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Abstract

If a TU game is extendable, then its core is a stable set. However, there are many TU
games with a stable core that are not extendable. A coalition is vital if there exists some
core element x such that none of the proper subcoalitions is effective for x. It is exact if it
is effective for some core element. If all coalitions that are vital and exact are extendable,
then the game has a stable core. It is shown that the contrary is also valid for assignment
games, for simple flow games, and for minimum coloring games.
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1 Introduction

The core of a cooperative game is called stable if it is a stable set in the sense of von Neumann

and Morgenstern (1953). In this paper we restrict out attention to TU games. Several sufficient

conditions for core stability may be found in the literature. For details see, e.g., van Gellekom,

Potters, and Reijnierse (1999). A weak and simple sufficient condition, introduced by Kikuta

and Shapley (1986) is called extendability. A TU game is extendable if each core element of

any subgame may be extended to a core element of the entire game. The main part of the

present paper is devoted to relaxing extendability in such a way that the modified extendability

properties (1) are still sufficient conditions and (2) become necessary conditions for core stability
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when restricting the attention to some nontrivial important classes of games. We show that the

game has a stable core if certain coalitions are extendable, namely those that are vital in the

sense of Gillies (1959) and exact in the sense of Shapley (1971). For some classes of games, e.g.,

for the class of symmetric games (see Biswas, Parthasarathy, Potters, and Voorneveld (1999)),

necessary and sufficient conditions for core stability have been found. We show that vital-

exact extendability is also a necessary condition for core stability for three important classes

of games: Assignment games, simple flow games, and minimum coloring games. Moreover, our

approach enables us to reprove two characterization results of Solymosi and Raghavan (2001)

and Bietenhader and Okamoto (2006) in a simple way.

The paper is organized as follows. In Section 2 the basic notation and the relevant definitions

are presented and some relevant well-known results are recalled. Section 3 is devoted to three

new extendability concepts. Theorem 3.3 states that the new variants of extendability are still

sufficient for core stability. By means of examples it is shown that the modified conditions are

weaker than extendability but still not necessary for core stability. Some properties of the new

conditions are also discussed. Subsection 3.1 is devoted to the proof of Theorem 3.3 and in

Subsection 3.2 it turns out that, if the vital and exact coalitions exhibit any of two additional

properties (see Theorem 3.8 and Corollary 3.12), then the relaxed extendability condition is

necessary for core stability. Section 4 is devoted to three classes of games that have an easy

characterization of core stability. It is shown that the relaxed extendability condition is a

necessary condition for core stability in these three cases. Also, in the case of minimum coloring

games, the well-known characterization result is generalized.

2 Preliminaries

In this section we recall definitions of some relevant concepts and well-known results that may

be found in von Neumann and Morgenstern (1953) or Gillies (1959) unless otherwise specified.

A (cooperative TU) game is a pair (N, v) such that ∅ 6= N is finite and v : 2N → R, v(∅) = 0.

Let (N, v) be a game. For S ⊆ N we denote by RS the set of all real functions on S. So RS is the

|S|-dimensional Euclidean space. (Here and in the sequel, if D is a finite set, then |D| denotes

the cardinality of D.) If x, y ∈ RS , then we write x ≥ y if xi ≥ yi for all i ∈ S. Moreover, we

write x > y if x ≥ y and x 6= y and we write x � y if xi > yi for all i ∈ S.

Let X(N, v) = {x ∈ RN | x(N) = v(N)} denote the set of Pareto optimal allocations (preim-

putations) of (N, v). We use x(S) =
∑

i∈S xi (x(∅) = 0) for every S ∈ 2N and every x ∈ RN .

Additionally, xS denotes the restriction of x to S, i.e. xS = (xi)i∈S .
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The core of (N, v), C(N, v), is given by

C(N, v) = {x ∈ X(N, v) | x(S) ≥ v(S) ∀S ⊆ N}.

The set of imputations of (N, v), I(N, v), is I(N, v) = {x ∈ X(N, v) | xi ≥ v({i}) ∀i ∈ N}.

A coalition (in N) is a nonempty subset of N . A subgame of (N, v) is a game (T, vT ) where T is

a coalition and vT (S) = v(S) for all S ⊆ T . The subgame (T, vT ) will also be denoted by (T, v).

Let x, y ∈ RN and S ∈ 2N \{∅}. We say that x dominates y via S (at (N, v)), written x domS y,

if x(S) ≤ v(S) and xS � yS . Also, we define x dom y, that is, x dominates y (at (N, v)), if there

exists a coalition S in N such that x domS y. Let X ⊆ RN . We say that X is internally stable

(with respect to (w.r.t.) (N, v)) if for any x ∈ X and y ∈ RN , x dom y implies that y /∈ X.

Moreover, X is externally stable (w.r.t. (N, v)) if for any y ∈ I(N, v) \ X there exists x ∈ X

such that x dom y. The set X is stable if it is internally and externally stable.

Note that C(N, v) is internally stable and that any externally stable set contains C(N, v). We

say that (N, v) has a stable core if C(N, v) is stable, that is, externally stable, w.r.t. (N, v). We

also remark that, if I(N, v) = ∅, then ∅ = C(N, v) is stable. Hence, we shall not further consider

the case that
∑

i∈N v({i}) > v(N).

We now recall some relevant results. The proof of the well-known Proposition 2.1 is presented,

because its statement will be used several times.

Proposition 2.1 (Gillies (1959)) Let (N, v) be a game such that I(N, v) 6= ∅. If (N, v) has

a stable core, then, for each i ∈ N , there exists x ∈ C(N, v) such that xi = v({i}).

