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Abstract

In this paper we propose a target efficiency DEA model that allows for the inclusion of

environmental variables in a one stage model while maintaining a high degree of discrimination

power. The model estimates the impact of managerial and environmental factors on efficiency

simultaneously. A decomposition of the overall technical efficiency into two components, target

efficiency and environmental efficiency, is derived.

Estimation of target efficiency scores requires the solution of a single large non-linear opti-

mization problem and provides both a joint estimation of target efficiency scores from all DMUs

and an estimation of a common scalar expressing the environmental impact on efficiency for

each environmental factor.

We argue that if the indices on environmental conditions are constructed as the percentage

of output with certain attributes present, then it is reasonable to let all reference DMUs char-

acterized by a composed fraction lower than the fraction of output possessing the attribute of

the evaluated DMU enter as potential dominators. It is shown that this requirement transforms

the cone-ratio constraints on intensity variables in the BM-model (Banker and Morey 1986)

into endogenous handicap functions on outputs. Furthermore, a priori information or general

agreements on allowable handicap values can be incorporated into the model along the same

lines as specifications of assurance regions in standard DEA.
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1 Introduction

Nonparametric efficiency evaluation in the tradition of Data Envelopment Analysis (DEA) focuses

on the distance from an observed input-output combination to the efficient frontier either in input

or in output space. When all inputs are discretionary the inverse distance in input space has

a nice interpretation as the possible radial contraction of input consumption. However, already

in the discussion of Farrell’s seminal paper (Farrell 1957) Winsten argued in a critical remark

(Winsten 1957) on the Farrell indices that ”it is necessary to specify the range of variation (of choice

perhaps) open to the firm before one can set up a standard of efficiency” (p. 283). Inputs can in

various analyses occur in two roles. Sometimes they are controlled by the managers and sometimes

they are terms of production, typically denoted environmental conditions and not controlled by

the managers. Winsten continues, ”we should expect an index of efficiency to distinguish these

two roles”. In fact, quite often the production process is characterized by fixed or quasi-fixed

inputs, and the radial distance in the full input space is not a meaningful concept to the managers.

Farrell’s suggestion of how to handle this case is simply to divide the observations into groups that

are homogeneous with regard to such ”quasi-factors”.

The distinction between controllable and non-controllable inputs is further discussed by (Hall

and Winsten 1959), who suggest a distinction between target efficiency and technical effi-

ciency. If environmental conditions differ, then a particular environment defines a set of choices

for management. When measuring target efficiency we ”are interested in how much a particular

firm has to increase its output to reach the best in its particular environment . [...] If only we

could change the management of this firm for the best of its kind, how much more output could we

obtain?” (p. 74). Target efficiency focuses on groups of firms being comparable with each other.

Measuring technical efficiency, on the other hand, requires that the analyst marks out precisely

which changes are caused by changes of technique. Notice that the two notions coincide, if there is

no difference in environment. In this paper we will propose a method for estimating target efficiency

and decomposing an overall technical efficiency index into a target and an environmental efficiency
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index. Our approach is an attractive alternative to the frequently used two stage models, where

DEA scores are regressed on a set of environmental variables in the second stage. Like the two stage

model our model provides only one estimated common scalar expressing the environmental impact

on the overall technical efficiency for each environmental effect. Hence including environmental

information implies a very limited loss of discrimination power.

Clearly, the distinction between short run and long run is important in relation to target and

technical efficiency. The presence of fixed inputs in the short run problem of allocating variable

inputs is well known. But the point to emphasize here is that even in a long run analysis certain

inputs can be considered controlled or not controlled by the managers depending on what type of

analysis is wanted. For example, if focus in a comparison of bank efficiency is on the performance

including the siting of branches in various rural or urban areas then siting is part of the technique

and consequently a controllable input. However, if focus is on the performance of each branch

compared to other branches within the same bank or from other banks, then the actual siting of a

specific branch is a non-controllable input and is part of the environment.

The presence of (quasi-)fixed inputs is quite common, especially of course in short run analyses.

Examples are climate, location, level of advertising, median income in service area, number of

competitors, age of production equipment, capacity, etc. (Quasi-)fixed inputs need of course not be

productive inputs in the traditional sense and are in fact often so-called environmental variables.

Public production is an area where the concept of fixed inputs is very important. The provision

of public services often requires significantly different effort in different areas because of hetero-

geneities among the households these areas. Analysis of the efficiency of education is a prominent

example of a public production, where fixed inputs play an important role and we will use produc-

tion of education below for motivating the approach proposed in this paper.

Significant impact from environmental variables on production implies that it is necessary to

modify the ”standard” DEA models (Charnes, Cooper and Rhodes 1978), (Banker, Charnes and
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Cooper 1984) to control for non-discretionary inputs. (Banker and Morey 1986) recognize the

inappropriateness of treating fixed input factors as discretionary in DEA and modify for that

reason the constraints on the non-discretionary inputs (the BM-model) such that reference DMUs

must have a level of each non-discretionary input less than or equal to the DMU under evaluation.

There is no attempt to constrain the environmental effect to be of a common magnitude over the

sample of DMUs, since the environmental variables enter a DEA for each DMU separately, which

implies that the BM-model is sensitive to the ”curse of dimensionality”. Adding environmental

dimensions implies that the discrimination power decreases.

(Ray 1988) proposes an alternative two stage model (for short 2SR-DEA) combining a first stage

DEA with a second stage regression, where the environmental impact is estimated as a common

magnitude over the sample of DMUs. A set of DEA efficiency scores is obtained in the first

stage while ignoring differences in environment. This set of DEA scores is subsequently regressed

on a number of environmental variables in the second stage.1 2SR-DEA involves a limited loss of

discrimination power, since a single estimated common scalar expressing the environmental impact

on the overall technical efficiency for each environmental effect is provided, and the approach has

for that reason been used extensively in the litterature. However, it is well known that 2SR-DEA

causes several well known problems of its own (see (Ray 2004), page 105).

In this paper we propose a target efficiency DEA model (TE-DEA model) that allows for the

inclusion of environmental variables in a one stage model without a decrease in discrimination power

caused by the curse of dimensionality as in the BM-model. Furthermore, combining the TE-DEA

model with the basic BCC-model we propose a decomposition of the overall technical efficiency

into two components: target efficiency and environmental efficiency. The proposed target efficiency

model does not suffer from the problems of the 2SR-DEA. Solving one large optimization provides

both a joint estimation of target efficiency scores from all DMUs and an estimation of a common

1(Simar and Wilson 2007) have recently proposed a coherent Data Generating Process (DGP) that can serve as a
rationale for this approach.
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environmental impact on efficiency. Hence, the proposed TE-DEA model and the commonly used

2SR-DEA share the same structure with regard to how the environmental effects are parameterized.

The model will be developed in three steps. A so-called Value Weighted Banker-Morey model, the

VWBM-model, designed to control for the volume of output is first derived for the multiple inputs

and one output case. The single output VWBM-model is next generalized to the multiple inputs

and multiple outputs case, which in turn provides the foundation for the development of the TE-

DEA-model.

Recently, (Yang and Paradi 2003), (Paradi, Vela and Yang 2004) have introduced the so-called

”a handicap function”, which is used to adjust inputs and/or outputs in order to allow for a

more fair comparison of DMUs operating in very different environments. DMUs operating in a more

favourable environment are penalized by a higher input handicap (inputs are increased) and/or a

lower output handicap (outputs are decreased). An important aspect of the VWBM-model as well

as the TE-DEA-model is that the framework can be shown to involve an endogenously determined

handicap function resembling the structure suggested by (Paradi et al. 2004). Furthermore, a priori

information or general agreements on allowable handicap values can be incorporated into the model

along the same lines as assurance regions in standard DEA.

