 2 diabetes
and osteoporosis, which are also observed in situations of
prolonged treatment with GCs. In contrast, conditions of low GC
production, seen in Addison’s disease, are associated with muscle
weakness, low blood pressure and weight loss (2).

Glucocorticoids exert their actions primarily by binding to
the glucocorticoid receptor (GR or Nr3c1), which is expressed
in most cells in mammals. Yet, GCs have highly tissue/cell-
specific effects regulated by multiple mechanisms. As a DNA-
binding transcription factor (TF), GR is primarily involved in
the control of gene expression, with transcription of GR target
genes in a given cell being controlled by three overall mechanisms
(Figure 1). First, activity of GR is directly correlated with the
amount of GC molecules available in the cell. This is controlled
by adrenal GC synthesis and local availability of GCs in the
cell. Second, expression of active GR in the nucleus determines
the molecular response to GCs. This is regulated by GR
turnover (synthesis and breakdown), expression of different GR
isoforms, posttranslational modifications (PTMs) and nuclear
translocation. Third, genomic action of GR is controlled by
cell type-specific accessibility of GR response elements (GRE)

FIGURE 1 | Overview of the regulatory levels affecting GR activity in the control of hepatic transcription. (A) Circadian and ultradian synthesis of GCs is controlled by

the HPA axis in response to external stimuli including feeding, stress, light and circadian timekeepers. Availability of active GCs is further influenced by binding to the

serum protein CBG and by intracellular conversion catalyzed by the enzyme 11β-HSD1/2. (B) Once in the cell, GCs are bound by the GR with an affinity that is

conditioned by association with chaperone complexes containing HSPs, expression of specific GR isoforms and GR protein turnover. (C) GR exerts its action after

translocation to the nucleus, where it binds GRE sequences in the DNA to regulate transcription of target genes as a result of dynamic interaction with different TFs

and coregulators.

in the genome in synergy with cell-specific TFs, coregulators
and regulatory RNAs. In this review we will discuss all three
regulatory aspects of GR signaling with a specific focus on GR
interaction with the genome. We will primarily refer to studies
from mouse liver tissue to discuss recent insights to hepatic gene
regulatory networks andmetabolism controlled by GCs. This will
specifically be related to the hepatic transcriptional response to
the circadian rhythm, feeding and fasting.

REGULATION OF GLUCOCORTICOID
SECRETION AND AVAILABILITY IN THE
CELL

Glucocorticoids (cortisol in humans; corticosterone in rodents)
are steroid hormones secreted circadianly by the adrenal cortex.
Their daily levels peak immediately before the active phase (early
morning for humans; early evening for rodents) in anticipation of
a waking state, but also in quick response to external stimuli such
as stress, hypoglycemia and exercise (3, 4). The hypothalamic-
pituitary-adrenal (HPA) axis controls and maintains GC
secretion into the bloodstream (Figure 1A). The hypothalamus
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produces corticosteroid-releasing hormone (CRH), stimulating
the pituitary gland to secrete adrenocorticotropic hormone
(ACTH), which in turn promotes GC secretion by the adrenal
gland (5). As many other hormones, including growth hormone
and insulin (6, 7), GCs are secreted in an ultradian pattern with
pulsatile secretion once every 60 to 90min, as a result of feedback
and feedforward mechanisms between ACTH, CRH and GC
secretion keeping GC levels in a physiological range (4, 8, 9).
The circadian secretion of GCs results partly from oscillations
in ACTH secretion, but mostly from varying adrenal sensitivity
to ACTH (3–5). In the blood, GCs circulate in association with
corticosteroid-binding globulin (CBG) or, to a lower extent,
albumin, and only a small fraction remains unbound in most
vertebrates. As only free GCs diffuse into the target cells,
CBG modulates GC bioavailability (10–12). Disruption of CBG
expression in mice leads to reduced total serum GC (13) and as
CBG and albumin are synthesized by the liver, it is possible that
hepatic regulation of GC-binding proteins modulates the levels
of available GC.

Additionally, non-adrenal production of cortisol has
been described in visceral adipose tissue and liver via the
conversion of inert cortisone catalyzed by the enzyme 11β-
hydroxysteroid dehydrogenase type 1 (11β-HSD1) in humans
(dehydrocorticosterone to corticosterone in rodents), and
reversely by 11β-HSD2 (14, 15) (Figure 1A). Liver activity of
this enzyme is particularly relevant to the whole-body non-
adrenal production of cortisol; however, HPA axis feedback
mechanisms likely blunt any systemic effects (15). Therefore,
activity of 11β-HSD1 mostly contributes to locally maintaining
intracellular levels of active GCs in the liver and visceral adipose
tissue, fine-tuning the highly variable GC levels. This enzyme
thus regulates the availability of receptor-active GCs in the cell,
modulating access to GR and amplifying GC effects (16–18). In
mice, absence of 11β-HSD1 leads to an inability to produce active
GCs from the inert form, resulting in compensatory activation
of the HPA axis, increased basal corticosterone levels and
failure to fully elicit a hepatic gluconeogenic response to fasting,
similarly to absence or impairment of GR (19). Dysregulation of
11β-HSD1 expression and activity is associated with apparent
hypercortisolemia, disrupted metabolism and HPA axis function,
obesity, type 2 diabetes and metabolic syndrome; however, the
specific contribution of the enzyme to these processes is still
controversial (16, 18).

CIRCADIAN CONTROL OF
GLUCOCORTICOID LEVELS

The circadian synthesis and secretion of GCs by the adrenal
glands is controlled by both the local molecular clock and
the central clock in the suprachiasmatic nucleus (SCN) via a
sympathetic neuronal pathway, and can be blunted by stress
stimuli (3, 4). The SCN is important for GC rhythmicity, as it
regulates the hypothalamic-hypophysial portions of the HPA axis
affecting CRH secretion (20–22). During light-inducedHPA axis-
independent GC secretion, the SCN directly activates the adrenal
glands via the adrenal sympathetic nerves, suggesting that GCs

can act as SCN-gated mediators of the light stimuli to entrain
metabolic-responsive peripheral clocks (5). The ubiquity of GR
expression and the marked circadian secretion of GCs imply that
these are efficient SCN-driven synchronizers of peripheral clocks
and, specifically in the liver, are fundamental for the circadian
expression of metabolic genes, even with contribution from other
hormonal signals and entrainment factors (3, 4, 23). However,
GCs do not affect the central clock, since GR is not expressed in
the SCN (3, 23).