Proof: As (N, v) has a stable core and I(N, v) 6= ∅, C(N, v) 6= ∅. Assume, on the contrary,

that there exists k ∈ N such that xk > v({k}) for all x ∈ C(N, v). As C(N, v) is a compact

set, t = min{xk | x ∈ C(N, v)} exists so that t > v({k}). Choose x ∈ C(N, v) with xk = t, let

ε > 0 satisfy t− (|N | − 1)ε ≥ v({k}), and define y ∈ RN by yi = xi + ε for all i ∈ N \ {k} and

yk = xk− (|N |− 1)ε. Then y ∈ I(N, v) \C(N, v). Hence, there exist z ∈ C(N, v) and ∅ 6= T ⊆ N

with z domT y. For any S ⊆ N \ {k}, y(S) = ε|S| + x(S) ≥ x(S) ≥ v(S). Hence, k ∈ T so

that zk ≥ t = xk. As yN\{k} > xN\{k}, we conclude that z(T ) > x(T ) ≥ v(T ) and the desired

contradiction has been obtained. q.e.d.

The foregoing proposition has the following interesting consequence1.

Corollary 2.2 If the game (N, v) has a stable core, then any preimputation of (N, v) is domi-

nated by some element of C(N, v), provided that I(N, v) 6= ∅.
1Corollary 2.2 may not hold for an arbitrary stable set. Indeed, if (N, v) is the three-person majority game, de-

fined by N = {1, 2, 3}, v(N) = v(S) = 1, if |S| = 2, and v(T ) = 0, if |T | ≤ 1, then X =
��

c, 1
2
− c, 1

2

��� 0 ≤ c ≤ 1
2

	

is a well-known stable set, but the preimputation (1, 1,−1) is not dominated by an element of X.
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In order to recall the Bondareva-Shapley theorem (see Bondareva (1963) and Shapley (1967))

which gives necessary and sufficient conditions for the non-emptiness of the core, the following

notation is useful. For T ⊆ N , denote by χT ∈ RN the characteristic vector of T , defined by

χT
i =

 1 , if i ∈ T,

0 , if i ∈ N \ T.

A collection B ⊆ 2N \ {∅} is called balanced (over N) if positive numbers δS , S ∈ B, exist such

that
∑

S∈B δSχS = χN . The collection (δS)S∈B is called a system of balancing weights for B.

Theorem 2.3 (The Bondareva-Shapley Theorem) Let (N, v) be a game. Then C(N, v) 6=
∅ if and only if for each balanced collection B over N and any system (δS)S∈B of balancing

weights of B,
∑

S∈B δSv(S) ≤ v(N).

The foregoing theorem motivates calling a game (N, v) a balanced game if C(N, v) 6= ∅. Note

that (N, v) is totally balanced if, for any ∅ 6= S ⊆ N , (S, v) is balanced. The totally balanced

cover of (N, v), (N, vtb), is given by

vtb(S) = max

∑
T∈B

δT v(T )

∣∣∣∣∣∣ B is a balanced collection over S and

(δT )T∈B is system of balancing weights for B

 ∀S ⊆ N. (2.1)

The formulation of a weak sufficient condition for core stability requires some notation. Let

(N, v) be a game and let ∅ 6= S ⊆ N . The coalition S is called extendable (w.r.t. (N, v)) if, for

any x ∈ C(S, v), there exists y ∈ C(N, v) such that x = yS . Moreover, (N, v) is extendable if all

coalitions are extendable. The proof of the following well-known result is straightforward.

Theorem 2.4 (Kikuta and Shapley (1986)) Any extendable game (N, v) has a nonempty

stable core.

3 Relaxing Extendability

This section is organized as follows. The present part introduces conditions that are weaker

than extendability. The main result of this section, Theorem 3.3, states that these new variants

of extendability are sufficient conditions for core stability. Moreover, properties and relations of

the new variants of extendability are presented. Subsection 3.1 is devoted to the proof of the

main result and in Subsection 3.2 we show that certain assumptions on the structure of a game

guarantee that the new conditions are necessary for core stability.

We now recall two possible properties of a coalition w.r.t. a game. Let (N, v) be a game and

∅ 6= S ⊆ N. The coalition S is called exact (w.r.t. (N, v)) if there exists x ∈ C(N, v) such that
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x(S) = v(S). In this case S is effective for x. If all coalitions are exact, then (N, v) is called

exact (see Shapley (1971) or Schmeidler (1972)). We say that a balanced game (N, v) is exact

extendable if all exact coalitions are extendable. Moreover, S is called vital (w.r.t. (S, v)) if

there exists x ∈ C(S, v) such that x(T ) > v(T ) for2 all T ∈ 2S \ {∅, S}. We say that a balanced

game (N, v) is vital extendable if all vital coalitions w.r.t. (N, v) are extendable.

Remark 3.1 There is a simple characterization of a vital coalition (see Gillies (1959)). Indeed,

S is vital if and only if for any balanced collection B over S, S /∈ B, and any system (δT )T∈B of

balancing weights for B,
∑

T∈B δT v(T ) < v(S).

Denote by E(N, v) the set of all coalitions S that are effective for x for all x ∈ C(N, v) or S = ∅,
that is,

E(N, v) = {S ⊆ N | x(S) = v(S) ∀x ∈ C(N, v)}. (3.1)

Definition 3.2 Let (N, v) be a balanced game. A coalition S ⊆ N is called strongly vital-

exact (w.r.t. (N, v)) if S is vital and if there exists x ∈ C(N, v) such that x(S) = v(S) and

x(T ) > v(T ) for all T ∈ 2S \ ({S} ∪ E(N, v)) . The game (N, v) is vital-exact extendable if

all strongly vital-exact coalitions are extendable.

Theorem 3.3 Any balanced, vital-exact extendable game (N, v) has a stable core.

