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Abstract

We provide sufficient and necessary conditions for the generic finiteness of the number of dis-
tributions on outcomes, induced by the completely mixed Nash equilibria associated to a bimatrix
outcome game form. These equivalent conditions are stated in terms of the ranks of two matrices
constructed from the original game form.
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1 Introduction

It has long been established (Rosenmüller 1971, Wilson 1971, Harsanyi 1973) that for normal form games

with an arbitrary number of players, if the payoffs can be independently perturbed, there is generically

a finite number of equilibria. For the case of extensive form games Kreps and Wilson (1982) show that

the equilibrium distributions on terminal nodes are generically finite.

The equivalent result for outcome games has turned out to be difficult to elucidate. On the one hand,

Govindan and McLennan (2001) were the first to provide an example of a game form for which the Nash

equilibria of the games associated to an open set of utility profiles induce a continuum of probability

distributions on outcomes. Their example made use of three players and six outcomes. Examples of

game forms with the same feature have appeared since: in Kukushkin, Litan, and Marhuenda (2008)

with two players and four outcomes and in Litan, Marhuenda, and Sudhölter (2015) with three players

and three outcomes.
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(Grant-id: DFF 1327-00097).
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On the other hand, there are a number of results that point towards the paucity of such examples.

Govindan and McLennan (2001) proved that for games with two outcomes and any number of players the

number of equilibrium distributions on outcomes is generically finite. Similar results have been obtained

for two player, three outcomes games (González-Pimienta 2010), sender-receiver cheap-talk games (Park

1997), zero sum or common interest games (Govindan and McLennan 1998, Litan and Marhuenda 2012)

and games with three players and two strategies each (Litan, Marhuenda, and Sudhölter 2015).

Clarifying for what types of game forms the number of probability distributions on outcomes induced by

the Nash equilibria of the associated game is generically finite remains an open problem. In the present

work we address this question and provide a partial answer. We find sufficient and necessary conditions

for the generic finiteness of the number of distributions on outcomes, induced by the completely mixed

Nash equilibria associated to a bimatrix outcome game form. These are specified in terms of the ranks

of two matrices constructed from the original game form and can be checked automatically.

2 Outcome game forms with two players

We follow very closely the notation and set up adopted in Litan, Marhuenda, and Sudhölter (2015) and

Litan and Marhuenda (2012). Let S1 = {1, 2, . . . ,m} and S2 = {1, 2, . . . , n} be the two players’ sets of

pure strategies. Let S = S1 × S2 and consider a finite set of outcomes Ω. We denote by ∆(Ω) (resp.

∆+(Ω)) the set of (resp. strictly positive) probability measures on Ω. An outcome game form is a function

φ : S → ∆(Ω). We write φ = (φω)ω∈Ω and for each outcome ω ∈ Ω we regard φω as an m×n matrix, the

entries of which are the probabilities that φ(i, j) (1 ≤ i ≤ n, 1 ≤ j ≤ m) assigns to the outcome ω ∈ Ω.

Agents have a utility function on outcomes u ∈ RΩ, which extends to a von-Neumann-Morgenstern

expected utility function. For each u ∈ RΩ we assign the matrix

u(φ) =
∑
ω∈Ω

u(ω)φω.

Given two profiles of utilities on outcomes u1, u2 ∈ RΩ for the players, the matrices u1(φ) and u2(φ) define

the two-person game
(
u1(φ), u2(φ)

)
. A pair of strategies (x, y) ∈ ∆(S1) ×∆(S2) is a Nash equilibrium

(NE) of that game if xu1(φ)y > u1(φ)i·y and xu2(φ)y > xu2(φ)·j for all i ∈ S1 and j ∈ S2. Here, u(φ)i·

(resp. u(φ)·j) denote the i-th row (resp. j-th column) of the matrix u(φ). Throughout the paper, xu(φ)

(resp. u(φ)y) are regarded as elements of Rn (resp. Rm) and the scalar product of z, z̄ ∈ Rk is written

as z · z̄ or simply as zz̄. The pair (x, y) is a completely mixed NE (CMNE) if, in addition, x ∈ ∆+(S1)

and y ∈ ∆+(S2).

The strategies x ∈ ∆(S1) and y ∈ ∆(S2) of the players induce a probability distribution on Ω that assigns

the probability xφωy to the outcome ω ∈ Ω.

