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On the restricted cores and the bounded core of games
on distributive lattices

Michel GRABISCH∗ Peter SUDHÖLTER†

Abstract

We consider TU-games with restricted cooperation, where the set of feasible
coalitions is a distributive lattice, hence generated by a partial order on the set of
players. In such a situation, the core may be unbounded, and one has to select
a bounded part of the core as a solution concept. The restricted core is obtained
by imposing equality constraints in the core for sets belonging to so-called normal
collections, resulting (if nonempty) in the selection of a bounded face of the core.
The bounded core proves to be the union of all bounded faces (restricted cores).
The paper aims at investigating in depth the relation between the bounded core
and restricted cores, as well as the properties and structures of the restricted cores
and normal collections. In particular, it is found that a game is convex if and only
if all restricted cores corresponding to the minimal nested normal collections are
nonempty. Moreover, in this case the union of these restricted cores already covers
the bounded core.

Keywords: TU-game, restricted cooperation, distributive lattice, core, extremal rays,
faces of the core
JEL Code: C71 MSC Code: 91A12, 06D99

1 Introduction

In cooperative game theory, for a given set of players N , TU-games are functions v : 2N →
R which express for each nonempty coalition S ⊆ N of players the best they can achieve
by cooperation. In the classical setting, every coalition may form without any restriction,
i.e., the domain of v is indeed 2N . In practice, this assumption is often unrealistic, since
some coalitions may not be feasible for various reasons, e.g., players are political parties
with divergent opinions, or have restricted communication abilities, or a hierarchy exists
among players, and the formation of coalitions must respect the hierarchy, etc.

Many studies have been done on games defined on specific subdomains of 2N , e.g.,
antimatroids (Algaba et al., 2004), convex geometries (Bilbao and Edelman, 2000), dis-
tributive lattices (Faigle and Kern, 1992), or others (Bilbao et al., 2000). In this paper,
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we focus on the case of distributive lattices. To this end, we assume that there exists
some partial order ≼ on N describing some hierarchy or precedence constraint among
players, as in Faigle and Kern (1992). We say that a coalition S is feasible if the coalition
contains all its subordinates, i.e., i ∈ S implies that any j ≼ i belongs to S as well. Then
by Birkhoff’s theorem, feasible coalitions form a distributive lattice.

The main problem in cooperative game theory is to define a rational solution of the
game, that is, supposing that the grand coalition N will form, how to share among its
members the total worth v(N). The core is the most popular solution concept, since it
ensures stability of the game, in the sense that no coalition has an incentive to deviate
from the grand coalition. For classical TU-games, the core is either empty or a convex
bounded polyhedron. However, for games whose cooperation is restricted, the study of
the core is much more complex, since it may be unbounded or even contain no vertices
(see a survey in Grabisch (2009)). For the case of games with precedence constraints, it
is known that the core is always unbounded or empty, but contains no line (i.e., it has
vertices). The problem arises then, to select a significant bounded part of the core as a
reasonable concept of solution, since unbounded payments make no sense.

As far as we know, two remedies have been proposed in the literature for this problem.
The first one is to consider restricted cores, i.e., to impose in the core further equality
constraints x(S) = v(S) for all S in some collection N , which can be interpreted as
binding constraints for some coalitions, in order to exclude any extremal ray in the core
(Grabisch and Xie, 2011; Grabisch, 2011). Such a collection is called a normal collection.
The second one was proposed by the authors, by considering core elements such that
every player takes the maximum of her direct subordinates, in the sense that any transfer
from a subordinate to her boss would result in a payoff vector outside the core. The
resulting set is called the bounded core (Grabisch and Sudhölter, to appear). It happens
that the two concepts are related as follows: the bounded core is the union of all restricted
cores, taken over all possible normal collections.

The aim of this paper is to investigate more deeply the relation between the two
concepts, and to complete the results presented in Grabisch (2011) for restricted cores. In
particular, we introduce several remarkable normal collections and study their properties.
Nested normal collections, i.e., collections whose sets form a chain, play a fundamental
rôle, in particular for convex games. We show that for convex games, only minimal (in the
size of the collection) nested normal collections matter, in the sense that the bounded core
is the union of restricted cores corresponding to minimal nested collections. Moreover,
such restricted cores are never empty. If the game is strictly convex, then this union
does not contain any redundant term. Finally, we show that minimal nested collections
can be generated by a special class of linear extensions of the partial order ≼ on N .
Besides, we show a generalization of the well-known Shapley-Ichiishi theorem for games
with precedence constraints.

The paper is organized as follows. Section 2 establishes the basic material for the rest
of the paper, and presents the notions of restricted core, normal collection and bounded
core. Section 3 studies the set of normal collections, introduces properties and remarkable
collections. It shows also how nested collections can be obtained by a closure operator on a
certain class of normal collections. Section 4 studies under which conditions the restricted
core is nonempty, and provides a balancedness condition. Section 5 investigates in depth
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the case of convex games, showing the fundamental rôle played by minimal nested normal
collections.

2 Notation, definitions and preliminaries

The characteristic function of a set S is denoted by 1S. We often omit braces for single-
tons, writing, e.g., 1i instead of 1{i}.

Let (P,≼) be a finite partially ordered set (poset for short), that is, a finite set P
endowed with a reflexive, antisymmetric and transitive relation (see, e.g., Davey and
Priestley (1990)). We denote by ≺ the asymmetric part of ≼. We say that x ∈ P covers
y ∈ P , and we denote it by y ≺· x, if y ≺ x and there is no z ∈ P such that y ≺ z ≺ x.

We denote by min(P ) and max(P ) respectively the set of the minimal and maximal
elements of (P,≼). The dual of the poset (P,≼), denoted by (P,≼∂) (or simply P ∂), is
the set P endowed with the reverse order, i.e., x ≼ y if and only if y ≼∂ x.