The paper unfolds as follows. Section 2 formally introduces the BM-model, the R-model and our

new VWBM-model, and it is discussed how these models relate to each other. The VWBM-model

is derived based upon the simplifying assumption of one output to allow a simple presentation of

the basic idea. The general multi input and multi output VWBM-model is presented in section

3. The target efficiency model is introduced in section 4. Its relation to the two stage model

is analyzed, and a decomposition of the overall technical efficiency into target and environmental

efficiency is derived. Section 5 presents an application of the general model on a data set comparing

the production of education in a number of OECD countries and section 6 finally provides some

concluding remarks.
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2 Description of the VWBM-model

Consider n DMUs each consuming m different inputs Xj ∈ Rm
+ ,∀j, and producing only one out-

put2 Yj ∈ R+,∀j, and with each DMU operating in an environment characterized by p indices,

Zj ∈ Rp
+,∀j. For convenience, let the indices be defined such that Zlj1 < Zlj2 implies that the

DMUj1 is operating in a more harsh environment in the l’th dimension compared to DMUj2 . The

model proposed by (Banker and Morey 1986) (the BM-model, output oriented) includes p con-

straints involving the environmental indices which force a reference DMU to have a level of the

non-discretionary environmental index less than or equal to the DMU under evaluation:

max θBM (1.a)

s.t.
Pn

j=1 λjXj ≤ X0 (1.b)Pn
j=1 λjZj ≤ Z0 (1.c)

−
Pn

j=1 λjYj + θBMY0 ≤ 0 (1.d)Pn
j=1 λj = 1 (1.e)

λ ≥ 0

(1)

(Ruggiero 1996) (the R-model) argues that the BM-model may lead to reference points that are

not feasible. Hence, Ruggiero suggests a correction of the problem by excluding all DMUs with a

more favorable environment from the analysis of the DMU under evaluation. Hence, no DMU with

a higher environmental index in any dimension than the evaluated DMU should be allowed in a

(virtual) dominating combination. Replacing (1.c) with Zj > Z0 =⇒ λj = 0,∀j, and θBM with θR

gives us the R-model. The BM-model is easily seen to be less restrictive compared to the R-model

so that θBM ≥ θR. We will argue that the R-model is overly conservative when environmental

indices are reflecting the likelihood of the presence of such attributes in relation to the output

being produced

2The simplifying assumption of one output is made to accommodate the need for a presentation of the basic idea
behind the VWBM-model that is as simple as possible. The general case is covered in the next section.
In this paper we focus on on the output oriented model, since this orientation is used in the application in section

5. It is straight forward to change the various models to an input orientation.
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The BM-model does not account for the fact that reference DMUs in general are composed

of DMUs of a highly different size. Thus, a ’small’ λk (’large’ λl) may correspond to a large

DMUk (small DMUl), which in turn implies that the above weighting is not appropriate, since

the optimal λ-values do not reflect the influence of respective DMUs in the construction of the

reference DMU. We denote this problem ”Lack of control for volume of production”3. To be more

specific consider a convex combination of two schools, a very large school A and a very small school

C operating in a very friendly and a very harsh environment, respectively. Let a third school B

operating in an environment characterized by ZB =
1
2 (ZA + ZC) be the one under evaluation. The

BM-model allows the virtual combination 1
2A +

1
2C based on discretionary inputs and outputs to

dominate B since this virtual combination by assumption operates in an environment corresponding

to ZB. The part of output produced under very friendly/very harsh conditions by the dominating

DMU is 1
2YA and 1

2YC , respectively. But 1
2YA >> 1

2YC . Hence, an unreasonably large part of

the dominating output is produced under friendly conditions compared to the relative size of ZA

and ZC . To prevent this situation without going to the extreme represented by the R-model, the

VWBM-model (2) below insists that the share of output produced under friendly conditions by

the dominating DMU is used as a weight on the DMU’s environmental index.4 In other words,

the combined school is only allowed to dominate B if the part of the combined school’s output

produced under harsh conditions is at least as large as the part of B’s output being produced

under such harsh conditions. Hence, with environmental indices defined such that smaller values

implies a more harsh environment, the weighted sum of the environmental indices with weights set

equal to respective shares of total production of output for the reference DMU must not exceed

the socioeconomic index for the DMU under evaluation. The suggested VWBM-model (output

oriented) designed to control for the volume of output has the following structure:5

3 In this paper we focus on produced output as a measure of size. It is left for future research to consider measures
of size based on input consumption.

4Clearly, the weighting of environmental variables is only meaningful in the case of cardinal data. The treatment
of ordinal data is not considered in this paper.

5 It is of interest to observe that the VWBM- and the BM-model will approach each other for increasing sample
size, since facets become smaller which in turn implies a smaller deviation between volume of produced outputs
among the DMUs spanning each facet.
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max θVWBM duals (2.a)

s.t.
Pn

j=1 λjXj ≤ X0 v ∈ Rm
+ (2.b)Pn

j=1 λjYj (Zj − Z0) ≤ 0 g ∈ Rp
+ (2.c)

−
Pn

j=1 λjYj + θVWBMY0 ≤ 0 u ∈ R+ (2.d)Pn
j=1 λj = 1 v0 ∈ R (2.e)

λ ≥ 0

(2)

The key point in this model compared to the R- and BM-model is that the environmental indices Zj

are weighted with the respective shares of total production Yj . The model generates for that reason

in general different results compared to the BM-model, when the DMUs differ in size. The approach

is highly appropriate in instances with environmental conditions defined by the percentage of the

output with certain attributes present.6 For example percentage of parents with college education,

percentage of brick houses in relation to efficiency of fire stations, different banking strategies on

the composition of output imposed on branches from headquarter, demographic characteristics of

households, income distribution, occupational characteristics, educational background either related

to individuals or to the population in different areas, such as school districts or municipalities,

competitive environments, etc.7

The p constraints related to the environmental indices can be rewritten as
Pn

j=1 [
Pn

k=1 λkYk]
−1 λjYjZj ≤

6The collection of additional data allowing for a transformation of indices to quantities is a more straightforward
approach in applications where environmental conditions are not defined in terms of output with certain attributes.

7For illustration, consider an example from (Ruggiero 2004) with three DMUs A, B & C producing one output
Y using one discretionary input X and one non-discretionary input Z measuring harshness of environment. The
[Y,X,Z]−vectors from A,B& C are [10, 10, 20] , [10, 8, 30] and [10, 1, 40]. Let Y be number of (100) students, let
X be number of (10) teachers, and let Z be the percentage of parents with a college education. Using the model
proposed by Ruggeiero all DMUs are efficient. B is efficient, since A cannot dominate B on its own. B is inefficient
in the BM-model and is dominated by the convex combinations 1

2
A+ 1

2
C. In the context of an efficiency evaluation

of schools, a precise interpretation of the convex combination 1
2A+

1
2C is available and the expected Z-index at this

virtual school equals the harshness index of B. The expected number of students at the virtual school 1
2
A+ 1

2
C with

a parent with a college education is 100 + 200 and the corresponding Z-index is 300
1000

× 100 = 30. Hence 1
2
A + 1

2
C

should be allowed to dominate B and this is indeed the outcome of the volume weighted BM-model (VWBM-model)
to be suggested in next section.
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Z0 with the following interpretation: i) Yj measures volume of production at DMUj , ii) λjYj mea-

sures volume of production at DMUj in the virtual DMU serving as reference DMU, and iii)

[
Pn

k=1 λkYk]
−1 λjYj measures the share of volume of production for the virtual DMU produced at

DMUj . Hence, the virtual DMU is required to have a level of each non-discretionary factor that is

less than or equal to the DMU under evaluation with the shares above serving as intensity factors

for Zj .