We identify RΩ with Euclidean space R|Ω|. With this identification the mapping u 7→ u(φ) is linear from

R|Ω| into the linear space of m×n matrices. We say that a subset of RΩ is generic if it contains an open

and dense subset. For l ∈ N, let dl denote the vector (1, . . . , 1) ∈ Rl.

The number of pure NEs of a finite game is finite. In the case of games with a mixed NE, by eliminating

those strategies that are played with zero probability, we will focus on the CMNEs of the corresponding

subgames. Given two utility profiles u1, u2 ∈ RΩ, if a pair (x, y) ∈ ∆+(S1) × ∆+(S2) of completely

mixed strategies is a NE of the game
(
u1(φ), u2(φ)

)
, then it is a solution of the following systems of linear
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equations.

u1(φ)y = α1dm, y · dn = 1 (1)

xu2(φ) = α2dn, x · dm = 1 (2)

for some αi ∈ R, the payoff of player i = 1, 2.

Definition 2.1. Given an outcome game form φ and a pair of utility profiles u1, u2 ∈ RΩ, a quasi-

equilibrium (QE) of the game
(
u1(φ), u2(φ)

)
is a pair of solutions (x, y) =

(
x
(
u2
)
, y
(
u1
))
∈ Rm ×Rn of

the system of equations (1) and (2), for some αi = αi
(
ui
)
∈ R, i = 1, 2.

We say that vector z ∈ RΩ is a quasi(probability)-distribution on Ω for the game
(
u1(φ), u2(φ)

)
if there

exists a QE (x, y) of that game such that for each ω ∈ Ω, z(ω) = xφωy.

Thus, the set of CMNE is a subset of the set of all QE of a given game. For the rest of the paper we

fix an outcome game form φ. Given an m × n matrix A and b ∈ Rm, (A|b) denotes the m × (n + 1)

matrix that arises from A by adding b as final column and At denotes the transpose matrix of A. Let

k = max{ranku(φ) : u ∈ RΩ}. We rely on the following fact shown by Mas-Colell (2010). There is an

open and dense (and hence generic) subset G of RΩ such that the following conditions hold.

(a) For every u ∈ G, we have ranku(φ) = k. After reordering, if necessary, the strategies of the players

we may write

u(φ) =

 B C

D E

 (3)

where B = B(u) is a k × k matrix with |B| 6= 0.1

(b) The functions k1 = rank (u(φ)|dm) and k2 = rank (u(φ)t|dn) are constant on G.

Throughout the rest of this exposition, we fix a reordering of the strategies of the players such that (a)

holds. Consider the following polynomial on |Ω| variables,

p(u) = |B (u) | dkB−1 (u) dk, u ∈ RΩ (4)

Whenever p(u) 6= 0 we define

α(u) =
|B(u)|
p(u)

(5)

We have the following.

Proposition 2.2. If k = m = n, then generically there is at most one QE and, hence, at most one

CMNE. Suppose k < max{m,n}. Then,

(a) If k < max{k1, k2}, then for every u1, u2 ∈ G the game
(
u1(φ), u2(φ)

)
has no QE and, hence, no

CMNE.

(b) If k1 = k2 = k and p is the zero polynomial, then for any u1, u2 ∈ G the game
(
u1(φ), u2(φ)

)
has

no QE and, hence, no CMNE.

1When there is no danger of confusion, we will not write explicitly the dependence on the utility u for matrices.
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(c) Let u1, u2 ∈ G. Suppose k1 = k2 = k and for i = 1, 2, p
(
ui
)
6= 0. Then, there is a continuum of

QEs of the game
(
u1(φ), u2(φ)

)
. Furthermore, the systems of linear equations (1) and (2) have a

solution only if the payoffs are αi = α
(
ui
)
, i = 1, 2, with α defined in (5).

Proof. The case k1 = k2 = k of the Proposition is a standard result in elementary Linear Algebra. See

Lemmas 3.2, 3.3 and 3.4 in Litan and Marhuenda (2012) for the proof of parts (b) and (c).

We prove next part (a). We consider only the case k1 = k+ 1. The case k2 = k+ 1 is similar. We remark

first that, since dm is not a linear combination of the columns of u(φ), any y ∈ Rn which is a solution

of (1) for some u ∈ G, must satisfy u(φ)y = 0.