Unlike the SCN, the phase of peripheral clocks can be
modulated by feeding, and even uncoupled from the SCN (3). As
a metabolic organ, the liver is particularly responsive to feeding
patterns, which can lead to desynchronization of its peripheral
clock from the central clock (24, 25), an entrainment partly
mediated by GCs (26–29). The interplay between eating behavior
and GCs can be observed during day-restricted feeding of mice
(opposite to their normal feeding pattern), leading to secretion
of GCs with two distinct peaks instead of a single one, with
one being feeding-responsive (before feeding time, in the early
morning) and the other light-entrained (before the normal active
period, in the early evening) (3, 4, 27, 30). Misalignment also
occurs as a result of the disruption of normal activity patterns
due to jet lag, shift work, sleep disorders or social jet lag, and
associates with the development of metabolic disorders, such as
diet-induced obesity and non-alcoholic fatty liver disease (31).

GR STRUCTURE, SPLICE VARIANTS AND
PTMs IN THE MODULATION OF GR
ACTIVITY

The effects of GCs are mediated by GR through its three
functional domains: a hydrophobic C-terminal ligand-binding
domain (LBD) containing a ligand-dependent trans-activation
portion (τ2, or AF2), a zinc-finger DNA-binding domain (DBD)
located adjacently, and an N-terminal trans-activation domain
(τ1, or AF1) (32–34). There is extensive alternative splicing
and translation of human GR, impacting cell-specific GC
actions. Alternative splicing originates multiple isoforms varying
primarily in the DBD and the C-terminal LBD/AF2, while
multiple translational start sites give rise to GR proteins with
different lengths of the AF1 domain. The expression of some
GR isoforms is evolutionarily conserved, but while many have
shown biological relevance in humans (35), isoforms in rodents
are less characterized. In humans and rodents, GRα (referred
to simply as GR henceforth) is considered the canonical GR
isoform that mediates most actions of GCs and is the primary
isoform expressed in most tissues. Alternative splicing of the
GR primary transcript in humans and rodents can give rise to
additional GR isoforms, including GRβ, which has a truncated
C-terminus, resulting in an inactive AF2, with compromised
ability to bind GCs. Thus, GRβ is considered dominant negative
(36, 37). Although expressed to a lower level than GRα, GRβ is
considered a functional TF in a number of tissues, including the
liver (36, 38). Additional isoforms include the widely expressed
GRγ, which exhibits similar affinities to both GCs and DNA as
GRα, but has a compromised transactivation potential and is
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associated with GC resistance. Expression of GR is also affected
by the activity of miRNA molecules that bind to the 3′ UTR
of GR transcripts, affecting their stability and preventing their
translation (37). Additionally, lncRNAs such as Gas5 repress
ligand-activated GR activity by binding to its DBD as a decoy
GRE in starvation conditions, leading to suppression of GC-
stimulated mRNA expression of key gluconeogenic enzymes
G6Pase and Pck1 during fasting (39).

In addition to the coregulatory function of specific GR
isoforms, the activity of hormone-bound GR in different tissues
can be modulated by specific sets of PTMs (40). For example,
upon hormone binding, ligand-selective phosphorylation of the
GR affects GR-mediated transcriptional activity and recruitment
of coregulators, and is thus involved in directing and modulating
GR action as a repressor or activator, namely via crosstalk
from other signaling pathways such as in GSK3β-mediated
phosphorylation (40–45). The relevance of PTMs on the GR
protein and their effects on GR function are also illustrated
by the protein-protein interactions between clock components
and GR leading to suppression of GR activity via acetylation
of a lysine residue by the CLOCK protein, potentiated by the
presence of BMAL1 (46). Additionally, modifications such as
GC-dependent phosphorylation reduce GR stability and half-
life by tagging it for ubiquitination and subsequent degradation,
and also influence its subcellular localization (37, 43, 44, 47–49).
Other PTMs affecting GR function include SUMOylation, which
reduces protein stability and regulates transcriptional activity,
as well as nitrosylation and oxidation, both associated with
reduction of GC-binding (37).

REGULATION OF GR TRANSLOCATION TO
THE NUCLEUS

Inactive GR is located in the cytoplasm, monomerically
associated with a multimeric chaperone complex important
for GR stability, folding and translocation (Figure 1B). The
maturation of the complex involves a stepwise ATP-dependent
assembly from the initial GR-HSP70-HSP40 complex, to the
recruitment of HSP90 and Hop facilitating the assembly of a
final high GC affinity complex consisting of GR, HSP90, p23, and
FKBP51 (50). Circulating GCs enter the cells via diffusion across
the cell membrane and interact with GR. Upon ligand-binding,
a FKBP51-FKBP52 switch exposes the GR nuclear localization
signals, which are recognized by importins and nucleoporins,
facilitating the translocation of activated GR through a nuclear
pore via microtubules (50, 51). Disruption of FKBP52 leads
to reduced expression of GR target genes in the liver and
augmented hepatic steatosis as a result of diet-induced obesity
(52), also observed in liver-specific GR knock out (L-GRKO)
mice (26), demonstrating a functional role of the multimeric
chaperone complex for hepatic GR function. In general, the
subcellular location of GR follows the diurnal GC concentration
(53). However, both ligand-bound and unbound GR shuttle
dynamically between the nucleus and the cytoplasm with a
variable rate, consequently regulating GR activity. Aberrantly
high cytosolic pH and chemical stress can lead to dissociation

of HSP90 and increased nuclear import of GR. GR nuclear
translocation can also be regulated by context-specific PTMs,
e.g., phosphorylation of GR by kinases like MAPKs, CDK, and
GSK3 (50). In the liver, factors including HDAC6 and REV-ERBα

have been found to affect GR translocation, thus affecting GR
activity (53, 54).