It was mentioned in the introduction that the idea of a handicap function relates to the structure

of the VWBM-model. To see this, consider the VWBM-model (2) where a weighted combination

of the p environmental constraints (2.c) with non negative weights w = [w1, . . . , wp]
T is added to

the traditional output constraint (2.d):

nX
j=1

λj
£
1−wT (Zj − Z0)

¤
Yj ≥ θVWBMY0 (3)

Clearly, any feasible solution in (2) satisfies (3). Output Yj from DMUj , being part of a

dominating virtual DMU, is multiplied by the factor
£
1− wT (Zj − Z0)

¤
which is greater than one

if Zj < Z0 and smaller than one if Zj > Z0. Let us identify an ”optimal” w by considering the dual

program to (2):

min vTX0 + v0 duals

s.t. vTXj + gT (Zj − Z0)Yj − uYj + v0 ≥ 0,∀j λ ∈ Rn
+

1− uY0 = 0 θ ∈ R

u ≥ 0, v ≥ 0, v0 ∈ R, g ≥ 0

(4)

Let the handicapped output be bYj = bhjYj = £
1− u−1gT (Zj − Z0)

¤
Yj , ∀j (notice bY0 = Y0)

8.

Hence, ”the optimal” w = u−1g and the VWBM-model (4) can be interpreted as a standard BCC-

model on the handicapped input-output vectors
³
Xj , bYj´ ,∀j. The handicap function is seen to be

8For ease of exposition we have omitted non-Archimedians as lower bound on the virtual multipliers. A stringent
approach would require u > 0. Hence u−1 always exists.
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linear9 in outputs. Notice that bhj is determined from two sources: i) the exogenously given vector

(Zj − Z0), and ii) the endogenously determined vector of relative multipliers u−1g ∈ Rp
+. Hence,

the VWBM-model is compatible with the use of an endogenous handicap function. Consider

e.g. a handicapped output from the k’th DMU, bYk, where (Zk − Z0) > 0. In this case bhk ≤ 110
reflecting that the k0th DMU is operating in a more favorable environment than the evaluated DMU

and handicapped output bYk is for that reason given a value strictly less than Yk.

3 The VWBM-model in the case of many inputs and many out-

puts

Let each DMUj ,∀j, produce s different outputs Yj ∈ Rs
+,∀j, using m inputs Xj ∈ Rm

+ ,∀j, in an

environment characterized by p indices, Zj ∈ Rp
+,∀j, and assume that the p environmental indices

relate to the s outputs11. The proposed use of the level of the outputs as weights on these indices

extends to the case with multiple inputs and multiple outputs as follows:

max θVWBM duals

s.t.
Pn

j=1 λjXj ≤ X0 v ∈ Rm
+Pn

j=1 λjYj (Zlj − Zl0) ≤ 0 l = 1, . . . , p wl ∈ Rs
+

−
Pn

j=1 λjYj + θVWBMY0 ≤ 0 u ∈ Rs
+Pn

j=1 λj = 1 u0 ∈ R

λ ≥ 0, θVWBM free

(5)

The ps constraints on environmental characteristics are homogeneous inequalities defining a

9The challenging task of incorporating non-linear handicap functions is left for future research.
10Analysis of assurance regions such as hk = 1− u−1gT (Zj − Z0) ≥ 0 and more generally in the next section

gT (Zj − Z0) ≤ 1 = uTY0 is left for future research.
11The set of environmental indices may well relate to a subset of the outputs, and two different indices may not

relate to the same subset. One must in cases like that select which combinations of the p indices and the s outputs
it is meaningful to include in model (5). To simplify we have included all ps constraints in the presentation of the
model (5).
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cone-ratio in λ-space. The dual to (5) is

min vTX0 + v0

s.t. vTXj +
Pp

l=1

¡
wl
¢T

Yj (Zlj − Zl0)− uTYj + v0 ≥ 0,∀j

1− uTY0 = 0

u ≥ 0, v ≥ 0, v0 ∈ R, wl ≥ 0,∀l

(6)

The corresponding model (2) in the previous section with only one output has p constraints related

to the control of environmental characteristics. In the general model (5) we enforce such constraints

to be satisfied for each of the outputs so that we have p constraints
Pn

j=1 λjyjk (Zj − Z0) ≤ 0 for

each index k. The model can be given an interpretation in terms of the motivating example on

education in schools. Let the set of multiple outputs be defined by the number of students in

various grades. According to (5) the fraction of parents with college education at the reference

school must not exceed this fraction at the evaluated school for any subgroup of students as defined

by grades.

(5) maintains the hypothesis that the p environment indices relate to the s outputs, which in

turn implies a dual structure (6) with handicapped outputs, see Section 2. However, (5) allows

in the case of multiple outputs the s outputs to be handicapped differently. There is no struc-

ture in the model restricting how different outputs are handicapped, which means that the model

includes s independent handicap functions hk (Ykj) ≡ bhkYkj = £
1−

Pp
l=1 u

−1
k wl

k (Zlj − Zl0)
¤
Ykj ,

∀k, specifying how each output k is handicapped.

Two outputs are used in the application below, namely the sum of scores obtained in two (sets

of) tests of students enrolled in secondary education programs in a number of OECD countries

in combination with an environment index on parental background. It will be argued that it is

not meaningful to handicap the two sets of test scores differently based on the variation in the

background of the parents. Imposing the condition that any handicapping should have an equal

impact on the two test-scores requires the additional constraints: wl
k1
/wl

k2
= uk1/uk2 ,∀k1, k2, or
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equivalently that wl = glu, gl ∈ R+, l = 1, . . . , p. Including these constraints in (6) the model can

be rewritten as follows:12

min vTX0 + v0 Lagrange multipliers

s.t. uTYj − gT (Zj − Z0)u
TYj − vTXj − v0 ≤ 0,∀j λ ∈ Rn

+

1− uTY0 = 0 θ ∈ R

u ≥ 0, v ≥ 0, v0 ∈ R, g = [g1, . . . , gp]T ≥ 0

(7)

The solution of model (7) requires a non-linear optimization solver, but an equivalent formula-

tion in terms of a Mixed Integer Linear Program is available, see Appendix. A comparison of (7)

with the corresponding model (4) from section 2 reveals that the endogenous handicap function

with one output
£
1− u−1gT (Zj − Z0)

¤
in this more general model is replaced by

£
1− gT (Zj − Z0)

¤
.

Hence, the interpretation of the VWBM-model (7) as a standard BCC-model on a set of endoge-

nously handicapped input-output vectors is still valid.