Thus, Theorem 3.3 shows relations that may be summarized in the following diagram:

extendability ⇒⇒

exact extendability

vital extendability

⇒

⇒
vital-exact extendability ⇒ core stability. (3.2)

By means of examples we will show that none of the opposite implications of (3.2) is valid and

that exact extendability may not imply vital extendability and vice versa. Moreover, there are

balanced games that are vital-exact extendable and have non-extendable coalitions that are vital

and exact.

Example 3.4 Let N = {1, . . . , 7} and let (N, v1) be defined as follows. Let T = {1, 2}, T i =

{2, i} for i = 3, 4, 5, and T j = {1, j} for j = 6, 7, and let v1(N) = 16, v1(T k) = 4 for all
2Gillies (1959) introduced vital coalitions of at least two elements, whereas according to our definition singletons

are always vital.
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k = 3, . . . , 7, v1(T ) = 1, and for all other S ⊆ N , let v1(S) = 0. Then (3, 3, 2, 2, 2, 2, 2) ∈ C(N, v1)

so that E(N, v1) = {∅, N}. With

y1 = (12, 4, 0, 0, 0, 0, 0), y2 = (0, 2, 2, 2, 2, 4, 4), y3 = (4, 0, 4, 4, 4, 0, 0)

note that yi ∈ C(N, v1) for i = 1, 2, 3. The coalition T is vital, but not exact. Indeed, let

y ∈ C(N, v1). As y(T k) ≥ 4, k = 3, . . . , 7,

yi ≥ 4− y2 ∀i ∈ {3, 4, 5} and yj ≥ 4− y1 ∀j ∈ {6, 7} (3.3)

so that 16 = y(N) ≥ 20 − y(T ) − y2, that is, y(T ) ≥ 2. We conclude that a coalition S $ N

satisfying v1(S) > 0 is exact if and only if it is one of the coalitions T j , j = 3, . . . , 7, and

that these coalitions are extendable. An exact coalition S with v1(S) = 0 is also extendable,

because C(S, v1) is a singleton. Hence, (N, v1) is exact extendable, but not vital extendable.

Let (N, v′1) be the game that differs from (N, v1) only inasmuch as v′1(T ) = 0. Then (N, v′1) is

vital extendable (because T is not vital w.r.t. (N, v′1)) and exact extendable, but T is still not

extendable.

Example 3.5 Now, let (N, v2) be the game that differs from (N, v1) defined in Example 3.4

only inasmuch as v2(N) = 18. Any singleton and any of the coalitions T j , j = 3, . . . , 7, are still

extendable which follows from the fact that yk + 2χ{i} ∈ C(N, v2) for any k = 1, 2, 3, and i ∈ N .

Moreover, z = (0, 1, 3, 3, 3, 4, 4) is the unique element in C(N, v2) that satisfies z(T ) = v2(T ).

Hence, T is vital and exact, but not strongly vital-exact. We conclude that (N, v2) is vital-

exact extendable, but neither exact extendable nor vital extendable. Now, if the the worth of

N is further increased, that is, let 0 < ε < 1 and (N, v3) differ from (N, v2) only inasmuch

as v3(N) = v2(N) + ε, then (ε, 1 − ε, 3 + ε, 3 + ε, 3 + ε, 4 − ε, 4 − ε) ∈ C(N, v) so that T is

strongly vital-exact. Now, T is not extendable, because if y ∈ C(N, v3) satisfies y2 = 0, then

y1 ≥ 2 − ε > 1, that is, y(T ) > v3(T ). Nevertheless, (N, v3) has a stable core. Indeed, if

x ∈ I(N, v3) \ C(N, v3), then two cases may occur. If x(T j) ≥ 4 for all j = 3, . . . , 7, then, by

(3.3) applied to x, x2 +x(T ) ≥ 2−ε. As x(T ) < 1, x2 > 1−ε and x1 < ε so that x is dominated

by some core element via T . In the other case there exists ` ∈ {3, . . . , 7} such that x(T `) < v(T `)

and extendability of T ` guarantees that x is dominated by some core element.

Together with Example 4.2 (the game (N, v4) discussed in Section 4) the foregoing examples

show that the relations summarized in (3.2) are strict even if balancedness is assumed:

core stability
v3

6⇒ vital-exact extendability 6⇒
6⇒v2

vital extendability

v46⇓ 6⇑v1

exact extendability

v′1

6⇒

6⇒
extendability.
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The properties of the games (N, v1) and (N, v3) of Example 3.4 also show that neither “exact

extendability” nor “vital-exact extendability” are strong prosperity properties in the sense of van

Gellekom, Potters, and Reijnierse (1999, Definition 2.1) who showed that “extendability” is a

strong prosperity property. Note that in a similar way (Indeed, a nonempty proper coalition in N

is or is not vital regardless of the “prosperity” of N .) it may be shown that “vital extendability”

is a strong prosperity property.

An interesting invariance property shared by two of the new variants of “extendability” and by

“core stability” is contained in the following statements. Let (N, v) be a balanced game and

(N, vtb) its totally balanced cover (see (2.1)):

(1) (N, v) has a stable core ⇐⇒ (N, vtb) has a stable core.

(2) (N, v) is vital extendable ⇐⇒ (N, vtb) is vital extendable.

(3) (N, v) is vital-exact extendable ⇐⇒ (N, vtb) is vital-exact extendable.

For a proof of (1) see van Gellekom, Potters, and Reijnierse (1999, p. 220) who also show by

means of Example 2 that there exists an extendable game whose balanced cover is not extendable.

By (2.1), C(N, v) = C(N, vtb). We conclude that a coalition is vital w.r.t. (N, v) iff it is vital

w.r.t. (N, vtb). Again by (2.1), E(N, v) = E(N, vtb) and we may conclude that a coalition is

strongly vital-exact w.r.t. (N, v) iff it is strongly vital-exact w.r.t. (N, vtb). Hence, (2) and

(3) are valid. The totally balanced cover of (N, v1), (N, vtb
1 ), is not exact extendable. Indeed,

it is straightforward to verify that vtb
1 ({1, 2, 3, 6}) = 8 and that (1, 0, 4, 3) ∈ C({1, 2, 3, 6}, vtb

1 ).

