Menu

Luis A. Bagatolli

Luis A. Bagatolli obtained his MSc (1991) and PhD degrees (1995) from the School of Chemical Sciences, University of Córdoba in Argentina. After postdoctoral research at Laboratory for Fluorescence Dynamic, University of Illinois at Urbana-Champaign, USA (1997-2000), and a brief stay in Argentina, he joined MEMPHYS - Center for Biomembrane Physics at the University of Southern Denmark in 2002. At present, he is the leader of the “Membrane Biophysics and Biophotonics group” at the Department of Biochemistry and Molecular Biology (SDU), where he is a professor, associated staff at MEMPHYS - Center for Biomembrane Physics and director (shared position) of DaMBIC (Danish Molecular Biomedical Imaging Center). For more infomation about activities, honors, positions, etc follow this link.


Head of research:
Professor Luis A. Bagatolli 
PhD Fellow Henrik Seir Thoke (co-supervisor)

Its all about membranes 

My current research interests are related to physicochemical aspects of biological systems (Biophysics), particularly on natural and articifial membranes existing in dilute and crowded systems. I am also interested in the development and applications of biophotonic-related techniques to biological systems (fluorescence spectroscopy, multiphoton excitation microscopy). I have authored numerous papers, review articles and book chapters on topics such as lipid-lipid and lipid-proteins interactions in membranes model systems composed of synthetic lipid mixtures, natural membrane’s lipid extracts, naturally occurring biological membranes, as well performed studies on tissue imaging (particularly skin).

Current research projects

Effect of crowding in biological systems

The aim of this endeavor is to establish new experimental and theoretical models to better explain how cellular processes occur. We propose to consider key, but not yet fully understood, effects of environmental factors such as molecular crowding, spatial confinement and limited availability of free water on the dynamical and structural characteristic of a cell or specific structures existing whithin, i.e. membranes. We intend to understand the role of these conditions in regulating spatiotemporally linked events, which generate discernible patterns whose informational content requires the use of largely unexploited dynamical systems theories. We posit that only a few fundamental physicochemical descriptors are necessary to understand functionality in cellular systems, bringing rationality to the current descriptive schemes based on tens of thousands of molecular actors interacting without any concern for spatiotemporal information. Modern dynamics theory of even simple systems has shown that emergent properties can better be grasped in terms of rules of connectivity rather than interaction-independent enumeration of components. Our proposal complements ongoing initiatives that endeavor to map fine structural and mechanistic details of biological processes but lack unifying concepts and methods to explain the emergence of system-wide properties, or that from “systems biology”, where data analysis relies on models based on mass-action kinetics and equilibrium thermodynamics derived from dilute systems.

Selected publications

Is the fluid mosaic (and the accompanying raft hypothesis) a suitable model to describe fundamental features of biological membranes? What may be missing?
Bagatolli, L. A.; Mouritsen, O. G., Front. Plant Sci., 2013, 4:457.

Spatially resolved two color diffusion measurements in human skin applied to transdermal liposome penetration 
Brewer, J.; J. Kubiak, J.; Bloksgaard, M.; Sørensen, J. A.; Bagatolli, L. A.J. Investig. Dermatol, 2013, 133: 1260–1268.

To see or not to see: lateral organization of biological membranes and fluorescence microscopy
Bagatolli, L. A., Biochim Biophys Acta, 2006, 1758:1541-1556.

A full list of publications by professor Luis A. Bagatolli can be found here.

To give you the best possible experience, this site uses cookies  Read more about cookies

Accept cookies