GENOMIC ACTIONS OF GR: GENERAL
CONCEPTS

Following nuclear translocation, GR accumulates at specific gene
regulatory regions (e.g., enhancers) depending on the DNA
sequence, occupancy of other TFs, organization of nucleosomes
and higher order chromatin structures (Figure 1C). GR residence
time at specific regions of chromatin lasts seconds, whereas
freely diffusing unbound GR occupies chromatin in milliseconds
(55) (Figure 2A). This enables GR to efficiently probe tens of
thousands of putative enhancers within a short time frame
and initiate transcription of hundreds of genes within minutes
of activation by hormone (56). Also, the dynamic nature of
chromatin interaction is shared by transcriptional coregulators
known to interact with GR (57), both likely playing an important
kinetic role in GC-regulated gene expression, including the
duration and frequency of transcriptional bursting (58). As a
result of the pulsatile secretion pattern, GC concentration in
the serum is highly dynamic, allowing a rapid transcriptional
response that can be translated into a fast biochemical response
(59). For example, transcriptional bursting has been linked to
a fast-acting metabolic switch in hepatic glucose metabolism,
where expression of gluconeogenic genes such as G6pc and Pck1
is rapidly decreased in response to feeding (60), the latter being
regulated by GCs (61, 62).

Direct and Indirect GR Interaction With the
DNA Template
Genomic occupancy of GR is facilitated by direct GR binding
to GREs on DNA as a monomer, homodimer or tetramer (63)
(Figure 2B), with the tetrameric structure being suggested as the
final active form of GR (64). GR binds directly to the canonical
DNA motif consisting of inverted repeats separated by 3 bps
(nGnACAnnnTGTnCn) or to half-sites of these inverted repeats
(nGnACA) (63, 65) and degenerate versions of these (66). In
addition, GR can bind other inverted repeats separated by 0-2 bps
(CTCC(n)0−2GGAGA) (67, 68), termed negative GREs (nGRE).
Besides binding directly to DNA, GR can occupy enhancers by
tethering to DNA-bound TFs by protein-protein interactions
(63, 65).

Binding of GR to canonical DNA motifs as homodimers
and tetramers is generally associated with GC-mediated
transactivation (63, 69–71). Also, studies suggest that
GR association with GR half-sites is linked to active gene
expression (63, 65). Once GR is associated with enhancers, GC-
induced transactivation involves recruitment of transcriptional
coactivators to facilitate chromatin remodeling, histone
hyperacetylation and mediator recruitment which leads to
recruitment and/or increased activity of RNA polymerase II
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FIGURE 2 | Direct and indirect GR-DNA interactions. (A) GR interacts dynamically with DNA. Freely diffusing GR occupies chromatin with residence time in

milliseconds, whereas GR binding at specific regions of chromatin is measured in the order of seconds. (B) GR interacts directly with DNA by binding to canonical

GRE (nGnACAnnnTGTnCn), half-sites (nGnACA) and nGRE (CTCC(n)0−2GGAGA) or indirectly by tethering to DNA-bound TFs by protein-protein interactions. (C) TFs

can assist the loading of GR, or vice versa, by facilitating an accessible chromatin environment at the regulatory site.

at juxtaposed gene promoters (56, 72–74). In contrast, GC-
mediated transrepression has been widely discussed, and hence
several different models have been presented, including direct
binding of GR to nGRE motifs, interaction with DNA sequences
bound by other TFs, tethered GR binding to transactivating TFs,
redistribution of monomeric GR, sequestering of transactivating
coregulators and/or GR-regulated expression of negative

modulators of transcription (75). Even though nGREs have been
associated with transcriptional repression (67, 68, 76), their
role has been debated (63, 72, 74). For example, recent studies
found no enrichment of nGREs at enhancers juxtaposed to
GC-repressed genes (74). In contrast to enhancers induced by
GC, repressed enhancers show marginal canonical GR binding
motifs, suggesting that GR binds other DNA motifs (77) or
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tethers to other TFs (78). This type of GR interaction with DNA
is generally believed to be mediated by monomeric GR, based on
structural studies of the GR DBD and mice expressing a mutant
GR (GRdim) unable to achieve DBD dimerization (69, 76–79).
Although mice expressing GRdim indeed show reduced GR
transactivation ability in the liver and maintain transrepressive
activity (70), studies have suggested that GRdim forms dimers in
the nucleus through another dimerization surface of the LBD
(80). This suggests that binding to GR half-sites or other DNA
motifs may be mediated by GR dimers, where possibly only one
part of the dimer binds directly to DNA (Figure 2B). Cistromic
analysis of GR and GRdim in the liver and in macrophages
suggests extensive GR binding to chromatin through GR half-
sites, which in many cases colocalizes with lineage-determining
TFs driving cell-specific gene transcription (63, 70). Accordingly,
GC treatment has been suggested to induce pronounced GR
redistribution from GR half-sites to canonical GREs leading to
reduced transcription of genes controlled by lineage-specific TFs
(63). Introducing a mutation that completely disrupts direct GR
binding to DNA (GR1Zn) leads to a perinatal lethal phenotype
similar to knock out of GR, emphasizing an essential function
of direct binding to DNA. Interestingly, studies of mouse
embryonic fibroblasts isolated from GR1Zn mice show that
direct GR-DNA interaction is essential for both transcriptional
activation and repression by GCs, arguing that tethering is not
a dominant mechanism for GR transrepression (81). Thus,
genomic action of GR is primarily mediated by multimeric
or monomeric actions involving direct interaction with the
DNA template.

GR Interaction With Chromatin
GR binding to DNA is not solely dependent on the DNA
sequence of the GRE. As GR binding sites are part of
enhancer regions organized in higher order chromatin structures,
occupancy of GR to specific regions of the genome is determined
by a number of interdependent factors. This includes selective
chromatin accessibility, epigenetic modifications of the histones,
and the presence of other signal-dependent TFs, lineage-
determining TFs and transcriptional coregulators (56). In the
mouse liver, GR binds at least 11,000 distinct regions which
are primarily located in intronic and intergenic distal regions
(26, 61, 63, 72, 82). The vast majority of the GR binding
sites are accessible prior to GC stimulation (pre-accessible
chromatin) and only some are de novo remodeled following GR
recruitment (72). Similar findings are observed for other cell
types (56, 83, 84), demonstrating that selective GR occupancy
of chromatin is largely determined by the accessibility of
GREs. This pre-programmed chromatin landscape is shaped by
cell-specific TFs and interacting coregulators that facilitate an
accessible chromatin environment thereby assisting the loading
of other TFs to the chromatin (discussed below; Figure 2C) (85).
Accordingly, when comparing the liver cistrome across a number
of well-described GC-responsive cell types, more than 80% of
GR binding sites are unique to the liver and only 0.5% of the
binding sites in the liver are shared with other cell types (72). This
correlates with the findings that GR-occupied enhancers active in
one cell type are inaccessible and nucleosomal in another cell type

(73). GR has also been found to facilitate binding of other TFs to
enhancers in the liver by establishment of accessible chromatin
(72). In fact, binding of GR to genomic regions with different
levels of chromatin accessibility has been linked to the type and
strength of the GRE motif, with weaker motifs being found at
nucleosome-depleted enhancers, compared to more nucleosomal
dense sites (73).