However, this vector is not the restriction of any element of C(N, vtb
1 ).

3.1 The Proof of Theorem 3.3

We now prove two useful lemmata. Let (N, v) be a balanced game.

Lemma 3.6 For any x ∈ X(N, v) \ C(N, v) there exists a strongly vital-exact coalition P such

that x(P ) < v(P ).

Proof: By the definition of E(N, v) and the convexity of the core, there exists x0 ∈ C(N, v) such

that x0(S) > v(S) for all S ∈ 2N \ E(N, v). For λ ∈ R denote xλ = λx + (1− λ)x0. As C(N, v)

is convex and closed, there exists λ̂, 0 ≤ λ̂ < 1, such that

λ ≥ 0 and xλ ∈ C(N, v) ⇐⇒ 0 ≤ λ ≤ λ̂.

7



Then there exists P ⊆ N such that x(P ) < v(P ) and x
bλ(P ) = v(P ). Hence, P is exact. Now,

let P be minimal (w.r.t. inclusion) such that x(P ) < v(P ) and x
bλ(P ) = v(P ). By minimality of

P ,

Q $ P and x(Q) < v(Q) =⇒ x
bλ(Q) > v(Q) (3.4)

By (3.4), for all Q $ P and all λ, 0 < λ ≤ 1,(
Q ∈ E(N, v) =⇒ xλ(Q) ≥ v(Q)

)
and

(
x(Q) > v(Q) =⇒ xλ(Q) > v(Q)

)
.

Hence, x
bλ
P ∈ C(P, v), x

bλ(Q) > v(Q) for all Q ∈ 2P \ E(N, v), Q 6= P , and there exists ε > 0 such

that x
bλ+ε(Q) ≥ v(Q) for all Q $ P . Then d = v(P )−x

bλ+ε(P ) > 0. Now, with y = x
bλ+ε + d

|P |χ
P

observe that y(P ) = v(P ) and y(Q) > v(Q) for all Q ∈ 2P \ {∅, P}. Hence, P is strongly vital-

exact. q.e.d.

Lemma 3.7 If (N, v) is vital-exact extendable and x ∈ X(N, v) \ C(N, v), then there exists a

strongly vital-exact coalition S such that x(S) < v(S) and x(T ) ≥ v(T ) for all T $ S.

Proof: By Lemma 3.6 there exists a strongly vital-exact coalition P such that x(P ) < v(P ).

Let P be a minimal coalition that satisfies the foregoing conditions. Assume, on the contrary,

that there exists Q $ P such that x(Q) < v(Q). Define

y = x +
v(P )− x(P )
|P \Q|

χP\Q

and observe that x ≤ y, x(Q) = y(Q), and y(P ) = v(P ). Hence yP ∈ X(P, v) \ C(P, v). By

Lemma 3.6 applied to (P, v) and yP , there exists a strongly vital-exact coalition T w.r.t. (P, v)

such that y(T ) < v(T ) and, hence, x(T ) < v(T ). As P is extendable, T is strongly vital-exact

w.r.t. (N, v) so that the desired contradiction has been obtained. q.e.d.

Proof of Theorem 3.3: Let z ∈ X(N, v) \ C(N, v). By Lemma 3.7 there exists a strongly

vital-exact ∅ 6= S ⊆ N such that z(S) < v(S) and z(T ) ≥ v(T ) for all T $ S. Let y ∈ RS be

given by yi = zi +
v(S)−z(S)

|S| . Then y(S) = v(S) and y � z, hence y(T ) > v(T ) for all ∅ 6= T $ S.

We conclude that y ∈ C(S, v). As S is extendable, there exists x ∈ C(N, v) such that xS = y.

Thus x domS z. q.e.d.

3.2 Two Consequences of Theorem 3.3

This subsection serves to show that all strongly vital-exact coalition are extendable, if the set

of strongly vital-exact coalitions exhibits a certain structure. We say that (N, v) has disjoint

antichains of strongly vital-exact coalitions if, for all strongly vital-exact coalitions S and T ,

S ⊆ T or T ⊆ S or S ∩ T = ∅ (that is, the elements of any antichain of the partially ordered set

of strongly vital-exact coalitions, ordered by inclusion, are pairwise disjoint).
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Theorem 3.8 If (N, v) is a balanced game that has disjoint antichains of strongly vital-exact

coalitions, then (N, v) has a stable core.

Proof: Let S be a strongly vital-exact coalition. By Theorem 3.3 it suffices to show that

S is extendable. To this extent let x ∈ C(S, v). As S is exact, there exists y ∈ C(N, v),

y(S) = v(S). Let z ∈ RN be given by zS = x and zN\S = yN\S . We conclude that z(N) = v(N),

z(T ) = y(T ) ≥ v(T ) for all T ⊆ N \ S and all S ⊆ T ⊆ N , and z(P ) = x(P ) ≥ v(P ) for all

P ⊆ S. Hence, z(Q) ≥ v(Q) for all strongly vital-exact coalitions Q. By Lemma 3.6, z ∈ C(N, v)

and the proof is complete. q.e.d.

Balanced games that have disjoint antichains of strongly vital-exact coalitions may be con-

structed as follows. Let N be a finite nonempty set, let x ∈ RN , and let (N, v) satisfy

v(S) = x(S) for all S $ N and v(N) ≥ x(N). Then the strongly vital-exact coalitions are

the singletons and N provided that v(N) > x(N). Hence (N, v) has the desired property. Now

let (N1, v1), . . . , (Nk, vk) be k balanced games that have disjoint antichains of strongly vital-

exact coalitions such that the N ` are pairwise disjoint. With N =
⋃

`=1,...,k N ` let (N, v) be

a game that satisfies v(S) =
∑k

`=1 v`(S ∩ N `) for all S $ N and v(N) ≥
∑k

`=1 v`(N `). Then

(N, v) has the desired property.