Let us trace the primal structure from the Lagrange function for (7). The following character-

istics for an optimal solution to (7) can be derived by the Kuhn-Tucker conditions:

X0 −
Pn

j=1 λjXj ≥ 0 (8.a)Pn
j=1 λj

£
1− gT (Zj − Z0)

¤
Yj − θY0 ≥ 0 (8.b)

−
Pn

j=1 λju
TYj (Zj − Z0) ≥ 0 (8.c)

1−
Pn

j=1 λj = 0 (8.d)

(8)

These conditions require some remarks. Firstly, (8) defines a feasible set in (λ, θ)-space contained

in the feasible set in (5) for any fixed vector g. Secondly, the cone ratio structure in (5) (and in (2))

with the traditional output constraints included but with the intensity variables constrained by

12Another way to argue for this model is to consider facet inducing dual constraints F (x, y,∆z) = uT y−gt∆zuT y−
vTx = 0 and to argue that the marginal rate of substitution between observed outputs must equal the marginal rate

of substitution between handicapped outputs along the facet, i.e. dy2
dy1

= −u1−gt∆zu1
u2−gt∆zu2 = −

(1−gt∆z)
(1−gt∆z)

u1
u2
must be equal

to
d(1−gt∆z)y2
d(1−gt∆z)y1 = −

u1
u2
. This links nicely to the data generating process proposed by (Simar and Wilson 2007).
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environmental cone ratio constraints is in (8) replaced by an endogenous handicap function on the

outputs (8.b). Hence, we do not insist that the reference DMU must produce at least as much as

the evaluated DMU in all output dimensions. We ”only” require that the reference DMU after the

handicapping of outputs produces at least as much as the evaluated DMU. Thirdly, the intensity

variables λj are still constrained by environmental cone ratio constraints (8.c).

4 A target efficiency model and its relation to the 2SR-DEA

model

As mentioned in the introduction it is an extensively used practise in the literature to apply the

two stage approach (2SR-DEA) (Ray 1988)(Ray 1991)(Ray 2004) to control for environmental

differences13. Ignoring the differences in environment in the first stage a set of DEA efficiency

scores θj , j = 1, . . . , n, is obtained. The resulting indices capture both the environmental and the

managerial impact on performance. These scores are in the second stage regressed on a number of

environmental variables Z1, . . . , Zn, Zj ∈ Rp
+. Using a linear regression we maintain a model

θj = β0 + βT1 Zj + εj , j = 1, . . . , n (9)

where εj , j = 1, . . . , n, are the random disturbances, so that E (θ|Zj) = β0 + βT1 Zj defines a

conditional mean of the radial expansion factor θj . (Simar and Wilson 2007) have recently proposed

a coherent Data Generating Process (DGP) that serves as a rationale for this approach and argue

that the correct regression approach based on this DGP is a truncated regression as opposed to the

more commonly used Tobit regression14.

13An extensive list of references to applications of such two stage approaches can be found in (Simar and Wilson
2007).
14An OLS approach is of course problematic since the efficiency scores obtained have a bounded support, either

(0,1] or [1,∞).(Simar and Wilson 2007) are also concerned with the problems that DEA scores are serially correlated,
a phenomenon that creates problems for the use of traditional inference in the regression stage and that the obtained
scores are biased.
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In this section we show that the 2SR-DEA model relates closely to a model termed the target

efficiency DEA model (TE-DEA model), which involves a joint estimation of all n efficiency scores

from the VWBM-model (7) with one additional requirement, namely equal handicapping for

all DMUs. We will formulate one large optimization problem and estimate the efficiency scores

for all DMUs simultanously by minimizing a sum of residuals towards a traditional piecewise linear

envelopment. We will add the requirement that the endogenous parts of the handicap functions15,

i.e. the decision-vectors g of multipliers in (7), must be identical for all DMUs. Hence, the approach

will become an appropriate alternative to the 2SR-DEA with a number of advantages to be discussed

below16.

Both the TE-DEA-model and the 2SR-DEA-model are coherent with the DGP proposed by

(Simar and Wilson 2007)17, since the VWBM-model works through a set of handicap functions

depending on environment. Hence, for any given DMU under evaluation all potential DMUs con-

tributing to the virtual dominating DMU will have their output vectors adjusted through a radial

contraction or expansion depending on the difference in harshness of environment.

Consider an output vector Yj from DMUj . The second stage 2SR-DEA model (9) predicts, using

the conditional mean of the radial expansion factor, that this output vector will be projected to the

frontier by a factor
¡
β0 + βT1 Zj

¢
Yj . Clearly, if DMUj was operating in the same environment as

DMUl, l 6= j, we would expect to see this output vector projected to the frontier as
¡
β0 + βT1 Zl

¢
Yj .

On the other hand, with Zj 6= Zl the difference between the two projections can be interpreted as

15Without this additional requirement this large optimization model is simply n separable optimization problems,
but adding the requirement of one common g implies a non-separable nonparametric estimation of this common
handicap function and all scores.
16The same idea can be applied to the classical BM-model (Banker and Morey 1986). Solve an estimation of all BM-

scores using a simultaneous estimation of n dual programs to the BM-model in (1) with a set of linking constraints.
These constraints must force each environmental virtual multiplier relative to all other virtual multipliers to be equal
across the set of DMUs.
17An important question is of course whether or not the DGP described in (Simar and Wilson 2007) is reasonable.

In this formulation, the environmental variables influence the mean and variance of the inefficiency process, but not
the boundary of its support. A number of different alternatives are discussed in ((Coelli, Rao and Battese 1998),
pp. 166-171). Among these alternatives are the BM- and the R-model which are coherent with a DGP where the
boundary of the production possibility set is dependent on the environment.
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how much the output vector of DMUj should be handicapped in order to enter in a fair (environment

being equal) relative efficiency analysis of DMUl. Hence, the 2SR-DEA is consistent with a handicap

function given by h (Yj) ≡ bhYj = £
1 + βT1 (Zj − Zl)

¤
Yj . Consider the following example with all

DMUs using the same amount of input. Consider two output vectors Yj = (1, 4) and Yl = (2, 1) from

the j’th and the l’th DMU working under very different environment with Zj = 80 and Zl = 30.

Let the estimates from the second-stage regression be bβ0 = 2.4, bβ1 = −0.01 and assume that a
BCC-model ignoring the differences in environment based on the full sample of DMUs provides

output oriented efficiency scores θj = 2 and θl = 3. The expected difference between the efficiency

of DMUj working in environments Zj and Zl respectively is E (θ|Zj)−E (θ|Zl) = β1 (Zj − Zl) and

DMUj ’th output vector (1, 4) should be handicapped by a factor 1 + β1 (Zj − Zl) = 0.5.

Let us formally specify the target efficiency DEA model (TE-DEA model) as the joint estimation

of all n efficiency scores from the VWBM-model (7) with one additional requirement, namely equal

handicapping for all DMUs. The following program provides a joint estimation of all scores

from the VWBM-model:

min
P

l∈N vTl Xl + v0l (≡
P

j∈N (1 + sjj))

s.t. uTl
£
1− gTl (Zj − Zl)

¤
Yj − vTl Xj − v0l + sjl = 0, j ∈ N, l ∈ N

1− uTl Yl = 0, l ∈ N

ul ≥ 0, vl ≥ 0, v0l ∈ R, gl = [g1l, . . . , gpl]T ≥ 0,∀l sjl ≥ 0,∀j, l

(10)

where N = {1, . . . , n}. A comparison of the handicap functions in (10) vs. 2SR-DEA reveals that a

requirement of equal size of the endogenous part of the handicap function is imposed in 2SR-DEA

but not in (10), where each DMU ”can pick” its own vector gl, l ∈ N . Hence, TE-DEA can be

made more comparable with 2SR-DEA by imposing the following restrictions in (10) enforcing

equal decision vectors gl for all DMUs:

gl = g, l = 1, . . . , n (11)
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The resulting model [(10),(11)] is the TE-DEA-model. This model provides a joint DEA es-

timation of target (or managerial) efficiency score θTargetj and a within DEA estimation of a

common environment impact vector g consistent with the DGP above. Obviously, θTargetj is

the value of the j’th component in the optimal objective function in the TE-DEA model, i.e.