Assume now that there are u1, u2 ∈ G such that the game
(
u1(φ), u2(φ)

)
has a QE (x, y) with x ∈ Rm

and y ∈ Rn. Then, u1(φ)y = 0 by the previous remark. Since, G is open, there exists ε > 0 such that

ū = u1 + εd|Ω| ∈ G. Moreover, (x, y) is also a QE of the game
(
ū(φ), u2(φ)

)
and ū(φ) y = εdm. But, this

contradicts the remark in the previous paragraph. Hence, part (a) of the Proposition follows.

Since, k1, k2 ∈ {k, k + 1} and we are only interested in the existence of a continuum of CMNEs, from

now we consider only games for wich the following holds.

Assumption 2.3.

• k1 = k2 = k < max{m,n}.

• The polynomial p in (4) is not the zero polynomial.

Note that, under the above assumption, the set U = {u ∈ G : p(u) 6= 0} is open and dense in R|Ω|.
Hence, it is generic. Let α : U → R as in (5). Define the functions yp : U → Rn, yh : U × Rn−k → Rn,

xp : U → Rm and xh : U × Rm−k → Rm by

yp(u) =
(
α(u)B−1 (u) dk, 0

)
yh(u, v) =

(
−B−1 (u)C(u)v, v

)
xp(u) =

(
α(u)dkB

−1 (u) , 0
)

(6)

xh(u,w) =
(
−wD(u)B−1 (u) , w

)
The following is proved in Lemmas 3.3 and 3.4 of Litan and Marhuenda (2012).

Lemma 2.4. Let Assumption 2.3 hold and let u ∈ U . Then,

(a) u(φ) yp (u) = α (u) dm and dn · yp (u) = 1;

(b) xp(u)u(φ) = α(u)dn and dm · xp(u) = 1;

(c) For every v ∈ Rn−k we have u(φ)yh(u, v) = 0 and dn · yh(u, v) = 0;

(d) For every w ∈ Rm−k we have xh (u,w) u(φ) = 0 and dm · xh (u,w) = 0;

For V ⊂ Rl a linear subspace and a ∈ Rl we let aV = V a = {a · v : v ∈ V }. From now on, we follow the

notation of Lemma 2.4. Given u ∈ U we define K1(u) = {z ∈ Rn : u(φ)z = 0} and K2(u) = {t ∈ Rm :

tu(φ) = 0}. Since, we are assuming that k1 = k2 = k, we have that K1(u) = keru(φ) = ker (u(φ)|dm)
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and K2(u) = keru(φ)t = ker (u(φ)t|dn). We see from Lemma 2.4 that K1(u) = {yh(u, v) : v ∈ Rn−k}
and K2(u) = {xh(u,w) : w ∈ Rm−k}. It follows that dimK1(u) = n − k, dimK2(u) = m − k. and

K1(u) dn = dmK2(u) = 0. Let u1, u2 ∈ U . Any QE (x, y) of the game
(
u1(φ), u2(φ)

)
may be written as(

xp(u2) + xh(u2, w), yp
(
u1
)

+ yh(u1, v)
)

for some v ∈ Rn−k and w ∈ Rm−k. When there is no danger of confusion we will not write explicitly the

dependence on u1, u2, v or w. For each outcome ω ∈ Ω, define the following polynomial in the variables

(v, w) ∈ Rn−k × Rm−k

qω(v, w) = xp
(
u2
)
φωyp

(
u1
)

+ xp
(
u2
)
φωyh

(
u1, v

)
+ xh(u2, w)φω yp

(
u1
)

+ xh(u2, w)φω yh
(
u1, v

)
(7)

The probability that outcome ω ∈ Ω occurs is qω(v, w). Given x ∈ Rm, y ∈ Rn we define the following

subspaces.

xφωK1

(
u1
)

= {xφωz : z ∈ K1

(
u1
)
}

K2(u2)φω y = {tφωy : t ∈ K2

(
u2
)
}

K2(u2)φωK1(u1) = {tφωz : z ∈ K1

(
u1
)
, t ∈ K2(u2)}

Lemma 2.5. Suppose that Assumption 2.3 holds. Let ω ∈ Ω, u1, u2 ∈ U . If either of the following two

conditions hold

(a) x
(
u2
)
φωK1

(
u1
)

= {0} for every solution x
(
u2
)

of the system of equations (2).

(b) K2(u2)φω y
(
u1
)

= {0} for every solution y
(
u1
)

of the system of equations (1).

then, K2(u2)φωK1(u1) = {0}.