Control of Gene Transcription by
Recruitment of Coregulators and
Chromatin Remodeling
Upon GR binding to chromatin, the local nucleosome-sparse
region expands and the accessibility of the chromatin is
further increased trough recruitment of chromatin remodeling
complexes such as SWI/SNF and additional TFs (86–88).
In addition, GR facilitates recruitment of widely expressed
coactivators including histone acetyl transferases CBP, P300,
GRIP1, PCAF and SRC-2 and components of the Mediator
complex such as MED1 and MED14 (56, 66, 73, 89, 90).
Moreover, other important GR coactivators have been identified
in the liver, including CRTC2 (91), SIRT1, PGC-1α (92), ASCOM
complex (93) and SETDB2 (94). On the other hand, GR has
been found to interact with corepressors including SMRT (95),
HDAC1 (96), CtBP (97), SMAD6-HDAC3 (98), CRY1 (99)
and recently TAZ (100), although these interactions are not
necessarily associated with transcriptional repression. The wide
variety of coregulator interactions allows transcriptional fine-
tuning of specific genes in a given cell in a concerted response
to cellular signals and circulating GC levels.

Local recruitment of GR and associated coregulators to
specific enhancers is translated to a transactivation potential
by assembly into higher order enhancer-enhancer and
enhancer-promoter condensates (101), facilitating localized
increased concentration of the transcriptional machinery (102).
Interestingly, interaction between promoters and enhancers
occupied by GR is mostly established prior to GC stimulation
(103, 104), suggesting that GC treatment does not necessarily
lead to new chromosomal interactions but rather increases
existing interactions between GR-occupied enhancers and
GC-regulated target genes (74). Importantly, availability of GCs
has been shown to be central for this differential interaction,
suggesting that rapid regulation of gene transcription in response
to changes in GC levels not only involves dynamic loading of GR
and coregulators on the genome but also differential regulation
of enhancer-promoter interaction (103).

GR OPERATES IN TRANSCRIPTIONAL
NETWORKS TO CONTROL HEPATIC GENE
EXPRESSION

The general GR working model described above illustrates that
cell-specific GR actions are orchestrated by auxiliary lineage-
determining and signal-dependent TFs. As any given cell
expresses multiple cell-specific TFs that shape the accessible
chromatin landscape, it is evident that GR-GC action in a given
cell is controlled by signaling pathways regulating the activity
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and expression of these TFs. For example, the liver receives
a variety of context-dependent signals controlling specific
signaling pathways including circadian cues, insulin, glucagon,
growth hormone and free fatty acids, that collectively shape and
are shaped by the GC response in hepatocytes. These different
signals are integrated in spatial and temporal TF signaling
networks that regulate and fine-tune the hepatic transcriptional
response. GR interaction with different TFs and the importance
of these interactions for transcriptional regulation have been
investigated for decades (105). Recently, several key genome-
wide studies in mouse liver tissue have demonstrated that GR
interacts with a large repertoire of TFs and that these interactions
are diverse, bidirectional, dynamic and highly context- and cell-
specific (Table 1). The interactions between GR and TFs can be
classified as direct or indirect. Direct interactions cover protein-
protein interactions or concurrent and co-localized binding
to regulatory sites in the chromatin (Figure 3A), impacting
coregulator recruitment, and consequently enhancer activity
(Figure 3B). Indirect interactions involve TF cascades, where the
expression of one TF regulates the expression of another TF
(Figure 3C).

Composite TF Interactions and Assisted
Loading
At composite sites, GR binds to GREs and can functionally
interact with other TFs bound to a neighboring site in the same
regulatory region, co-operatively regulating enhancer activity.
These binding sites can be overlapping or closely located on
the DNA strand and involve GREs, half GREs and/or nGREs
(Figure 3A). Many liver-expressed TFs have been found or
suggested to co-occupy GR binding sites (Table 1). ChIP-seq
experiments have confirmed the composite binding of CREB1,
FOXO1, FOXA, HNF4α, HNF6, C/EBPα, C/EBPβ, PPARα, E47,
STAT5, and REV-ERBα at several GR-occupied enhancers (26,
61, 63, 72, 82, 107, 108, 110, 114). In the liver, ChIP-seq data
suggests that GR binds GRE half-sites together with lineage-
determining TFs including HNF4α, C/EBPβ, HNF6, and FOXA
(63, 72). In addition, AP-1 and SP1 motifs have been found
to be enriched at GR binding sites (122) and the AhR binding
site contains a GRE (123), suggesting that these TFs could work
together with GR at specific sites to regulate transcription (124).
However, further investigations are needed to determine the
relevance of AP-1, SP1, and AhR on GR activity in the liver.

Several confirmed composite GR-TF interactions have been
found to impact GR activity and hepatic metabolism, including
C/EBPβ, E47, STAT5, and LXRβ, which are required for GR
recruitment to specific sites (26, 72, 110, 113), in accordance
with the model for assisted loading. For example, GR and E47
co-occupy many promoters and enhancers, working in synergy
to regulate GC-induced metabolic genes. Studies using liver-
specific E47 knock-out mice emphasize the importance of E47
in the recruitment of GR, FOXO1, and the mediator complex to
composite sites. This cooperation affects glucose, fatty acid and
lipid metabolism, which is demonstrated by E47 knock-out mice
being protected from GC-induced hyperglycemia, dyslipidemia

and hepatic steatosis (110). Another example is the C/EBP-
facilitated assisted loading of GR. C/EBP has been found to
occupy and prime the majority of GR target sites in the liver,
making the chromatin accessible for GR binding. Disruption
of C/EBP binding attenuates GR recruitment and GR-induced
chromatin remodeling at composite sites (72). The concept of
assisted loading is also found reversely, with GR assisting the
loading of TFs including C/EBP and CREB1 at a subset of
sites (Figure 2C) (72, 107). For example, GR-mediated assisted
loading of CREB1 at a subset of CREB1 target enhancers doubles
the number of CREB1 bound sites and increases chromatin
accessibility, eventually leading to increased hepatic glucose
production during fasting (107).