θTargetj ≡
³
v∗j

´T
Xj + v∗0j , j = 1, . . . , n where (v∗j , v

∗
0j) are the optimal decision vectors from

[(10),(11)].

The TE-DEA model is an attractive alternative to the 2SR-DEA-model, since there are several

well known problems related to the use of 2SR-DEA that can be avoided by using [(10),(11)].

(Ray 2004) and (Coelli et al. 1998) summarize some of these problems as i) a choice of functional

form for the regression is involved, ii) the need for a Tobit/Truncated regression since the scores have

a bounded support, either [0,1] or [1,∞), iii) difficulties getting a coherent managerial inefficiency

measure from the estimated residuals, since the residuals have a zero mean, and iv) the results are

likely to be biased if the variables used in the first stage are highly correlated with the second-stage

variables.

The TE-DEA model does not rely on a specific functional form and a target efficiency score

θTargetj is easily provided. In addition, an environment efficiency score θEnvj is available by a de-

composition of the overall technical efficiency into target and environmental efficiency defining θEnvj

from: θEnvj × θTargetj ≡ θBCCj , where θBCCj is the score obtained from the BCC-model ignoring the

environmental information.

Comparing the BCC-model and the BM-model (where environmental characteristics are in-

cluded in the second but not in the first) implies by structure (in an output oriented model) that

the BM-scores are at least as large as the BCC-scores. Hence, controlling for environmental differ-

ences using (1) implies loss of discrimination power. However, comparing the BCC-model and the

TE-DEA-model (with environment included in the second but not in the first) does not by struc-

ture provide any ordering on the obtained scores. BCC-efficiency does not imply target efficiency,
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and it is indeed possible that a BCC-undominated DMU in an output-oriented model is given an

environmental index above one reflecting inefficient performance in a rather friendly environment.

This phenomenon is illustrated in the application in the next section.

((Ray 2004), page 105) argues that the requirement of a priori decisions on whether an envi-

ronmental variable has a favorable or an unfavorable impact on production is an inherent weakness

of models characterized by an inclusion of environmental variables as non-discretionary inputs or

outputs. One has to choose to whether to include the non-discretionaries as inputs or outputs. By

contrast, the direction of impact is determined endogenously in 2SR-DEA. However, as observed by

((Coelli et al. 1998), page 168) the problem can be remedied by an inclusion of non-discretionaries

in terms of equality constraints, which allows for an endogenous determination of direction of im-

pact . This idea translates in relation to the TE-DEA- and the VWBM-model into using the vector

g as decision variables unconstrained in sign and letting the estimation procedure determine the

direction of influence.

5 A cross country comparison of the OECD educational efficiency

of the lower and upper secondary educations

Primary and secondary education have received much of attention in recent years. In response

to the need for cross-country comparisons on student performance OECD launched in 1997 the

so-called PISA program (PISA is the acronym for Program for International Student Assessment).

Performance of students from 40 countries was compared by an evaluation using the same ques-

tionaires. In relation to the models discussed in this paper we will apply the various models to

data from the PISA 2003 project to perform a cross country comparison of the OECD educational

efficiency of the lower and upper secondary educations. The performance of 15-year-olds on the

PISA reading, mathematics, problem solving, and science literacy scales in 2003 will be at focus.

We will use two outputs: the average of the three scores for mathematics, problem solving,
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and science literacy scales and the score for the reading literacy scale. The data describing the

performance of students (the output) in the form of a mean score on the PISA reading, mathematics,

problem solving and science literacy scales is extracted from (OECD 2004b)(OECD 2004c). The

three different scores relating to mathematics, science and problem solving are averaged into one

index. The scores reported are mean scores and are not quite applicable for an efficiency analysis

comparing the performance across countries of very different size. We ”de-normalize” these mean

scores by multiplying scores with the number of students enrolled in lower and upper secondary

education, all educational programmes, full-time and part-time. We use an average enrollment

from 2000-2002 extracted from the educational database at www.oecd.org.

Two inputs are used in the application, namely ”Total intended instruction time in hours

per year for 12 to 14-years-old students” and ”Students per teaching staff in public and private

institutions, secondary educations”, (see Table D1.1 and Table D2.2 in (OECD 2002-2004a)). An

average over the three years 2000-2002 prior to the PISA analysis of these inputs are used after

being converted to absolute amounts of teachers and instruction hours by multiplying with the

average enrollment in the lower and upper secondary educations in the period 2000-200218. As

environmental variable we use Parental Education Attainment 2001-2002 defined as the population

that has attained at least upper secondary education, aged 35-44 average for 2001-2002 (OECD

2002-2004a), Tables A1.2 and A2.2.

The data and some summary statistics are included in the appendix. Table 1 presents the

efficiency scores from this application. Columns 2-5 contain for each of 27 countries the scores from

the R-, the VWBM-, the BM-model and finally from a BCC-model without the environmental

variable.
18The PISA scores from 2003 were given to 15 year old students. We use the student-teacher ratio from the previous

3 years as a measure of the possible teacher impact on the performance measured by these PISA scores. We aim at
an efficiency analysis of the lower and upper secondary educations. Hence, we multiply all the PISA scores (means)
and the teacher-student ratio by the average (2000-2002) enrollment in lower and upper secondary educations. This
procedure requires an assumption, that the performance in 2003 of the 15 year old students are representative for
the performance of all 5 grades in the secondary education, i.e. for similar performance in the previous 5 years.
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Insert Table 1 here.

Table A3 in appendix presents the dominating DMUs from the analysis in the VWBM- and the

BM-model. A comparison of columns 2-4 in Table 1 reveals that i) the R-model always provides

the best (lowest) score of the three models, ii) if scores from the VWBM- and the BM-model differ

then for almost all countries the VWBM-model provides the best (lowest) score compared to the

BM-model, and iii) in one case (Thailand) the BM-model provides a slightly better score than the

VWBM-model. This general pattern is what we would expect. If we consider a dominating DMU

consisting partly of a DMU with low output production operating in a harsh environment and a

DMU with a large output production operating in a favorable environment, then we would expect

that the solution provided from the BM-model is no longer feasible when the weights λj are replaced

with λVWBM
j = λju

TYj

hPn
j=1 λj

¡
uTYj

¢i−1
. The introduction of the volume of output in the envi-

ronmental constraint implies that the weight becomes much larger on the environmental index from

the large DMU operating in a favorable environment, which tends to increase the resulting convex

combination of socio-index above the level of the index of the DMU being evaluated. On the other

hand, if we consider a dominating DMU consisting partly of a DMU with low output production

operating in a favorable environment and a DMU with a large output production operating in a

harsh environment, then we would expect that the solution provided by the BM-model remains

feasible when the weights λj are replaced with λVWBM
j .

Consider the scores from the VWBM- and the BM-model for Italy being dominated by primarily

Japan (large output) and Turkey (smaller output). Japan is operating in a much more favorable

environment compared to Turkey. Imposing the weights (0.345, 0.631) from the BM-optimal solu-

tion on the λ-values in the VWBM-model we get (0.609,0.296) which implies an output weighted

environmental score of 0.70, which is way above the socio-index for Italy (0.49). Hence, the size

of Japan is prohibitive when a dominating DMU is to be formed in the VWBM-model and Korea

is substituted for Japan in the solution in the VWBM-model. Korea is smaller than Japan as

measured by level of output, and the results is a lower VWBM-efficiency score compared to the
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BM-score.

