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Downside Risk of Derivative Portfolios

with Mean-Reverting Underlyings

Patrick L. Leoni∗

Abstract

We carry out a Monte-Carlo simulation of a standard portfolio

management strategy involving derivatives, to estimate the sensitiv-

ity of its downside risk to a change of mean-reversion of the under-

lyings. We find that the higher the intensity of mean-reversion, the

lower the probability of reaching a pre-determined loss level. This

phenomenon appears of large statistical significance for large enough

loss levels. We also find that the higher the mean-reversion intensity

of the underlyings, the longer the expected time to reach those loss

levels. The simulations suggest that selecting underlyings with high

mean-reversion effect is a natural way to reduce the downside risk of

those widely traded assets.
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1 Introduction

Most of the worst financial disasters since the 70s have been caused by deriva-

tives. For instance in the early 90s, Barings Bank lost $1bn after dubious

trades with interest rates futures, causing in turn the bankruptcy of this

well-established bank. In 1998, Long Term Capital Management lost $4bn

on somewhat similar products resulting as well in bankruptcy. More recently

in January 2008, the French bank Société Générale realized a record loss

of $7.1bn after dubious trades on standard derivatives. Given the severe

losses incurred with those products, and their always increasing volume of

trades, both practitioners and regulators have sought managerial techniques

to reduce the downside of derivative portfolios.

In practice, the common strategy to reduce and/or to control the down-

side risk of derivatives is to liquidate a portfolio once a given level of losses is

reached. This practice is called benchmarking, and it uses for portfolios both

of equities and derivatives (see Pedersen [11], Basak et al. [2] and Demirer

and Lien [3] for more standard stock portfolios, see also Lakshman [9] for

other methods and their relative cost). Leoni [10] points out that bench-

marking actually achieves the reverse effect than expected; that is, bench-

marking actually aggravates the downside of derivative portfolios. There is

thus a need to isolate factors, such as appropriate classes of assets, capa-

ble of reducing the downside risk of derivative portfolios without involving

drastic managerial intervention such as benchmarking. The current paper es-

tablishes, through a Monte-Carlo simulation, how the mean-reversion of the
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underlyings dramatically affects the downside risk of derivative portfolios.

Bakshi et al. [1] argues that models where underlyings exhibit mean-

reversion and stochastic volatility provide the best dynamic hedges and price

estimations, even for out-of-sample predictions. The model of Heston [6]

provides such an example, and there are large empirical evidence that this

model largely outperforms for those purposes standard models such as the

Black-Scholes’ framework. We focus on Heston’s model to carry out a Monte-

Carlo estimation of the downside risk of a standard management strategy of

a derivative portfolio; the point is to estimate how sensitive the downside

risk is to a change in mean-reversion of the underlying.

The Monte-Carlo simulation shows that, for every loss level considered in

the experiment, the higher the intensity of mean-reversion of the underlyings,

the lower the probability of reaching a loss level. This phenomenon is of large

statistical significance for large enough loss levels (15% and above). The sec-

ond finding is that, for every loss level, the higher the mean-reversion inten-

sity, the longer the expected time to reach those loss levels. Our Monte-Carlo

experiment strongly suggests that selecting underlyings with high mean-

reversion intensity – a property that can be easily detected in statistical

tests, is a natural way to reduce the downside risk of derivative portfolios

without involving benchmarking and other costly managerial practices.

The basic intuition for this result is that, when exhibiting strong mean-

reversion effects, the sample paths of the underlyings tend to be more con-

centrated in a probabilistic sense to the mean of the stochastic process (see

Grimmett and Stirzaker [5] Ch. 13 for more on this issue). When dealing

3



with risk-neutral dynamics, the mean of the price dynamics for the underly-

ings is typically the risk-free rate. Therefore, risk-neutral price trajectories of

the underlyings are increasingly unlikely to exhibit large and permanent de-

viations from this rate, as the intensity of mean-reversion increases. Since for

most derivatives the extreme payoffs, either positive or negative, are obtained

when the underlyings’ returns are far off the risk-free return, the reduction

in downside risk obtains naturally for most derivatives. The same intuition

also shows that, by reducing the downside risk this way, the likelihood of

obtaining large positive payoffs is also reduced.