Protein-Protein Interactions:
Heterodimerization and Tethering at
Chromatin
As mentioned above, multiple GR isoforms can be generated
from the primary transcript and protein processing. Thus, GRα/β
heterodimers can be formed on chromatin, impacting the activity
of occupied enhancers (125–127) (Figure 3A). In fact, GRβ

has been shown to have metabolic relevance in the liver. For
example, feeding induces GRβ expression within 7 h, likely in
response to insulin (36). This is supported by observations
that hepatic GRβ expression increases in diet-induced obese
mice (128). Overexpression of GRβ in mouse liver reduces
expression of known GRα target genes such as Pck1 and Ppara,
associated with disrupted gluconeogenesis and increased hepatic
lipid accumulation and inflammation, respectively (128, 129).
Moreover, the GRβ-mediated increase in lipid accumulation is
also seen in L-GRKO mice (26, 130), suggesting that GRβ may
function as a negative regulator of GRα in hepatic fatty acid
metabolism. Importantly, GRβ expression in a GRα-negative
background leads to expression of a specific set of genes not
regulated in the presence of GRα (129), suggesting that GRα

and GRβ regulate each other’s activities by mechanisms involving
accessibility to chromatin, cooperation with TFs and coregulators
and indirect regulation of enhancer activity (Figures 3A–C).
Likewise, GR has been found to form a heterodimer with the
mineralocorticoid receptor (MR) (34) in a number of different
tissues and cells, including the hippocampus and mammary cells.
Here, the GR-MR complex binds to GREs and regulates gene
expression (131, 132). Although a GR-MR complex has not, to
our knowledge, been shown to be functional in the liver, it has
been suggested that GR-MR could regulate hepatic expression
of G6Pase (133) (Figure 3B). However, further investigations
are needed.

Besides heterodimerization on DNA, GR has been suggested
to form other protein-protein interactions on chromatin which
tether GR to enhancers independently of its DBD. This includes
interaction with COUP-TFII, STAT5, PPARα and the molecular
clock components BMAL1, CLOCK, and REV-ERBα, influencing
GR activity and hepatic metabolism (82, 106, 115, 116, 119). For
example, COUP-TFII protein interaction with GR is important
for GC-induced promoter activity and hepatic Pck1 gene
expression (106). Also, GR is suggested to be recruited to a
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TABLE 1 | Examples of hepatocyte expressed transcription factors interacting with GR on chromatin.

Transcription factor Signals regulating TF activity Interactions with GR Model References

Metabolism

C/EBPα CCAAT enhancer binding protein

alpha

Co-localization Mouse liver (72)

C/EBPβ CCAAT enhancer binding protein

beta

Co-localization. C/EBPβ-mediated

assisted loading of GR

Mouse liver (63, 72)

COUP-

TFII

Orphan nuclear receptor chicken

ovalbumin upstream

promoter-transcription factor II

9-cis-retinoic acid

All-trans-retinoic acid

Protein-protein interaction.

Co-localization on chromatin

H4IIE and

HepG2

(106)

CREB1 CAMP responsive element

binding protein 1

Glucagon GR-mediated assisted loading.

Co-localized binding

Mouse liver (61, 107–109)

E47 Co-localization on chromatin. E47 is

important for GR recruitment.

Mouse liver (110)

FOXA Forkhead box A1 Half-site tethering Mouse liver (63)

FOXA2 Forkhead box A2 FOXA2-mediated assisted loading of

GR. Co-localization at site

Mouse liver

and primary

mouse

hepatocytes

(63, 109)

FOXO1 Forkhead box O1 Insulin Co-localization on chromatin and

protein-protein interaction

Mouse liver

H4IIE

(61, 110, 111)

LXRα Liver X receptor alpha Oxysterols Competes with GR for binding at

target sites

HepG2 (112)

LXRβ Liver X receptor beta Oxysterols Facilitates GR binding to selected

GREs

Mouse liver (113)

HNF6 Hepatocyte nuclear factor 6 Half-site tethering Mouse liver (63)

PPARα Peroxisome proliferator activated

receptor alpha

Fatty acids, eicosanoids,

phospholipids, polyphenols

Co-localization on chromatin Primary

mouse

hepatocytes

(114)

Circadian clock

BMAL1 Brain and muscle ARNT-like 1 Circadian Protein-protein interaction. GR is

tethered to BMAL1-CLOCK complex.

Co-localization on chromatin

Mouse liver (26, 115)

CLOCK Circadian clock regulator Circadian Protein-protein interaction. GR is

tethered to BMAL1-CLOCK complex.

Co-localization on chromatin

Mouse liver (26, 115)

CRY1/CRY2 Cryptochrome circadian

regulator 1/2

Circadian Co-localization on chromatin through

tethering. Protein-protein interaction

HepG2 cells

Mouse liver

(26, 99, 116)

PER1/2 Period circadian regulator 1/2 Circadian Co-localization on chromatin Mouse liver (26)

REV-

ERBα/β

Nuclear receptor subfamily 1

group D member 1/2

Circadian, hem Protein-protein interaction.

Co-binding to sites.

REV-ERBα-mediated assisted loading

of GR

Mouse liver (26, 82)

RORα/γ RAR related orphan receptor A/C Circadian Co-localization on chromatin Mouse liver (26)

Development and growth

HNF1α Hepatocyte nuclear factor 1

alpha

Co-localization at sites Mouse liver

PLC/PRF/5 cells

(117, 118)

HNF4α Hepatocyte nuclear factor 4

alpha

Linoleic acid Co-localization at sites Mouse liver (63, 117)

STAT5 Signal transducer and activator

of transcription 5

Growth hormone. Cytokines Protein-protein interaction.

Co-localization at sites. STAT5 tethers

GR to sites.