Proof. Suppose that condition (a) holds. Let t ∈ K2(u2). Recall that we may write t as t = x1−x2, where

x1, x2 are two solutions of the system of equations (2). Let z ∈ K1(u1). Then, tφωz = x1φ
ωz− x2φ

ωz =

αdnz − αdnz = 0. Hence, it follows that K2(u2)φωK1(u1) = {0}. Similarly, condition (b) implies that

K2(u2)φωK1(u1) = {0}.

Proposition 2.6. Suppose that Assumption 2.3 holds. Let u1, u2 ∈ U . The set of QE of the game

defined by u1(φ) and u2(φ) induce finitely many quasi-distributions on Ω if and only if the following two

conditions hold.

(a) x
(
u2
)
φωK1

(
u1
)

= {0} for every ω ∈ Ω and every solution x
(
u2
)

of the system of equations (2).

(b) K2(u2)φωy
(
u1
)

= {0} for every ω ∈ Ω and for every solution y
(
u1
)

of the system of equations (1).

Proof. Since, the set of QE’s of the game
(
u1(φ), u2(φ)

)
is convex we have that the set

{z ∈ RΩ : z is a quasi-distribution on Ω for the game
(
u1(φ), u2(φ)

)
}

is connected. Hence, the QEs induce finitely many quasi-distributions on outcomes if and only if they

induce a unique quasi-distribution on outcomes. We prove next part (a). Assume there is a unique

quasi-distribution induced on outcomes by the QEs of the game. Let x = x
(
u2
)

be a solution of (2), and
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z = z
(
u1
)
∈ K1

(
u1
)
. We write z = y1 − y2, where y1, y2 are two solutions of (1). Then, for each ω ∈ Ω,

we have that xφωy1 = xφωy2. So,

xφωz = xφωy1 − xφωy2 = 0

Thus, xφωK1

(
u1
)

= {0} and (a) follows. Similarly, we can prove (b).

Conversely, suppose that conditions (a) and (b) hold. Let u1, u2 ∈ U and ω ∈ Ω. By Lemma 2.5 we have

that K2(u2)φωK1

(
u1
)

= {0}. Therefore, in (7), for every QE
(
xp(u2) + xh(u2, w), yp

(
u1
)

+ yh(u1, v)
)
,

we have that (
xp(u2) + xh(u2, w)

)
φω
(
yp
(
u1
)

+ yh(u1, v)
)

= xp(u2)φω yp
(
u1
)

And the QEs of the game defined by u1(φ) and u2(φ) induce a unique quasi-distribution on Ω.

Corollary 2.7. Let Assumption 2.3 hold. Suppose there are two sets of vectors V1 ⊂ Rn and V2 ⊂ Rm

such that for every u ∈ U and i = 1, 2 we have that Vi generates Ki(u). Then, for any u1, u2 ∈ U the set

of CMNE of the game
(
u1(φ), u2(φ)

)
induce finitely many probability distributions on outcomes.

Proof. Let z ∈ V1 and t ∈ V2. For every u ∈ U , we have that tu(φ) = u(φ)z = 0. Since, the entries

of u(φ) are linear in u and U contains an open subset of R|Ω|, we see that tφω = φωz = 0 for every

ω ∈ Ω. Hence, φωK1 (u) = K2 (u)φω = {0} for every u ∈ U and ω ∈ Ω. The result follows now from

Proposition 2.6.

The following result provides necessary and sufficient conditions for the existence of finitely many prob-

ability distributions on outcomes in games induced by outcome game forms.

Theorem 2.8. Let Assumption 2.3 hold, u1, u2 ∈ U and suppose there is, at least, one CMNE of the

game
(
u1(φ), u2(φ)

)
. Then, the set of all the CMNE of that game induces finitely many probability

distributions on outcomes iff for every ω ∈ Ω

rank


u1(φ) 0

φω u2(φ)

0 dn

 = 2k and rank

 u2(φ) φω 0

0 u1(φ) dm

 = 2k

The proof is based on techniques developed in Litan and Marhuenda (2012). A review of these and the

details of the proof are provided in the appendix.
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A The proof of Theorem 2.8

Lemma A.1. Suppose that Assumption 2.3 holds. Let u1, u2 ∈ U . The set of QE of the game(
u1(φ), u2(φ)

)
induce finitely many quasi-distributions on outcomes if and only if for every ω ∈ Ω and

every QE
(
x
(
u2
)
, y
(
u1
))

of that game the following two conditions hold.