The paper is organized as follows. In Section 2 we describe the exper-

iment; in Section 3 we give the empirical results about the probability of

reaching a given loss level as a function of the mean-reversion intensity; in

Section 4 we give the empirical results about the expected time of reaching

a given loss level as a function of the mean-reversion intensity; Section 4

contains some concluding remarks.

2 The experiment

In this section, we describe the model, assumptions and trading strategies

that we use to carry out our Monte-Carlo simulation. We first describe

four classes of basic options, and the way to form our portfolio with those

options. We will then describe our assumptions about the law of motion of

the underlyings, which are those described in Heston [6]. We choose this law

of motion because it has performed well empirically when pricing derivatives
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as pointed out in Bakshi et al. [1]; it has actually outperformed most of the

standard models such as the Geometric Brownian Motions studied in Leoni

[10].

2.1 The options

The portfolio formation, and classes of options are exactly the same as in

Leoni [10], we repeat them for sake of completeness. Even if the experiment

is the same up to the choice of the law of motion for the underlyings, the

objectives and findings are unrelated to those in the previous reference. We

consider 400 different options, which are partitioned into four classes of 100

options each. Every option has a maturity of T = 3 months, starting with

the same common date.

• Class 1. 100 cash-or-nothing options with strike price K = 49 and

end-payment Q = 10, each of then written on a different underlying.

The payoff at time T of the cash-or-nothing option is Q if ST > K and

0 otherwise, where ST is the price of the underlying in 3 months.

• Class 2. 100 lookback options, each of them written on a different

underlying. The payoff of a lookback option is ST−min(S), where

min(S) is the minimal price of the underlying between 0 and T .

• Class 3. 100 Asian options, each of them written on a different under-

lying. The payoff of one Asian option is max{0, ST − S̄}, where S̄ is

the mean of underlying price between 0 and T .
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• Class 4. 100 European calls with strike price K = 49, each of them

written on a different underlying. The payoff at the end of the 3 months

is max{0, ST −K}.

2.2 Portfolio formation

We now describe how our portfolio is formed. The initial wealth of w0 =

1, 000, 000 is equally allocated among the four classes of options. In every

class of options, the wealth allocated to this class is equally distributed across

all of those options. That is, if wj is the wealth allocated to Class j, then for

every option in this class we purchase at current market price, given in Table

2.3 described later so as to match risk-neutral valuation of those assets, a

number of contracts whose total value amounts to wj/100 monetary units

(we implicitly assume that the options are infinitely indivisible to simplify

the analysis, and without any significant loss of generality).

Once the first time horizon (3 months) is reached and the payoffs of all

of the options are realized, the proceeds are reinvested in a similar portfolio

in the same manner as above. We call a quarter any of such times where

options expire and proceeds are reinvested. We consider at most 24 of those

quarters, since the results that we obtain in our simulations are all within

this horizon.

The fact that options are kept until expiration (or 3 months) in our sce-

nario, instead of being sold before is not restrictive. Indeed, since the current

reselling price of the option reflects any loss-gain incurred during the exer-
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cise, the reinvestment of the realized gain-loss into similar assets would not

affect the portfolio value since the underlyings follow a Lévy process.

2.3 Price evolution of underlyings

In this section, we describe the underlying assets on which the options are

written. Before describing the laws of motion of the underlyings, we define

κ ∈ {e, a, l, c} to be an index denoting the class of options the underlying

is assigned to as described earlier, and j = 1, ..., 100 to uniquely describe

the option within the class of options κ. The simulation involves a set of

400 different underlyings, exhibiting 0-pairwise correlation with any other

underlyings, whose price processes in a risk-neutral world are described by

the following stochastic differential equations

dSt = I ∗ (r − δ)Stdt +
√

νtStdW 1
t , (1)

dνt = (α− βνt)dt +
√

νtσνdW 2
t (2)

where St is the price of the underlying at time t, νt > 0 is the instantaneous

variance of the underlying assumed to be stochastic, W i
t (i = 1, 2) are in-

dependent Brownian motions with law N(0, t) for every time t, and δ, β,

σν are positive parameters to be determined later. The variable I captures

the intensity of reversion of the variable St to its mean value r (the risk-free

interest rate), in the sense that the higher I the stronger the reversion effect.