STAT5 induces GR recruitment

to sites

Mouse liver (26, 119, 120)

General

HSP90 Heat shock protein 90 GC-dependent co-localization on

chromatin

Rat hepatoma

HTC cells

(121)

p23 Prostaglandin E Synthase 3 Prostaglandin E Synthase 3 GC-dependent co-localization on

chromatin

Rat hepatoma

HTC cells

(121)
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FIGURE 3 | GR interaction with TFs on chromatin. (A) GR and TFs co-occupy enhancers through homodimeric or monomeric GR binding together with TFs at

composite sites, by heterodimerization and through tethering. (B) GR- and TF-mediated recruitment of coactivators (CoA) and/or corepressors (CoR) to co-occupied

regulatory sites controls the net enhancer activity. (C) Indirect GR-TF interaction involves TF cascades, where the expression of GR regulates the expression of TF or

vice versa.

subset of sites via tethering to DNA-bound PPARα to regulate
metabolic genes in the liver including Pdk4 (114). Moreover, GR
tethering to the BMAL1-CLOCK complex is suggested to repress

hepatic Rev-erbα expression (115), demonstrating how GR and
the molecular circadian clock interconnect to regulate shared
gene programs.
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Controlling Enhancer Activity by
Co-occupancy of Multiple TFs
The transcriptional effect of multiple TF interactions at
enhancers can be evaluated by looking at the expression of
juxtaposed target genes or at localized histone acetylation
and mediator recruitment. In the case of TF cooperation at
individual enhancers, activation of several TFs will result in
synergistic effects on enhancer activity and gene expression. In
contrast, TFs working independently at the shared enhancer
would result in gene expression corresponding to a sum of
the contribution from each TF. For example, composite GR-
PPARα sites have been found to synergistically affect the
expression of fatty acid oxidation and ketogenic genes while GR-
CREB1 sites synergistically regulate gluconeogenic genes (107).
Likewise, synergistic and additive regulation has been reported
for genes controlled by GR and FOXO1 in co-occupancy (61).
These cooperative effects likely reflect increased recruitment of
coactivators to a given set of enhancers involved in transcription
of a specific gene (Figure 3B).

In contrast to the synergistic action of composite GR-TF
binding sites to increase enhancer activity, several studies have
suggested negative regulation between GR and TFs occupied at
a given enhancer. Such negative regulation can be understood
as a competition between the TFs for a given DNA sequence.
For example, in the liver, LXRα binds GREs together with its
heterodimerization partner RXRα, thereby potentially competing
with GR for binding to the same sites leading to differential
regulation of genes involved in glucose metabolism (112).
Another example is the GR isoform competition model, which
seeks to explain how dominant negative GRβ functions as a
negative regulator for GRα at some sites. Similarly, GR has been
suggested to compete with AP1 at AP1 motifs with embedded
GR half-sites (77). However, these competitional models do not
agree with the dynamic nature of GR and most other TFs as these
factors bind transiently to chromatin with residence times in a
matter of seconds (55, 134), possibly allowing multiple factors
to interact with the same site (135). Thus, GR-TF competition
at composite sites is likely not a competition for the same
response element. Instead, the negative regulation likely reflects
the different coregulators recruited to the response element.
Composite binding of different TFs recruiting coregulators of
opposite activity or competition between limited amount of
avaliable coregulators for binding to the specific TFs would
balance the transcriptional response. For example, corepressors
and coactivators have been suggested to bind GR in equilibrium,
balancing GR activity (136), which has also been suggested
for other nuclear receptors in the liver, including the thyroid
hormone receptor (137).

Regulating TF Networks by GR
The direct interaction between GR and other key TFs on
chromatin in the liver can take different forms, as described
above, to jointly regulate hepatic gene expression. However,
indirect GR-TF interactions involving TF cascades are equally
important, though more challenging to investigate, with several
potential interaction steps (Figure 3C). Important indirect

pathways have been studied in the liver. For example, GR binds
GREs near core clock genes to induce transcription of Per1,
Bmal1, Cry1, Dbp (138, 139). This in turn controls a range of
circadian-regulated genes. In regards to energy metabolism, GR
interacts with several key factors in TF cascades connecting and
impacting different signaling pathways. For example, glucagon-
mediated activation of CREB1 induces the transcription of YY1,
which then induces the transcription of GR. This interaction
cascade is important in hepatic gluconeogenesis (140). Moreover,
GR induces the transcription of Klf9, which has been linked
to the downstream induction of PGC1α expression and of
hepatic gluconeogenic genes (141). GR interaction with PGC1α
has furthermore been suggested to regulate mitochondrial
oxidative phosphorylation (142). Additionally, GR induces the
transcription of PPARα upon long-term fasting, initiating hepatic
fatty acid oxidation and the ketogenic gene program (107).

GR REGULATORY NETWORKS IMPACT
MULTIPLE ASPECTS OF HEPATIC
METABOLISM

The emerging studies in complex gene-regulatory networks
controlled by GR and controlling GR activity emphasize the
importance of the context-dependent action of GCs in tissues
like the liver. Accordingly, genetic disruption of GR in the liver
impacts a range of metabolic pathways leading to dysregulated
glucagon synthesis, lipid metabolism, gluconeogenesis, urea
metabolism and bile acid synthesis and uptake (26, 143–146).
For example, L-GRKO mice and GRdim mice show dysregulated
glucose, fatty acid and bile acid metabolism (26, 144, 146).
Reduced expression of key gluconeogenic genes including
Pck1, G6Pc, and Pfkfb3 in L-GRKO mice is linked to fasting
hypoglycemia (26, 144–146), and around half of newborn
albumin-alpha-fetoprotein-driven L-GRKO mice die within 48 h
after birth, possibly due to hypoglycemia (120, 146). L-GRKO
mice are more sensitive to insulin than WT littermates and
liver glycogen content in L-GRKO mice is reduced (145). These
effects of L-GRKO on glucose metabolism could in part be
explained by the interaction with TFs such as CREB1, FOXO1,
FOXA2, PPARα, E47, STAT5, LXRα, LXRβ, and circadian
regulators (26, 61, 82, 107, 109, 110, 112–114) (Figure 4). Yet, the
effects of L-GRKO on glucose metabolism seem to be partially
compensated by increased gluconeogenesis in the kidney (145)
and by a shifted hormonal balance involving reduced plasma
concentration of insulin and increased glucagon levels, compared
to WT mice (146).

Hepatic GR disruption also leads to decreased fat mass (145)
and lower plasma triglyceride levels (26, 146), while free fatty
acid plasma levels are similar in fasted and fed L-GRKO mice
and WT mice (146). Recently, L-GRKO mice were reported
to accumulate triglycerides in the liver and to develop hepatic
steatosis (26), although this is controversial (130), but may be
explained by the promoter controlling CRE expression. Many
TFs have been found to work together with GR to regulate fatty
acid and lipid metabolism including STAT5, PPARα, FOXO1,
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FIGURE 4 | Examples of TFs interacting with GR regulating hepatic

metabolism. GR interacts with different TFs to regulate specific processes in

hepatic glucose, fatty acid, lipid, and bile acid metabolism.