(a) x
(
u2
)
φω is in the image of u1(φ)t

(b) φωy
(
u1
)

is in the image of u2(φ).

Proof. Let u1, u2 ∈ U . By Proposition 2.6, the set of QE of the game
(
u1(φ), u2(φ)

)
induce finitely many

quasi-distributions on outcomes if and only if for every ω ∈ Ω, every solution x
(
u2
)

of the system of

equations (2) and every solution y
(
u1
)

of the system of equations (1) we have that x
(
u2
)
φωK1

(
u1
)

= {0}
and K2(u2)φωy

(
u1
)

= {0}. This is equivalent to the statement that x
(
u2
)
φω is orthogonal to K1

(
u1
)

and φωy
(
u1
)

is orthogonal to K2(u2), which occurs if and only if x
(
u2
)
φω is in the image of u1(φ)t and

φω y
(
u1
)

is in the image of u2(φ).

Lemma A.2. Let ω ∈ Ω and u1, u2 ∈ U . Let Assumption 2.3 hold and suppose that K2(u2)φωK1(u1) =

{0}. Then,

rank

 u1(φ) 0

φω u2(φ)

 = 2k
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Proof. We use the notation

φω =

 Bω Cω

Dω Eω


to denote the decomposition of the matrix u(φ) in (3) applied to the matrix φω. Let

F =

 u1(φ) 0

φω u2(φ)


We can write now

F =


B
(
u1
)

C
(
u1
)

0 0

D
(
u1
)

E
(
u1
)

0 0

Bω Cω B
(
u2
)

C
(
u2
)

Dω Eω D
(
u2
)

E
(
u2
)


By elementary row and column operations,

rankF = rank


B
(
u1
)

C
(
u1
)

0

Bω Cω B
(
u2
)

Dω Eω D
(
u2
)
 = rank


B
(
u1
)

C
(
u1
)

0

Bω Cω B
(
u2
)

Dω
1 Eω1 0


where

Dω
1 = Dω −D

(
u2
)
B−1

(
u2
)
Bω (8)

Eω1 = Eω −D
(
u2
)
B−1

(
u2
)
Cω (9)

Finally,

rankF = rank


B
(
u1
)

0 0

Bω Cω2 B
(
u2
)

Dω
1 Eω2 0


with Cω2 = Cω −BωB−1

(
u1
)
C
(
u1
)

and

Eω2 = Eω1 −Dω
1B
−1
(
u1
)
C
(
u1
)

= Eω −D
(
u2
)
B−1

(
u2
)
Cω −DωB−1

(
u1
)
C
(
u1
)

+D
(
u2
)
B−1

(
u2
)
BωB−1

(
u1
)
C
(
u1
)

=
(
−D

(
u2
)
B−1

(
u2
)

Im−k

) Bω Cω

Dω Eω

 −B−1
(
u1
)
C
(
u1
)

In−k


=

(
−D

(
u2
)
B−1

(
u2
)

Im−k

)
φω

 −B−1
(
u1
)
C
(
u1
)

In−k


It follows from Lemma 2.4 that

K1(u1) = {yh(u1, v) : v ∈ Rn−k} =


 −B−1

(
u1
)
C
(
u1
)

In−k

 v : v ∈ Rn−k


and

K2(u2) = {xh(u2, w) : w ∈ Rm−k} =
{
w
(
−D

(
u2
)
B−1

(
u2
)

Im−k

)
: w ∈ Rm−k

}
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Since K2(u2)φωK1(u1) = {0}, for any v ∈ Rn−k and w ∈ Rm−k we have that

wEω2 v = w
(
−D

(
u2
)
B−1

(
u2
)

Im−k

)
φω

 −B−1
(
u1
)
C
(
u1
)

In−k

 v = 0

Therefore, Eω2 = 0 and

rankF = rank


B
(
u1
)

0 0

Bω Cω2 B
(
u2
)

Dω
1 0 0

 = rank

 B
(
u1
)

0 0

Bω Cω2 B
(
u2
)
 = 2k

because, since rankB
(
u1
)

= rankB
(
u2
)

= k, the rows of Dω
1 are a linear combination of the rows of

B
(
u1
)
.