Throughout the paper, it is understood that any subset Q of a poset (P,≼) is endowed
with ≼ restricted to Q (we do not use a special symbol for the restriction).

A chain C ⊆ P is a subset of P such that for any two elements x, y ∈ C, we have
x ≼ y or y ≼ x. The chain is maximal if no other chain contains it, or equivalently if
C = {x1, . . . , xq}, with x1 ≺· x2 ≺· · · · ≺· xq and x1 ∈ min(P ), xq ∈ max(P ). Its length
is q − 1. The height of i ∈ P , denoted by h(i), is the length of a longest chain from a
minimal element to i. Elements of same height k form level k, denoted by Lk. Hence,
L0 = min(P ) is the set of all minimal elements, L1 = min(P \L0), L2 = min(P \(L0∪L1)),
etc. The height of N , denoted by h(N), is the maximum of h(i) taken over all elements
of N . Similarly, we define the depth d(i) of an element i ∈ N as its height in the dual
poset P ∂. We denote by D0 the set of all elements of depth 0 and we have D0 = max(P ),
D1 = max(P \D0), D2 = max(P \ (D0 ∪D1)), etc.

A lattice is a poset (L,≼) where for each x, y ∈ L, their supremum x∨ y and infimum
x ∧ y exist. The lattice is distributive if ∨,∧ obey distributivity.

A subset Q ⊆ P is a downset of P if x ∈ Q and y ≼ x implies y ∈ Q. We denote by
O(P ) the set of downsets of (P,≼). It is a well-known fact that (O(P ),⊆) is a distributive
lattice and every distributive lattice arises that way (Birkhoff, 1933). We denote by ↓x
the downset generated by an element x ∈ P , that is, ↓x = {y ∈ P | y ≼ x}. Similarly,
for any Q ⊆ P , ↓Q =

∪
x∈Q ↓x.

Let N be a finite set of n players. A set system F on N is a collection of subsets of N
containing N and ∅. Any nonempty subset in F is called a feasible coalition. We define
a cooperative TU-game with restricted cooperation (or simply a game) on F as the pair
(F , v), with v : F → R, such that v(∅) = 0.

In this paper we focus on a particular case of set systems, introduced by Faigle and
Kern (1992) (games with precedence constraints). We consider a partial order ≼ on N ,
which may express precedence constraints among players, or hierarchical relations. A
coalition S is feasible if whenever i ∈ S, all subordinates of i also belong to S, i.e., S is
a downset of (N,≼). In other words, F = O(N), hence F is a distributive lattice where
supremum and infimum are respectively ∪,∩.

A game (F , v) with F = O(N) is convex if

v(S ∪ T ) + v(S ∩ T ) > v(S) + v(T ) (1)
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for every S, T ∈ F . It is superadditive if the above inequality is restricted to disjoint
sets S, T . It is strictly convex if the above inequality is strict for all S, T ∈ F such that
S \ T ̸= ∅ and T \ S ̸= ∅.

The following lemma extends a classical result when F = 2N .

Lemma 1. A game (F , v) is convex if and only if for all i ∈ N , for all P ⊆ Q ⊆ N \ i
such that P ∪ i, Q ∈ F ,

v(P ∪ i)− v(P ) 6 v(Q ∪ i)− v(Q). (2)

Proof. In order to show that (1) implies (2), put S = P ∪ i and T = Q, and observe that
S ∩ T = P and S ∪ T = Q ∪ i. For the other implication we may assume that S \ T ̸= ∅
so that there exists i1, . . . , ip ∈ N , where p = |S \T |, such that (S∩T )∪{i1, . . . , im} ∈ F
for all m = 1, . . . , p − 1 and S \ T = {i1, . . . , ip} (it suffices that ik ̸≺ iℓ for k > ℓ). By
(2),

v(S)− v(S ∩ T ) =

p∑
m=1

(v((S ∩ T ) ∪ {i1, . . . , im})− v((S ∩ T ) ∪ {i1, . . . , im}))

6
p∑

m=1

(v(T ∪ {i1, . . . , im})− v(T ∪ {i1, . . . , im−1})) = v(S ∪ T )− v(T ).

The core of a game (F , v) is defined as follows:

C(F , v) = {x ∈ Rn | x(S) > v(S) for all S ∈ F , and x(N) = v(N)},

where x(S) =
∑

i∈S xi, with the convention x(∅) = 0. If no ambiguity menaces, we write
simply C(v). By definition, it is a convex closed polyhedron. Unless F = 2N , the core
is unbounded or empty. Derks and Gilles (1995) showed (as well as Tomizawa (1983)
in a refined form) that it contains no line, and found its rays (see also Fujishige (2005,
Theorem 3.26)). It is well known from the theory of polyhedra that the core can be
written as the Minkowski sum of its convex part and its conic part:

C(v) = conv(ext(C(v))) + C(0),

where ext(·), conv(·) denote the extreme points of some convex set, and the convex hull
of a set. Note that the conic part is obtained by replacing v by the zero function, hence
the conic part depends solely on F . Extremal rays of the core are generated by 1j−1i for
every i, j ∈ N such that j ≺· i in (N,≼). Therefore, extremal rays correspond bijectively
to edges in the Hasse diagram of (N,≼).

To avoid unboundedness, a natural solution is to take a certain subset of the core. In
Grabisch (2011), some of the inequalities x(S) > v(S) are turned into equalities so that
no extremal ray exists any more. These equalities can be considered as additional binding
constraints on certain coalitions. We call normal collection any collection N ⊆ F \{∅, N}
such that

CN (F , v) = {x ∈ Rn | x(S) > v(S) ∀S ∈ F , x(S) = v(S) ∀S ∈ N , and x(N) = v(N)}
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is bounded for all games (F , v) on F . Note that N is normal if and only if CN (0) = {0}.
It is remarked that the empty collection is normal if and only if F = 2N . We call CN (F , v)
the restricted core w.r.t. N , and we write simply CN (v) if no ambiguity menaces.