The following theorem reveals some structure of the set of strongly vital-exact coalitions and

will be used to show that vital-exact extendability is a necessary condition for core stability for

the second class of games.

Theorem 3.9 If (N, v) is a balanced game, then there exist a balanced collection P of strongly

vital-exact coalitions w.r.t. (N, v) and a system (δP )P∈P of balancing weights for P such that∑
P∈P

δP v(P ) = v(N).

Proof: Let (N, v) be balanced. By convexity of the core and the definition of E(N, v), there

exists x ∈ C(N, v) such that x(T ) > v(T ) for all T ∈ 2N \ E(N, v). Therefore the following

statement is true:

R, T ∈ E(N, v), ∅ 6= R ⊆ T,R is vital =⇒ R is strongly vital-exact w.r.t. (N, v). (3.5)

We proceed by induction on n = |N |. If n = 1, then N is vital, hence strongly vital-exact, so that

the proof is finished in this case. Let the theorem be true for n ≤ t and some t ∈ N and assume

now that n = t+1. If N is vital, then the theorem is true. Hence, we may assume that N is not

vital. By Remark 3.1 and Theorem 2.3, there exist a balanced collection R̂ on N and a system

(δ̂R)
R∈ bR of balancing weights for R̂ such that N /∈ R̂ and

∑
R∈ bR δ̂Rv(R) = v(N). Moreover, for
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x ∈ C(N, v), v(N) = x(N) =
∑

R∈ bR δ̂Rx(R) =
∑

R∈ bR δ̂Rv(R) so that R ∈ E(N, v) for all R ∈ R̂.

As (R, v) is balanced, the inductive hypothesis implies that there exist a balanced collection PR

on R of strongly vital-exact coalitions w.r.t. (R, v) and a system (δP
R)P∈PR

of balancing weights

for PR such that v(R) =
∑

P∈PR
δP
Rv(R). Define, for any P ∈ P =

⋃
R∈ bR PR,

δP =
∑

R∈{R∈ bR|P∈PR}

δ̂RδP
R .

We conclude that
∑

P∈P δP χP = χN and
∑

P∈P δP v(P ) = v(N). Thus, P is a balanced

collection on N and P ⊆ E(N, v) so that the proof is finished by (3.5). q.e.d.

Now, the second class of games is constructed as follows. Let (N, v) be a game that satisfies the

following property:

S is strongly vital-exact =⇒ |S| ≤ 2. (3.6)

For all x, y ∈ X(N, v) and all α ≥ 0 define zα,x,y ∈ RN by

zα,x,y
i =

 xi + min{yi − xi, α} , if yi ≥ xi,

xi −min{xi − yi, α} , if xi ≥ yi

(3.7)

and note that z is well-defined.

Lemma 3.10 If (N, v) satisfies (3.6), if x, y ∈ C(N, v), and if α ≥ 0, then zα,x,y ∈ C(N, v).

Proof: If C(N, v) = ∅, then the statement of the lemma is vacuously true. Hence, we assume now

that (N, v) is balanced. By Theorem 3.9 there exist a balanced collection P of strongly vital-exact

coalitions on N and a system (δP )P∈P of balancing weights for P such that
∑

P∈P δP v(P ) =

v(N). Let z = zα,x,y and let i ∈ N . If yi ≥ xi, then zi ≥ xi ≥ v({i}). If yi < xi, then zi ≥
yi ≥ v({i}). Hence, z is individually rational. Let P ∈ P. If |P | = 1, then x(P ) = y(P ) = v(P )

so that z(P ) = v(P ). If |P | = 2, then x(P ) = y(P ) = v(P ) also implies z(P ) = v(P ). By

(3.6), z(P ) = v(P ) for all P ∈ P. We conclude that z(N) = v(N). Now, let S = {i, j}, i 6= j,

i, j ∈ N . By (3.6) and Lemma 3.6 it suffices to show that z(S) ≥ v(S). If yi ≥ xi and yj ≥ xj ,

then z(S) ≥ x(S) ≥ v(S). If yi ≥ xi and yj < xj , then the case z(S) < y(S) may just occur, if

yi − xi > α. However, in this case z(S) ≥ x(S). The case yi < xi and yj ≥ xj may be treated

similarly. Finally, if yi < xi and yj < xj , then z(S) ≥ y(S). Thus, z ∈ C(N, v). q.e.d.

Proposition 3.11 If (N, v) satisfies (3.6) and if each {i}, i ∈ N , is exact, then (N, v) is

vital-exact extendable.

Proof: Let S be a strongly vital-exact coalition and x ∈ C(N, v) such that x(S) = v(S). If

|S| = 1, then the proof is already finished. Hence, we may assume that S = {k, `} for some
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k, ` ∈ N , k 6= `. Let y ∈ C(N, v) such that yk = v({k}) and let α = xk − v({k}). By Lemma

3.10, z = zα,x,y ∈ C(N, v). Now, zk = yk = v({k}) and z` = α + x` = v({k, `}). By convexity of

C(N, v), S is extendable. q.e.d.

Proposition 2.1 implies the following result.

Corollary 3.12 If (N, v) is a balanced game that satisfies (3.6), then the following conditions

are equivalent:

(1) (N, v) has a stable core.

(2) (N, v) is vital-exact extendable.

(3) For each i ∈ N , the singleton {i} is an exact coalition.