Lemma A.3. Suppose that Assumption 2.3 holds. Let u1, u2 ∈ U , ω ∈ Ω. Then,

(a) x
(
u2
)
φωK1

(
u1
)

= {0} for every solution x
(
u2
)

of the system of equations (2) if and only if

rank


u1(φ) 0

φω u2(φ)

0 dn

 = 2k

(b) K2(u2)φωy
(
u1
)

= 0 for every solution y
(
u1
)

of the system of equations (1) if and only if

rank

 u2(φ) φω 0

0 u1(φ) dm

 = 2k

Proof. We prove only part (a). The proof of part (b) is similar. Fix a solution x = x
(
u2
)

of the system

of equations (2). Let

F =


u1(φ) 0

φω u2(φ)

0 dn


Since, dn = 1

α(u2)xu
2(φ), by elementary row operations we have that

rankF = rank


u1(φ) 0

φω u2(φ)

1
α(u2)xφ

ω 0


Assume that xφωK1

(
u1
)

= 0. Then, by Lemma A.1, xφω is in the image of u1(φ)t and hence xφω is a

linear combination of the rows of u1(φ). Therefore,

rankF = rank

 u1(φ) 0

φω u2(φ)


and, by Lemmas 2.5 and A.2 we have that rankF = 2k.
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Conversely, suppose now that rankF = 2k. We proceed now as in Lemma A.2 and write F as

F =


u1(φ) 0 0

Bω Cω B
(
u2
)

C
(
u2
)

Dω Eω D
(
u2
)

E
(
u2
)

0 0 dk dn−k


The above argument shows that

rankF = rank


u1(φ) 0 0

Bω Cω B
(
u2
)

C
(
u2
)

Dω Eω D
(
u2
)

E
(
u2
)

1
α(u2)x(u2)φω 0 0


Since ranku2(φ) = rankB

(
u2
)

= k, we get that

rankF = rank


u1(φ) 0

Bω1 Cω1 B
(
u2
)

Dω
1 Eω1 0

1
α(u2)xφ

ω 0

 = 2k

where Dω
1 , E

ω
1 are defined in (8) and (9). Since, ranku1(φ) = rankB

(
u2
)

= k, the rows of the matrix(
Dω

1 Eω1

)
and xφω are a linear combination of the rows of u1(φ). It follows that xφω is orthogonal

to K1

(
u1
)

and (a) follows.

The following result follows now immediately from Proposition 2.6 and Lemma A.3.

Theorem A.4. Suppose that Assumption 2.3 holds. Let u1, u2 ∈ U . Then, the set of all the QE of the

game
(
u1(φ), u2(φ)

)
induces finitely many quasi-distributions on outcomes iff for every ω ∈ Ω

rank


u1(φ) 0

φω u2(φ)

0 dn

 = 2k and rank

 u2(φ) φω 0

0 u1(φ) dm

 = 2k

We address now the proof of Theorem 2.8. We show first the ‘if’ part. If the rank conditions in Theo-

rem 2.8 hold, then by Theorem A.4 the set of QE induce a unique quasi-distribution on outcomes. Since

the set of CMNE is a subset of the set of QE, the set of CMNE also induces, at most, a unique distribution

on outcomes. Thus, the ‘if’ part of Theorem 2.8 holds.

Conversely, suppose that the set of CMNE of the game
(
u1(φ), u2(φ)

)
induces finitely many distributions

on outcomes and that the game
(
u1(φ), u2(φ)

)
has, at least, a CMNE , say x̄ = xp(u2) + xh(u2, w0) ∈

∆+(S1) and ȳ = yp
(
u1
)
+yh(u1, v0) ∈ ∆+(S2) with w0 ∈ Rm−k, v0 ∈ Rn−k. By continuity, there are open

sets H1 ⊂ Rn−k and H2 ⊂ Rm−k such that for v ∈ H1, w ∈ H2 we have that x = xp(u2) + xh(u2, w) ∈
∆+(S1) and y = yp

(
u1
)

+ yh(u1, v) ∈ ∆+(S2) is a CMNE of the game
(
u1(φ), u2(φ)

)
.

If the rank conditions in Theorem 2.8 do not hold, then, by Theorem A.4 for some outcome ω ∈ Ω the

polynomial qω(v, w) in (7) is not constant and, hence, it takes a continuum of values as the variables

(v, w) vary on the open set H1 × H2. It follows that the set CMNE of the game
(
u1(φ), u2(φ)

)
induce

infinitely many distributions on outcomes, which contradicts our assumption. And the ‘only if’ part of

Theorem 2.8 follows.
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