We denote by NC(F) the set of normal collections on F . In Grabisch (2011), several
normal collections are proposed (see Section 3.1). It is proved that a normal collection
contains at least h(N) sets, where h(N) is the height of (N,≼).

We say that an extremal ray r of C(0) is deleted by equality x(S) = 0 if C{S}(0) =
{x ∈ C(0) | x(S) = 0} does not contain r any more. The following result from (Grabisch,
2011) is fundamental.

Lemma 2. Let F = O(N). For i, j ∈ N such that j ≺· i, the extremal ray generated by
1j − 1i is deleted by equality x(S) = 0 if and only if S ∋ j and S ̸∋ i.

Geometrically, a restricted core CN (v), whenever nonempty, is a bounded face of
the core C(v) because it is bounded and defined by just turning some constraints that
determine the core into binding constraints.

On the other hand, the authors have proposed the notion of bounded core (Grabisch
and Sudhölter, to appear). The bounded core Cb(v) of (F , v) is the set of elements of
C(v) that satisfy the following condition for any i, j ∈ N such that j ≺· i: There is no
ϵ > 0 such that x + ϵ1i − 1j ∈ C(v). Hence the bounded core is the set of core elements
such that every player takes the maximum of her direct subordinates, in the sense that
any transfer from a subordinate to her boss would result in a payoff vector outside the
core. Also, the bounded core is the union of all bounded faces of C(v). If nonempty, it
coincides with the core if and only if F = 2N .

The following result shows the relation between the two concepts (Grabisch and
Sudhölter, to appear).

Proposition 1. Let F = O(N), and consider any game (F , v). Then

Cb(v) =
∪

N∈NC(F)

CN (v).

3 The set of normal collections

Let (N,≼) be a poset and consider F = O(N). In order to avoid pathologic cases we
assume throughout this section that ≼≠ ∅, i.e., h(N) > 0. We now define some possible
properties of a normal collection.

Definition 1. Let N = {N1, . . . , Nq} be a normal collection.

(i) N is a minimal collection if no proper subcollection is normal.

(ii) N is a thin collection if no S ∈ N may be replaced by a proper subset of S without
losing normality.

(iii) N is a short collection if it contains exactly h(N) subsets.

(iv) N is a nested collection if it is a chain in F .
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Note that any short normal collection is minimal, but the converse is not true (see
Example 4).

We give some elementary properties of normal collections.

Lemma 3. Let N = {N1, . . . , Nq} be a normal nested collection. Then Nk \Nk−1 is an
antichain in (N,≼) for k = 1, . . . , q, with N0 = ∅.

Proof. If Nk \Nk−1 is not an antichain, then there exist i, j ∈ Nk \Nk−1 such that i ≺· j.
Since N is nested, no set in N will contain i and not j. Then by Lemma 2, the ray 1i−1j

is not deleted by N .

Lemma 4. Suppose that N is a collection containing a set S such that N \ S ∈ F . If
N is normal, then N \ {S} is normal.

Proof. If there were an element S ∈ N such that N \S ∈ F , then the condition x(S) = 0
would not eliminate any extremal ray because j ∈ S and j ≺· i would imply i ∈ S.
Therefore, S can be discarded from N .

Lemma 5. Let N be a normal collection that contains two disjoint sets P and Q with
P ∪ Q ̸= N . If N ′ = (N \ {P,Q}) ∪ {P ∪ Q}, then N ′ is a normal collection, and
CN (F , v) ⊆ CN ′(F , v) for every superadditive game (F , v).

Proof. As F = O(N), P ∪ Q ∈ F . Let i, j ∈ N such that j ≺· i. If j ∈ P ̸∋ i,
then i ̸∈ Q because Q ∈ O(N) and P ∩ Q = ∅. Similarly, if j ∈ Q ̸∋ i, then i ̸∈ P .
Hence N ′ is still normal by Lemma 2. Now, let x ∈ CN (v). Then x(T ) = v(T ) for all
T ∈ N ′ \ {P ∪ Q}, x(S) > v(S) for all S ∈ F \ N ′, x(N) = v(N), x(P ) = v(P ), and
x(Q) = v(Q), x(P ∪Q) > v(P ∪Q) > v(P ) + v(Q), where the last inequality is valid by
superadditivity. Hence x(P ∪Q) = v(P ∪Q), so that x ∈ CN ′(v).

3.1 Some remarkable normal collections

We introduce some notation. We say that an element x of a poset (P,≼) is disconnected
if it is incomparable with any other element of P (i.e., it has no link in the Hasse diagram
of (P,≼)), equivalently, if it is both minimal and maximal. We denote by P ◦ the set of
elements of P which are not disconnected:

P ◦ = P \ (min(P ) ∩max(P )).

For any subset Q ⊆ P , we define Q = {y ∈ P | y ≺· x for some x ∈ Q}.
We introduce the upwards normal collection N u = {Nu

1 , . . . , N
u
q }, defined as follows

(Grabisch, 2011).

Nu
1 = min(N◦)

Nu
2 =↓min((N \Nu

1 )
◦) =↓min((N \ L0)

◦)

... =
...

Nu
q =↓min((N \ (Nu

1 ∪ · · · ∪Nu
q−1))

◦) =↓min((N \ (L0 ∪ · · · ∪ Lq−2))
◦)

where q is minimal such that N \(Nu
1 ∪· · ·∪Nu

q )
◦ = ∅ (for the definitions of h(P ), Lk, Dk,

etc., see Section 2). Note that since (N \ (Nu
1 ∪ · · · ∪Nu

k−1))
◦ = (N \ (L0 ∪ · · · ∪ Lk−2))

◦
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for k > 1, we deduce that q = h(N), hence the upwards collection is short, therefore
minimal. Grabisch (2011) proved that the upwards collection is also thin.