E47, LXRβ, CLOCK, REV-ERBα/β, CRY, BMAL1, RORα/γ, and
PER1/2 (26, 82, 110, 111, 113, 114) (Figure 4).

Finally, disruption of hepatic GR function leads to
dysregulated systemic bile acid homeostasis. Specifically,
mice with hepatic GR knock down by shRNA have a reduced
amount of bile acid in the gallbladder, elevated serum bile
acid levels, impaired bile acid uptake/transport and are more
susceptible to develop gallstones when fed on cholesterol-rich
diet. Moreover, these mice do not undergo the normal changes
in bile acid levels in the serum, liver and intestines in the
fast-refeeding transition (144). GRdim mice fed a lithogenic
diet have elevated fasting serum bile acid levels and decreased
gallbladder bile acid volume. These effects have been associated
with interaction between GR and FXR, a key TF regulating bile
acid metabolism (97, 144). GR deficiency reduces the expression
of the classical FXR-target gene Shp encoding the SHP repressor,
leading to increased expression of the rate-limiting enzymes
in bile acid synthesis Cyp7a1 and Cyp8b1 (144). Additionally,
dex-induced GR recruits the co-repressor CtBP to block FXR
activity at shared sites related to bile acid gene metabolism, e.g.
Shp promoter (97) (Figure 4).

EXAMPLES OF KEY HEPATIC GENE
REGULATORY NETWORKS CONTROLLED
BY GR

GR Crosstalk With FOXO1
The daily change from the inactive fasting phase to the active
feeding phase requires a major transcriptional reprogramming of
the liver. This is particularly relevant at the transition between
the unfed and fed states, which takes place around zeitgeber time
(ZT) 12 (i.e., 6 p.m.) in nocturnal animals such as mice. The

interaction between GR and the insulin-regulated TF FOXO1 is
involved in driving this transcriptional transition. Pre-prandial
high GC and low insulin levels are associated with GR and
FOXO1 binding to chromatin, respectively, and regulation of
target genes. In fact, in this fasted state, more than half of
all FOXO1 binding sites are co-occupied with GR regulating
gene expression. Conversely, the post-prandial increased insulin
and reduced GC lead to reduced FOXO1 and GR occupancy,
respectively, and reduced transcriptional regulatory activity.
Importantly, more than 80% of feeding-repressed genes in the
liver are associated with a nearby enhancer bound by GR, FOXO1
or both (61). One example of a metabolic gene coregulated by GR
and FOXO1 in the liver is Angptl4, associated with the regulation
of glucose and lipid metabolism. In a fasted state, GR and FOXO1
bind a specific GRE and forkhead box transcription factor
response element (FRE), respectively, located in the regulatory
region of Angptl4. GCs induce, while insulin abolishes, the
occupancy of both factors at the region (111). Besides the direct
interaction between GR and FOXO1 at enhancers in the liver,
GR has been found to induce the expression of Foxo1 gene in
the liver and in this way indirectly regulate target genes (147).
Furthermore, FOXO1 binding has been found at the promoter of
GR, suggesting that the indirect interaction is bidirectional (148).

GR Crosstalk With PPARα

Like GR, PPARα is important for the hepatic response to fasting.
The role of PPARα in regulating metabolism and inflammation
as well as the importance of crosstalk between PPARα and other
TFs, including GR, have been covered in detail in previous
reviews (1, 149). The GR-PPARα interactions in the liver include
co-localization to chromatin and coregulation of genes involved
in lipid and glucose metabolism (150). More specifically, in
co-ligand treatment of primary murine hepatocytes, 13% of
GR peaks are co-bound with PPARα (114). Furthermore, other
studies have found that, during fasting, GR and PPARα have
a synergistic effect on genes involved in ketogenesis and fatty
acid oxidation; however, the GR-PPARα interaction has been
suggested to be indirect as GR induces the expression of PPARα

and time-course experiments show a gradual effect of GR on
PPARα activity (107).

GR Crosstalk With STAT5
STAT5 is activated by the growth hormone through the growth
hormone receptor-JAK2 signaling pathway and by cytokine
signaling. In the liver, STAT5 is known to regulate genes involved
in body growth, cell cycle, lipid, bile acid, drug and steroid
metabolism (151). The STAT5 and GR signaling pathways are
connected as exemplified by the reduced body size in mice
with inactivated hepatic GR showing impaired growth hormone
signaling (120). Furthermore, the importance of STAT5 and GR
signaling is demonstrated in liver-specific STAT5 and STAT5
GR double mutant mice exhibiting hepatic steatosis and, for the
double mutant, also hepatic carcinoma (130). The STAT5 and
GR crosstalk at multiple levels. STAT5 and GR form protein-
protein interactions in hepatocytes, which have been found to
be important for postnatal growth and maturation-related gene
expression. Mice expressing a point mutation in the GR DBD
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(GRdim mice), previously suggested to reduce GR DNA-binding
andGR dimerization (69, 79), have an unaltered ability to interact
with STAT5 (120). These GRdim mice have normal body size,
suggesting that the joint GR-STAT5 regulation of growth genes
happens through tethering of GR to the STAT5 bound sites or
through half GREs in conjunction with STAT5 binding sites
(119, 120). However, as mentioned above, more recent studies
have found that GRdim is able to dimerize and bind DNA (80),
suggesting a reassessment of GR and STAT5 interaction type at
shared sites.

Recently, it has been shown that high-fat diet feeding of mice
leads to reprogramming of the hepatic GR cistrome primarily
during the active feeding phase. Many sites with high-fat diet-
induced increased GR recruitment are associated with increased
STAT5 co-occupancy. These co-occupied sites showed increased
enhancer activity and were associated with genes involved in
fatty acid, lipid and glucose metabolism. Hepatocyte-specific
STAT5 and GR KO mice demonstrated that STAT5 facilitated
the recruitment of GR at gained sites, whereas GR had no effect
on STAT5 recruitment. It is still unknown whether the increased
STAT5 activity in obese mice is a response to altered growth
hormone or cytokine signaling or if it originates from nutritional
adaptations in the chromatin landscape (26).