Consider the scores from the VWBM- and the BM-model for Thailand being dominated primar-

ily by Mexico and Portugal in the BM-model. Mexico is very large and operates in a rather harsh

environment Compared to Portugal. Hence, we are in the opposite situation compared to the Italy-

case and would expect the BM-solution to be feasible in the VWBM-model. Indeed, imposing the

dominance solution from the BM-model into the VWBM-model, we get that the output weighted

socio-index of the dominating combination is 21.7, which is nearly feasible (Thailand index is 19.0).

Insert Table 2 here

Now let us illustrate the performance of the TE-DEA-model with a common handicap function

and its relation to the 2SR-DEA-model. Table 2 presents the results from the various models.

Column (1) contains the BCC-scores, column (2) the scores from the VWBM-model (7) and column

(3) the corresponding endogenous handicap value g, which here varies over the DMUs. Column (5)

contains the scores from the TE-DEA-model with a common handicap function, [(10),(11)], and

the common g is estimated to 4.24× 10−3. The scores in column (5) reflect managerial efficiency

when we control for environmental differences using a common handicap function. Defining the

environmental impact in column (4) as the ratio of the BCC index and the TE-DEA-index, we get

a decomposition of the BCC-score into an environmental and a managerial effect.

Notice that the VWBM-indices in column (2) by construction are lesser than or equal to the

BCC-indices in (1), but the indices in column (5) do not posses this characteristic. For Czech,

New Zealand, Norway and Slovak we get a higher index in the TE-DEA-model compared to the

BCC-index, a phenomenon that is reflected by an index below one in column (4). Two of these

countries are efficient in the BCC-model, but the estimated common handicap function indicates

that they should be able to expand output. Inspecting column (3) one observes the obvious fact

that these four countries may maintain their BCC score by setting g = 0. But an estimated common

g = 4.24×10−3 based on a joint minimization of the sum of residuals implies that New Zealand and

Norway become slightly inefficient and Czech and Slovak - with BCC-scores of 1.150 and 1.219 - get
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slightly higher scores with the common handicap function imposed. These four countries share a

characteristic, namely rather high values of the environmental index. Hence these countries operate

in very friendly environments, but obtain their efficiency score by insisting on g = 0. Although

these DMUs are on the boundary of the convex hull estimator of the BCC-production possibility

set, the estimated environmental effect implies that the relatively friendly environment of these

DMUs should allow for a better performance than observed.

The following estimation allows for a comparison with the 2SR-DEA-model. The BCC scores

have been regressed on the environmental indices using a truncated regression model with a lower

bound of one on the independent variable. Following Ray (1998,2004), we use the residuals as

”measures” of managerial inefficiency. To facilitate a comparison of TE-DEA and 2SR-DEA an

additive shift of 0.19 of the residual is used. This shift factor is determined such that the average

environmental index from the two models (in columns 4 and 8) are of the same magnitude. Hence

the 2SR-DEA environmental index in column (8) is the sum of the shifted residuals and the BCC

indices19.

A regression on the full sample implies a very small (and insignificant) beta, and as a consequence

there is very little variation in the environment indices in column (8). Hence, if we believe in these

results, almost all variation in the BCC-indices is due to managerial inefficiency. However, this

does not seem to be a reasonable conclusion, since it is caused by another problem related to

the use of 2SR-DEA. Some of the included countries, most prominently Mexico and Uruguay, get

a BCC score equal to one because their input-output vector in some sense specialize, and not

necessarily because they perform ”well”. Mexico is characterized by a very low teacher to student

ratio compared to the rest of the countries. Uruguay is the smallest DMU and is therefore deemed

19This ad hoc procedure provides the environmental index as the conditional mean of the BCC score added
to the shift factor. The 2SR_DEA does not provide any estimation of the level of the environmental impact in
a decomposition of the BCC-score into an environmental and a managerial part. This is really an econometric
identification problem since no information is provided on how to disentangle the estimated intercept term into a part
related to the environmental and a part related to the managerial impact. Notice that the estimation using the TE-
DEA-model [(10),(11)] with a common handicap function provides all the information needed for the decomposition
of the overall index into these two aspects. Ray suggests a shift of the residuals by adding the smallest residual.
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efficient in a BCC-model. To get comparable results from the 2SR-DEA-model we provide an

additional experiment by deleting these observations from the regression (together with four other

rather special countries). On this reduced sample we get more meaningful results with a numerically

larger beta (−0.00312). The same procedure as above is used to get the BCC index decomposed

based on shifted residuals from this regression. The results are included in columns (6) and (7).

Notice the rather high degree of agreement between the scores in columns (4) and (6) and the

agreement between −β = 3.13× 10−3 and g = 4.24× 10−3 from [(10),(11)].

6 Summary and conclusion

In this paper we propose a target efficiency DEA-model that allows for the inclusion of environmen-

tal variables in a one stage model without the decrease in discrimination power that characterizes

the Banker Morey model. The model does not suffer from the problems of the two stage model

(Ray 1988) and a decomposition of the overall technical efficiency into target and environmental

efficiency follows from a comparison with the BCC-model.

Within the DEA literature designing efficiency models that control for environmental char-

acteristics is typically done using one of two approaches: i) The BM-model, which includes the

environmental variables directly into the DEA-model as non-discretionary variables, or ii) a two

stage regression model proposed by Ray in 1988, where the first stage consists of a DEA estimation

ignoring environmental differences and the second stage of a regression of the obtained scores on

environmental variables. The target efficiency model is an attractive alternative to the two stage

regression model. Contrary to the Banker-Morey model both models allow for the inclusion of

environmental variables without significant loss of discriminatory power. Estimation of the target

efficiency scores requires a solution of one large non-linear optimization problem providing both a

joint estimation of target efficiency scores for all DMUs and an estimation of a single common

scalar expressing the environmental impact on efficiency for each environmental effect.

The general idea behind the TE-DEA-model is the formulation of the VWBM-model combined
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with a simultaneous estimation of all scores and restrictions on the choice of ”impact from environ-

ment”, such that only a common effect for each environmental characteristic is allowed. Hence, a

maintained hypothesis of a common impact from each of the included environmental characteristics

over the set of DMUs is imposed. The impact from environment works only through restriction

of feasible radial expansions or contractions of output and is independent of each DMU’s choice of

input or output mix. The same approach is used in (Simar and Wilson 2007) to derive a coherent

data generating process for the two stage model.20 In our formulation of the TE-DEA-model the

environmental impact works through endogenous handicap functions, which has been shown to

be accomplished by the underlying VWBM-model. By weighting the environment indices in the

convex combinations used in the BM-model with the value of output we get a model with three

desirable characteristics:

• The VWBM-model controls for the volume of output when determining whether a potential

dominating convex combination of inputs and outputs from a virtual DMU is allowed as

dominating unit in the evaluation of any specific DMU.

• The VWBM-model makes the environmental impact work through an endogenous increase/decrease

of produced output by a linear handicap function. The evaluated DMU is, as in standard

DEA, allowed to pick the virtual multipliers along with the endogenous part of the handicap

function, such that the estimated score is as close to one as possible. Evaluating each DMU

separately in this flexible setup implies that a dependence of the handicap function on the

chosen input and output mix is reflected in the estimated scores.