The upwards collection is built from the successive removal of minimal elements, hence
its name. One can proceed as well from maximal elements. This gives the downwards
collection N d = {Nd

1 , . . . , N
d
q }, defined as follows.

Nd
1 =↓max(N)

Nd
2 =↓max(N \max(N)) =↓max(N \D0)

... =
...

Nd
q =↓max(N \ (D0 ∪ · · · ∪Dq−2))

with q = h(N) again, since max(N \ (D0 ∪ · · · ∪Dh(N)−1)) = ∅. Therefore the downwards
collection is short, hence minimal. Observe that the operation ()◦ is not necessary here,
since any disconnected element is eliminated by the () operation.

The downwards collection can be expressed in a simpler way. Observe that N =
D1 ∪ · · · ∪ Dh(N), N \D0 = D2 ∪ · · · ∪ Dh(N), etc. Moreover, N =↓ max(N),
N \D0 =↓max(N \D0), etc., hence we obtain

Nd
1 = D1 ∪D2 ∪ · · · ∪Dh(N)

Nd
2 = D2 ∪ · · · ∪Dh(N)

... =
...

Nd
h(N) = Dh(N),

which shows that the downwards collection is nested. In addition, we have the following
result.

Proposition 2. The downwards collection is thin.

Proof. Consider Nd
ℓ = Dℓ ∪ · · · ∪Dh(N) for some 1 6 ℓ 6 h(N), and remove an element k

from it which is maximal in this set (if not, one cannot remove it since Nd
ℓ \ {k} would

not be a downset). Note that k ∈ Dℓ. Then there exists an element j such that k ≺· j.
Therefore the ray 1k − 1j is not deleted by Nd

ℓ \ {k}. Since k ∈ Dℓ, it follows that
k ̸∈ Nd

ℓ+1, so that ray 1k − 1j remains.

A third remarkable collection is the one proposed by Grabisch and Xie (2011), and
is defined as follows: NGX = {L0, L0 ∪ L1, . . . , L0 ∪ · · · ∪ Lh(N)−1}. It is a short nested
collection, and as observed by Grabisch (2011), there is no short nested collection such
that each set includes a set of NGX. Observe that the downwards collection can be seen
as a “dual” of NGX, since N d = {D1 ∪ · · · ∪Dh(N), . . . , Dh(N)−1 ∪Dh(N), Dh(N)}.

Example 1. Consider the poset (N,6) of 9 elements depicted below.

914572368
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We have L0 = {1, 2, 3}, L1 = {4, 5, 6, 9}, L2 = {7, 8}, andD0 = {7, 8, 9}, D1 = {2, 4, 5, 6},
D2 = {1, 3}. The upwards collection is {123, 13456}, the downwards collection is
{13, 123456}, and the Grabisch-Xie collection is {123, 1234569} (where it is understood
that 123 is a shorthand for {1, 2, 3}, etc.).

3.2 Nested closure of a normal collection

Let N be a normal collection and let q denote its cardinality. An ordering of N is a
bijection σ : N → {1, . . . , q}. For any ordering σ define its corresponding nested closure

by N σ =
{∪k

i=1 σ
−1(i) | k = 1, . . . , q

}
. We say that σ is a feasible ordering of N if

σ−1(k) \
(
σ−1(k − 1) ∪ · · · ∪ σ−1(1)

)
is an antichain of (N,≼) for all k = 1, . . . , q, (3)

where σ−1(0) = ∅.

Example 2. (Example 1 cont.) Consider the normal collection N = {136, 134, 125}.
Then N has no feasible ordering because none of its elements is an antichain.

Theorem 1. Let N be a normal collection and σ be an ordering of N . Then the nested
closure N σ is normal if and only if σ is a feasible ordering of N .

Proof. Consider a normal collection N , an ordering σ of N , and denote by N σ =
{N1, . . . , N q} its nested closure, i.e., Nk =

∪k
i=1 σ

−1(i).
Suppose that N σ is not normal. Then there exists a ray 1i − 1j with i ≺· j which is

not deleted by N σ, i.e., any set in N σ either contains both i and j or none of them. Since
N σ is nested, there exists some k ∈ {1, . . . , q} such that N1, . . . , Nk contain neither i nor
j, and Nk+1, . . . , N q contain both i and j. Therefore, in N , σ−1(1), . . . , σ−1(k) contain
neither i nor j, while σ−1(k + 1) contains them both. Since i ≺· j, this contradicts (3),
hence σ is not a feasible ordering.

Conversely, suppose that σ is not feasible for N . Then there exist i, j ∈ N with i ≺ j,
and k ∈ {1, . . . , q} such that σ−1(k) contains both i, j, while the sets σ−1(k−1), . . . , σ−1(1)
contain none of them. Then, Nk\Nk−1 is not an antichain, and by Lemma 3, we conclude
that N σ is not normal.

Proposition 3. For the upwards collection the ordering σ defined by σ(Nu
k ) = k, for

k = 1, . . . , h(N), is feasible.

Proof. Noting that min(N \ (L0 ∪ · · · ∪Lk−2)) = Lk−1, we see that N
u
k ⊆ L0 ∪ · · · ∪Lk−1.

Therefore, elements in Nu
k ∩Lk−1 do not belong to Nu

1 ∪ · · · ∪Nu
k−1. We claim that if x ∈

Nu
k ∩(L0∪· · ·∪Lk−2), then it belongs to Nu

1 ∪· · ·∪Nu
k−1. Therefore, N

u
k \(Nu

1 ∪· · ·∪Nu
k−1)

is an antichain, since it is a subset of Lk−1. This being true for k = 1, . . . h(N), it follows
that σ is a feasible ordering.