The variable I will be called the intensity of mean-reversion through-

out. Our analysis comes down to observing how an increase in I affects the

downside risk of the portfolio formation described earlier. Every underlying
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is assumed to be statistically independent of any other, and thus a more ac-

curate description of the law of motion of those prices should have specified

the class of the underlying and its identification within this class; this abuse

of notation is meant to simplify the exposition.

This model is taken from Heston [6]. It allows for the volatility of the

underlying asset to be randomly determined, and assumes that it follows

a Ornstein-Uhlenbeck process (Eq. 2). This model also has the critically

important empirical property that stochastic volatility and returns are cor-

related. The Heston model is much more accurate in describing observed

option prices than other standard models such as the Black-Scholes model

(see Bakshi [1]); this fact alone justifies our focus on this type of dynamics.

Standard empirical findings suggest that the value σν = 0.189, α = 0.094,

β = 12.861, and δ = 0.01 provide the best fit. We will also assume that

r = .05, ν0 = .45 and the initial stock price is S0 = 50.

We need a discretized version of the continuous-time process described in

Eq. (1) and (2) to carry out our numerical simulations. We use the common

approximation Wt+∆t − Wt ≈ ε
√

∆t for every small enough time variation

∆t, where ε is a random variable with law N(0, 1) generating the jumps (see

Karatzas and Shreve [8] for a justification). Using the independence of time

increments in Brownian motions, both for the prices St and the instantaneous

volatility, the law of motion above can be effectively approximated by
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St+1 = St + I ∗ (r − δ)St∆t + Stε1

√
νt∆t, (3)

dνt+1 = νt + (α− βνt)∆t + ε2σν

√
νt∆t (4)

for every sequence of times 0 < t0 < ... < tn. We will consider our standard

time horizon of T = 3 months, and we will assume that there are 15 jumps

of equal length within those 3 months for every underlying. In order to

efficiently simulate the dynamical system described in Eq. (3) and (4), we

first need to simulate the stochastic variance in Eq. (4), and then to use

the calculated sequence of volatilities into Eq. (3). The underlyings thus

differ by the nature of the realized jumps εi (i = 1, 2), and those jumps are

independent.

Given the previous assumptions, it is now possible to calculate the risk-

neutral prices of the options described above by using numerical methods.

We use a standard Monte-Carlo simulation to calculate the risk-neutral prices

of the derivatives, and this simulation is independent of the simulation for

the evolution of the portfolio (see Glasserman [4] Chapters 4-5 or Hull [7]

Chapter 22 for an introduction to the methods used here). The results are

given in Table 1.

3 Statistical results

We now give the results of our Monte-Carlo simulations. In a first step, we

establish the likelihood of reaching a pre-determined loss level at least once

9



Table 1: Monte-Carlo estimations of the risk-neutral prices of the options,

as a function of the mean-reversion intensity. Codes are written in R (see R

project [12]). Figures between brackets are the variances of the estimators.

Estimators are calculated with N=100,000 simulations.

Intensity cash-or-nothing lookback call Asian call European call

I=1 5.236236 6.004019 3.426517 4.463828

(0.049288) (0.059827) (0.048395) (0.065198)

I=5 5.0668 7.471425 4.076399 5.787401

(0.01560) (0.066783) (0.052746) (0.074305)

I=10 6.061753 9.516904 4.953797 7.684566

(0.048083) (0.074063) (0.057426) (0.08416)

before the end of the 24 quarters as a function of the intensity of mean-

reversion. This event would correspond to the activation of a stop-loss strat-

egy, thus a portfolio liquidation as described in Leoni [10], had this strategy

been implemented. In a second step, we determine the expected quarter

where the previous losses are recorded, again as a function of the intensity

of mean-reversion. This exercise allows us to see how critically sensitive the

downside risk of derivative portfolios is to an increase in the intensity of

mean-reversion.
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3.1 Failure rate and mean-reversion intensity

We now turn to describing how the intensity of mean-reversion affects the

likelihood of reaching a pre-determined loss level before the end of our horizon

of 24 quarters. We define the failure rate of a given simulation to be the

number of scenarii where a pre-determined loss level has been reached at least

once, divided by the total number of scenarii. The investment scenario has

been simulated N = 2500 times, and Monte-Carlo estimators of activation

times are reported for three levels of mean-reversion intensity.