4 Three Remarkable Classes of Games

Example 3.4 shows that the reverse of Theorem 3.3 does not hold. However, as Corollary

3.12 suggests, there are remarkable classes of games such that the extendability of all strongly

vital-exact coalitions is also necessary for core stability.

4.1 Assignment Games

Shapley and Shubik (1972) introduced assignment games. For finite sets S and T an assignment

of (S, T ) is a bijection b : S′ → T ′ such that S′ ⊆ S, T ′ ⊆ T , and |S′| = |T ′| = min{|S|, |T |}.
We shall identify b with {(i, b(i)) | i ∈ S′}. Let B(S, T ) denote the set of assignments. A game

(N, v) is an assignment game if there exist a partition {P,Q} of N and a nonnegative real matrix

A = (aij)i∈P,j∈Q such that

v(S) = max
b∈B(S∩P,S∩Q)

∑
(i,j)∈b

aij . (4.1)

Let (N, v) be an assignment game defined by the matrix A on P ×Q.

Lemma 4.1 If S ⊆ N , |S| ≥ 2, is a vital coalition, then |S ∩ P | = |S ∩Q| = 1.

Proof: Let S ⊆ N , |S| ≥ 2. If S ⊆ P or S ⊆ Q, then 0 = v(S) =
∑

i∈S v({i}) and, hence,

S is not vital. Assume now, that |S ∩ P | ≥ 2 or |S ∩ Q| ≥ 2, let us say |S ∩ P | ≤ |S ∩ Q|,
and let b ∈ B(S ∩ P, S ∩ Q) satisfy v(S) =

∑
i∈S∩P aib(i). Thus, for any i ∈ S ∩ P , v(S) =

v({i, b(i)}) + v(S \ {i, b(i)}). We conclude that S is not vital. q.e.d.
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By Lemma 4.1 and Corollary 3.12, (N, v) has a stable core if and only if (N, v) is strongly vital-

exact extendable. The theory developed so far enables us to reprove Theorem 1 of Solymosi and

Raghavan (2001): Assume without loss of generality that |P | ≤ |Q| and let b denote an optimal

assignment. The assignment game (N, v) has a stable core if and only if

aib(i) = max
r∈Q

air = max
r∈P

arb(i) and aij = 0 ∀i ∈ P, j ∈ Q \ {b(r) | r ∈ P}. (4.2)

In order to verify the if direction, assume that (4.2) is valid and define x, y ∈ RN by xi = aib(i) =

yb(i) and xb(i) = yi = xj = yj = 0 for all i ∈ P and all j ∈ Q \ b(P ). Then x, y ∈ C(N, v) and,

hence, by Proposition 3.11 and Theorem 3.3, (N, v) has a stable core.

In order to verify the only if direction, assume that (N, v) has a stable core and let i, j ∈ P

and r ∈ Q. By Proposition 2.1 there exists x ∈ C(N, v) such that xr = 0. Then x ≥ 0,

xi + xb(i) = aib(i), and xi + xr ≥ air so that aib(i) ≥ xi ≥ air. Similarly we may deduce that

aib(i) ≥ ajb(i) so that (4.2) is shown.

The following example shows that exact extendability is not necessary for core stability for

assignment games.

Example 4.2 Let

A =


6 4 0

0 6 0

4 0 6

 , B =


2 2 2

2 2 2

1 2 2

 ,

and let (N, v4) be the assignment game defined by A, where 1, 2, and 3 are the “row” play-

ers and 4, 5, and 6 are the “column” players. The unique optimal assignment b is given by

b(i) = 3 + i for i = 1, 2, 3. Hence, (4.2) is satisfied so that (N, v4) has a stable core. More-

over, x = (3, 5, 1, 3, 1, 5) ∈ C(N, v4) and x(S) = v4(S), where S = {1, 3, 4, 5}. Now, S is

not extendable, because (4, 0, 4, 0) ∈ C(S, v4) and any y ∈ C(N, v4) must assign aib(i) to any

coalition {i, b(i)} of optimally matched players, e.g., satisfies y1 + y4 = a14 = 6. We con-

clude that (N, v4) is not exact extendable. In order to show that (N, v4) is vital extendable,

it suffices to show that {1, 5} and {3, 4} are extendable. A careful inspection of the core el-

ements (0, 2, 0, 6, 4, 6), (4, 6, 6, 2, 0, 0), (6, 6, 4, 0, 0, 2), (2, 0, 0, 4, 6, 6) shows that they are extend-

able. It should be noted that there are also assignment games with a stable core that are

not vital extendable. Indeed, let (N, v5) be the assignment game defined by B. As each pair

(i, j), i ∈ P, j ∈ Q, belongs to an optimal matching except the pair (3, 4), we conclude that

C(N, v5) = {(α, α, α, 2− α, 2− α, 2− α) | 0 ≤ α ≤ 2}. Consequently, the vital coalition {3, 4} is

not exact and, hence not extendable.
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4.2 Simple Flow Games

Kalai and Zemel (1982) present two equivalent representations of totally balanced games: A

game is totally balanced game if and only if (a) it is a flow game or (b) it is the minimum of

finitely many additive games. The following example shows that even for the minimum of two

additive games, the simplest nontrivial case in (b), vital-exact extendability may not be necessary

for core stability. Moreover, for “simple” flow games we shall derive that vital extendability is

necessary and sufficient for core stability.

Example 4.3 Let N = {1, . . . , 6}, let λ = (2, 1, 1, 2, 1, 1), let N1 = {1, 2, 3}, let N2 = {4, 5, 6}
and let (N, v) be the game given by v(S) = mini=1,2 λ(S ∩N i). The game (N, v) is exact (see,

e.g., Raghavan and Sudhölter (2005)) and it has a stable core. Indeed, C(N, v) is the convex hull

of (2, 1, 1, 0, 0, 0) and (0, 0, 0, 2, 1, 1) (see, e.g., Rosenmüller (2000)). By considering an arbitrary

element of the relative interior of the core, it follows that S = {1, 5, 6} is a strongly vital-exact

coalition. This coalition cannot be extended, because for any x ∈ C(N, v), x5 = x6, but the core

of (S, v) contains some y with y5 6= y6 (e.g., given by y1 = y6 = 1/2, y5 = 1).