• Since environmental impact works through radial modifications of the output vectors, the

framework allows for a simultaneous estimation of all scores, where we insist upon a common

endogenous radial increase/decrease of the produced output. This approach is the basic

20 It is not obvious that the impact from the environment in general works independently of the choice of input and
output mix. Input or output mix may in some cases have significant impact on how environment contracts or expands
output. If this is the case, then using the TE-DEA model will provide biased results. This problem corresponds to
maintaining an assumption of a Hick-neutral technical progress in a situation where the movement of the frontier
over time is different for different output mixes.
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foundation for the proposed TE-DEA-model. Observe that the handicap function in the

TE-DEA-model works independently of the choice of input and output mix.

An application of the general models on a data set comparing the education production in a

number of OECD countries has been presented. Two outputs, two inputs and one environmental

variable have been included in the analysis. It has been illustrated that the inclusion of an envi-

ronmental variable in TE-DEA does not necessarily imply that the discrimination power decreases.

Two BCC-efficient countries operating in very friendly environments turn out to be TE-DEA in-

efficient. They obtain a score equal to one in the VWBM-model by insisting upon no effect from

environment. Hence, comparing the BCC and the TE-DEA-model does not by structure provide

any ordering on the obtained scores. BCC-efficiency does not imply target efficiency.
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Country R-model VW-BM-model BM-model BCC-model 
Australia  1.0099  1.1367  1.1939  1.2189 
Austria  1.3086  1.4438  1.4450  1.4646 
Belgium  1.0522  1.1935  1.2247  1.2835 
Czech Republic  1.1502  1.1502  1.1502  1.1502 
Denmark  1.0024  1.1280  1.1337  1.1349 
Finland  1  1  1  1 
France  1.0293  1.1206  1.172  1.2304 
Germany  1  1.0208  1.0264  1.0396 
Greece  1.1837  1.3852  1.4203  1.5511 
Hungary  1.1473  1.2308  1.2348  1.2589 
Ireland  1  1  1  1 
Italy  1  1.1031  1.1945  1.3053 
Japan  1  1  1  1 
Korea  1  1  1  1 
Mexico  1  1  1  1 
Netherlands  1  1.1739  1.1872  1.1948 
New Zealand  1  1  1  1 
Norway  1  1  1  1 
Portugal  1  1  1  1.2803 
Slovak Republic  1.2189  1.2189  1.2189  1.2189 
Spain  1  1.0121  1.1021  1.1728 
Sweden  1  1  1  1 
Turkey  1  1  1  1.2252 
Brazil  1  1  1  1 
Indonesia  1  1  1  1.1936 
Thailand  1  1.0344  1.0065  1.3072 
Uruguay  1  1  1  1 

 

Table 1. The efficiency scores from this application.
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     Common g: 
g = 0.00425

Redueced sample 
regression 

beta = -0.00312 

Full sample  
regression 

beta = -0.00084 
 

BCC-model 
(1) 

VW-BM-
model 

(2) 

DMU 
specific g 

(3) 

Environment 
index TE-

DEA- model 
(4)=(1)/(5) 

Managerial 
index 

TE-DEA-
model 

(5) 

Environment 
index 2SR-

DEA 
(6) 

Managerial 
index 2SR-

DEA 
(7)=(1)/(6) 

Environment 
index 2SR-

DEA 
(8) 

Managerial 
index 2SR-

DEA 
(9)=(1)/(8) 

Australia  1.219  1.137  0.00395  1.068  1.142  1.061  1.149  1.057  1.153 
Austria  1.465  1.444  0.00430  1.014  1.444  0.993  1.475  1.042  1.406 
Belgium  1.284  1.194  0.00387  1.064  1.206  1.049  1.223  1.055  1.217 
Czech Republic  1.150  1.150  0  0.974  1.181  0.965  1.192  1.036  1.110 
Denmark  1.135  1.128  0.00546  1.005  1.129  0.998  1.137  1.043  1.088 
Finland  1  1  0  1  1  0.984  1.016  1.040  0.962 
France  1.230  1.121  0.00394  1.098  1.121  1.039  1.185  1.052  1.169 
Germany  1.040  1.021  0.00400  1.018  1.022  0.981  1.060  1.039  1.000 
Greece  1.551  1.385  0.00434  1.118  1.387  1.066  1.455  1.059  1.465 
Hungary  1.259  1.231  0.00409  1.022  1.232  1.004  1.254  1.044  1.205 
Ireland  1  1  0  1  1  1.052  0.950  1.055  0.948 
Italy  1.305  1.103  0.00480  1.167  1.119  1.099  1.188  1.066  1.224 
Japan  1  1  0  1  1  0.954  1.048  1.033  0.968 
Korea  1  1  0  1  1  1.006  0.994  1.045  0.957 
Mexico  1  1  0  1  1  1.208  0.828  1.092  0.915 
Netherlands  1.195  1.174  0.00545  1.016  1.176  1.032  1.158  1.051  1.137 
New Zealand  1  1  0  0.974  1.027  1.001  0.999  1.044  0.958 
Norway  1  1  0  0.932  1.073  0.964  1.037  1.036  0.966 
Portugal  1.280  1  0.00330  1.280  1  1.194  1.072  1.089  1.176 
Slovak Republic  1.219  1.219  0  0.972  1.255  0.966  1.262  1.036  1.177 
Spain  1.173  1.012  0.00470  1.149  1.021  1.112  1.055  1.069  1.097 
Sweden  1  1  0  1  1  0.977  1.023  1.039  0.963 
Turkey  1.225  1  0.00340  1.225  1  1.179  1.040  1.085  1.129 
Brazil  1  1  0  1  1  1.073  0.932  1.060  0.943 
Indonesia  1.194  1  0.00794  1.095  1.090  1.185  1.007  1.087  1.098 
Thailand  1.307  1.034  0.00825  1.183  1.105  1.197  1.092  1.090  1.200 
Uruguay  1  1  0  1  1  1.145  0.873  1.077  0.928 
Average  1.157  1.087   1.051   1.055   1.056  

 

Table 2. The efficiency scores from the TE-DEA-model with a common handicap function, from

the 2SR-DEA based on the full and a reduced sample
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Appendix 1: The data set:
 
 PISA score 

in reading 
(in 109) 

(1)  

Pisa score 
others 

(in 109) 
(2) 

School hours 
per year 
(in 109) 

(3) 

Teachers 
(in 107) 

 
(4)   

Parental 
education 

 
(5)  

Enrollment 
 
 

(6)  

Hours per 
year per 
student  

(7) 

Teachers per 
100 students 

 
(8)  

Public to 
total 

expenditure 
(9)  