Proof of the claim: Suppose w.l.o.g. that x ∈ Lj for some j ∈ {0, . . . , k− 2}. Clearly,
x ̸∈ Nu

1 ∪ · · · ∪ Nu
j . Suppose that x ̸∈ Nu

j+1. Since Nu
j+1 =↓min((Lj ∪ · · · ∪ Lh(N))

◦), it
follows that x is disconnected in Lj ∪ · · · ∪ Lh(N), i.e., there is no y ∈ Lj ∪ · · · ∪ Lh(N)

such that x ≺ y. But x ̸∈ Lk−1 and x ∈ Nu
k (which is a downset) imply that it must exist

some y ∈ Lk−1 such that x ≺ y, a contradiction. Therefore x ∈ Nu
j+1.
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It follows by Theorem 1 that the nested closure of N u is a normal collection, called
by Grabisch (2011) the Weber collection NW = {NW

1 , . . . , NW
h(N)}, and we have

NW
1 = Nu

1

NW
2 = Nu

1 ∪Nu
2

... =
...

NW
h(N) = Nu

1 ∪ · · · ∪Nu
h(N).

The Weber collection is short, therefore minimal, but not thin in general, as shown
by the next result and Example 3.

Proposition 4. Consider the downwards and the Weber collections. It holds

Nd
h(N) ⊆ NW

1 , Nd
h(N)−1 ⊆ NW

2 , . . . , Nd
1 ⊆ NW

h(N). (4)

Proof. Recall that the Weber collection is {Nu
1 , N

u
1 ∪Nu

2 , . . . , N
u
1 ∪Nu

2 ∪ · · ·∪Nu
h(N)}. We

will prove (4) by induction. We first prove that Nd
h(N) ⊆ Nu

1 . Take i ∈ Nd
h(N). Then i is

covered by some j, and does not cover any element in N by construction. Therefore i is
minimal in N and is not disconnected, hence it belongs to Nu

1 .
Induction hypothesis: Nd

h(N)−l+1 ⊆ Nu
1 ∪· · ·∪Nu

l for l = 1, . . . , k < h(N). Let us prove

that the property still holds for l = k + 1. Take any i ∈ Nd
h(N)−k \Nd

h(N)−k+1 = Dh(N)−k

and note that it is not a disconnected element in (N,≼). Then either i covers some
j ∈ Nd

h(N)−k+1, or i is incomparable with these elements. If i covers some j in Nd
h(N)−k+1,

since by induction hypothesis, all these j’s are members of Nu
1 ∪· · ·∪Nu

k , either i belongs
to Nu

1 ∪· · ·∪Nu
k , or to min((N \ (Nu

1 ∪· · ·∪Nu
k ))

◦), in which case i ∈ Nu
k+1. On the other

hand, if i is incomparable with elements of Nd
h(N)−k+1, it does not cover any element in

N (otherwise this element would belong to Nd
h(N)−k+1, and i would be comparable with

an element of Nd
h(N)−k+1, a contradiction), which implies that it is minimal in N , and

therefore belongs to Nu
1 .

Example 3. (Example 1 continued) The Weber collection is 123, 123456, hence in the
above proposition there are cases where strict inclusion occurs for some set.

Take any nested normal collection N = {N1, . . . , Nq}, N1 ⊂ · · · ⊂ Nq, and define its
(unnested) opening by

N ◦ = {N1, ↓(N2 \N1), . . . , ↓(Nq \ (N1 ∪ · · · ∪Nq−1))}.

Proposition 5. If N is a nested normal collection, then its opening N ◦ is normal and
there exists a feasible ordering of N ◦ whose corresponding nested closure is N .

Proof. Suppose N ◦ is not normal. Then there exists a ray 1i−1j, with i ≺· j, which is not
deleted byN ◦, i.e., all sets inN ◦ either contain both i, j or none of them. Hence, the same
property holds for the sets in N , which implies that N is not normal, a contradiction.

Put N ◦ = {N◦
1 , . . . , N

◦
q }. Since N ◦ and N are normal, and N ◦

σ = N with σ(N◦
k ) = k

for k = 1, . . . , q, by Theorem 1, it follows that σ is feasible.

Corollary 1. Every nested normal collection arises as the closure of a normal collection
for which there is a feasible ordering, or is itself an open collection (i.e., invariant under
the opening).
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4 Balancedness conditions

Let N be a normal collection and (F , v) a game. Whether CN (v) is empty or not depends
on both the normal collection and the game. It may happen that CN (v) is empty while
C(v) is not. If CN (v) is nonempty, then it is a bounded face of C(v).

The following result has been shown by Grabisch (2011).

Proposition 6. Suppose that (F , v) is a convex game. Then for any normal nested
collection N , the restricted core CN (v) is nonempty.

A direct application of the Farkas Lemma leads to the following.

Proposition 7. Let N be a normal collection. CN (v) ̸= ∅ if and only if for all vectors
y ∈ RF\{∅} satisfying ∑

S∋i,S∈F

yS = 0, i ∈ N

yS > 0, S ∈ F \ {N ∪N},

it holds ∑
S∈F\{∅}

ySv(S) 6 0.

Another form can be obtained proceeding as in the classical Bondareva-Shapley the-
orem (Bondareva, 1963; Shapley, 1971). Considering a normal collection N , we say
that a collection B ⊆ F is N -balanced if there exists yS > 0, S ∈ B, such that∑

S∈B yS1
S =

∑
S∈N∪N 1S. We call {yS}S∈B a system of N -balancing weights.