Adopting the notation of Sun and Fang (2007), who characterized the simple flow games that

have a stable core, D = (V,E, s, t) is a simple (directed) network with source s and sink t, if

V is the vertex set, E 6= ∅ is the arc set, and s and t are distinct vertices in V . The term

“simple” refers to the fact that all arcs have the same capacity, let us say 1. The flow game

(E, vD) associated with D = (V,E, s, t) is the TU game defined by the requirement that, for any

∅ 6= S ⊆ E, vD(S) is the maximal flow from s to t in the network (V, S, s, t). A game (N, v) is a

simple flow game if it is the game associated with some simple directed network with a source

and a sink.

A (simple) path in a network D = (V,E, s, t) is a sequence of arcs from s to t that visits each

vertex at most once. It is well-known that

vD(S) is the maximal number of arc-disjoint paths in (V, S, s, t) for all S ∈ 2E \ {∅}. (4.3)

Let D = (V,E, s, t) be a simple network with source and sink and denote v = vD.

Remark 4.4 If a coalition S is vital and v(S) > 0, then v(S) = 1 and v(T ) = 0 for all T $ S.

Indeed, by (4.3), the elements of S, suitably ordered, must form a path.

An arc e ∈ E is called a dummy arc3 if there exists a path containing e and if v(E \{e}) = v(E).

We recall that a cut of D is a coalition C ⊆ E such that each path contains an arc of C. For a
3Sun and Fang (2007) use this term although a dummy arc is not a dummy player. Indeed, an arc is a dummy

player if and only if it either connects s and t or it is not contained in any path.

13



proof of the following “max-flow min-cut” theorem see, e.g., Ford and Fulkerson (1962):

vD(E) = min{|C| | C is a cut of D}. (4.4)

We are now able to recall Theorem 3 of Sun and Fang (2007).

Theorem 4.5 Let D = (V,E, s, t) be a simple network with source and sink. Then (E, vD) has

a stable core if and only if E does not contain any dummy arc.

We use the preceding theorem and the following lemma and remark to show that vital extend-

ability is necessary for core stability in the case of simple flow games. Let D = (V,E, s, t) be a

simple network with source and sink.

Lemma 4.6 If E does not contain any dummy arc and if e ∈ E satisfies vD(E \ {e}) < vD(E),

then there exists a minimum cut C with e ∈ C.

Proof: By (4.3) there are vD(E) arc-disjoint paths. We may assume that vD(E) > 1. As

vD(E) > vD(E \ {e}), the arc e must be contained in one of the paths and vD(E \ {e}) =

vD(E)− 1. Hence, if C ′ is a minimum cut of (V,E \ {e}, s, t), then C ′ ∪ {e} is a minimum cut

of D by (4.4). q.e.d.

Remark 4.7 In a constructive way Kalai and Zemel (1982, p. 478) show that the core of an

arbitrary flow game is nonempty. Applied to a simple flow game (N, v) associated with the

simple network D = (V,E, s, t) they prove that, for any minimum cut C of D, χC ∈ C(E, vD).

Proposition 4.8 A simple flow game (N, v) has a stable core if and only if it is vital extendable.

Proof: Let D = (V,E, s, t) be a simple network with source and sink and let (E, v) be the

associated simple flow game. As the if direction is valid by Theorem 3.3, we assume now that

(E, v) has a stable core. Let S be a vital coalition. If v(S) = 0, then |S| = 1 and, by Proposition

2.1, S is extendable. If v(S) > 0, then, by Remark 4.4, v(S) = 1 and v(T ) = 0 for all T $ S

and the elements of S form a path. By Lemma 4.6 and Remark 4.7, for any e ∈ S, there exists

x ∈ C(E, v) such that xe = 1 and xe′ = 0 for all e′ ∈ S \ {e}. However, C(S, v) is the convex hull

of those core elements when restricted to S. q.e.d.

It should be remarked that Fang, Fleischer, Li, and Sun (2007, p. 444) present an example

of a simple flow game (associated with G3) that has a stable core and that is not extendable.

(Indeed, the 4-person coalition corresponding to the arcs that are marked by + is not exact, but

the core of the corresponding subgame is nonempty.)
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4.3 Minimum Coloring Games

Deng, Ibaraki, and Nagamochi (1999) introduced minimum coloring games and we basically

adopt the notation of Bietenhader and Okamoto (2006). A graph is a pair G = (V,E), where

V is a finite nonempty set, called the set of vertices, and E is a set of 2-element subsets of V ,

called the set of edges. For any U ⊆ V,U 6= ∅, let GU denote the subgraph of G whose vertex

set is U and whose edges are those edges in E that are subsets of U .

The graph G is complete if E is the set of all 2-element subsets of V . A nonempty set U ⊆ V is

a clique if GU is complete. Let ω(G) denote the size of a maximum clique. A coloring of G is

a mapping c : V → R satisfying c(i) 6= c(j) for all {i, j} ∈ E. A minimal coloring is a coloring

c such that |c(V )| is minimal. Let γ(G) denote the chromatic number of G, i.e., γ(G) = |c(V )|
for any minimal coloring of G. A set U ⊆ V , U 6= ∅, is independent if γ(GU ) = 1. The graph G

is perfect if ω(GU ) = γ(GU ) for all U ∈ 2V \ {∅}.