Australia  1.3316  1.3340  2.5943  2.0274  61.1  2534273  1023.7  8  84.6 
Austria  0.3686  0.3762  0.8056  0.7511  81.9  751125  1072.5  10  96 
Belgium  0.5631  0.5788  1.1163  1.1662  64.6  1110707  1005  10.5  94.4 
Czech Republic  0.4821  0.5119  0.8556  0.7401  90.5  986834  867  7.5  91.9 
Denmark  0.2137  0.2179  0.3733  0.3386  80.5  434063  860  7.8  97.9 
Finland  0.2675  0.2691  0.3972  0.3593  84.7  492133  807  7.3  99.3 
France  2.9203  3.0235  6.1032  4.7672  67.9  5885441  1037  8.1  93 
Germany  4.1208  4.2457  7.4306  5.5352  85.6  8386651  886  6.6  80.8 
Greece  0.3525  0.3419  0.7941  0.7538  59.4  746348  1064  10.1  91.6 
Hungary  0.4855  0.5019  0.9320  0.8766  78.6  1007601  925  8.7  92.9 
Ireland  0.1701  0.1657  0.2957  0.2309  63.7  329905  896.3  7  95.7 
Italy  2.1236  2.1156  4.5538  4.3752  49.4  4464498  1020  9.8  97.9 
Japan  4.2807  4.6667  7.5197  5.7580  94  8593992  875  6.7  91.6 
Korea  2.0275  2.0640  3.2913  1.9360  77.8  3796167  867  5.1  78.5 
Mexico  3.7500  3.6728 10.9472  3.0959  15.6  9381408  1166.9  3.3  86.7 
Netherlands  0.7150  0.7349  1.4866  0.8500  69.9  1393373  1066.9  6.1  94.8 
New Zealand  0.2393  0.2412  0.4371  0.2799  79.6  458811  952.6  6.1  0 
Norway  0.1857  0.1820  0.3072  0.3567  90.8  371539  826.8  9.6  99.2 
Portugal  0.3887  0.3807  0.7175  0.9359  20  813810  881.7  11.5  99.9 
Slovak Republic  0.3130  0.3302  0.5913  0.4937  90.3  667154  886.3  7.4  98.1 
Spain  1.5275  1.5411  2.8837  2.7337  45.3  3178670  907.2  8.6  93.1 
Sweden  0.4794  0.4735  0.6907  0.6805  86.8  932234  740.9  7.3  99.9 
Turkey  1.2170  1.1639  2.3218  1.5731  24.7  2759831  841.3  5.7  0 
Brazil 10.4084  9.6181 20.6723 14.2122  57.3 25840339  800  5.5  0 
Indonesia  5.3964  5.2618 18.0169  7.7781  22.7 14141985  1274  5.5  76.4 
Thailand  2.3450  2.3660  6.5171  3.1273  19  5584504  1167  5.6  97.8 
Uruguay  0.1308  0.1277  0.2750  0.2078  35.1  301230  913  6.9  93.5 

 
Table A1. The data set. The two inputs (3) and (4) are instruction hours

per year and number of teachers. The two outputs (1) and (2) are enrolled
students weighted by the PISA Reading Score and by the average PISA score
related to the natural science questionnaires.
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 Reading 

score 
Average of 3 

scores 

Total 
intended 

instruction 
time per year

Size of 
teaching 

staff 

Parental 
education 
attainment Enrollment

 Units: 109 Units: 109 Units: 109 Units: 107   
Mean  1.733467  1.722475  3.81211  2.442237  62.84  3901653 
Minimum  0.130779  0.127678 0.2775023  0.207848  15.6  301229.7 
Maximum  10.40839  9.618079  20.67227  14.21219  94.0  25840339 
Range  10.27761  9.490401  20.39725  14.00434  78.4  25539109 
 
Table A2 — Summary statistics of our data sample. The two inputs are

instruction hours per year and number of teachers. The two outputs are enrolled
students weighted by the PISA Reading Score and by the average PISA score
related to the natural science questionnaires.

 
Country Dominating units, VW-BM model Dominating units, BM model 
Australia (Korea Portugal Turkey) (Japan Korea Portugal) 
Austria (Korea Portugal Sweden Turkey) (Korea Portugal Sweden Uruguay) 
Belgium (Korea Portugal Sweden) (Korea Portugal Sweden) 
Czech Republic (Finland Korea Sweden) (Finland Korea Sweden) 
Denmark (Finland Ireland Portugal) (Finland Ireland Norway) 
Finland   
France (Japan Korea Brazil) (Japan Turkey Brazil) 
Germany (Japan Korea Brazil) (Japan Mexico Turkey Brazil) 
Greece (Finland Portugal Sweden Turkey) (Korea Portugal Sweden Uruguay) 
Hungary (Korea Portugal Sweden) (Korea Portugal Sweden) 
Ireland   
Italy (Korea (.198) Turkey (.691) Brazil (.111)) (Japan (.345) Turkey (.631) Brazil (.024)) 
Japan   
Korea   
Mexico   
Netherlands (Ireland Korea Mexico Turkey) (Korea Mexico New Zealand Uruguay 
New Zealand   
Norway   
Portugal   
Slovak Republic (Finland Korea Sweden) (Finland Korea Sweden) 
Spain (Korea Turkey Brazil) (Japan Korea Portugal) 
Sweden   
Turkey   
Brazil   
Indonesia   
Thailand (Mexico (.473) Turkey (.521) Brazil (.006)) (Mexico (.503) Portugal (.464) Brazil (.033)) 
Uruguay   
 
 
 
Table A3. The dominating DMUs from the analysis in the volume weighted

BM- and the BM-model.
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Appendix 2: Implementation of the
model (a Mixed Integer Linear Program-
ming model).
With more than one output, as illustrated in the application, we have to use

the more general model (7) which clearly is nonlinear and not even a convex
optimization model. Hence, we can not be sure that solving the model by a
non-linear solver will provide a global maximum. To overcome this problem we
reformulate (7) as a MILP1. To illustrate the general idea we will focus on the
situation with only one environmental non-discretionary variable (p = 1, g ∈
R+) :

min vtXj0 + v0
s.t. utYj − vtXj − v0 − wtYj (Zj − Zjo) ≤ 0 ∀j (1.1)

utYj0 = 103 (1.2)
wkj −

P50
j=1 ewkj = 0 k = 1, . . . , s (1.3)ewkj − bjMkj ≤ 0 (1.4)ewkj − (1− bj) (−Mkj)− uk × 2(j−40) ≥ 0 j = 1, . . . , 50,∀k (1.5)ewkj − uk ∗ 2(j−40) ≤ 0 (1.6)

u ∈ Rs+, v ∈ Rm+ , g ∈ R+, v0 ∈ R ewkj ≥ 0, bj ∈ {0, 1}∀j
(1)

where Mkj is a large (but not too large) number, ∀k, j. The product of the
decision variables gutYj in (7) is here substituted for wtYj . The binary structure
implies that

wkj =
P50

j=1 ewkj and ewkj =

½
2(j−40)uk if bj = 1

0 if bj = 0

Hence, we get an optimal value of g from the MILP as g∗ =
P50

j=1 b
∗
j2
(j−40).

The implications of the two possible values of binaries bj follows from:

Constraints derived from (1.4-6) Combined effect
bj = 0 =⇒ ewkj ≤ 0 ∧ ewkj ≥ (−Mkj) + uk × 2(j−40) ∧ ewkj ≤ uk ∗ 2(j−40) ewkj = 0

bj = 1 =⇒ ewkj ≤Mkj ∧ ewkj ≥ uk × 2(j−40) ∧ ewkj ≤ uk ∗ 2(j−40) ewkj = uk ∗ 2(j−40)

Solving (1) we know for sure that we have an optimal (or near optimal
solution). However, computational experience shows that it in certain cases is
difficult to get the correct optimal values (and dual values) to (7) by solving (1).
Hence, we recommend that (1) is solved to get a near optimal solution, which

1This MILP is formulated using a reformulation from Williams, H. P.: "Model Building in
Mathematical Programming". 2. edition. Wiley. New York 1989, page 197)
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is given as initial solution to a nonlinear solver, which then quickly determines
a precise solution satisfying the Kuhn Tucker conditions to (7).
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