Theorem 2. LetN be a normal collection. CN (v) ̸= ∅ if and only if for everyN -balanced
collection B with N -balancing weights {yS}S∈B, it holds∑

S∈B

ySv(S) 6
∑

S∈N∪N

v(S). (5)

Proof. We consider the following linear program with x ∈ Rn:

min z =
∑

S∈N∪N x(S)
s.t. x(S) > v(S), S ∈ F

The optimal value z∗ of z is
∑

S∈N∪N v(S) if and only if CN (v) ̸= ∅. The dual problem
reads

max w =
∑

S∈F ySv(S)
s.t

∑
S∋i,S∈F yS =

∑
S∋i,S∈N∪N yS, i ∈ N

yS > 0, S ∈ F .

By the duality theorem, w∗ = z∗, which implies that any feasible solution satisfies∑
S∈F ySv(S) 6

∑
S∈N∪N v(S).
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Note that this generalizes a result by Grabisch and Xie (2011). As it can be observed,
the proof follows the classical argument, where in the right members of (in)equalities, N
is formally replaced by N ∪N . Therefore, a strong form of the theorem can be obtained
as well, which we give without proof.

We say that a collection B ⊆ F is minimal N -balanced if B is N -balanced and
no proper subcollection is. Similarly to the classical case, we obtain that a minimal N -
balanced collection has a unique system of N -balancing weights, and we get the following
result.

Theorem 3. Let N be a normal collection. CN (v) ̸= ∅ if and only if (5) holds for any
minimal N -balanced collection B, where {yS}S∈B is the unique system of N -balancing
weights for B.

Convexity is not a necessary condition for balancedness. Indeed, Grabisch and
Sudhölter (to appear, Lemma 3.2) have shown that if (N,≼) is connected (that is, for
any i, j ∈ N , there is a sequence of elements i = i1, i2, . . . , ik = j such that iℓ and iℓ+1

are comparable, for ℓ = 1, . . . , k − 1), then the core C(F , v) is nonempty for any game v,
in particular for nonconvex games. Since C(F , v) contains no line, the bounded core too
is nonempty, implying that there exists a nonempty restricted core for any game v.

5 The case of convex games

By Proposition 6, we know that for convex games, nested normal collections play a central
rôle. The next result proves that moreover, one only needs to consider nested normal
collections, and the main result of this section (Theorem 5) will show the converse of
Proposition 6 for strictly convex games.

Proposition 8. For any normal collection N , there exists a nested normal collection N ′

such that, for any convex game v,

CN (v) ⊆ CN ′(v).

The proof is based on the following technical lemma. For any collection ∅ ̸= G ⊆ F
we define

F (G) = {(G \ {T, T ′}) ∪ {T ∩ T ′, T ∪ T ′} | T, T ′ ∈ G}.
Note that any element of F (G) is nonempty and does not possess a larger cardinality
than G and that G ∈ F (G).

Lemma 6. With g = |G|, the g(g−1)
2

-fold composition of F applied to G, i.e., F
g(g−1)

2 (G),
contains a nested collection.

Proof. We proceed by induction on g. If g = 1, then G is already nested. Assume that the
lemma is valid for any g < k for some k > 1. Now, if g = k, then let G = {T1, . . . , Tg},
define T ′

1 =
∪g

j=1 Tj, T
′
k = Tk ∩

∪k−1
j=1 Tk for k = 2, . . . , g and let G ′ = {T ′

1, . . . , T
′
g}.

Note that G ′ ∈ F g−1(G) and that 2 6 g′ = |G ′| 6 g. By the inductive hypothesis,

F
(g′−1)(g′−2)

2 (G ′ \ {T ′
1}) contains a nested collection G ′′. By construction all elements of

G ′′ are contained in T ′
1. Hence, G ′′ ∪ {T ′

1} is a nested collection in F g−1+
(g′−1)(g′−2)

2 (G) ⊆
F

g(g−1)
2 (G).
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Proof. (of Proposition 8) We may assume that N ̸= ∅. Let T, T ′ ∈ N and v be a convex
game. In view of Lemma 6 it suffices to show that N ′ = (N \ {T, T ′})∪ {T ∪ T ′, T ∩ T ′}
is (a) normal and (b) CN (v) ⊆ CN ′(v). In view of Lemma 2 and by interchanging the roles
of T and T ′ if necessary, in order to show (a) it suffices to prove that, for any i, j ∈ N
such that i ∈ T ̸∋ j and i ≺· j either j /∈ T ∪ T ′ or i ∈ T ∩ T ′. Now, if j ∈ T ∪ T ′, i.e.,
j ∈ T ′, then i ∈ T ′ because T ′ is a downset. Hence, i ∈ T ∩ T ′ in this case. In order
to show (b) let x ∈ CN (v). In order to show that x ∈ CN ′(v) it suffices to show that
x(T ∪ T ′) = v(T ∪ T ′) and x(T ∩ T ′) = v(T ∩ T ′). As the game is convex,

v(T ∪ T ′) + v(T ∩ T ′) 6 x(T ∪ T ′) + x(T ∩ T ′)

= x(T ) + x(T ′) = v(T ) + v(T ′) 6 v(T ∪ T ′) + v(T ∩ T ′)

so that the desired equalities follow immediately.

We recall the notion of marginal vector and restricted marginal vector introduced by
Grabisch (2011). We consider the set of maximal chains in F . This set is in a one-to-
one correspondence with the set L(≼) of linear extensions of (N,≼), i.e., to any maximal
chain C = {∅, S1, S2, . . . , Sn}, ∅ ⊂ S1 ⊂ · · · ⊂ Sn = N , corresponds a unique permutation
π on N with Si := {π(1), . . . , π(i)}, i = 1, . . . , n, and vice versa. The linear extension
is given by the sequence π(1), π(2), . . . , π(n). Considering a game (F , v), the marginal
vector aπ(v) ∈ RN associated to the linear extension π (equivalently, aC(v) associated to
the maximal chain C) is the payoff vector defined by

aππ(i)(v) := v(Si)− v(Si−1) = v({π(1), . . . , π(i)})− v({π(1), . . . , π(i− 1)}), i ∈ N.