Table 2 below gives the results for three levels of mean-reversion intensity,

(I = 1, 5 and 10), and for various levels of pre-determined losses. The point

is to cross-compare the failure rates associated with a given intensity level.

The main result to notice is that, for every loss level, the higher the inten-

sity the lower the failure rate. It turns out that the difference is statistically

significant and large for high loss levels (15% losses and above), although it

appears as minor for lower loss levels. For instance, the difference is not sta-

tistically significant at 5% loss level for the intensity levels I = 1 and I = 5,

but the reduction is statistically significant and important for I = 10. In

contrast, the failure rate is roughly halved at 30% loss level for the intensity

levels I = 5 and I = 10, unambiguously showing the major improvement in

downside risk reduction when doubling the intensity. It is also surprising to

notice that the reduction in downside risk is sensible when switching from

I = 1 to I = 5, at least for large enough loss levels, but the improvements are

largely felt at every loss level only when switching to the highest intensity
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Table 2: Failure rates as a function of the loss level, for various levels of

intensity. Figures between brackets are the variances of the estimators. Es-

timators are calculated with N=2500 simulations.

Loss level

Intensity .05 .1 .15 .2 .25 .3

I = 1 66.7 54.8 49.8 33.7 25.1 19

(0.942) (0.994) (0.992) (0.944) (0.942) (0.784)

I = 5 66.64 53.56 40.44 28.88 22.28 14.44

(0.95) (0.96) (0.95) (0.832) (0.703) (0.703)

I = 10 59.12 41.2 29.2 19.44 13.64 7.64

(0.95) (0.94) (0.908) (0.79) (0.78) (0.53)

level I = 10. The numbers are presented in Fig. 1 to have for more intuition.

3.2 First quarter of failure and intensity

We now determine the expected first quarter where a given loss level is

recorded, for the same mean-reversion intensities as before. This event

would correspond to the expected date where a stop-loss strategy would

be activated. We consider three intensity levels, (I = 1, 5 and 10), and pre-

determined loss levels ranging from 5% to 30%. The first expected quarter

where a loss level is reached, together with the variance of those estimators,

are given in Table 3.
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Table 3: Expected first quarter when a given loss level is reached, for var-

ious levels of intensity. Figures between brackets are the variances of the

estimators. Estimators are calculated with N=2500 simulations.

Loss level

Intensity .05 .1 .15 .2 .25 .3

I = 1 11.0044 14.2504 16.8924 18.9656 20.7284 21.7828

(0.2) (0.195) (0.179) (0.157) (0.128) (0.104)

I = 5 11.2228 14.7172 17.4812 19.9288 21.192 22.4344

(0.199) (0.192) (0.174) (0.143) (0.118) (0.087)

I = 10 12.4828 16.886 19.3708 21.3964 22.3676 23.2264

(0.205) (0.185) (0.156) (0.117) (0.092) (0.061)

The main result is that the expected quarter of the first hit at a given

loss level is an increasing function of the intensity level, for every loss level.

That is; the higher the intensity level the longer the expected time needed to

reach this loss level. It is important to notice that, for low loss levels inferior

to 10%, the time difference is barely statistically significant between I = 1

and I = 5. This time difference becomes significant, for every loss level, only

when considering I = 10. When considering losses greater than 15%, the

improvement in postponing the first expected time when those losses occur

becomes clear when increasing the intensity level. The numbers are presented

in Fig. 2 to have more intuition.
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4 Conclusion

We have simulated a standard management strategy involving the use of

derivatives. The objective of the simulation is to estimate the downside of this

management strategy, and to isolate factors capable of reducing this downside

risk. The simulations are based on the assumption that the underlyings

exhibit mean-reversion, a feature that receive large empirical support.

The main finding is that the higher the intensity of mean-reversion, the

lower the probability of reaching a pre-determined loss level. This phe-

nomenon is observed for every loss level that we consider, although it appears

of large statistical significance for large loss levels (15% and above). The sec-

ond finding is that the higher the mean-reversion intensity, the longer the

expected time to reach those loss levels. The simulations suggest that select-

ing underlyings with high mean-reversion effect is a natural way to reduce

the downside risk of derivative portfolios.
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Figure 1: Failure rates as a function of the mean-reversion intensity, for

various levels of loss.
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Figure 2: Expected first quarter when a given loss level is reached, for various

levels of intensity.
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