Let G = (V,E) be a graph. The minimum coloring game on G is the TU game (N, vG) defined

by the following requirements: (1) N = V ; (2) vG(S) = |S| − γ(GS) for4 all S ∈ 2V \ {∅}.

Theorem 4.9 Let (N, v) be a balanced minimum coloring game. Then the following conditions

are equivalent:

(1) (N, v) has a stable core.

(2) (N, v) is vital extendable.

(3) Every singleton is exact w.r.t. (N, v).

We postpone the proof of Theorem 4.9 and first prove the following lemma.

Lemma 4.10 Let (N, v) be a minimum coloring game on the graph G = (V,E). Then ∅ 6= S ⊆
N is vital if and only if S is independent.

Proof: If S is independent, then v(T ) = |T | − 1 for all ∅ 6= T ⊆ S. Let x ∈ RS be defined

by xi = |S|−1
|S| for all i ∈ S. Then x(S) = v(S) and x(T ) > v(T ) for all ∅ 6= T $ S so that

S is vital. Conversely, assume now that S is a coalition with v(S) < |S| − 1. It remains to

show that S is not vital. Let c : S → R be a minimal coloring of GS and let i ∈ S. Then

T = {j ∈ S | c(j) 6= c(i)} 6= ∅ and cT (the restriction of c to T ) is a minimal coloring of GT . We

conclude that v(S) = v(T ) + v(S \ T ) and, hence, that S is not vital. q.e.d.
4Bietenhader and Okamoto (2006) consider the “cost” game whose coalition function simply assigns γ(GS)

to any coalition S. We consider the “cost sharing” game instead so that, e.g., the definition of the core remains
unchanged.
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Proof Theorem 4.9: By Proposition 2.1, Theorem 3.3 and (3.2) it remains to show that (3)

implies (2). Let S be a vital coalition and y ∈ C(N, v). For any j ∈ N , v(N) − v(N \ {j}) +

y(N \ {j}) ≥ v(N) = y(N) = yj + y(N \ {j}). We conclude that yj ≤ v(N) − v(N \ {j}). As

v(N) − v(N \ {j}) ≤ 1 for any minimum coloring game, we conclude that yj ≤ 1. Now, let

i ∈ S. By (3), there exists x ∈ C(N, v) with xi = v({i}) = 0. By Lemma 4.10, v(S) = |S| − 1.

Therefore, xj = 1 for all j ∈ S \ {i} and convexity of the core completes the proof. q.e.d.

Let (N, v) be a balanced game. Schmeidler (1972) presents a simple necessary and sufficient

condition for exactness of a singleton {i}, i ∈ N : The singleton {i} is exact if and only if

v({i}) = max

 ∑
S$N

δSv(S)− δNv(N)

∣∣∣∣∣∣ δT ≥ 0 ∀T ⊆ N,
∑
S$N

δSχS − δNχN = χ{i}

 . (4.5)

Theorem 4.9 and (4.5) imply the following corollary.

Corollary 4.11 A balanced minimum coloring game (N, v) has a stable core if and only if, for

each i ∈ N , the following implication is valid:

δT ≥ 0 ∀T ⊆ N,
∑
S$N

δSχS − δNχN = χ{i} =⇒
∑
S$N

δSv(S) ≤ δNv(N).

Note that, by Corollary 3.12, Corollary 4.11 is also true for balanced games that satisfy (3.6).

Remark 4.12 Let (N, v) be the minimum coloring game on the graph G.

(1) If G is perfect, then it is easy to show that, for any maximum clique S, χN\S ∈ C(N, v).

Hence, (N, v) is totally balanced. In fact, according to Deng, Ibaraki, Nagamochi, and

Zang (2000), the converse is also true: If the minimum coloring game on G is totally

balanced, then G is perfect.

(2) If G is perfect and x ∈ C(N, v), then xi = 1 for each vertex i ∈ N that does not belong

to any maximum clique. In fact, Okamoto (2003) shows that C(N, v) is the convex hull of

the χN\S of all maximum cliques S.

We now use the foregoing theorem to reprove the following result of Bietenhader and Okamoto

(2006, Theorem 4.1) in a short way.

Theorem 4.13 Let G = (V,E) be a perfect graph. Then the minimum coloring game (N, v) on

G has a stable core if and only if every i ∈ N belongs to a maximum clique of G.
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Proof: By (1) of Remark 4.12, (N, v) is (totally) balanced. If (N, v) has a stable core, then by

Proposition 2.1, for any i ∈ N , there exists x ∈ C(N, v) such that xi = 0. By (2) of Remark 4.12,

i belongs to a maximum clique. For the other direction, assume now that each edge belongs to a

maximum clique. Let S be a vital coalition and let i ∈ S. Choose any maximum clique T with

i ∈ T . By Lemma 4.10, T ∩S = {i}. By (1) of Remark 4.12, the vector zi ∈ RS given by zi
i = 0

and zi
j = 1 for j ∈ S \ {i} is the restriction of a core element to S. Also, C(S, v) is the convex

hull of the zi, i ∈ S. Hence, S is extendable and the proof is complete by Theorem 4.9. q.e.d.

Example 4.14 Let G3 be the perfect graph that consists of two disjoint triangles that are

connected via one edge and may be found in Bietenhader and Okamoto (2006, p. 424). (For

a characterization of extendable minimum coloring games on perfect graphs see their Theorem

4.2.) So, G3 = (N,E), where

N = {1, . . . , 6} and E = {{1, 2}, {1, 3}, {2, 3}, {4, 5}, {4, 6}, {5, 6}, {1, 4}}.

Let v = vG3 and T = {1, 4}. Then x(T ) ≥ 1 for any x ∈ C(N, v). Note that (0, 0, 0, 1, 1, 1) ∈
C(N, v) so that S = {1, 2, 4} is exact. As (0, 1, 0) ∈ C(S, v), S is not extendable.
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