Consider a nested collection G (not necessarily normal). A restricted maximal chain w.r.t.
G is a maximal chain (from ∅ to N) in F containing G. Associated linear extensions are
called restricted linear extensions, and the set of restricted linear extensions w.r.t. G is
denoted by LG(≼). A restricted marginal vector is a marginal vector whose underlying
maximal chain is restricted.

The following result is noteworthy and extends the classical result of Shapley (1971)
and Ichiishi (1981)1.

Theorem 4. A game (F , v) is convex if and only if aπ(v) ∈ C(v) for every π ∈ L(≼).

Proof. Necessity: Assume that v is convex, let S ∈ F \ {∅}, and π ∈ L(≼). We have to
show that ∑

i∈S

aπi (v) > v(S). (6)

Let i1, . . . , is ∈ S, s = |S|, be chosen so that π−1(i1) < · · · < π−1(is). Then Tk =
{i1, . . . , ik} = Sπ−1(ik) ∩ S ∈ F for any k = 1, . . . , s, using the above notation. By (2),

v(Sπ−1(ik))− v(Sπ−1(ik) \ ik) > v(Tk)− v(Tk−1) for all k = 1, . . . , s,

1This result is in fact already known. It has been proved for acyclic permission structures by Derks
and Gilles (1995), while it is known from Algaba et al. (2004) that these set systems are equivalent to set
systems of the form O(N). Also, Grabisch and Xie (2008) proved it in an unpublished paper. The “only
if” part is known from Fujishige and Tomizawa (1983) (also cited in (Fujishige, 2005, Theorem 3.22)).
We provide a simpler proof of this result, thereby also making the current paper more self-contained.
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where T0 = ∅. Summing up all these inequalities yields (6).
Sufficiency: Let v be a game and assume that aπ(v) ∈ C(v) for all π ∈ L(≼). Let

S, T ∈ F so that S \ T ̸= ∅ ̸= T \ S. Let S ∩ T = {i1, . . . , ir}, T \ S = {ir+1, . . . , it},
S \ T = {it+1, . . . , iq}, and N \ (S ∪ T ) = {iq+1, . . . , in} such that, for any j ∈ N ,
{i1, . . . , ij} ∈ F . Then the permutation π defined by π(j) = ij for any j ∈ N is a linear
extension. Hence

v(S) 6
∑
i∈S

aπi (v) =
∑
i∈S

(v(Sπ−1(i))− v(Sπ−1(i) \ i)

=
r∑

j=1

(v({i1, . . . , ij})− v({i1, . . . , ij−1})) +
q∑

j=t+1

(v(T ∪ {it+1, . . . , ij})

− v(T ∪ {it+1, . . . , ij−1}))
= v(S ∩ T ) + v(S ∪ T )− v(T ),

so that the proof is complete.

In Grabisch (2011, Theorems 4 and 5), it is proved that for any nested normal collec-
tion N , the set of restricted marginal vectors is the set of extreme points of CN (v) if v is
convex.

Proposition 9. For any nested normal collection N of F and any convex game v,
{aπ(v) | π ∈ LN (≼)} is the set of extreme points of CN (v).

An inspection of the proof shows that the result extends to any nested collection, not
necessarily normal.

We are now in position to show the main result of this section. Let MNNC(F)
denote the set of minimal nested normal collections of F .

Theorem 5. (i) For any convex game v and any nested normal collection N of F ,
CN (v) ̸= ∅. Moreover, if v is strictly convex, then dim CN (v) = n− |N | − 1.

(ii) For any convex game v,

Cb(v) =
∪

N∈MNNC(F)

CN (v).

Moreover, no term in the union is redundant if v is strictly convex.

(iii) Let N be a normal collection of F . If v is strictly convex, then CN (v) ̸= ∅ if and
only if N is nested.

Proof. (i) The first assertion is Proposition 6. By Proposition 9, for any π ∈ LN (≼),
aπ(v) ∈ CN (v). Let x = 1

|LN (≼)|
∑

π∈LN (≼) a
π(v). If v is strictly convex, then in order

to show the equation it suffices to prove that x(S) > v(S) for all S ∈ F\N ∪{∅, N}.
Let N ∪ {∅, N} = {T0, . . . , Tr}, where ∅ = T0 $ T1 $ · · · $ Tr = N. Suppose there
exists j ∈ {1, . . . , r − 1} such Tj \ S ̸= ∅ ̸= S \ Tj, then

v(S)+v(Tj) < v(S∩Tj)+v(S∪Tj) 6 x(S∩Tj)+x(S∪Tj) = x(S)+x(Tj) = x(S)+v(Tj)
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by strict convexity and because x ∈ C(v). Otherwise there exists ℓ ∈ {0, . . . , r− 1}
such that Tℓ $ S $ Tℓ+1. Let S ′ = Tℓ ∪ (Tℓ+1 \ S). Note that since Tℓ+1 \ Tℓ

is an antichain by Lemma 3, S ′ ∈ F . Then there exists π̃ ∈ LN (≼) such that
S ′ = {π̃(1), . . . , π̃(|S ′|)}, i.e.,

∑
i∈S′ aπ̃i (v) = v(S ′). By strict convexity we conclude

that
∑

i∈S a
π̃
i > v(S). For any π ∈ LN (≼),

∑
i∈S a

π
i (v) ≥ v(S), hence x(S) > v(S).

(ii) The equation follows from Propositions 8 and 1, and the fact that minimal normal
collections give largest restricted cores. In order to show the final statement, let v
be strictly convex and let x be defined as in (i). We have seen that x(S) = v(S) if
and only if S ∈ N ∪ {∅, N} so that there is no other minimal normal collection N ′

with x ∈ CN ′(v).