GR Crosstalk With Molecular Clock
Components
In the liver, the effect of exogenous GCs on gene regulation is
highly dependent on the time of administration. For example, in
mice about eight times more genes are differentially regulated
by GCs at daytime compared to nighttime. Pathway analysis
shows a strong time-dependent regulation of genes in glucose and
lipid metabolism (82), which has also been observed in studies
looking at endogenous GC effects (26). Hence, timing of GC
administration according to the endogenous GC levels has shown
positive effects. Administration of GCs at ZT12, as opposed to
ZT0, leads to less hepatic lipid accumulation and behavioral
changes. This time-differential effect of GC is suggested to be
caused by a disrupted circadian regulation of GC-target genes
with administration at ZT0, which is supposedly more critical
compared to an over-activation of GR at ZT12 (152).

This diurnal oscillation of GC action stems from cooperativity
and multiple interactions between GR and the molecular clock
components in the liver. For example, GR and central clock
components including BMAL1, CLOCK, REV-ERBα/β, PER1,
PER2, CRY1, CRY2, and RORα/γ co-occupy different genes
involved in clock function and in metabolism (26, 82, 99).
The cooperativity also involves different physical interactions
between GR and clock factors on the chromatin level, regulating
the expression of other clock factors and metabolic genes (see
Table 1). For example, GR physically interacts with CRY1/2 in
a GC-induced manner and, in the post-prandial phase, CRY1/2
represses GR activity on e.g. the expression of Pck1. CRY1/2
deficient mice have constitutively high GC levels and exhibit
glucose intolerance, suggesting reduced suppression of HPA axis
and increased GR activity in the liver (99).

It has been long known that GC and GC-activated GR
influence the expression and circadian phase-shifts of several
clock factors, including Per1, Dbp and Cry1 (23, 30, 139). In fact,

GR is recruited to the promoters and enhancers of all central
clock genes, suggesting a gene regulatory function of GR (26).
Reversely, molecular clock elements also affect GR function, as
exemplified by the previously mentioned binding of REV-ERBα

to HSP90 (53) and the acetylation of GR by CLOCK (46), both
leading to suppression of GR action.

The interaction between GR and members of the molecular
clock and its influence on hepatic metabolism can be further
exemplified focusing on a single molecular factor. REV-ERBα

is one of the key transcriptional repressors in the molecular
transcriptional clock, contributing to the characteristic circadian
expression in many tissues, including the brain and metabolic
tissues like the liver, muscle, pancreas and adipose tissue. In the
liver, REV-ERBα is involved in the daily regulation of glucose
and lipid metabolism (153). REV-ERBα represses clock genes
by binding to RevDR2/RORE DNA elements and recruiting
the corepressor complex NCoR-HDAC3. On the other hand,
REV-ERBα regulates many metabolic genes by tethering to cell-
type specific TFs. Hepatic REV-ERBα tethers to e.g., HNF6 and
recruits HDAC3 for active repression of lipogenic genes (154,
155). GR has been found to interact with REV-ERBα on different
levels. REV-ERBα interacts physically with GR and, together
with HNF4α and HNF6, binds regulatory regions controlling
gene expression in mouse liver. REV-ERBα was found to be
important for efficient GR recruitment to chromatin during the
day, presumably by maintaining histone acetylation at binding
sites (82). Moreover, indirect interactions between GR and REV-
ERBα have also been observed. REV-ERBα inhibits GR protein
expression and nuclear localization (53), and GR inhibits REV-
ERBα RNA expression (156) by forming a complex with CLOCK
and BMAL1, where GR may be tethered to the regulatory site of
the REV-ERBα gene (115).

PERSPECTIVES IN DISEASE AND
CLINICAL USE OF GCs

Glucocorticoids have immunosuppressant and anti-
inflammatory properties, making them an effective treatment
for allergies, inflammatory and autoimmune diseases. The
anti-inflammatory effects mediated by GR are conducted by
the immune cells, with the macrophages having a particularly
important role in the repression of inflammatory genes [reviewed
in (157)]. However, by administering GCs systemically, there is
a risk of eliciting undesirable side effects on other tissues and
cellular processes, such as hepatic metabolism, which is highly
impacted by GR regulation. In this review, we described the
multiple layers of regulation of GR function, from the control
of hormonal availability to the modulation of GR expression at
both mRNA and protein levels, as well as PTMs and interactions
with different proteins and TFs affecting the transcriptional
activity of GR. In depth knowledge of the multifaced control of
GR activity provides a unique opportunity to tailor GC treatment
and prevent metabolic-related side effects.

One strategy could involve administration of different
GR ligands affecting interacting coregulators to modulate
transcriptional regulation by GR (8). Another strategy could be to
selectively activate or inhibit specific and relevant GR-mediated
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regulatory pathways, where treatments involving a combination
of different TF ligands could have potential. For example,
co-administration of GC and LXR agonists attenuates the
transcriptional activity of GR on a subset of genes in glucose and
lipid metabolism, suggesting co-treatment with LXRβ agonists
might reduce metabolic side effects in patients with autoimmune
or inflammatory diseases (112). However, the function of LXRs
on GR target sites is debated (113), and the mechanisms behind
the positive and negative effects of LXRs on GR should be
elucidated. Also, the antagonistic effect of activated PPARα on
GR-mediated transcription of metabolic genes to circumvent GC
side effects seems promising (150), with potentials and challenges
recently discussed in another review (1). Additionally, the
natural ultradian GC release and subsequent dynamic activation
of GR contrasts with the constant exposure to GCs during
pharmacological therapies. The development of new synthetic
GCs and pulsatory administration strategies could potentially
minimize side effects by mimicking physiology (58, 59, 103).
Finally, pharmacological chronotherapy involving GCs seems
promising in several inflammatory disorders, with outcomes
improving when GC administration is consistently timed (4).
This timed GC-administration has been shown to be beneficial
in, for example, patients with rheumatoid arthritis (158).

CONCLUDING REMARKS

The multifaceted regulation of GC action and GR activity
discussed in this review highlights the complexity of
transcriptional regulation by ligand-dependent TFs. The
cooperation with signal-dependent and lineage-specific TFs

makes GC-dependent gene regulation very responsive to
environmental cues and is thus essential to understand for
future optimized usage of GCs in the clinic. Specifically,
a deeper understanding of the regulatory mechanisms
underlying GR action would be fundamental for future
development of safer and more effective therapies for disorders
where GC secretion and signaling is involved. The recent
genomics studies into the GR interactome show promise in
the elucidation of the complex GR-TF networks and could
contribute to a shift toward future tailored pharmacological
strategies including spatio-temporal drug delivery and
personalized medicine.
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