(iii) One direction follows from (i). For the other direction let N be a normal collection
that is not nested. Hence, there are S, T ∈ N such that S \T ̸= ∅ ̸= T \S. By strict
convexity, v(S)+ v(T ) < v(S ∪T )+ v(S ∩T ) so that any y ∈ RN with y(S) = v(S)
and y(T ) = v(T ) either satisfies y(S ∩ T ) < v(S ∩ T ) or y(S ∪ T ) < v(S ∪ T ). We
conclude that CN (v) = ∅.

It remains to find all nested minimal normal collections. For this, the following lemma
is useful.

Lemma 7. The nested normal collection N = {N1, . . . , Nq}, ∅ ̸= N1 $ · · · $ Nq, is
minimal if and only if

(i) Nq \Nq−1 contains an element that is not maximal (w.r.t. ≼), and

(ii) Nk\Nk−1 contains an element i that covers some element j (i.e., j ≺· i) ofNk−1\Nk−2

for k = 2, . . . , r, where N0 = ∅.

Proof. If (i) is not satisfied, then N \ {Nq} is still normal, and if (ii) is not satisfied
for some k, then N \ {Nk−1} is still normal. In order to verify the opposite implication
assume that N is not minimal and let p ∈ {1, . . . , q} such that N \ {Np} is still normal.
If p = q, then N violates (i), and if p < q, then N violates (ii) for k = p+ 1.

Every π ∈ L(≼) generates a collection N π ⊆ F defined as follows: Let 0 = t0 < t1 <
· · · < tq < tq+1 = n be defined by the requirements that

• {π(tj + 1), . . . , π(tj+1)} is an antichain for all j = 0, . . . , q;

• {π(tj + 1), . . . , π(tj+1 + 1)} is not an antichain for all j = 0, . . . , q − 1.

Then define Nj = {π(1), . . . , π(tj)} for all j = 1, . . . , q and put N π = {N1, . . . , Nq}.
As Nj \ Nj−1 for j = 1, . . . , q is an antichain (where N0 = ∅), N π is a nested normal
collection. Moreover, N π is a minimal normal collection by Lemma 7. Conversely, let
N = {N1, . . . , Nq}, N1 $ · · · $ Nq, be a minimal nested normal collection. Choose
π ∈ L(≼) such that

• for all j = 1, . . . , q, π−1(Nj) = {1, . . . , |Nj|};

• π(|Nk−1|+ 1) covers some element of Nk−1 \Nk−2 for all k = 2, . . . , q.
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By Lemma 7 such π exists. By construction N = N π.
We summarize that every linear extension2 of (N,≼) (i.e., every F -admissible ordering

of N) generates a unique minimal nested normal collection of F and that minimal nested
normal collection is generated by some (not necessarily unique) linear extension of (N,≼).

Example 4. Let N = {1, 2, 3, 4} and ≼ be determined by 1 ≺ 3 and 2 ≺ 4. Then
minimal nested normal collections are

N1 = {12},N2 = {1, 123}, and N3 = {2, 124}.

Note that N2 and N3, although minimal, are not short. The F -admissible permutations
are

π1 = (1, 2, 3, 4), π2 = (1, 2, 4, 3), π3 = (2, 1, 3, 4), π4 = (2, 1, 4, 3), π5 = (1, 3, 2, 4),

and π6 = (2, 4, 1, 3).

The permutations π1, . . . , π4 generate N1, π5 generates N2, and π6 generates N3.
However, for any convex game v,

CN1 = conv({aπ1(v), . . . , aπ4(v)}), CN2(v) = conv({aπ1(v), aπ5(v)}),
and CN3(v) = conv({aπ4(v), aπ6(v)}).

Finally, if v(S) = |S|2 for S ∈ F , then v is strictly convex and aπ5(v)+aπ6 (v)
2

= (3, 3, 5, 5) /∈
Cb(v) so that the bounded core may be non-convex even for convex games.

The remarkable nested collections N d,NGX,NW presented in Section 3.1 are gener-
ated by particular linear extensions among those which satisfy the two above require-
ments. The NGX collection is generated by any such linear extension which in addition
satisfies

π(1), . . . , π(|L0|) is a permutation on L0

π(|L0|+ 1), . . . , π(|L0 ∪ L1|) is a permutation on L1

...

π(|L0 ∪ · · · ∪ Lh(N)−2|+ 1), . . . , π(|L0 ∪ · · · ∪ Lh(N)−1|) is a permutation on Lh(N)−1.

The downwards collection N d is in turn generated by linear extensions which in addition
satisfy

π(1), . . . , π(|Dh(N)|) is a permutation on Dh(N)

π(|Dh(N)|+ 1), . . . , π(|Dh(N)−1 ∪Dh(N)|) is a permutation on Dh(N)−1

...

π(|D2 ∪ · · · ∪Dh(N)|+ 1), . . . , π(|D1 ∪ · · · ∪Dh(N)|) is a permutation on D1.

2Linear extensions, also known as topological sorting, can be generated in linear time in the number
of linear extensions; see, e.g., Pruesse and Ruskey (1994). However, the problem of counting all linear
extensions of a finite partial order is #P-complete; see Brightwell and Winkler (1991).
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Finally, the Weber collection arises from any linear extension satisfying in addition

π(1), . . . , π(|min(N◦)|) is a permutation on min(N◦)

π(|min(N◦)|+ 1), . . . , π(|min(N◦) ∪min((N \ L0)
◦)|) is a permutation on

min((N \ L0)
◦)

...

π(|min(N◦) ∪ · · · ∪min((N \ (L0 ∪ · · · ∪ Lq−3))
◦)|+ 1), . . .

. . . , π(|min(N◦) ∪ · · · ∪min((N \ (L0 ∪ · · · ∪ Lq−2))
◦)|) is a permutation on

min((N \ (L0 ∪ · · · ∪ Lq−2))
◦).
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